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Abstract: As the development of high-throughput technologies, more and more high-dimensional or
ultra high-dimensional genomic data are generated. Therefore, how to make effective analysis of such
data becomes a challenge. Machine learning (ML) algorithms have been widely applied for modelling
nonlinear and complicated interactions in a variety of practical fields such as high-dimensional
survival data. Recently, the multilayer deep neural network (DNN) models have made remarkable
achievements. Thus, a Cox-based DNN prediction survival model (DNNSurv model) [1], which
was built with Keras and Tensorflow, was developed. However, its results were only evaluated to
the survival datasets with high-dimensional or large sample sizes. In this paper, we evaluate the
prediction performance of the DNNSurv model using ultra high-dimensional and high-dimensional
survival datasets, and compare it with three popular ML survival prediction models (i.e., random
survival forest and Cox-based LASSO and Ridge models). For this purpose we also present
the optimal setting of several hyper-parameters including selection of tuning parameter. The
proposed method demonstrates via data analysis that the DNNSurv model performs overall well as
compared with the ML models, in terms of three main evaluation measures (i.e., concordance index,
time-dependent Brier score and time-dependent AUC) for survival prediction performance.
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1. Introduction

Survival time (i.e., time-to-event) is defined as the time to an event of interest, such as time to death,
time to recurrence, and time to employment. One important characteristic of the survival data is that it
is often censored, which leads to incomplete outcomes. Due to the presence of censoring, statistical
analysis for survival data is usually much more complicated than regular statistical analysis [2]. Many
statistical methods have been developed for survival analysis by using typically non-parametric or
semi-parametric statistical methods. Particularly, as the development of high throughput technologies,
more and more high-dimensional (HD) or ultra high-dimensional (ultra HD) genomic data are
generated [3]. Unlike regular cases, the HD case is often observed in biomedical data such as genomic
data, i.e., the number of covariates (p) (e.g., gene features) is usually much larger than the sample size
(n) (i.e. p � n), leading to a challenging problem [3]. In this paper, we consider HD case as well as
ultra HD case where p is extremely large (e.g., p > 105).

Recently, machine learning (ML) algorithms have been widely applied for modelling nonlinear
and complicated interactions, and improving predictability, in a variety of practical fields, and it can
well handle incomplete data in survival analysis for HD survival data [4]. Particularly, neural network
algorithm has been applied to survival analysis for a long time. The multilayer deep neural network
(DNN) model has recently made remarkable achievements for complex and HD cases with complete
data [5–7]. Nevertheless, the application of deep learning to survival analysis for censored data is
still limited because the existing DNN survival modelling approaches use a single hidden layer only
[1]. Faraggi and Simon [8] proposed a single hidden layer feed-forward neural network which is
usually regarded as a nonlinear extension of the Cox proportional hazards (PH) model. However,
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it did not outperform the classical Cox model in a research with prostate cancer survival data [9,10].
Katzman et al. [11] restudied such single layer model in a deep learning framework (named DeepSurv)
and it showed that, in terms of the the Harrell’s [12] concordance index (C-index), the novel network
performed better than the regular Cox model and random survival forest [13] model in a research
of breast cancer. Ching et al. [14] proposed a single hidden layer deep learning package (Cox-nnet)
to predict patient prognosis from high-throughput omics survival data which is also an extension
of neural network for the Cox model. It was demonstrated that the neural network survival model
performed similar or better than the regular Cox model, the penalized Cox model and the random
survival forest model using TCGA (the cancer genomic atlas) cancer data with high throughout gene
expressions. To overcome such restriction, very recently, Sun et al. [1] developed a multi-hidden-layer
Cox-based DNN survival model (DNNSurv model), to predict the progression of an age-related
macular degeneration (AMD) disease, and compared it with other survival models based on machine
learning. It showed that in a research of AMD progression, the DNNSurv model not only outperformed
several other survival models (e.g., penalized Cox model and random survival forest model) in terms
of the evaluation metrics (e.g., C-index), but also successfully obtained the patient-specific predictor
importance measures using the local interpretable model-agnostic explanation (LIME) method [15].
However, it was only concerned to the survival datasets with both HD and large sample size.

In this paper, we evaluate the prediction performance of the DNNSurv model using several HD
and ultra HD datasets for survival analysis, and compare it with three popular ML survival prediction
models (i.e., random survival forest model, Cox-based LASSO and Ridge models). Here, we also
present the optimal setting of several hyper-parameters including selection of tuning parameter. The
DNNSurv model is built with Keras [16] and Tensorflow [17] to make sure that the computation is
stable and efficient. Keras is an open-source software library and is often used to define and train deep
learning models. Several backends are supported by Keras, and Tensorflow is used as the backend
engine of Keras. Keras contains numerous commonly used building blocks for neural-network, such
as layers, activation functions, and optimizers, which makes the work much easier for writing deep
neural network code. The DNNSurv model [1] is compatible with both GPUs and CPUs, via Keras
and Tensorflow.

The paper is organized as follows. In Section 2, we review the machine and deep learning survival
methods, including prediction evaluation measures for survival analysis. In Section 3, we present
the setting of hyper-parameters, together with a cross validation procedure how to find the optimal
tuning parameter, and we then assess the performance of four survival prediction models (DNNSurv,
Random survival forest, Cox-based LASSO and Cox-based Ridge) using several real HD and ultra HD
survival datasets. Discussion is given in Section 4.

2. Machine and deep learning methods for survival analysis

Let T be a non-negative continuous random variable which represents the time-to-event. The
survival function and hazard function are denoted by S(t) and λ(t), respectively. For each individual
i (i = 1, . . . , n), let Ti be the survival time and let Ci be the corresponding censoring time. Then
observable random variables are given by

Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci), (1)

where δi is censoring indicator.
Let x = (x1, . . . , xp)T be a vector of covariates for an individual and let λ(t; x) be the hazard

function at time t for an individual with covariates x. Under the Cox PH model, the hazard function
for an individual takes the form

λ(t; x) = λ0(t) exp(xT β), (2)
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where λ0(t) is the unspecified baseline hazard function at time t under x = 0, and β = (β1, . . . , βp)T

is a vector of regression parameters corresponding to covariates x. The term xT β does not include
the intercept term and it is called the linear predictor or prognostic index. In this paper, the models
applied for the analysis of HD or ultra HD survival datasets are based on the Cox PH model except for
the random survival forest (RSF) model.

2.1. Methods

For the HD data (e.g., high throughput genomic data) with p� n, standard statistical methods
can not be applied directly. The same problems arise in the case of survival data [33]. To overcome
such problems, various improved methods (e.g., penalized-based methods, random forests and deep
learning) have been developed. Below we review the machine and deep learning methods for survival
analysis of the HD time-to-event data.

2.1.1. Penalized Cox models

Penalized Cox models are often used for processing the HD survival data. The commonly used
penalized Cox models include the Cox-based LASSO (Cox-LASSO) and Cox-based ridge (Cox-Ridge)
models [18,19], which are used for minimizing the negative partial log likelihood of the Cox model
with different penalty functions. The partial log-likelihood of the Cox model is given by:

`(β) = ∑
r∈D

{
xT

r β− log

(
∑

i∈Rr

exp(xT
i β)

)}
, (3)

where D is the set of all events, yr is the rth (r = 1, · · · , E) smallest distinct event time among the Yi’s,
E is the number of distinct events, xr is the corresponding covariate vector and Rr = {i : Yi ≥ yr} is
the set of individuals who are at risk at time yr. Then we can obtain the penalized maximum likelihood
estimates of the regression parameters β corresponding to the two methods:

β̂LASSO = argmin
β

{
− `(β)

n
+ γ ‖β‖1

}
,

β̂Ridge = argmin
β

{
− `(β)

n
+ γ ‖β‖2

2

}
,

(4)

where ‖β‖1 = ∑
p
k=1 |βk| is L1-norm penalty, ‖β‖2 = ∑

p
k=1(β2

k)
1/2 is L2-norm penalty, and γ is the

turning parameter, which is used for the adjustment of regularization. Particularly, there is no
regularization when γ = 0, and it tends to be more regularized when γ→ ∞. Note here that LASSO
penalty performs well for selecting significant variables among a variety of genes, but the limit is that
it can only select at most n variables for p� n cases because of the convex optimization problem. On
the other hand, for ridge penalty, it is more suitable for solving multicollinearity problems between
covariates, but is not proper for the variable selection problem [4].

2.1.2. Random survival forest

Breiman [20] proposed the random forest algorithm, and showed that randomizing the base
learning process can improve the performance of ensemble learning. Figure 1 shows a simple
represtentation of a random forest. The random survival forest (RSF) algorithm [20] is an extension of
the random forest to survival analysis with censored data. Because of the fact that some parametric
methods used for survival analysis are based on restrictive assumptions, it makes the survival analysis
much more difficult. However, the RSF method can handle these problems automatically. It is based on
random bootstrap samples using the training dataset. For each bootstrap sample, it randomly selects
candidate variables at each node of the tree when growing trees. Moreover, the candidate variables
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are used to split the node that maximize the survival difference between child nodes [13]. Note here
that different from the random forest algorithm, the splitting rule in the RSF used for growing a tree
should consider both survival time and censoring indicator due to censoring. For survival data, the
log-rank splitting rule is often used to split nodes by maximizing the log-rank test statistic [21].

The main ideas of the RSF algorithm are growing a survival tree and building the ensemble
cumulative hazard function which is the average of a cumulative hazard functions (usually we use the
Nelson-Aalen cumulative hazard functions) [22]. The RSF is available using “randomForestSRC” R
package.

Figure 1. Diagrammatic representation of a random forest1

2.1.3. DNNSurv model

The DNN model is well known for its capacity in learning complex covariate structures such as
non-linearity or interactions [23]. By the universal approximation theorem [24,25], the neural network
algorithm can be extremely effective even though it consists of very simple architecture such as just
one single hidden layer. The DNNSurv model [1] was built by the combination of the DNN survival
model and the regular Cox PH model, and it can be applied to the HD or ultra HD survival datasets.
The DNNSurv model is constructed as follows. The corresponding hazard function is of the form

λ(t; x) = λ0(t)eg(x;β), (5)

where g(x; β) is an unknown function with a vector of parameters β, indicating the prognostic index
which can be nonlinear. In other words, it is the extension of the linear predictor in the regular Cox
PH model, and it becomes the Cox model when g(x; β) = xT β. As a result, the DNNSurv model can
be used for various nonlinear covariate structures [1]. Furthermore, because of the presence of tied
events, which means that more than one events occur from different individuals at the same time, the
DNNSurv model applies the Efron’s approach [26] to approximate the partial log-likelihood `(β; x). It
is defined by

`(β; x) =
1

ND
∑

r∈D

{
∑

i∈Kr

g(xi; β)−
kr−1

∑
s=0

log

(
∑

i∈Rr

eg(xi ;β) − s
kr

∑
i∈Kr

eg(xi ;β)

)}
, (6)

1 For further references see https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/
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where D is the set of all events with size ND, yr is the rth (r = 1, · · · , E) smallest distinct event time,
Kr is the set of individuals who fail at time yr, kr is the size of Kr, and Rr is the risk set at time yr. On
the other hand, the loss function of DNNSurv model with L1 penalty, which is used for handling HD
covariates, is defined as

Loss = −`(β; x) + γ ‖β‖1 , (7)

where γ is the tuning parameter.
A simple structure of the DNNSurv model includes one input layer, two hidden layers and one

output layer, as shown in Figure 2. For each individual, the vector of covariates x is input into the
input layer and a scalar prognostic index g(x; β) is output from the output layer with weights. For
the hidden layer, the model of the lth layer can be written as a(l) = f (l)(w(l)

0 + w(l)a(l−1)), which is
constructed by weight w and the activation function f . The activation function of the DNNSurv model
is the scaled exponential linear units (SeLU) [27], which is defined by

f (x) = a · ReLU(x) + λI(x < 0)b(ex − 1), (8)

where ReLU [28] is the rectified linear unit with the form of f (x) = max(0, x), and a and b are constants.

Figure 2. A schematic diagram of the DNNSurv structure 1

The mini-batch stochastic gradient descent algorithm [29] is applied to obtain β̂ to minimize
the loss function (7), which is much faster than the standard stochastic gradient descent in terms of
minimizing of the loss function. From (6) and (7) the loss function of the lth (l = 1, · · · , L) batch is
given by

− `l(β; x) + γ ‖β‖1 . (9)

Here,

`l(β; x) =
1

Nl
D

∑
r∈Dl

∑
i∈Kl

r

g(xi; β)−
kl

r−1

∑
s=0

log

∑
i∈Rl

r

eg(xi ;β) − s
kl

r
∑

i∈Kl
r

eg(xi ;β)

 , (10)

where Nl
D, Dl , Kl

r, kl
r and Rl

r are the corresponding terms for the lth batch similar to those defined in
equation (6). Then β can be updated through the following gradient decent formula contributed by the
lth batch:

1 For further references see https://ieeexplore.ieee.org/document/8737773
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βl+1 ← βl − η∆l

with ∆l = −∇β`
l(β; x) + γ∇β ‖β‖1 ,

(11)

where η is the learning rate. The process will be repeated for ne (epoch size) times until convergence.
The selection of DNN hyper-parameters, which mainly include the number of hidden layers, the
number of nodes in each hidden layer, activation function, turning parameter, batch size, the number
of epochs and the learning rate, will be presented in detail in Section 3.

2.2. Evaluation measures of survival prediction

Three popular survival accuracy metrics, i.e. C-index and time-dependent Brier score and AUC
(area under the curve), are used to evaluate the performance of the survival prediction models. Below
we describe the three measures.

2.2.1. C-index

Let T1 and T2 be survival times of different two subjects. The C-index [12] is definede by

C = P
(

T̂1 > T̂2|T1 > T2

)
, (12)

where T̂1 and T̂2 are estimated survival times of T1 and T2, respectively, which can often be obtained
by the estimation of the risk or prognostic scores g(x; β). It is used to measure the proportion of the
pairs where the predicted outcomes are concordant with the observed outcomes. The C-index can be
estimated by [3,12]

Ĉ =
∑i ∑j

{
δi I(Yi < Yj)I

(
ĝ(xi; β̂) > ĝ(xj; β̂)

)
+ 0.5 · I

(
ĝ(xi; β̂) = ĝ(xj; β̂)

)}
∑i ∑j

{
δi I(Yi < Yj) + I

(
ĝ(xi; β̂) = ĝ(xj; β̂)

)} . (13)

The range of the value for C-index is from 0 to 1, and a larger value indicates a better performance.

2.2.2. Time-dependent Brier score

The definition of the time-dependent Brier score [30,31] is given by

BS(t) = E {I(t)− S(t; x)}2 , (14)

where I(t) = I(T > t) indicates the event status at time point t. The Brier score BS(t) indicates the
mean squared error of the difference between the survival function S(t; xi) and the event status U(t).
Thus, the Brier score is estimated based on the mean squared error between the predicted survival
function Ŝ(t; xi) and the observed event status Yi(t) = I(Yi > t) at a specific time point t, where
Yi = min(Ti, Ci). The estimated Brier score [30,31] is given by

B̂S(t) =
1
n

n

∑
i=1

ŵi(t)
{

Yi(t)− Ŝ(t; xi)
}2

, (15)

where ŵi(t) is the inverse probability of censoring weights (IPCW) [31], which is given by

ŵi(t) =
(1−Yi(t))δi

Ĝ(Yi−)
+

Yi(t)
Ĝ(t)

, with Ĝ(t) = P̂(C > t), (16)

where Ĝ(t) = P̂(C > t) with censoring time C, and Ĝ(Yi−) indicates the estimated survival function
just prior to Yi for the censoring time C. Note that the lower Brier score indicates the better performance.
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2.2.3. Time-dependent AUC

The receiver operating characteristic (ROC) curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold settings. Here, TPR and FPR are equal to
sensitivity and 1-specificity, respectively. In survival analysis, the ROC depends on time t [32], with
the following two definitions

Se = Sensitivity(c, t) = P {M > c|T ≤ t} ,

Sp = Specificity(c, t) = P {M ≤ c|T > t} ,
(17)

where c is an arbitrary threshold or cut-off value, M is a diagnostic test or marker (here, M = g(x; β)).
The corresponding estimates of time-dependent sensitivity and specificity are given by

Ŝe = P
{

ĝ(x; β̂) > c|T ≤ t
}

,

Ŝp = P
{

ĝ(x; β̂) ≤ c|T > t
}

.
(18)

Therefore, we can determine the ROC curve, and furthermore we can obtain the corresponding AUC
at each time point t. The value of AUC is between 0 and 1, and the discriminant ability is much more
stronger with a higher AUC.

3. Analysis of high- and ultra high-dimensional survival data

We use both high-dimensional (HD) and ultra HD datasets to evaluate the performance of the
DNNSurv model compared with other three survival prediction models (i.e., RSF, Cox-LASSO and
Cox-Ridge).

3.1. Real survival datasets

We consider three datasets which are presented by Wang and Li [3] for the evaluation of the four
survival models (i.e., DNNSurv, RSF, Cox-LASSO and Cox-Ridge). The datasets are summarized in
Table 3.1. They consist of ultra HD (EMTAB386 and GSE49997 datasets) and HD (TCGAmirna dataset),
which are available from the “curatedOvarianData” R package.

The short introductions of the three datasets are as follows.

• The EMTAB386 dataset contains angiogenic mRNA and microRNA gene expression signature
on 129 advanced stage, high grade serous ovarian cancers, which consists of 129 samples and
10357 gene features (G).
• The GSE49997 dataset contains the expression values of 204 epithelial ovarian cancer patients,

which consists of 194 samples and 16048 gene features (G).
• The TCGAmirna dataset contains 554 patients with high-grade serous ovarian cancer, which

consists of 554 samples and 799 gene features (G).

In addition, as shown in Table 3.1, we also use the corresponding covariates (G+C) with both gene
features (G) and clinical variables (C) in each dataset. Note that the time to event is overall survival
time for each dataset. Before starting the survival analysis, we preprocess all the datasets, by including
the elimination of the missing values and the columns with the same values, and normalization for
continuous covariates.
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[H]

Dataset Type of covariates Sample size (n) No. covariates (p) Censoring rate

EMTAB386 129 10357 43.4%
GSE49997 G 194 16048 70.6%
TCGAmirna 554 799 47.4%

EMTAB386 107 10362 44.9%
GSE49997 G + C 193 16055 71.0%
TCGAmirna 187 814 32.1%

G: gene

features only; G + C: gene features and clinical variables; No. covariates: the number of covariates.

3.2. Performance evaluation

For all datasets, we evaluate the performance of the DNNSurv model using the three evaluation
measures mentioned in Section 2.2 (i.e., C-index, time-dependent Brier score and time-dependent
AUC), and compare it with the performance of the three other models (i.e., RSF, Cox-LASSO and
Cox-Ridge). For the performance evaluation of all four models, the 10-fold cross validation (CV) is
performed for each real dataset in Table 3.1. The final results of each evaluation measures are based on
the average of the results of 10 test datasets. Below we present the 10-fold CV procedure for the four
models.

• For the DNNSurv model, i) the first step is to perform a 10-fold CV grid search method to
select an optimal tuning parameter γ∗ which maximizes the C-index. Here, the 10-fold CV
procedure is as follows. Denote the full dataset by f , and denote CV training and test datasets
by f−k(= f − fk) and fk, respectively, for k = 1, . . . , 10. For each γ and k, we find the estimator
β̂ f−k

(γ) using the training dataset f−k. Then, for each γ we compute the CV estimates, i.e. Ĉ(γ),
based on the C-index in (2.11):

Ĉ(γ) =
1
10 ∑10

k=1
1

Mk

∑i∈ fk ∑j∈ fk

{
δi I(Yi < Yj)I

(
ĝk(xi; β̂ f−k

) > ĝk(xj; β̂ f−k
)
)
+ 0.5 · I

(
ĝk(xi; β̂ f−k

) = ĝk(xj; β̂ f−k
)
)}

∑i∈ fk ∑j∈ fk

{
δi I(Yi < Yj) + I

(
ĝk(xi; β̂ f−k

) = ĝk(xj; β̂ f−k
)
)}

.

(19)
where Mk is the sample size of the kth subset and β̂ f−k

= β̂ f−k
(γ). Thus, we find γ∗ (i.e., optimal

tuning parameter) that maximizes Ĉ(γ).

ii) In the second step, given γ∗, we perform a 10-fold CV for each dataset, i.e., we train the model
on the training dataset, then obtain the values of three measures (i.e., C-index, time-dependent
AUC and Brier score (BS)) by the test dataset.

For further understanding of our CV procedures with i) and ii), a flowchart is presented in
Figure 3.
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10-fold grid search CV

…

Tuning       
parameter  𝜸𝜸

Optimal tuning parameter 
𝜸𝜸∗

Data set

Final evaluation

train data test data

10-fold CV evaluation

…

train data test data

C-index1 C-index2 C-index10mean
BS1 BS2 BS10mean

AUC1 AUC2 AUC10mean

C-index1 C-index2 C-index10mean

…

…
…
…

Figure 3. A flowchart of 10-fold CV procedure of the DNNSurv model

• For the RSF model, we train the model by using the log-rank splitting rule for survival analysis.
The corresponding parameters we select are as follows: the number of trees are 500, the number
of variables randomly selected as candidates for splitting a node is

√
p, and the size of terminal

node is 3.
• For Cox-LASSO and Cox-Ridge models, the “glmnet” R package is applied. For L1 penalty

(in Cox-LASSO model) and L2 penalty (in Cox-Ridge model), a 10-fold CV (by cv.glmnet() R
function) is first used, respectively, in the training dataset to select the optimal tuning parameter
γ∗∗ (denoted as lambda.min in the R package) that gives the minimum mean cross-validated
error (cvm). After the γ∗∗ is determined, we train each model (Cox-LASSO or Cox-Ridge) in the
training dataset, and then validate each model in the test dataset.

Furthermore, we have controlled the hyper-parameters in order to boost the performance of the
DNNSurv model. The settings of proper hyper-parameters for each type of covariates are summarized
in Table 3.2.

[H]

Type of covariates Hyper-parameters EMTAB386 GSE49997 TCGAmirna

No. hidden 2 2 2
No. nodes 30 32 64
L1 0.05 0.08 0.02

G AF SeLU SeLU SeLU
LR 0.0001 0.0001 0.0001
epoch size 60 60 60
batch size 4 8 4

No. hidden 2 2 2
No. nodes 50 32 64
L1 0.02 0.1 0.1

G + C AF SeLU SeLU SeLU
LR 0.0001 0.0001 0.0001
epoch size 60 60 60
batch size 8 8 8

G: gene features

only; G + C: gene features and clinical variables; No. hidden: the number of hidden layers; No. nodes: the number of nodes per

hidden layer; L1: tuning parameter for L1 penalty; AF: activation function; LR: learning rate.
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3.3. Results

Figures 4 and 5 show the prediction performance of the four models (i.e., DNNSurv, RSF,
Cox-LASSO and Cox-Ridge) in terms of C-index based on 10 test datasets using the 10-fold CV.
Here, the covariates of each dataset in Figures 4 and 5, respectively, indicate the gene features (G)
and both gene features and clinical variables (G+C). As shown in Figures 4 and 5, we can see that the
DNNSurv model gives the best performance among the three other models (i.e., RSF, Cox-LASSO and
Cox-Ridge) in terms of C-index. In particular, we can also obtain a conclusion that for each dataset, the
performance of the DNNSurv model in Figure 5 is better in terms of C-index than that in Figure 4; this
means that the performance of the dataset with G+C covariates is better than that with G only.

Figures 6 and 7 report the performance evaluation of the four models in terms of the
time-dependent Brier score on the 10 test datasets using the 10-fold CV. The difference of the two
figures is that despite gene features, there are additional clinical variables included in the datasets of
Figure 7. As shown in Figures 6 and 7, at each time point t, the value of Brier score is the average of
the results of Brier score generated by 10-fold CV under each model. According to Figures 6 and 7,
the Brier score of the DNNSurv model at each time point t is consistently lower than the three other
models on the GSE49997 dataset. It means that the DNNSurv model is superior as compared to the
three other models for this dataset. For the TCGAmirna dataset, at each time point t, the value of
Brier score for the DNNSurv model is a little smaller than the value under other models, which means
that the performance of the DNNSurv model is slightly better than other three models in terms of
time-dependent Brier score. However, the performance of the DNNSurv model does not outperform
enough for the EMTAB386 dataset because it seems that the Cox-Ridge model performs better than the
DNNSurv model among this dataset. Furthermore, the overall trends of the DNNSurv model of the
last two datasets from Figures 6 and 7 are very similar.

Figures 8 and 9 also present the time-dependent AUC for four models on the 10 test dataset. The
structures of the datasets in Figures 8 and 9 are the same as the Figures 6 and 7, respectively. For each
model, the value of AUC at each time point t is the average of the AUC at each time point t generated
by 10-fold CV. From Figures 8 and 9, we can see that at almost all time points among all the datasets,
the AUC values of the DNNSurv model is consistently higher than those of the three other models.
The results demonstrate that the DNNSurv model performs the best as compared to the three other
models (i.e., RSF, Cox-LASSO and Cox-Ridge) in terms of the time-dependent AUC. Moreover, we
find that for each dataset, the performance of the DNNSurv model according to the time-dependent
AUC in Figure 9 is overall better than that in Figure 8.

In addition, Table 3.3 summarizes the 10-fold CV C-index, and the Brier score and AUC at the
specified time point in all four survival models under two covariate cases (G and G+C) for each dataset.
Here, the results are mean and standard deviation (SD) of the C-index and the Brier score and AUC
values at 5 year, based on the 10 test datasets. From Table 3.3, we find that in the three datasets, the
performance of the DNNSurv model is overall the best among the four models in terms of the three
evaluation measures. In particular, in terms of C-index, the DNNSurv model performs better in G+C
case which contains additional clinical variables than in G case. These facts again confirm the results
from Figures 4 and 5.
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In summary, we can see that the DNNSurv model performs overall the best as compared to the
three ML models (i.e., RSF, Cox-LASSO and Cox-Ridge) in terms of the three evaluation measures
under all the datasets we used here.

Dataset Type Measure DNNSurv RSF Cox-LASSO Cox-Ridge

EMTAB386

C-index (SD) 0.603 (0.100) 0.509 (0.102) 0.499 (0.117) 0.490 (0.091)
G 5Y-BS (SD) 0.259 (0.085) 0.375 (0.171) 0.234 (0.060) 0.227 (0.045)

5Y-AUC (SD) 0.552 (0.123) 0.394 (0.187) 0.491 (0.162) 0.445 (0.192)
C-index (SD) 0.687 (0.110) 0.569 (0.102) 0.488 (0.156) 0.606 (0.121)

G + C 5Y-BS (SD) 0.334 (0.230) 0.503 (0.178) 0.434 (0.228) 0.266 (0.160)
5Y-AUC (SD) 0.639 (0.130) 0.454 (0.139) 0.469 (0.200) 0.524 (0.158)

GSE49997

C-index (SD) 0.608 (0.143) 0.562 (0.149) 0.448 (0.170) 0.490 (0.142)
G 3.5Y-BS (SD) 0.231 (0.078) 0.507 (0.137) 0.679 (0.151) 0.364 (0.088)

3.5Y-AUC (SD) 0.598 (0.161) 0.539 (0.137) 0.562 (0.144) 0.562 (0.117)
C-index (SD) 0.676 (0.132) 0.500 (0.190) 0.567 (0.133) 0.455 (0.167)

G + C 3.5Y-BS (SD) 0.239 (0.039) 0.458 (0.253) 0.320 (0.054) 0.607 (0.172)
3.5Y-AUC (SD) 0.588 (0.140) 0.515 (0.154) 0.522 (0.133) 0.521 (0.192)

TCGAmirna

C-index (SD) 0.570 (0.092) 0.552 (0.047) 0.516 (0.037) 0.555 (0.093)
G 8.5Y-BS (SD) 0.100 (0.029) 0.108 (0.041) 0.218 (0.290) 0.098 (0.030)

8.5Y-AUC (SD) 0.601 (0.124) 0.479 (0.144) 0.519 (0.041) 0.520 (0.165)
C-index (SD) 0.683 (0.079) 0.566 (0.063) 0.513 (0.095) 0.588 (0.084)

G + C 8.5Y-BS (SD) 0.141 (0.060) 0.156 (0.167) 0.176 (0.053) 0.141 (0.059)
8.5Y-AUC (SD) 0.588 (0.146) 0.475 (0.211) 0.542 (0.148) 0.483 (0.199)

Type: type of covariates; G: gene features only; G + C: gene features and clinical variables; iY-BS: i-year Brier score (i = 3.5, 5, 8.5); iY-AUC: i-year AUC
(i = 3.5, 5, 8.5); SD: standard deviation; DNN: deep neural network; DNNSurv: Cox-based DNN survival model; RSF: random survival forest; Cox-LASSO:
Cox-based LASSO; Cox-Ridge: Cox-based Ridge.
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Figure 4. Boxplots of the C-index for four models on three test datasets which contain gene features
only (G)
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Figure 5. Boxplots of the C-index for four models on three test datasets which contain both gene and
clinical variables (G+C)
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Figure 6. The time-dependent Brier score for four models on three test datasets which contain gene
features only (G)
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Figure 7. The time-dependent Brier score for four models on three test datasets which contain both
gene and clinical variables (G+C)
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Figure 8. The time-dependent AUC for four models on three test datasets which contain gene features
only (G)
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Figure 9. The time-dependent AUC for four models on three test datasets which contain both gene
and clinical variables (G+C)
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4. Discussion

In this paper, we have successfully applied the DNNSurv model to the real HD or ultra HD
survival datasets, and have effectively evaluated its ability to make accurate dynamic survival
prediction. The results of the data analysis demonstrate that the DNNSurv model outperforms
the three ML survival models (i.e., RSF, Cox-LASSO and Cox-Ridge) in terms of the three evaluation
measures (i.e., C-index, and time-dependent Brier score and AUC).

However, there are still some limitations in the DNNSurv model. For example, it takes much times
to run the DNNSurv model using Keras and Tensorflow, which is often computationally expensive.
The setting of hyper-parameters can be sensitive to the prediction performances. Developing an unified
procedure for finding optimal hyper-parameters including tuning parameter would be an interesting
future research. Furthermore, extension of the DNNsurv model to advanced survival models (e.g.,
frailty model [2]) with clustered time-to-event data would be also an interesting further work.
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