
 

 
  

Article 

Impact of TSPO receptor polymorphism on [18F]GE-180 binding 
in healthy brain and pseudo-reference regions of neuroonco-
logical and neurodegenerative disorders 
Franziska J. Vettermann1, Stefanie Harris1, Julia Schmitt1, Marcus Unterrainer2, Simon Lindner1, Boris-Stephan 
Rauchmann2,3, Carla Palleis4, Endy Weidinger4, Leonie Beyer1, Florian Eckenweber1, Sebastian Schuster1, Gloria 
Biechele1, Christian Ferschmann1, Vladimir M. Milenkovic5, Christian H. Wetzel5, Rainer Rupprecht5, Daniel Jan-
owitz6, Katharina Buerger6, Robert Perneczky3,7,8,9, Günter U. Höglinger7,9,10, Johannes Levin4,7,9, Christian Haass7,9,11, 
Joerg C. Tonn12, Maximilian Niyazi13,14, Peter Bartenstein1,9, Nathalie L. Albert1,14‡, Matthias Brendel1,9,14‡* 

1Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany 
2Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany 
3Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, Germany 
4Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany 
5Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany 
6Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany 
7German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 
8Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK 
9Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 
10Department of Neurology, Hannover Medical School, Hannover, Germany 
11Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany 
12Department of Neurosurgery, University Hospital of Munich, Munich, Germany 
13Department of Radiation Oncology, University Hospital of Munich, LMU Munich, Munich, Germany 
14German Cancer Consortium (DKTK), partner site Munich, Munich, Germany 
‡ contributed equally 
*Correspondence: Matthias.Brendel@med.uni-muenchen.de, 0049/089-4400-74650 

Abstract: TSPO-PET tracers are sensitive to a single-nucleotide-polymorphism (rs6971-SNP) result-
ing in low (LAB), medium (MAB) and high (HAB) affinity binders, but the clinical relevance for 
[18F]GE-180 is still unclear. We evaluate the impact of rs6971-SNP on in vivo [18F]GE-180 binding in 
healthy brain and in pseudo-reference tissue in neurooncological and neurodegenerative diseases. 
Standardized uptake values (SUV) of [18F]GE-180-PET were assessed using a manually drawn re-
gion of interest in the fronto-parietal and cerebellar hemisphere. SUVs were compared between 
LAB, MAB and HAB in controls, glioma, 4-repeat tauopathies (4RT) and Alzheimer’s disease (AD) 
subjects. Second, SUVs were compared between patients and controls within their rs6971-subgroup. 
After exclusion of patients with prior therapy, n=24 LABs (n=7 controls, n=5 glioma, n=6 4RT, n=6 
AD) were analysed. Age- and sex-matched MABs (n=38) and HABs (n=50) were selected. LABs had 
lower fronto-parietal and cerebellar SUVs when compared to MABs and HABs, but no significant 
difference was observed between MABs and HABs. Within each rs6971 group, no SUV difference 
between patients and controls was detected in the pseudo-reference tissues. The rs6971-SNP affects 
[18F]GE-180 quantification, revealing lower binding in LABs when compared to MABs/HABs. 
Fronto-parietal and cerebellar ROIs were successfully validated as pseudo-reference regions. 

Keywords: microglia; neurodegeneration; Alzheimer’s disease; neurooncology; 4R-tauopathies; 
TSPO-PET 
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1. Introduction 

The translocator protein 18 kDa (TSPO), previously known as the peripheral benzo-
diazepine receptor is a mitochondrial transporter involved in various intracellular pro-
cesses. Its expression in the central nervous system (CNS) under physiological conditions 
is relatively low, but the expression is upregulated in activated microglia, macrophages 
and cancer cells [1]. TSPO received increasing importance as a positron-emission-tomog-
raphy (PET) imaging target for several diseases, including CNS autoimmune diseases, 
neurodegeneration and glioma [2].  

The first-generation TSPO-PET tracer [11C]PK11195 has been used for over 25 years, 
though its application is limited due to poor pharmacokinetics and carbon-11 radiolabel 
[3-5]. Several second-generation TSPO ligands with an improved signal-to-noise ratio, in-
cluding [11C]PBR28 have been investigated and revealed substantial heterogeneity in 
binding potential due to inter-subject variability in the affinity for TSPO [6, 7]. Here, the 
binding properties of second-generation TSPO ligands have been found to depend on a 
genetic polymorphism in the TSPO gene. A single nucleotide polymorphism (rs6971), 
which replaces alanine by threonine (Ala147Thr), results in three patterns of binding af-
finity: high-affinity binders (HABs), mixed-affinity binders (MABs) and low affinity bind-
ers (LABs) depending on the homozygosity or heterozygosity of the allele [8]. Loss of 
binding to TSPO in approximately 10% LABs and underestimation of TSPO expression in 
LABs and MABs was reported [9]. Similar effects of the rs6971 polymorphism were also 
demonstrated in initial studies using [11C]PBR28 [10, 11] and this phenomenon was sub-
sequently noticed for several second-generation radiotracers [6, 11, 12]. Thus, the PET sig-
nal of patients with MAB and LAB status significantly underestimates TSPO expression 
and determination of the TSPO binding status is required. The development of next-gen-
eration TSPO tracers was a consequence of the sensitivity of the second-generation tracers 
to this polymorphism in the TSPO gene. Recently, the next-generation TSPO-PET tracer 
[18F]GE-180 has received interest due to its fluorine labelling which makes the tracer avail-
able at centers without on-site cyclotron. Furthermore, recent studies reported a high le-
sion to background ratio, and a higher proportion of specific binding (45%) when com-
pared to [11C]PBR28 (33%) as shown by in vivo blocking [13-16]. 

Our group has studied [18F]GE-180 in neurooncological, neurodegenerative and neu-
roimmune diseases. Glioma imaging with [18F]GE-180 has shown to be valuable in non-
invasive grading, with excellent sensitivity for the detection of high-grade gliomas [17-
19]. [18F]GE-180 imaging in patients with a clinical diagnosis of 4R-tauopathies (4RT) 
closely reflected the expected topology of microglial activation and indicated early detec-
tion in the disease course [20]. These findings have been underpinned by strong immuno-
histochemical correlations of CD68 staining and TSPO-PET signal in a Trem2 deficient 
amyloid mouse model and in tau transgenic P301S mice [21, 22]. However, clinical rele-
vance of the rs6971 polymorphism on different binding affinity has not yet systematically 
been determined for [18F]GE-180. 

In this study we aimed to evaluate the impact of rs6971 on the in vivo [18F]GE-180 
signal in healthy brain and in potential pseudo-reference tissue for studies of neuroonco-
logical and neurodegenerative diseases. 

2. Result 

2.1. Sample composition and demographics 
From a total of 380 participants, 113 participants were included in the analysis. 

Genotyping revealed 12% LABs (45/380) and after applying exclusion criteria 24 LABs 
consisting of 7 control subjects, 5 patients with glioma, 6 patients with a clinical diagnosis 
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of a 4R-tauopathy and 6 patients with a clinical diagnosis of AD with a mean age of 67.9 
years (95%-CI: 64.6-71.8) and a female to male ratio of 12:12 were included in the analysis. 
MAB and HAB patients were selected by the matching algorithm including minimal n, 
age, and sex (Figure 1).  

 

 
Figure 1. Flow chart of subject selection. LAB = low affinity binder; MAB = medium affinity binder; 
HAB = high affinity binder; AD = Alzheimer’s disease; 4RT = 4-repeat tauopathies. 

 
Thirty-eight MABs included 14 patients with glioma, 8 patients with a clinical 

diagnosis of a 4R-tauopathy, 6 patients with a clinical diagnosis of AD and 10 control 
patients with a mean age of 70.1 years (95%-CI: 67.2-72.9) and a female to male ratio of 
23:15. Of 52 included HABs, 11 suffered from a glioma, 21 had a clinical diagnosis of a 4R-
tauopathy, 15 had a clinical diagnosis AD and 5 were control subjects with a mean age of 
70.4 (95%-CI: 67.9-72.8) and a female to male ratio of 23:29 (Table 1). The diagnosis specific 
subgroups did not differ in binding status, age and sex. The glioma group consisted of 27 
WHO Grade IV gliomas with an IDH-wildtype status and one WHO grade II glioma, IDH-
mutant. The maximum standardized uptake values (SUVmax) of the tumour was 2.8 (95%-
CI: 2.5-3.1) and the maximum tumour-to-background ratio (TBRmax) was 6.6 (95%-CI: 5.8-
7.5). Analysed patients with 4R-tauopathies had a PSPRS score of 29.8 (95%-CI: 24.8-34.8), 
a MoCA score of 22.4 (95%-CI: 20.6-24-2), and a SEADL score of 60.6 (95%-CI: 54.2-67.1). 
Included patients of the AD-continuum had a MMSE score of 24.1 (95%-CI: 21.9-26.2), a 
global CDR score of 0.6 (95%-CI: 0.39-0.76) and a CDR sob score of 3.2 (95%-CI: 2.1-4.3). 
Controls did not show any signs of cognitive decline (MoCA 29.1 (95%-CI: 28.4-29.7)) or 
motor dysfunction. 
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Table 1. 

 LAB MAB HAB 

Number of subjects 24 38 52 

Diagnosis 

Control (n) 7 10 5 

Glioma (n) 5 14 11 

4R-tauopathy (n) 6 8 21 

AD (n) 6 6 15 

Age (y, mean, 95%CI) 
68.2 

(64.6-71.8) 

70.1 

(67.2-72.9) 

70.4 

(67.9-72.8) 

Sex (♀ /♂) 12♀ / 12♂ 23♀ / 15♂ 23♀ / 29♂ 

Control 

Age (y, mean, 95%CI) 
68.4 

(61.9-74.9) 

69.1 

(63.7-74.6) 

72.2 

(64.4-79.9) 

Sex (♀ /♂) 4♀ / 3♂ 7♀ / 3♂ 1♀ / 4♂ 

Glioma 

Age (y, mean, 95%CI) 
60.9 

(51.7-70.0) 

70.0 

(64.6-75.5) 

71.9 

(65.7-78.1) 

Sex (♀ /♂) 2♀ / 3♂ 8♀ / 6♂ 4♀ / 7♂ 

SUVmax 
3.3 

(2.4-4.1) 

2.5 

(2.0-3.0) 

2.6 

(2.1-3.2) 

TBRmax 
8.7 

(6.9-10.5) 

6.2 

(5.0-7.3) 

6.2 

(4.9-7.5) 

4RT 

Age (y, mean, 95%CI) 
69.9 

(62.4-77.3) 

68.1 

(61.7-74.6) 

68.9 

(64.9-72.8) 

Sex (♀ /♂) 4♀ / 2♂ 5♀ / 3♂ 10♀ / 11♂ 

PSPRS 
23.0 

(3.0-42.9) 

33.8 

(23.8-35.1) 

28.9 

(22.7-35.1) 

MoCA 
21.5 

(14.1-28.9) 

23.4 

(19.7-27.1) 

22.0 

(19.8-24.3) 

SEADL 
75.0 

(49.3-100.7) 

56.3 

(43.4-69.1) 

61.0 

(53.0-68.9) 

AD 

Age (y, mean, 95%CI) 
72.4 

(65.4-79.3) 

74.2 

(67.3-81.1) 

70.8 

(66.4-75.1) 

Sex (♀ /♂) 2♀ / 4♂ 3♀ / 3♂ 8♀ / 7♂ 

MMSE 
23.4 

(18.3-28.5) 

23.3 

(18.7-27.9) 

24.6 

(21.7-27.5) 
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CDR 
0.50 

(0.06-0.94) 

0.75 

(0.35-1.15) 

0.53 

(0.28-0.79) 

CDR sob 
3.8 

(1.4-6.2) 

4.6 

(2.4-6.8) 

2.5 

(1.1-3.9) 
Demographics at the group level. AD = Alzheimer’s disease; CI = confidence interval; MMSE = mini-
mental-state-examination; CDR = clinical dementia rating; sob = sum of boxes; SEADL = Schwab and 
England activities of daily living; PSPRS = progressive supranuclear palsy rating scale; MoCA = 
Montreal cognitive assessment; 4RT = 4-repeat tauopathies; SUVmax = maximum standardized 
uptake value; TBRmax = maximum tumour-to-background ratio; LAB = low affinity binder; MAB = 
medium affinity binder; HAB = high affinity binder. 

 

2.2 [18F]GE-180 binding in comparison of rs6971 polymorphism subgroups 
Concordance between repeated quantification by manual region definition was 

excellent for the fronto-parietal (r=0.987) and the cerebellar (r=0.984) VOI. Overall LABs 
showed significantly lower SUVs in fronto-parietal and cerebellar VOIs when compared 
to MABs and to HABs (Table 2). There was no significant difference observed between 
MABs and HABs (Table 2). Specific findings in controls and disease groups are reported 
below. 

      
     Table 2. 

  Frontal-parietal Cerebellum 

Disease 

group 

LAB 

(SUV ± 

SD) 

MAB 

(SUV 

± SD) 

HAB 

(SUV ± 

SD) 

p-

value 

LAB 

(SUV ± 

SD) 

MAB 

(SUV ± 

SD) 

HAB 

(SUV ± 

SD) 

p-

value 

Control 0.345  

± 0.025 

0.436  

± 0.021 

0.471  

± 0.031 

0.013* 
0.006' 
0.375# 

0.367  

± 0.027 

0.455  

± 0.023 

0.514  

± 0.034 

0.023* 
0.004' 
0.181# 

Glioma 0.381  

± 0.021 

0.424  

± 0.012 

0.436  

± 0.014 

0.086* 
0.047' 
0.511# 

0.372  

± 0.028 

0.463  

± 0.016 

0.440  

± 0.018 

0.009* 
0.059' 
0.338# 

4RT 0.355  

± 0.028 

0.455  

± 0.024 

0.462  

± 0.015 

0.010* 
0.002' 
0.826# 

0.354  

± 0.032 

0.475  

± 0.028 

0.478  

± 0.017 

0.007* 
0.002' 
0.930# 

AD 0.360 

± 0.039 

0.420  

± 0.039 

0.435  

± 0.025 

0.290* 
0.118' 
0.740# 

0.397  

± 0.038 

0.452  

± 0.038 

0.460  

± 0.024 

0.321* 
0.175' 
0.848# 

Findings at one glance; TSPO PET quantification at the group level. Values represent regional group 
means of fronto-parietal and cerebellar VOIs and their standard deviation. *specific p-value for 
differences between the tracer uptake of LABs compared to MABs, ‘LABs compared to HABs, 
#MABs compared to HABs. LAB = low affinity binder; MAB = medium affinity binder; HAB = high 
affinity binder; AD = Alzheimer’s disease; 4RT = 4-repeat tauopathies; SUV = standardized uptake 
value; SD = standard deviation. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 April 2021                   doi:10.20944/preprints202104.0548.v1

https://doi.org/10.20944/preprints202104.0548.v1


 6 of 15 
 

 

2.1.1. Controls 
The fronto-parietal SUV of LAB controls was significantly lower (0.345 ± 0.025) when 

compared to MAB controls (0.436 ± 0.021, p=0.013) and HAB controls (0.471 ± 0.031, 
p=0.006). A comparable effect was detected in the cerebellum, with a significantly lower 
SUVs of LAB controls (0.367 ± 0.027), compared to MAB controls (0.455 ± 0.023, p=0.023) 
and HAB controls (0.514 ± 0.034, p=0.004). There was no discernible difference of SUVs 
between MAB and HAB controls in both regions (fronto-parietal: p=0.375; cerebellum: 
p=0.181; Figure 2). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. SUVmean distribution among the rs6971 polymorphism subgroups in controls and neurooncological and neurodegenera-
tive diseases for the fronto-parietal VOI (A) and the cerebellar VOI (B). Error bars indicate standard deviation. LAB = low affinity 
binder; MAB = medium affinity binder; HAB = high affinity binder; AD = Alzheimer’s disease; 4RT = 4-repeat tauopathies; SUV = 
standardized uptake value 

2.1.2. Disease Group 

2.1.2.1. Glioma 
The fronto-parietal and cerebellar SUVs in the glioma cohort likewise differed signif-

icantly between the three TSPO binding polymorphism groups. The fronto-parietal VOI 
of LABs revealed significantly lower SUVs (0.381 ± 0.021) in comparison to MABs (0.424 ± 
0.012, p=0.086) and HABs (0.436 ± 0.014, p=0.047). 

The cerebellar VOI in the glioma group showed similar results with lower SUVs in 
LABs (0.372 ± 0.028) when compared to MABs (0.463 ± 0.016, p=0.009) and with a trend 
towards lower SUVs in HABs (0.440 ± 0.018, p=0.059). Again, no difference of SUVs be-
tween MAB and HAB glioma patients in both regions was detectable (fronto-parietal: 
p=0.551; cerebellum: p=0.338). 

2.1.2.2. 4RT 
In patients with 4R-tauopathies, we observed a significantly lower fronto-parietal 

SUV in LABs (0.355 ± 0.028) when compared to MABs (0.455 ± 0.024, p=0.010) and HABs 
(0.462 ± 0.015, p=0.002). In the cerebellum, the SUV was significantly lower in LABs (0.354 
± 0.032) when compared to MABs (0.475 ± 0.028, p=0.007) or HABs (0.478 ± 0.017, p=0.002). 
There was no difference between the SUV values in MAB and HAB 4R-tauopathy patients 
(fronto-parietal: p=0.826, cerebellar: p=0.930). 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 April 2021                   doi:10.20944/preprints202104.0548.v1

https://doi.org/10.20944/preprints202104.0548.v1


 7 of 15 
 

 

2.1.2.3. AD 
 The results of patients with AD trended into the same direction as for other disease 
groups but they did not reach statistical significance. The fronto-parietal SUV of LABs was 
0.360 ± 0.039, compared to MABs with a SUV of 0.420 ± 0.039 (p=0.290) and HABs with a 
SUV of 0.435 ± 0.025 (p=0.118). In the cerebellum, a non-significantly lower SUV was ob-
served in LABs (0.397 ± 0.038), compared to MABs (0.452 ± 0.038, p=0.321) and HABs (0.460 
± 0.024, p=0.175). There was no discernible difference of SUVs between MAB and HAB 
AD patients for both regions (fronto-parietal: p=0.740; cerebellum: p=0.848). 

2.3. [18F]GE-180 binding in fronto-parietal and cerebellar pseudo-reference tissues within each 
rs6971 polymorphism subgroup 

Visually, within each rs6971 polymorphism group, tracer binding of fronto-parietal 
and cerebellar VOIs was comparable between patients and healthy controls (Figure 3). 
 

 
Figure 3. Differing [18F]GE-180 uptake in the three polymorphism subgroups (LAB, MAB, 
HAB) but comparable intensities throughout the disease and control subjects within each 
rs6971 polymorphism subgroup. The crescent shaped red lines resemble the drawn ROIs 
for the pseudo-reference tissue assessment (as described in the methods). LAB = low 
affinity binder; MAB = medium affinity binder; HAB = high affinity binder; AD = 
Alzheimer’s disease; 4RT = 4-repeat tauopathies; SUV = standardized uptake value 

2.3.1. LABs 
Within LABs, the fronto-parietal SUV as a potential pseudo-reference tissue for gli-

oma TSPO-PET imaging, was similar between patients with glioma and controls 
(p=0.599). Similar results were obtained for the analysis of cerebellar SUVs which could 
be applied as a pseudo-reference tissue for TSPO-PET imaging of patients with glioma 
and neurodegenerative diseases. No significant difference was detected between all pa-
tient and control subjects (glioma vs. 4R-tauopathy p=0.817, glioma vs. AD p=0.174, gli-
oma vs. control p=0.837, 4R-tauopathy vs. AD p=0.093, 4R-tauopathy vs. control p=0.626, 
AD vs. control p=0.184). 
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2.3.2. MABs/ HABs 
 In the rs6971 polymorphism subgroups of MABs and HABs no significant difference 
of fronto-parietal SUVs was detected between patients with glioma and controls (p=0.405/ 
p=0.908). Cerebellar SUVs revealed similar results without significant differences between 
all patient and control subjects within MABs and HABs (glioma vs. 4R-tauopathy p=0.791/ 
p=0.220, glioma vs. AD p=0.567/ p=0.244, glioma vs. control p=0.977/ p=0.355, 4R-tauopa-
thy vs. AD p=0.470/ p=0.987, 4R-tauopathy vs. control p=0.784/ p=0.936, AD vs. control 
p=0.608/ p=0.946). 
 
2.4. Overall impact of the rs6971 polymorphism on [18F]GE-180 binding 

Finally, we aimed to determine the quantitative impact of the rs6971 polymorphism 
on [18F]GE-180 SUV by a combined analysis of all study groups. Limited pathology in the 
cerebellum of all included subjects and limited pathology in the fronto-parietal region of 
patients with glioma and controls allowed us to estimate the rs6971 polymorphism impact 
in a robust fashion. The averaged difference between the SUVs of LABs compared to 
MABs was 19.0% ± 5.9% and the averaged difference between SUVs of LABs to HABs with 
20.9% ± 5.3% (Figure 4). The rs6971 impact was robust when considering the quantitative 
coefficient of variance of all four study groups. 

 

 
Figure 4. Percentage of [18F]GE-180 SUV reduction of genetically determined LAB status. Mean 
values ± standard deviation derived from six comparisons (fronto-parietal: HC, glioma; cerebellum: 
HC, glioma, 4RT, AD) each. LAB = low affinity binder; MAB = medium affinity binder; HAB = high 
affinity binder; SUV = standardized uptake value. 

3. Discussion 
In this study, we investigated the tracer binding of [18F]GE-180 in the three rs6971 

polymorphism subgroups by an analysis in healthy controls, patients with glioma and 
patients with neurodegenerative diseases. The aim of this study was to determine if 
[18F]GE-180 is sensitive to the rs6971 polymorphism as known from other TSPO 
radioligands and to evaluate potential pseudo-reference tissues for simplified clinical 
application of this tracer.  

The main strength of our study consists of a meaningful sample of 24 LABs after 
exclusion of relevant confounding factors such as radiotherapy, chemotherapy, or ster-
oids. Overall LABs showed a significantly lower [18F]GE-180 SUV compared to MABs and 
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HABs and the impact of a LAB status was estimated to a SUV reduction of 19%/ 21%, 
respectively. In a study using post-mortem tissue for in vitro tracer binding, the TSPO-
PET radioligands, PBR28 and PBR06 showed a more pronounced difference in binding 
affinity with a 50-fold and 17-fold higher affinity of HABs compared to LABs, respec-
tively. PBR111 and DPA713 indicated a 4-fold higher affinity of HABs compared to LABs 
and PK11195 showed a negligible difference in binding affinity (0.8-fold) of HABs com-
pared to LABs [6, 23]. The purpose of our study was to evaluate the impact of the rs6971 
polymorphism on [18F]GE-180 application in vivo. In line with many of the aforemen-
tioned studies, we found a sensitivity of this tracer for the rs6971 polymorphism. In con-
clusion, LABs need to be considered carefully when performing TSPO-PET imaging with 
[18F]GE-180 in neuro-oncology and neurology, since the rs6971 polymorphism signifi-
cantly impacts quantification. From the current perspective, LABs should be excluded and 
the inclusion of MABs and HABs should be feasible with consideration of the rs6971 pol-
ymorphism as a covariate, given the minor differences in binding among MABs and 
HABs. 

The validity of [18F]GE-180 as an in vivo read-out of microglial activation has been 
discussed extensively and with a focus on the question if [18F]GE-180 uptake is mainly 
driven by blood brain barrier disruption [24-27]. In this regard, [18F]GE-180 revealed a 
high signal-to-noise ratio in preclinical studies, but low brain penetration in human 
healthy controls [15, 28]. Missing rs6971 polymorphism differences in disease [17, 29] have 
been one major argument to question the specificity of [18F]GE-180 binding to the micro-
glial TSPO receptor. Our study demonstrates for the first time a significant rs6971 poly-
morphism impact on the [18F]GE-180 uptake in vivo, thus refuting this earlier criticism[26]. 
In line with our data, Sridharan et al. performed a blocking study to quantify the specific 
binding of [18F]GE-180 to TSPO and measured a 45% specific signal, concluding that de-
spite low brain penetration, [18F]GE-180 exhibits a specific signal in the brain [16]. Further-
more, our translational study in P301S mice and patients with 4R tauopathies indicated 
microglia specific uptake of [18F]GE-180 in a depletion experiment and no dependency of 
the tracer uptake by markers of blood brain barrier integrity. Microleakage was claimed 
as a potential source of [18F]GE-180 signal elevation in regions without MRI contrast en-
hancement [18, 19, 26, 30]. Our current data did not show an elevated [18F]GE-180 signal 
in pseudo-reference regions of patients with glioma or neurodegenerative diseases when 
compared to healthy controls, regardless of the rs6971 polymorphism status. Thus, a gen-
eral disease related microleakage as the main driver of the [18F]GE-180 signal seems un-
likely. In summary, our data enhance the evidence for a specific [18F]GE-180 signal in vivo.      

The second analysis of the current study questioned the use of potential pseudo-ref-
erence regions for [18F]GE-180 PET imaging. Molecular imaging in neuro-oncology is most 
commonly performed with amino acid tracers, such as [18F]FET. Our group has evaluated 
the fronto-parietal hemisphere as a favorable pseudo-reference tissue for the quantifica-
tion of the [18F]FET tumour uptake in clinical routine [28]. However, a concomitant neu-
roinflammatory response in brain regions without tumour infiltration could potentially 
affect TSPO-PET binding in a contralateral pseudo-reference tissue. Here, [18F]GE-180 
SUVs in patients with glioma were not different in comparison to healthy controls within 
each polymorphism subgroup. Thus, [18F]GE-180 SUVs did not indicate an impact by the 
presence of glioma in the contralateral hemisphere. Studies with other TSPO radioligands 
reported that TSPO expression in gliomas is predominantly related to neoplastic cells and 
lacking expression of TSPO in surrounding reactive astrocytes and we note that further 
research using step-wise stereotactic biopsies in spatial correlation to the PET is warranted 
to elucidate the issue of general neuroinflammation in the presence of glioma further [31-
33]. Taken together, our results support the use of the fronto-parietal region as pseudo-
reference region for neurooncological imaging with [18F]GE-180 in analogy to [18F]FET, at 
least at primary diagnosis prior to any therapeutic intervention.  
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The cerebellum is frequently used as a pseudo-reference tissue in PET imaging of 
neurodegenerative diseases due to low disease burden and only limited β-amyloid and 
tau pathology in postmortem samples of AD and 4R tauopathies, with exception of the 
dentate nucleus [34-36]. In addition, our current study did not indicate significant differ-
ences of [18F]GE-180 SUVs in the cerebellum of patients with neurodegenerative diseases 
when compared to controls within each polymorphism subgroup. This qualified the cer-
ebellum as a suitable pseudo-reference region for TSPO-PET imaging of neurodegenera-
tive diseases using [18F]GE-180. In line, others also suggested the cerebellum as a suitable 
pseudo-reference region for [11C]PBR28 imaging of AD [37]. Taken together, our [18F]GE-
180 analysis in dedicated rs6971 polymorphism subgroups revealed that potential 
pseudo-reference tissues for neurooncological and neurodegenerative diseases do not 
show altered binding in disease when compared to controls, thus making them suitable 
for relative quantification. Noteworthy, we also did not find significant increases of 
[18F]GE-180 binding in the fronto-parietal VOI of patients with AD or 4R-tauopathies 
when compared to healthy controls, although microglial activation in these cortical areas 
is known in AD and 4RT. However, our previous work in 4R-tauopathies indicated that 
cortical TSPO-PET signal elevation is phenotype dependent and regionally heterogeneous 
in individual patients with maximum VOI differences of ~15% at the group level [38]. 
Thus, it was not surprising that the less robust measure of SUV (in terms of variance) did 
not reach a significant group difference between 4RT and controls in a manually drawn 
VOI. It remains to be tested if pseudo-reference region normalization facilitates concomi-
tant use of LAB data together with MAB/HAB data in disease. This will depend on the 
presence or absence of disease specific binding in target regions of labs and the investiga-
tion will require similar patient cohorts per rs6791 polymorphism subgroup. 

Limitations of the study need to be considered. Our results were based on static 
[18F]GE-180 scans acquired from 60 to 80 minutes p.i. without arterial blood sampling. 
Thus, we were not able to consider the impact of kinetic modelling, tracer plasma availa-
bility and tracer metabolism in different rs6971 polymorphism subgroups. However, 
given the low incidence of LABs, we note that large numbers of participants with dynamic 
scanning and/or arterial sampling would be required to address such questions. In this 
regard, stable time-activity curves after 30 minutes p.i. have been shown in the healthy 
tissue of former studies [19, 30]. Another limitation is the small sample size of several of 
our subgroups, which, however, is also related to the generally low incidence of LABs. 
Thus, the statistical power was not sufficient to include several covariates that have been 
shown to be associated with TSPO-PET binding, such as obesity [39]. 

The rs6971 polymorphism has an impact on [18F]GE-180 quantification in vivo, lead-
ing to 19%/ 21% reductions of SUV in LABs when compared to MABs/-HABs. Fronto-
parietal and cerebellar pseudo-reference regions can be used for patients with glioma and 
neurodegenerative diseases. 

4. Methods 
4.1. Study design, study population and clinical assessments 
 The study and the data analyses (ethics-applications: 17-569, 17-755, 17-656 & 19-022) 
were approved by the local ethics committee (LMU-Munich, Germany). Genotyping was 
performed for all subjects that received a TSPO-PET at the department of nuclear 
medicine of the University Hospital of the Ludwig-Maximilians-University (LMU) 
Munich. Due to the disproportional distribution of the rs6971 polymorphism, controls and 
patients with glioma, Alzheimer’s disease (AD) and 4RTs were first screened for LABs. 
Age- and sex-matched MABs and HABs for controls and all disease groups were included 
to secure a homogenous study population using a step-wise demographic guided 
selection algorithm. All glioma patients with prior therapies (chemotherapy, 
radiotherapy) were excluded a priori. All subjects with immunomodulatory therapies (i.e. 
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steroids) were excluded a priori. Patients with newly diagnosed and later confirmed 
glioma were included in the glioma cohort. Diagnosis of 4R-tauopathies was made 
according to the revised Armstrong Criteria of probable CBS or the Movement Disorders 
Society criteria of possible/probable PSP or possible PSP with predominant CBS [40, 41]. 
The AD-continuum patients were required to meet criteria for typical AD with mild 
cognitive impairment or dementia according to the diagnostic criteria or the National 
Institute on Aging and the Alzheimer’s Association [41]. Exclusion criteria were severe 
neurological or psychiatric disorders other than AD-continuum or 4R-tauopathies. 
Healthy controls had no evidence of cognitive impairment following a 
neuropsychological battery which included the ADAS-Cog, a CDR score of 0, no family 
history of AD or neurological disease association with dementia and no objective motor 
symptoms. From all available MAB and HAB cases, the algorithm excluded mismatched 
cases (in terms of LAB-matching) until age and sex were indifferent between rs6971 
groups (p>0.1). The algorithm was stopped for group sizes ≤5. 
 
4.2. TSPO Genotyping 
 All individuals underwent genotyping for the genetic polymorphism of the TSPO 
gene and were classified as LAB, MAB or HAB. As previously described [19] whole-blood 
samples were sent to the Department of Psychiatry of the University Hospital Regensburg 
for polymorphism genotyping. Genomic DNA was extracted from 4 ml of whole blood 
using a QIAamp DNA Blood Maxi kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s protocol. DNA quality was assessed by optical absorbance and gel 
electrophoresis. Exon 4 of the TSPO gene and exon/intron junctions were amplified by 
PCR and sequenced using the Sanger method with the following primers: ex4-F-
AGTTGGGCAGTGGGACAG and ex4-R-GCAGATCCTGCAGAGACGA. Sequencing 
data were analysed using SnapGene software (GSL Biotech; http://snapgene.com). 
 
4.3. TSPO-PET acquisition and analysis 
 TSPO-PET scans were acquired with a Biograph 64 PET/CT scanner (Siemens, 
Erlangen, Germany) at the Department of Nuclear Medicine, LMU Munich. A low-dose 
computed tomography scan preceded the PET acquisition and served for attenuation 
correction. Automated production of [18F]GE-180 was performed as published previously 
[42]. After injection of 189±12 MBq [18F]GE-180, all patients and controls received a static 
60-80 min p.i. scan [20]. The respective summation images were used for image analysis 
[18, 19]. Images were reconstructed using OSEM3D algorithm (8 iterations, 4 subsets, 4 
mm Gauss). For each scan, standard corrections for attenuation, scatter, decay, and 
random counts were applied. 

According to the prior evaluated and published method for background activity 
assessment for [18F]FET in glioma [43], a merged VOI consisting of five manually drawn, 
crescent-shaped ROIs in the fronto-parietal lobe including white and grey matter were 
assessed in the contralateral side of the tumour.  

For patients with neurodegenerative diseases a manually-drawn cerebellar VOI (HC, 
4R-tauopathies, AD) was used, to avoid β-amyloid or tau positive supratentorial regions. 
Five manually drawn ROIs, containing ~2 ml each, were drawn in a crescent shape in the 
posterior lobe of the cerebellum, excluding the vermis, the anterior lobe, the peduncle and 
the flocculus to ensure sufficient distance to any vessels and to exclude regions involved 
in disease. All five ROIs were merged to a single VOI for both regions.  

For comparison reasons, both VOIs were drawn in all groups. In order to evaluate 
intra-reader variability, each patient was evaluated five times by a single operator. 
Concordance between repeated quantification by manual region definition was 
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calculated. Group comparisons of [18F]GE-180 SUVs between patients with glioma, 4R-
tauopathy or AD and controls as well as within each TSPO polymorphism group were 
performed by an analysis of variance (ANOVA) with the significance level p< 0.05 using 
age and sex as covariates. 
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