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ABSTRACT

The catenary shells of revolution are widely used in constructions due to their unique mechanics’ fea-

ture. However, no publications on this type of shells can be found in the literature. To have a better

understanding of the deformation and stress of the catenary shells of revolution, we formulate the

principal radii for two kinds of catenary shells of revolution and their displacement type governing

equations. Numerical simulations are carried out based on both Reissner-Meissner mixed formula-

tions and displacement formulations. Our investigations show that both deformation and stress re-

sponse of elastic catenary shells of revolution are sensitive to its geometric parameter c, and reveal

that the mechanics of the catenary shells of revolution does much better than the spherical shells. Two

complete codes in Maple are provided.
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1. Introduction
A surface of revolution is a surface generated by rotating

a 2-D curve about an axis. The resulting surface therefore
always has azimuthal symmetry about the axis. One kind of
the surface of revolution has a minimal surface area, which
are sometimes also called catenoid. A popular example of
the catenoid is a soap film "stretched" over two wire discs as
shown in Fig.1.

Figure 1: The soap bubble "stretched" over two wire discs.

.
The catenary is the shape that makes the potential en-

ergy of a suspended uniform flexible chain minimum. If m
denotes the mass as per unit length of the chain and g the
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gravitational constant, the potential energy of the chain be-
tween the poles is J [z(y)] = ∫ ba mgz(y)

√

1 + z′2(y)dy, its
variational condition �J = 0, leads to the solution of the
catenary z = c cosh y

c , where c is a positive constant. The
catenary shape of the chain is shown in Fig.2.

Figure 2: The uniform chain takes the catenary shape under
the gravitation: z = c cosh y∕c.

.
Two kind of surfaces can be generated by rotating the

catenary curve about axis y and z, respectively, as shown in
Fig.3, where the surface 2 is a minimal surface of revolution
while the surface 1 is not. In this paper we will study the
shells of revolution that use the two surfaces as their mid-
dle surfaces. It is expected that the mechanics of those two
shells of revolution are quite different due to their different
geometry.

Figure 3: Two kind of surfaces are generated by rotating the
catenary curve about axis y and z. The catenary surface of
revolution 2 is a minimal surface while the surface 1 is not.

.
Although the shell structures used the surface of revolu-

tion as their middle surface are widely used in constructions,
the authors could not find any scientific publications that ap-
plied the theory of shells to the analysis of the catenary shells
of revolution. To fill the vacancy of the research on the cate-

nary shells of revolution, we study the small deformation
of the shell 1 and 2 shown in Fig. 3 by using the bend-
ing theory of shells (Timoshenko and Woinowsky-Krieger,
1959; Novozhilov, 1959; Gol’denveizer, 1961; Kraus, 1967;
Flügge, 1973; Calladine, 1983; Reddy, 2007; Audoly and
Pomeau, 2010; Sun, 2012; Zingoni, 2017; Ugural, 2018; Sun,
2021).

The content is organised as follows: Section 2 presents
Reissner-Meissner mixed formulation and displacement for-
mulations of the bending theory of shells of revolution. Sec-
tion 3 formulates and proposes the principal radii of the cate-
nary surface of revolution. Section 4 and 5 carry out some
numerical investigations on truncated catenary shells of rev-
olution and results validation. Section 6 presents a compar-
ison between the spherical shells and the catenary shells of
revolution. Section 7 derives Reissner-Meissner governing
equations for the catenary shells of revolution 2 and propose
exact solutions when the Poisson ratio is neglected. Section
8 concludes with perspectives. Last but not least, the ap-
pendix provides two complete codes in Maple.

2. Bending theory formulations of the shells of
revolution
When the linear problem was first studied, high-order

and complicated governing equations of a torus under sym-
metric loads were reduced to lower-order, ordinary differ-
ential equations (ODE) by Hans Reissner (Reissner, 1912)
when he was a professor at ETH in Switzerland. His col-
league at ETH,Meissner (Meissner, 1915) derived a complex-
form equations for the shell of revolution. Hence, the first
complex-form equation of the shells of revolution includ-
ing tori is called the Reissner-Meissner equation, which is
an ODE system for the shear force Q and the rotation �
(Flügge, 1973). In 1959, Novozhilov (Novozhilov, 1959)
published his celebrated monograph on the complex-form
theory of shells.

2.1. Reissner-Meissner mixed formulation of the
shells of revolution

In the theory of shells of revolution under axisymmet-
ric load, according to Timoshenko and Woinowsky-Krieger
1959 (Timoshenko and Woinowsky-Krieger, 1959), the de-
cisive step was the introduction ofQ� and � as unknowns by
H. Reissner 1912 (Reissner, 1912). The idea has been much
extended by E.Meissner 1925 (Meissner, 1915). The formu-
lation of Reissner-Meissner of shells of revaluationwith con-
stant thickness can be found in the masterpieces of Flügge
1973 (Flügge, 1973).

For convenience of readers, all quantities notation and
definition in this section please refers to well-known book
of Flügge (Flügge, 1973).

The balance equations are:

[
r2
r1

cot � + d
d�

(
r2
r1
)]
d�
d�

− (
r1
r2

cot2 � + �)�
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+
r2
r1

d2�
d�2

= 1
B
r1r2Q�, (1)

r2
r1

d2

d�2
(r2Q�) − (

r1
r2

cot2 � − �)(r2Q�)

+ [
r2
r1

cot � + d
d�

(
r2
r1
)] d
d�

(r2Q�)

= −B(1 − �2)r1� + Pg(�), (2)

where � is the angle by which an element rd� of the merid-
ian rotates during deformation; r = r2 sin�, the load term
P is constant to be determined by the value ofN��(�∕2) =
− P

2�r2
and

g(�) = 1
2� sin2 �

[
r21 − r

2
2

r1r2
cot � + d

d�
(
r2
r1
)]. (3)

The resultant membranae forcesN�� can be represented
by shear force Q�:

N�� = −Q� cot � − P
2�r2

1
sin2 �

,

N�� = − 1
r1

d
d�

(r2Q�) +
P

2�r1
1

sin2 �
.

(4)

Substituting the principal radii, ie., r1, r2 into Eq.1 will
give governing equations for the catnary shells of revolution.

Once we obtain the shear force Q� and rotation � , one
can compute all other quantities, such asN��, M��, as well
as u, w. Obviously, the governing equations are complicated
and hard to be solved analytically.

2.2. Displacement formulation of the shells of
revolution

AlthoughReissner-Meissnermixed formulations have some
advantages, they cannot be used for vibration and nonlinear
problems. Therefore, it is desirable to have a displacement
formulations for centenary shells of revolution.

For convenience of readers, all quantities notation and
definition in this section please refers to well-known book
of J.N. Reddy 2007 (Reddy, 2007). For the shells of revolu-
tion shown in Fig. 4, the positions of points on the middle
surface will be determined by the angles � and '. Further,
let r1 be the radius of curvature of the meridian and r2 the
radius of curvature of the normal section, tangential to the
parallel circle. This second radius is equal to the segment of
the perpendicular to the middle surface between this surface
and the axis of the shells.

Regarding the forces shown in Fig.4, the balance equa-
tions are

d
d�

(rN��) −N��r1 cos� + rQ� + r1rf� = 0,

d
d�

(rQ�) − r1r(
N��

r1
+
N��
r2

) + r1rf� = 0,
(5)

Figure 4: Geometry, loading, forces and moments.

where r = r2 sin�, distributed loads f�, f� along �, � di-
rection, and shear force

Q� = 1
r1r

d
d�

(rM��) −
1
r
cos�M�� . (6)

where the resultant membranae forces are N�� = K("�� +
�"��), N�� = K(�"�� + "��), and resultant bending mo-
ments are M�� = B(��� + ����), M�� = B(���� + ���);
Themembranae strains are "�� = 1

r1
( dud�+w), "�� =

1
r2
(u cot �+

w), and change of curvature are ��� = 1
r1

d'�
d� , ��� =

cot �
r2
'�,

where total rotation '� = 1
r1
(u− dw

d� ); and membranae stiff-

ness K = Eℎ
1−�2 , bending stiffness B = Eℎ3

12(1−�2) , thickness ℎ,
Young modulus E and Poisson’s ratio �.

With the above strains and curvature change, the resul-
tantmembranae force and bendingmoments can be expressed
in terms of displacements u, w as follows:

N�� = K[ 1
r1
( du
d�

+w) + � 1
r2
(u cot � +w)],

N�� = K[� 1
r2
(u cot � +w) + 1

r1
( du
d�

+w)],

M�� = B[ 1
r1

d'�
d�

+ �
cot �
r2

'�]

= B
[

1
r1

d
d�

[ 1
r1
(u − dw

d�
)] + �

cot �
r2

1
r1
(u − dw

d�
)
]

,

M�� = B[� 1
r1

d'�
d�

+
cot �
r2

'�]

= B
[

� 1
r1

d
d�

[ 1
r1
(u − dw

d�
)] +

cot �
r2

1
r1
(u − dw

d�
)
]

,

(7)

Substituting the shear force Q� in Eq.6 into Eq.5 and pro-
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duce

d
d�

(rN��) −N��r1 cos�

+ 1
r1
[ d
d�

(rM��) − r cos�M��] + r1rf� = 0,

d
d�

[1
r
d
d�

(

rM��
)

− cos�M��]

− r1r(
N��

r1
+
N��
r2

) + r1rf� = 0,

(8)

The Eq. 8 can be further simplified by substituting the
constitutive relations into Eq.8, which will generate a final
equations that is a six order ordinary differential equation
system about displacement u(�) and w(�).

K d
d�

[

r[ 1
r1
( du
d�

+w) + � 1
r2
(u cot � +w)]

]

−Kr1 cos�[�
1
r2
(u cot � +w) + 1

r1
( du
d�

+w)]

+ B
r1

d
d�

(r
[

1
r1

d
d�

[ 1
r1
(u − dw

d�
)] + �

cot �
r2

1
r1
(u − dw

d�
)
]

)

− B
r1
r cos�

[

� 1
r1

d
d�

[ 1
r1
(u − dw

d�
)] +

cot �
r2

1
r1
(u − dw

d�
)
]

+ r1rf� = 0,
(9)

B d
d�

[1
r
d
d�

(r
[

1
r1

d
d�

[ 1
r1
(u − dw

d�
)] + �

cot �
r2

1
r1
(u − dw

d�
)
]

)

− cos�
[

� 1
r1

d
d�

[ 1
r1
(u − dw

d�
)] +

cot �
r2

1
r1
(u − dw

d�
)
]

]

− rK[ 1
r1
( du
d�

+w) + � 1
r2
(u cot � +w)]

−Kr
r1
r2
[� 1
r2
(u cot � +w) + 1

r1
( du
d�

+w)] + r1rf� = 0.

(10)

The above ODE system will be more complicated if tak-
ing into account of the principal radii. Obviously the ODE
system has no analytical solution but numerical ones. To
solve numerically, a general code is written in Maple and
provided in the appendix.

2.3. The sign convention of different formulations
and physics units

Although we can study the problem by either Reissner-
Meissner formulation or displacement formulation, we should
give an attention to the sign difference of respective quanti-
ties when comparing numerical results. For results valida-
tion purpose, we list the sign relations in Table 1.

For simplification of presentation of our results, physical
units will not be plotted in all drawings (all physical units are
listed in Table 2).

Table 1
Sign conventions and relations in different formulations

Parameters Novozhilov (1959) Flügge (1973)
Reddy (2007)

Tangent displacement u u
Normal displacement w w

Total rotation # or '� −�
Bending moment M −M
Resultant force T or N N

Shear force N or Q −Q

Table 2
Physical units used in this paper

R a, b, c ℎ E � M� N�
m m m N∕m2 1 N N∕m
Q� �� u w
N∕m N∕m2 m m

Note: N is force physical unit and stands for Newton.

3. The principal radii of curvature of the
catenary shells of revolution
The both of the above formulations of bending theory of

shells are a general formulation for any shells of revolution.
Clearly, we must derive the principal radii r1 and r2 if we
wish to apply them to the catenary shells of revolution.

3.1. The principal radii of curvature of the
catenary shells of revolution 1

The catenary shells of revolution 1 is formed by the rev-
olution of a catenary z = c cosh x

c about the z-axis, where
c is a positive constant. The parametric equations for the
catenary shells of revolution are then x = cu cos v, y =
cu sin v, z = c cosh u.

Figure 5: Geometry of the surface of revolution, the Lamé
coefficients are A1 = r1, A2 = r2 sin�.

For the centenary surface of revolution shown in Fig. 5,
the positions of points on the middle surface will be deter-
mined by the angles � and �. Further, let r1 be the radius
of curvature of the meridian and r2 the radius of curvature
of the normal section, tangential to the parallel circle. This
second radius is equal to the segment of the perpendicular to
the middle surface between this surface and the axis of the
torus.

If we denote f = z− c cosh x
c , the principal radii can be
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obtained as follows:

r1 = [1 + (dz
dx

)2]3∕2(d
2z
dx2

)−1 = c cosh2 x
c
, (11)

r2 = x(dz
dx

)−1
√

1 + (dz
dx

)2 = x coth x
c
. (12)

The above principal radii can be converted to another for-
mat that is expressed in the meridian angle �. From Fig.5,
we have the tangent relation tan(�) = dz

dx . With this rela-
tion, together with the equation z = c cosh x

c , we can find
x(�) and y(�) that are expressed in terms of meridian angle
�. Hence we can find the 2nd principal radius of the parallel
circle as

r2 = c
sinh−1(tan�)

sin�
. (13)

Applying the relation ofGauss-Codazzi, dr2 sin�d� = r1 cos�,
we can obtain the meridian radius as follows

r1 =
c

cos2 �
. (14)

The two principal curvatures are

�1 =
1
r1

=
cos2 �
c

, (15)

�2 =
1
r2

= 1
c

sin�
sinh−1(tan�)

. (16)

and the Gauss curvature is

K = �1�2 =
1
c2

sin� cos2 �
sinh−1(tan�)

. (17)

and the mean curvature is

H = 1
2
(�1 + �2) =

1
c
(cos2 � +

sin�
sinh−1(tan�)

). (18)

The curvatures are shown in Fig.7.

Figure 6: The curvatures of the catenary shells of revolution
1.

Since the mean curvatureH ≠ 0, therefore the catenary
surface of revolution 1 is not a minimal surface.

3.2. The principal radii of curvature of the
catenary shells of revolution 2

The catenary shells of revolution 2 is formed by the rev-
olution of a catenary x = c cosh z

c about the z-axis, where
c is a positive constant. The parametric equations are then
x = c cosh u cos v, y = c cosh u sin v, z = cu.

If we denote f = x− c cosh z
c , the principal radii can be

obtained as follows:

r1 = [1 + (dz
dx

)2]3∕2(d
2z
dx2

)−1 = −c cosh2 z
c
, (19)

r2 = x(dz
dx

)−1
√

1 + (dz
dx

)2 = c cosh2 z
c
. (20)

The above principal radii can be converted to another for-
mat that is expressed in the meridian angle �. From Fig.5,
we have the tangent relation tan(�) = dz

dx . With this rela-
tion, together with the equation x = c cosh z

c , we can find
x(�) and y(�) that are expressed in terms of meridian angle
�.

z = c sinh−1( 1
tan�

), (21)

x = c
sin�

. (22)

Hence we can find the 2nd principal radius of the parallel
circle as

r2 =
x

sin�
= c

sin2 �
. (23)

Applying the relation ofGauss-Codazzi, dr2 sin�d� = r1 cos�,
we can obtain the meridian radius as follows

r1 = − c
sin2 �

. (24)

The two principal curvatures are

�1 =
1
r1

= −
sin2 �
c

, (25)

�2 =
1
r2

=
sin2 �
c

. (26)

and the Gauss curvature is

K = �1�2 = −
sin4 �
c2

. (27)

and the mean curvature is

H = 1
2
(�1 + �2) = 0. (28)

The curvatures are shown in Fig.7.
Since the mean curvatureH = 0, therefore the catenary

surface of revolution 2 is a minimal surface.
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Figure 7: The curvatures of the catenary shells of revolution
2.

4. Numerical studies for the deformation and
stress of a truncated catenary shell of
revolution 1
For a truncated catenary shell of revolution at x = b

loaded with distributed unit bending moment M = 1[N]
and free at x = a the loading condition is shown in Fig. 8.

Figure 8: A truncated catenary shell of revolution under self-
balance distributed bending moment M = 1

According to the tangent relation tan� = sinh x
c , hence

�|x=a = arctan(sinh a
c
) (29)

�|x=b = arctan(sinh b
c
). (30)

4.1. Numerical results based on the displacement
formulations

For displacement formulations, the boundary conditions
are:

� = �|x=a ∶ N�� = 0, Q� = 0, M�� = 0, (31)
� = �|x=b ∶ N�� = 0, Q� = 0, M�� = 1[N]. (32)

Adapting the displacement formulations, some numeri-
cal results are shown in Fig. 9.

The results indicate that all quantities such as bending
moments, surface forces, shear force, and displacement are
little effected by the change of b.

(a) Bending moment M�� (b) Membranes force N��

(c) Shear force Q� (d) Stress ���

Figure 9: Displacement formulations for the catenary shells
of revolution with data: c = 1[m], b = 1[m], a = 2k, ℎ =
c∕15[m], E = 2.0 × 1011N∕m2, � = 0.3, M = 1[Nm] and
k = 1, 2, 3.

4.2. Numerical results based on the
Reissner-Meissner formulations

According the the sign convention in Table 1, For the
Reissner-Meissner formulations, the boundary conditions are:

� = �|x=a ∶ Q� = 0, M�� = 0, (33)
� = �|x=b ∶ Q� = 0, M�� = −1[N]. (34)

Some numerical results are shown in Fig. 13.

4.3. Results validation
According the the sign convention in Table 1, namely

The difference of sign convention: Q�(Displacement-formulations)=
−Q�(Reissner-Meissner-formulations), the result for the shear
force comparison is presented in Fig.11.

The numerical simulations show that displacement for-
mulation agrees with Reissner-Meissner’s formulation very
well, which provides a good supportive evidence about the
correctness of our both formulation and simulation.

5. Numerical studies for the deformation and
stress of a catenary shell of revolution 2
For a catenary shell of revolution at y = b loaded with

distributed unit bending momentM = 1[N] and free at y =
b the loading condition is shown in Fig. 12.

According to the catenary equation: y = c cosh z
c , we

have b = c cosh z(b)
c , leads to z(b) = c cosh−1 bc . Since the

tangent relation for this shell is tan� = 1
sinh z

c
, hence the
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(a) Bending moment M�� (b) Membranes force N��

(c) Shear force Q� (d) Stress ���

Figure 10: Reissner-Meissner formulations for the catenary
shells of revolution with data: c = 1[m], b = 1[m], a = 2k, ℎ =
c∕15[m], E = 2.0 × 1011N∕m2, � = 0.3, M = 1[N] and k =
1, 2, 3.

Figure 11: Shear force Q� comparison for the catenary shells
of revolution with data: c = 1[m], b = 1[m], a = 4, ℎ =
c∕15[m], E = 2.0 × 1011N∕m2, � = 0.3, M = 1[N]. The dif-
ference of sign convention: Q�(Displacement-formulation)=
−Q�(Reissner-formulation).

corresponding angle are

�a = arctan( 1
sinh z(b)

c

) (35)

�b = � − �a. (36)

According the the sign convention in Table 1, for the
Reissner-Meissner formulations, the boundary conditions are:

� = �|x=a ∶ Q� = 0, M�� = −1[N], (37)
� = �|x=b ∶ Q� = 0, M�� = 0. (38)

Some numerical results are shown in Fig. 13.

Figure 12: A catenary shell of revolution under self-balance
distributed bending moment M = 1

(a) Bending moment M�� (b) Membranes force N��

(c) Shear force Q� (d) Stress ���

(e) Total meridian rotation �

Figure 13: Reissner-Meissner formulations for the catenary
shells of revolution with data: c = k[m], b = 6[m], ℎ =
c∕15[m], E = 2.0 × 1011N∕m2, � = 0.3, M = 1[N] and
k = 1, 2, 3.
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6. The catenary shell of revolution vs. the
spherical shells
To compare the catenary shell of revolution and the spher-

ical shells, let’s us consider a semi-spherical shell in Fig.14
with radius R.

Figure 14: The spherical shell (blue) and the catenary shells
of revolution (red): d = 0.618735305R.

To make the catenary shell of revolution to fit the spher-
ical shell as much close as possible, we propose a design as
shown in Fig.14, where both shells share a common top AB
and bottom C. For this design, we have a geometrical rela-
tion

d + R = d cosh R
d
. (39)

Solving this implicit equation of d, we find

d = 0.618735305R. (40)

Figure 15: The loading and boundary conditions of the spher-
ical shell (blue) and the catenary shells of revolution (red):
d = 0.618735305R.

We will cut a hole along x = b as shown in Fig. 15.
Both the spherical shell and the catenary shell of revolution
are acted by a self-balance distributed unit bending moment
M = −1[N] around edge at x = b, while their bottom AB
are free. Hence, the boundary conditions of the spherical
are:

� = �|x=R ∶ Q� = 0, M�� = 0, (41)
� = �|x=b ∶ Q� = 0, M�� = −1[N], (42)

and the boundary conditions of the catenary shell of revolu-
tion are:

� = �|x=R = arctan(sinh R
d
) ∶

Q� = 0, M�� = 0, (43)

� = �|x=b = arctan(sinh b
d
) ∶

Q� = 0, M�� = −1[N]. (44)

The numerical results for both shells are carried out and
presented in Fig.16.

(a) Bending moment M��

(b) Shear force Q�

(c) Meridian rotation �

Figure 16: The catenary shells of revolution: R = 2[m], b =
0.3R[m], d = 0.618735305R[m], ℎ = R∕15[m], E = 2.0 ×
1011N∕m2, � = 0.3, M = 1[N]; The spherical shell: R =
2[m], b = 0.3R[m], ℎ = R∕15[m], E = 2.0 × 1011N∕m2, � =
0.3, M = 1[N].

All results are shown in Fig.16 clearly indicate that the
most region of the catenary shells of revolution have much
less stress and deformation than the corresponding spherical
shell, in other words, the most region of the catenary shells
of revolution is almost in the membrane state except some
boundary effect. We have tried different cases and all inves-
tigations point to an important conclusion that themechanics
of the catenary shells of revolution does much better than the
spherical shells.
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7. Analytical investigation on the catenary
shells of revolution 2
TheReissner-Meissner formulations of the catenary shells

of revolution 1 are too complicate due to their odd principal
radii. While the principal radii of the catenary shells of rev-
olution 2 are relative simpler: r1 = − c

sin2 �
and r2 = c

sin2 �
.

With themwe get g(�) = 0, and the Reissner-Meissner equa-
tions are given as follows:

L1(�) +
�
c
sin2 �� = c

B
Q�

sin2 �

cL1(
Q�

sin2 �
) − �Q� +K(1 − �2)� = 0,

(45)

where the differential operator is

L1(∶) =
1
c
[sin2 � d2

d�2
(∶)+sin� cos� d

d�
(∶)−cos2 �(∶)].

(46)

If we set � = sin�, the above equation system can be
transferred to

L(�) + ��2� = c2

B
Q�
�2
,

L(
Q�
�2

) − �Q� +K(1 − �2)� = 0,
(47)

where the operator

L(∶) = �2(1 − �2) d
2

d�2
(∶) + � d

d�
(∶) − (1 − �2)(∶). (48)

In the general case it is necessary to solve the equations
Eq.47 as it stands by numerical integration.

7.1. Solutions for the Poisson ratio � = 0
We make further progress toward simpler equations if

we may assume the Poisson ratio � = 0, an assumption often
considered legitimate for reinforced concrete structures. The
above equations can be reduced to a single equation

LL(�) + c2K
B
� = 0, (49)

and

LL(
Q�
�2

) + c2K
B
Q�
�2

= 0, (50)

Those equationsmay be split into two second-order equa-
tions

L(�1) + ic
√

K
B
�1 = 0. (51)

and

L(�2) − ic
√

K
B
�2 = 0. (52)

They can be further converted to the Heun’s equation (Ron-
veaux, 1995), which is one of the hypergeometric equation,
and from the general theory of this type of differential equa-
tions we may obtain the following solutions of Eq.51

� = �1 + �2, (53)

where

�1 = C1�
�(x2 − 1)3∕2f1 + C2�

−�(x2 − 1)3∕2f2 (54)
�2 = C3�

�(x2 − 1)3∕2f3 + C4�
−�(x2 − 1)3∕2f4, (55)

where Ck(k = 1, 2, 3, 4) are integration constants and pa-
rameters

� = (1 + ic
√

K
B
)1∕2, (56)

� = (1 − ic
√

K
B
)1∕2, (57)

and the functions fk (k = 1, 2, 3, 4) are expressed by the hy-
pergeometric functions F (�, �, 
, x) (Marsden, Sirovich and
Antman eds, 1991) as follows

f1 = F (�1, �1, 
1, �2)

f2 = F (�2, �2, 
2, �2)

f3 = F (�3, �3, 
3, �2)

f4 = F (�4, �4, 
4, �2), (58)

and the parameters are

�1 =
1
2
� +

√

5 + 5
4

, �1 = 1
2
� −

√

5 − 5
4

,


1 = 1 + �, (59)

and

�2 =
1
2
� +

√

5 + 5
4

, �2 = −1
2
� −

√

5 − 5
4

,


2 = 1 − �. (60)

and

�3 =
1
2
� −

√

5 − 5
4

, �3 = 1
2
� +

√

5 + 5
4

,


3 = 1 + �, (61)

and

�4 =
1
2
� −

√

5 − 5
4

, �4 = −1
2
� +

√

5 + 5
4

,


4 = 1 − �. (62)
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7.2. Approximation in the vicinity of the apex
In the vicinity of � → 0, sin� and cos� may be ex-

panded into a Laurent series. and if � is small enough, we
may approximate sin� and cos� by � and 1, respectively.

When this is done in the coefficients of Eq.45, it reads

L(�) + ��2� = c2

B
Q�
�2

L(
Q�
�2

) − �Q� +K(1 − �2)� = 0,
(63)

where the differential operator is

L = �2 d2

d�2
+ � d

d�
− 1. (64)

In the general case it is necessary to solve the equations
Eq.63 as it stands by numerical integration. Similarly, we
can also make further progress toward simpler equations if
we may assume the Poisson ratio � = 0, whose exact solu-
tions can be easily obtained as follows.

� = ic
√

BK
(c1�−� + c2�� − c3�−� − c4��),

Q� = �2(c1�−� + c2�� + c3�−� + c4��).
(65)

where ck(k = 1, 2, 3, 4) are integration constants and the pa-
rameters �, � are given in Eq.56.

Although the above analytical solutions have not been
used for our numerical studies, the purpose of of presenting
the analytical results is to provide them to readers for their
own further investigation and applications.

8. Conclusions
We have formulated an elastic catenary shell of revolu-

tion in terms of displacement and mixed functions and suc-
cessfully solved some typical problems. To verify our for-
mulation, we provide two computational codes inMaple and
carried out some numerical simulations. The validation of
our numerical results was confirmed and supported by both
the mixed and displacement formulations. Our investiga-
tions show that both deformation and stress response of the
catenary shell of revolution is sensitive to the parameter c or
d. Our numerical studies also reveal that the mechanics of
the catenary shells of revolution does much better than the
spherical shells. For a future perspective, the nonlinear de-
formation, buckling and vivration behaviours of the catenary
shells of revolution should be investigated.
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Appendix 1: Maple code of displacement
formulation of the catenary shells of revolution

for k from 1 to 3 do:
restart; with(plots);
for k to 2 do c := 1; a := 2*k; b := 1; h := (1/15)*c;
phia := arctan(sinh(a/c));
phib := arctan(sinh(b/c)):
nu := .3; E := 2*10e+11;
K := E*h/(-nu*nu+1);
B := E*h*h*h/(12*(-nu*nu+1));
q1 := 0; qn := 0; F := 1;
R1 := c/(cos(phi)*cos(phi));
R2 := arcsinh(tan(phi))*c/sin(phi);
vartheta := 0;
A1 := R1; A2 := R2*sin(phi);
e11 := (diff(u(phi), phi))/A1+w(phi)/R1;
e12 := 0; e13 := -vartheta;
e22 := (diff(A2, phi))*u(phi)/(A1*A2)+w(phi)/R2;
e21 := 0; e23 := 0;
x1 := e11+(1/2)*e13*e13; x2 := e22;
k11 := (diff(vartheta, phi))/A1;
k12 := 0; k13 := -vartheta/R1;
k22 := (diff(A2, phi))*vartheta/(A1*A2);
k21 := 0; k23 := 0;
y1 := e13*k13+k11; y2 := k22;
T2 := K*(nu*x1+x2); M2 := B*(nu*y1+y2);
equ1 := T1(phi) = K*(nu*x2+x1);
equ2 := M1(phi) = B*(nu*y2+y1);
equ3 := N1(phi) = (diff(A2*M1(phi), phi)
-(diff(A2, phi))*M2)/(A1*A2);
equ4 := diff(A2*T1(phi), phi)
-(diff(A2, phi))*T2+(N1(phi)/R1+q1)*A1*A2
-A1*A2*T1(phi)*vartheta/R1 = 0;
equ5 := diff(A2*N1(phi), phi)
-(T1(phi)/R1+T2/R2)*A1*A2+qn*A1*A2
+diff(-A2*T1(phi)*vartheta, phi) = 0;
equs := equ1, equ2, equ3, equ4, equ5;
bc:=T1(phib)=0,N1(phib)=0,M1(phib)=1,
T1(phia)=0,N1(phia)=0, M1(phia)=0:
sys:=equs,bc:
vars:=u(phi),w(phi),T1(phi),M1(phi),N1(phi):
nov:=dsolve(sys,vars,numeric,abserr=0.01,output=listprocedure);
M11[k] := rhs(nov[2]):
Q1[k] := rhs(nov[3]):
N11[k] := rhs(nov[4]):
print(k);
od:

Appendix 2: Maple code of Reissner-Meissner
formulation of the catenary shells of revolution

restart; with(plots);
for k from 1 to 3 do:
R := 2*k; c := .618735305*R;
h := (1/15)*R; b := .3*R;
phib := arctan(sinh(R/c));
phic := arctan(sinh(b/c));
nu := 0.3; E := 0.200e12;
K := E*h/(-nu*nu+1);
B := E*h*h*h/(12*(-nu*nu+1));
P := 0;
r1 := c/(cos(phi)*cos(phi));
r2 := arcsinh(tan(phi))*c/sin(phi):
odes := r2*(diff(varkappa(phi), phi, phi))/r1
+(r2*cot(phi)/r1+diff(r2/r1, phi)
+r2*(diff(B, phi))/(r1*B))*(diff(varkappa(phi), phi))
-(r1*cot(phi)/r2*cot(phi)
+nu-nu*(diff(B, phi))*cot(phi)/B)*varkappa(phi)
= r1*r2*Q(phi)/B, r2*(diff(r2*Q(phi), phi, phi))/r1
+(r2*cot(phi)/r1+diff(r2/r1, phi)
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-r2*(diff(K, phi))/(r1*K))*(diff(r2*Q(phi), phi))
-(r1*cot(phi)/r2*cot(phi)
-nu-nu*(diff(K, phi))*cot(phi)/K)*r2*Q(phi)
= -K*(-nu*nu+1)*r1*varkappa(phi)
+P*((r1*r1-r2*r2)*cot(phi)/(r1*r2)
+diff(r2/r1, phi)+(nu*r1+
r2)*(diff(K, phi))/(r1*K))/(2*Pi*sin(phi)*sin(phi));
vars := Q(phi), varkappa(phi);
bc := Q(phia) = 0, Q(phib) = 0,
(D(varkappa))(phia)/subs(phi = phia, r1)
+mu*cot(phia)*varkappa(phia)/subs(phi = (1/4)*Pi, r2) =
-1/B,
(D(varkappa))(phib)/subs(phi = phib, r1)
+mu*cot(phib)*varkappa(phib)/subs(phi = phib, r2) = 0;
hans := dsolve(bc, odes, vars, numeric, output = listproce-
dure);
rot[k] := rhs(hans[2]);
Q1[k] := rhs(hans[4]);
M1[k] :=B*(rhs(hans[3])/r1+mu*cot(phi)*rhs(hans[2])/r2);
M2[k] :=B*(mu*rhs(hans[3])/r1+cot(phi)*rhs(hans[2])/r2);
N1[k] := -rhs(hans[4])*cot(phi)-P/((2*Pi*r2)*(sin(phi)*sin(phi)));
N2[k] := -((diff(r2, phi))*rhs(hans[4])+r2*rhs(hans[5]))/r1
+P/((2*Pi*r1)*(sin(phi)*sin(phi))):
print(k);
od:
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