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Abstract: Wireless body area networks (WBANSs) have strong potential in the field of health moni-
toring. However, the energy consumption required for accurate monitoring limits the time between
battery charges of the wearable sensors, which is a key performance factor (and can be critical in the
case of implantable devices). In this paper, we study the inherent trade-off between the power con-
sumption of the sensors and the probability of misclassifying a patient’s health state. We formulate
this trade-off as a dynamic problem, in which at each step we can choose to activate a subset of
sensors that provide noisy measurements of the patient’s health state. We assume that the (un-
known) health state follows a Markov chain, so our problem is formulated as a partially observable
Markov decision problem (POMDP). We show that all the past measurements can be summarized
as a belief state on the true health state of the patient, which allows tackling the POMDP problem
as an MDP on the belief state. We then empirically study the performance of a greedy one-step look-
ahead policy compared to the optimal policy obtained by solving the dynamic program. For that
purpose, we use an open-source Continuous Glucose Monitoring (CGM) data set of 232 patients
over six months and extract the transition matrix and sensor accuracies from the data. We find that
the greedy policy saves ~50% of the energy costs while reducing the misclassification costs by less
than 2% compared to the most accurate policy possible that always activates all sensors. Our sensi-
tivity analysis reveals that the greedy policy remains nearly optimal across different cost parameters
and a varying number of sensors. The results also have practical importance, because while the
optimal policy is too complicated, a greedy one-step look-ahead policy can be easily implemented
in WBAN systems.

Keywords: wireless body area networks; controlled sensing; energy efficiency; partially observable
Markov decision processes (POMDPs); remote health monitoring

1. Introduction

This papers develops and studies control policies for wireless body area networks
(WBANS). The operation of WBANSs involves activating a set of sensors that are located
on or near a patient (e.g., wearable), while collecting data related to his physiological and
mental activities. The sensing process is managed by a computing unit, which selects a
subset of sensors to be activated at a given time, analyses the obtained measurements, and
transmits the information and initial results to a central unit (server) for further analysis
and decision making. WBANSs operation allows, in particular, estimating the physical and
health condition of a patient and monitoring the evolution of these heath conditions over
time and varying conditions [1], [2], [3], [7].

Recent research and practical developments in sensors and WBAN technology allow
efficient implementations of WBANSs in modern real-world applications [3], [4], [7]. One
of the main factors that impacts the efficiency of such systems in the context of health
monitoring is energy consumption as well as the associated trade-off between the amount
of required energy to operate the system and the accuracy of health state estimation based
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on the collected information [1], [2]. This paper proposes a model and algorithms that
account for both factors: the consumption of energy by the system and the level of accu-
racy that it provides. The optimization techniques in WBANSs regularly deal with optimiz-
ing the hardware and communication components, such as wireless communication pro-
tocols between the sensors and the controlling unit, to reduce energy consumption [8], [9],
[17]. Another stream of research has aimed to increase energy efficiency by optimizing the
controlling algorithms, which usually concern sensor selection based on the information
gained through the system’s activities [3], [10]; reducing the volume of the transmitted
data in the system [15]; or optimizing the resource allocation in the system [16], [18], [19].

Partially observable Markov decision processes (POMDP) have been used to model
the behavior and information transitions in WBANs [2], [5], [7], [11]. A POMDP is defined
by a set of states, a set of actions, the conditional transitions between states, a cost function,
and a set of observations [6].

Prior work on WBAN control used simplifying assumptions such as allowing only
homogeneous or identical sensors and “perfect sensing information” [8], [9], [10]. We ex-
tend the POMDP model to allow multiple non-identical noisy sensors, which yield a vec-
tor of sensor outputs at each epoch. To convert our POMDP into an MDP, we show that
all the information captured in all the past outputs can be summarized using a belief vec-
tor, which is a probability vector over the possible health states. This belief state is the
state of our MDP.

Our goal is to design an efficient dynamic policy that the controller will use to select
a subset of sensors at each epoch, which maintains highly accurate knowledge of the pa-
tient’s health state while saving as much energy as possible.

By discretizing the continuous belief state, we can numerically approximate the op-
timal policy for our dynamic program with an arbitrary degree of accuracy. However,
computing the optimal policy has a very high computational complexity that renders it
impractical. Even if the optimal policy can be computed offline given the patient parame-
ters, it requires storing very large policy tables on the controller, which should be kept as
a simple and efficient device. The greedy one-step look-ahead policy is generally a subop-
timal compromise in cases where the optimal policy is not practical. Its performance com-
pared to the optimal policy depends on the problem parameters, among them the Markov
transition matrix between the health states, the sensor accuracies, and the cost function
parameters.

We study the empirical performance of the greedy policy using an open-source Con-
tinuous Glucose Monitoring (CGM) dataset, which includes the measurements of 232 pa-
tients from different age groups and backgrounds over ~6 months. We estimate the tran-
sition matrix and sensor accuracies from the data and then evaluate the greedy policy over
these 232 patients. Our empirical study includes sensitivity analysis for the cost parame-
ters and the number of sensors that are external to the data. We also study the performance
of the greedy policy using synthetic simulations over a wider range of parameters.

The encouraging results show that while the greedy algorithm is suboptimal in gen-
eral, it is a very appealing choice for CGM. The greedy policy saves ~50% of the energy
costs while reducing the accuracy cost by less than 2% (i.e., reducing the numerical cost
by a factor of 0.98, and not the accuracy itself). This suggests that in certain cases the sim-
ple and efficient greedy policy can be used for WBAN control in practice while losing very
little compared to the optimal intractable policy.

2. Health Sensing Model

2.1. Patient Health States

We first discuss the health state transitions. We assume a finite and ordered set of
patient health states, denoted by H = {hy, hy, ..., h;}, such that for each pair h;, h;, where
j <J', h; is considered less healthy than h;,. Accordingly, h; is considered the healthiest
state and h; is considered the least healthy state. In practice, the health states could be
defined, for example, by the known states of a certain disease or the treatment stages the
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patient undergoes. In some applications, h; can be considered a terminal health state in
which the monitoring of the individual is no longer relevant (e.g., hospitalization, patient
mortality, etc.). We assume that the health state is a Markov chain. The transition proba-
bility between any two states during two consecutive epochs, h',h'*! € K, is given by a
transition matrix T:

T = TU = PT(ht+1 = hjlht = hl) (].)

In practice, the transition probabilities can be estimated using historical clinical data.
Therefore, we assume that T is known to the controller and is fixed throughout the sens-
ing (monitoring) period.

2.2. Sensors

Consider a WBAN that consists of N sensors operating over a time horizon of L
epochs. Each sensor may be responsible for collecting different types of information (e.g.,
different vital signs). The information collected by the sensors is used to estimate the pa-
tient’s health state, which is unknown to the controller at all times. At each decision
epoch, t, the controller chooses to activate some subset of the N sensors from the action
set § of all possible activation subsets. Since some combinations of sensors cannot be re-
alized due to physical or physiological limitations, the size of § might be smaller than
2V, Naturally, reducing the size of the set § reduces the complexity of the controller’s de-
cision-making. The sensor activation status at epoch ¢ is denoted by s* = (s, s}, ..., sk),
where st = 1 refers to an activated sensor, and s; = 0 refers to a deactivated sensor, n =
1, ..., N. The active sensors are selected to optimize a cost function (defined in Section 2.3)
that considers both the energy consumption and misclassification costs. For ease of nota-
tion, the time index may be omitted when discussing the general time-independent prop-
erties.

Let [}, denote the output of sensor 1 at time ¢, I* the output vector of all the sensors
at t, L(s") the set of all the possible output vectors for a sensor activation vector st and

_ 5t
{lt }~ | asequence of sensor outputs during t epochs. We assume that given a patient’s
i=

health state, the probability of a certain sensor output is known. For example, given the
particular health state of a patient with diabetes, the probability that a blood sugar level
sensor will return a certain value may be obtained from a known distribution.

WBAN sensors are typically power-constrained and low-cost. To account for this, we
consider detectors that can only sense whether a threshold has been crossed. Hence, each
sensor can only provide a binary output of either “1” or “0”, i.e., l§ € {0,1, 8}, where @
denotes a deactivated sensor. For example, assume there are three sensors, s;, s, and sz,
and only s; and s, have been activated, implying s=(1,1,0) . Then, L(s) =
{(1,1,0),(1,0,9), (0,1, ), (0,0, ®)}.

We define AV as the accuracy matrix. The sensor accuracy A,; is modeled as the
probability of observing an output of “1” from sensor n given that the individual is cur-
rently in health state h;:

Apj=Pr(l,=1|h) vn=1,.,N;Vj=1.,] )

Accordingly, the complementary probability of a signal of “0” is 1 — A;.
Definition 1. Define the output function of sensor # as:

Anj ln =1
falln,J) = Pr(ln lh = hj) =41-4n; [ =0. 3)
1 L,=0

We assume independence between the sensor outputs given a patient’s true health
state. This is a natural assumption since it is only the health state that couples the sensors’
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outputs and each is affected by its own local noise. Therefore, we may define the output
function of all sensors as:

N N
rap=prih=n)=[ [Priwin=n)=] [ftp @
n=1 n=1

Note that since a deactivated sensor (I, = @) provides no information, its output
function should return 1 in order to neutralize its impact on the probability of the output
of the activated sensors.

2.3. Power and Misclassification Costs

Our goal is to develop algorithms that account for both the cost of activating a set of
sensors, and the misclassification cost associated with possible errors in determining the
patient's health state. The cost of activating a set of sensors, s, is often straightforward
and denoted by C(s). The formulation of the misclassification cost is often more compli-
cated and is related to false positive and false negative classification errors. In case where
a patient's actual health state is better than the estimated one, the system incurs false pos-
itive error cost, which is proportional to the probability of such error. Similarly, false neg-
ative error cost is proportional to the probability that the actual heath state of the patient
is worse than the estimated one. We denote the false positive and false negative cost pa-
rameters by Cpp and Cpy, respectively. Since the actual health state is unknown and ran-
dom, the system may incur both false positive and false negative costs at the same time.
The following definition formulates the considered misclassification cost.

Definition 2. The misclassification cost per health state, h;, denoted by p; ({lt'}z,z 1),
is defined as:

J

j-1
oy (Y, _,) = Crr Z Pr(nt+t = hy, | {1, _,) + Cen Z pr(nt+t =y, (1), 5)
=1

Jj'=j+1

and the total estimated misclassification cost is defined as:

P () = Z;P (e =y | 0 L) oY) ®)

As indicated above, we multiply the probability that the patient is in a state worse
than a specific health state hf by the false-positive cost parameter Crp, and we multiply
the probability that the patient is in a state better than h} by the falso negative cost pa-
rameter Cry. A more sophisticated cost structure can be assumed. In particular, health
state’s specific costs and/or dynamic costs can be incorporated in the model suggested in
this paper. This will probably lead to the development of more accurate health monitoring
algorithms.

2.4. Motivating Example

As we show in Section 6, by wisely choosing the subset of sensors to activate, much
energy can be saved with only a small reduction in the average misclassification cost com-
pared to activating all sensors. In this subsection, we illustrate this idea given a simple
example. We examine a scenario where patient’s health condition can be classified into
one of three health states, H = {hy, h,, h3}. We assume that for each epoch t, the patient
may either transit to the neighboring less health state or remain in the current state. For
hy, the patient may either remain in h; or transit to the healthiest state h;. The Markov
chain is depicted in Figure 1, where the probabilities 0 < t4,7,,73 < 1.


https://doi.org/10.20944/preprints202104.0470.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2021 d0i:10.20944/preprints202104.0470.v1

Figure 1. Schematic description of the Markov chain.

We also assume three completely accurate sensors, where each sensor can perfectly

1 00
detect a particular health state. The sensor accuracy matrix is AV = [0 1 0].
0 01

Given the patient occupying hy, the first sensor would output a signal “1”, while the
other two sensors would output “0”. Similarly, given the patient occupying h, or h;
the corresponding sensor would output “1”, while the other two would output “0”.

The optimal policy in this scenario only requires activating a single sensor through-
out the sensing period (except for at t,) and still provides perfectly accurate sensing. At
first, the controller activates all sensors to identify the initial health state of the patient.
From there on, at each epoch, the controller only activates the sensor that corresponds to
the current health state to identify whether the patient has transitioned to the next health
state or remained in the current health state. Compared to the naive solution of constantly
activating all sensors, the optimal solution results in a significant reduction of energy con-
sumption (a single sensor is activated) while preserving perfect knowledge of the patient’s
health state. Even with imperfect but still fairly accurate sensors, activating a single sensor
in this manner will result in a small misclassification cost while reducing the energy con-
sumption dramatically.

The optimal policy in the above scenario is intuitive and easy to guess. Once the sen-
sor accuracy matrix is not deterministic or the transition matrix has a different structure,
computing the optimal solution amounts to solving the POMDP which in general is highly
complicated. As done in the literature, the first step to solve the POMDP is to summarize
the information captured in the past measurements using a compact belief state on the
health state of the patient. This converts the POMDP into a belief state MDP for which we
can, in principle, compute the optimal policy by dynamic programming.

3. Belief States

The patient’s actual health state is unknown to the controller, and our goal is to mon-
itor and estimate this state. Therefore, the controller uses the sensors’ outputs to produce
a probability distribution over the set of health states. This distribution is defined as a
belief state.

Definition 3. The belief state b*=(bf,.., bf) is defined st bf =
pr (ht =h; | {l"}i,zl) for every j.

The belief state is the probability distribution of the health states of the patient given
the past measurements. Next we prove that tracking belief states instead of all past meas-
urements comes with no loss of optimality (i.e., it is a sufficient statistic) and that it can be
recursively updated. During the monitoring period, the belief states evolve based on the
outputs, It received from the activated sensors, st~1. Below is a schematic description of
the order of events in two specific subsequent epochs:

(a) (a) |—| (a)
ht ht+1

t+1 ‘ | st+1 |2

1 )y :
(c) !
bt+1 1

> time
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Figure 2. Order of events throughout sensing epochs.

As shown in Figure 2, health states h* evolve according to the Markov chain transi-
tion matrix as an independent process (a). The subset of activated sensors s* at each
epoch provide outputs I**! during the following epoch ¢ + 1 (b). The activated sensor
outputs also depend on the health state. Using the activated sensor outputs I**! and the
belief state bf, we update the belief state b**! (c). Finally, given the updated belief state,
the controller selects the subset of activated sensors s'*1 at the next epoch (d).

3.1. Markovian Property of Belief States

In this subsection, we show that the past sensor measurements can be summarized
as a belief state vector, which is a Markov chain. This converts the POMDP into a belief
state MDP. Note that in contrast to a generic POMDDP, our cost function is by itself an
average taken over the belief states.

Lemma 1. The belief state b® is Markovian. The transition probabilities are given by

Pr(bft ), ) = Pr(oft ) = > Pt =D
L bf*=1(btD)

(7)

where
BEF(IEHY, |
b fAT )
t+1 t
b =TbLh = zkz f(l”l Ty ®
Proof: Observe that
1\t £t 1t
(0 = [ = Y5 = =) =06
)

ZPr(h”l =jlnt =0 Pr(nt =i (1), ZT-,- bt

where (a) uses the assumption that h is a Markov chain. In a similar manner, given
the belief state b¢, the next set of sensor outputs, I'*1, is independent of the past sensor
outputs:

Pr (lt+1 | {lt,}:,=1) =Z PT'(lt+1 | ll:trht+1 =]) - Pr (ht+1 =] | {lt,}:l=1)
j
_ Z Pr(lt+1 | ht+1 = ]) - Pr (ht"'l =7J| {lt’}Z’zl) (10)

Zf(lHl j)-Pr (ht+1 Y {lt z Zf(lt+1’])Tl]bt

This shows that the belief state summarizes all relevant information given past sensor
outputs. Furthermore, the belief state can be recursively updated using the following
equation:

t+1 — ; e+t
b+l = pr (ht+1 _ |{lt “’1 ) _ pr (h =l |{l }t'=1)
J Pr(l“l |{lt’}t )
t'=1

_ Pr (ht+1 =j | {lt'}:,=1) .- Pr (lt+1 | httl = j, {lt'}:,=1) _ (11)

Pr (lt+1|{lt'}:,=1) (@)

ZiTij btf(lt-l—l ) ZlTl] btf(lt+1 )
Pr(1t+1 |{lt' ) ®) ke X f AL, ) T by,

where (a) follows from (9) and, since bf = Pr (ht =j] {l‘ } ) by definition, (b) fol-
lows from (10).
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Lemma 1 can be straightforwardly applied to simplify the calculation of the misclas-
sification costs:
Corollary 1. The misclassification costs can be written as

Jj-1 ]
p;j(bt*1) = p;(bt, 1) = Cpp Z N byt (bh D) + CFNZ . bt (b, ) (12)
j'=1 j'=j+1
so the controller can calculate the total estimated misclassification cost as follows:
J
(LD =D BEIBLD - (b D) (13)
j=1

4. Sensor Activation Control

The Markovity of the belief states allows us to pose our problem as a POMDP with
the belief state as the system state. As opposed to tracking all past measurements, the
belief state maintains its dimension over time. This enables us to formalize the dynamic
programming equations, resulting in a tractable approximation of the optimal policy. In
this section, we discuss two control policies that are based on the belief state MDP. The
first is an optimal policy (Section 4.1) and the second is a one-step look-ahead greedy pol-
icy (Section 4.2)). We prove that with accurate sensors that are all activated or deactivated
together, the optimal policy can be computed accurately and efficiently (Section 4.3). We
denote the minimum total expected cost of the path that starts at b* by the value function,
V(b"), that is, the “cost to go” [13].

4.1. Optimal Policy

The Markov property of the belief states proven in Lemma 1 shows that our problem
can be formulated as a POMDP over a finite time horizon of L epochs. Hence, the optimal
solution is given by the following dynamic programming equation:

Vo(bt) = n;itn{(l — w)C(s) + [, (Prb™t = b| bYVO (™) + wp; (b)) db}

(14)
= mind (1 - )C(s9 + z (Pr(zt+1 = 1169 (Vo (b1 (", D) + ij(bt)))
leL(st)
where (a) follows from (10), which also shows that
Pr(b™*(bt,1) = b | b%) = Pr(I**1 = 1| bt) (15)

Here w is the weight the system designer assigns on misclassification costs vs power
costs. Lower values of w result in emphasizing power cost reduction while higher values
result in minimizing misclassification costs. The default value of w is 0.5.

From (14), we can extract an optimal policy by selecting the s* that minimizes the
value function for the belief state, i.e., argmin V°(b"). The equation (14) can be solved us-

st
ing the value iteration method [13].

Our problem can be formulated with an infinite horizon by adding a discount factor
to (14) Alternatively, we can assume a terminal health state, which acts as an absorbing
state in the Markov chain. In practice, this state occurs when the WBAN health sensing is
no longer relevant: for example, when the patient arrives at an emergency room and re-

quires medical intervention, hospitalization, mortality, etc.

4.2. One-Step Look-Ahead Greedy Policy
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The greedy algorithm is a one-step look-ahead policy that at each epoch finds which
sensors to activate in order to minimize the immediate cost incurred. The value function
of this greedy policy is:

Ve (bt = rr;itn{(l —w)C(sY) + w - Yyersty Pr(l* = 11b*) - p(b4, 1) } 16)

4.3. Accurate Sensor Use Case

In this subsection, we consider the case of accurate sensors, which can either all be
activated or deactivated at a certain epoch. Although in general, sensors are not accurate,
it is reasonable to assume that sensors manufactured for tracking health states will be
fairly accurate. The action space is § = {0,1}, such that all sensors are activated if a = 1
and idle if a = 0. The sensor accuracies are A,; € {0,1} for all n,j. In addition, we as-
sume that the sensor accuracy matrix is invertible, which can be achieved by design. The
result of these assumptions is that each possible sensor output vector maps to a single
health state. We note that when a single mapping exists between each possible sensor
output vector and each health state, the problem can be solved regardless of A’s structure.
The following lemma shows that in this case, the number of effective belief states is finite
and linear in both the time horizon L and the number of health states J. Hence, the dy-
namic programming problem can be accurately solved.

Lemma 2. Let § = {0,1}, and let the sensors be fully accurate, where A4,; € {0,1} for
all n,j. Assume that A is invertible. Then, starting from the belief state b° only L- (J +
1) belief states are reachable.

Proof of Lemma 2. Let h' be the health state at time t, and h' be the standard vec-
tor that has one at the h‘-th component. If the matrix A is invertible, then we can recon-
struct the health state as h* = A™'l. Hence f(Lk) = 1g_,-1. For j # h**!, we have
b/*' = 0,and for j = h**!

. t
pi+l — YTy bif(I*,)) _ 2iTijb; Lj=ay _ 2T b —1
J Zk me (lt+1;k)kabrtn Zk Zm 1{k=A‘1l} kabrtn Zm kabrtn

If the sensors are not activated (i.e., a =0), f(l,k) =1 forall [, hence,

Y. T;: bt
ijl:Z Zl Y (f)zTijbitﬁb”l:T‘bt
k4am fmk¥m 7

where (a) follows since the denominator sums over the entire probability space. To
summarize:

1_(T-bt a=0
bt+ _{ht+1 a=1

which means that if all sensors are activated, we can perfectly estimate the health
state h'. Hence, only belief states B, ={blb=T"-b’orb=T™-hformeNhe
J} arereachable from b°, where J is the set of J pure health states. The set B, canbe
computed in advance before solving the dynamic programming equation.

The implication of the above result is that the dynamic programming problem can be
accurately solved with complexity O0(L?]). To implement this computation, we also ex-
ploit the fact that each belief state b can transition into two possible belief states: h'*!
and T - b, where T is the transition matrix.
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In the general case of inaccurate sensors, the update function of b**! is not quadratic
or even convex. Considering the lack of a convenient structure for the problem, one needs
to compute V(b**1) for every belief b**! in the J-dimensional simplex. In practice, this
means that only an approximate solution can be obtained by discretizing the belief space.
Therefore, the proof of Lemma 2 implies that the general scenario with inaccurate sensors
or a complicated action space § can only be solved numerically.

4.4. Belief State Discretization

The dynamic programming formulation in (14) explores all the possible future states
over a finite period, either using a discount factor or a terminal health state. In practice, a
continuous belief state results in a very large state space, which results in exponentially
growing computation. In this section we present a numerical procedure, which discretizes
the belief state space and, accordingly, approximates the value function, V°. The proce-
dure first defines a finite set of valid belief state vectors. The vectors can be related to
different medical treatments or protocols, as mapped by medical professionals. Then,
given an actual belief state vector, the proposed procedure finds the vector from the finite
set which is closest to the actual one. Finally, the procedure calculates the value function
for each valid belief state vector. The steps of the procedure are the following:

1. Set a level of discretization and define the set B, which contains all valid
belief state vectors.

2. Given an actual vector, b, calculate its distance }.; |5]- — bj| to each valid
vector, beB

3. Return the vector, b* which is the closest to b.

For example, if the level of discretization is selected to be 0.2, and b =
[0.17,0.35,0.40, 0.08], then the above procedure returns b* =[0.20,0.40,0.40,0.00] as the
closest valid vector. After discretizing the state space, we use (14) and calculate V°(b)
for each valid state b € B.

The fine discretization required to guarantee a good approximation of the optimal
policy leads to high dimensional belief space B (as we demonstrate numerically in Sub-
section 6.2). As a result, implementing the optimal policy is complicated since computa-
tional load grows exponentially with the dimension of B. Even solving the dynamic pro-
gramming offline does not avoid the high complexity since it requires instead storing
large policy tables that map the discretized states to actions. This complexity can be some-
what mitigated by using more advanced discretization methods.

A more sophisticated method for improving the discretization is to create a set B,
where each b € B is selected so that the discretized belief state space reflects the actual
belief states that patients tend to follow. This approach can boost performance without
needing to increase the discretized belief state space B by employing a non-uniform dis-
cretization. We leave this method for further research.

To avoid discretization, function approximation can be employed, which enables
solving the POMDP over a continuous state space [14], although still with high complex-
ity. Since our focus is to study the performance of the greedy policy, we use the simple
discretization method described above to provide a “very close to optimal” benchmark.

5. Empirical Analysis on Glucose Data
5.1. Use-Case Description

We now demonstrate the implementation of the WBAN controlling solution in a real-
world use-case. We use an open-source data set of continuous glucose measurements col-
lected from a group of diabetes type-1 patients [20]. The measurements were recorded
using a wireless glucose level sensor placed on the patients for extended periods. Using
our proposed greedy control policy, we aim to reduce energy consumption while main-
taining high monitoring accuracies, thus extending the sensors’ lifespans and allowing
longer sensing periods. The model parameters (sensor accuracies, transition probabilities,
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health state trajectories) were extracted from the data, allowing us to evaluate the effec-
tiveness of the greedy policy using real-life glucose measurements, that represent a po-
tential application.

5.2. The Data

The raw data contains glucose measurements for a group of 232 heterogenic patients
from all ages with type 1 diabetes and glycated hemoglobin (HbA1c) 7.0% — 10.0. For most
patients, the measurements were collected over 6 months using three different wireless
real-time continuous glucose monitoring (RT-CGM) systems.

Figure 3 displays the glucose level measurements over time for 3 randomly selected
patients over a period of 12 hours. For the majority of patients, the time gap between sub-
sequent measurements is 5 minutes. However, about 16.9% of the records have abnormal
time gaps, which could be caused due to malfunctions in the measurements collection, a
patient which has removed the sensor, etc. In order to overcome the difficulties when
dealing with unequal gaps, we have checked what is the most common time gap per pa-
tient, and set it as the patient’s time frame for measurements collection.

Sample of glucose levels for single patient over time
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Figure 3. Glucose levels of randomly selected patients over time.

5.3. Data Modelling
Health States

In order to apply the POMDP based model, we first define the set of health states
each patient can occupy. To this end, we discretize the range of glucose measurements by
dividing the entire rage of glucose values into 3 smaller ranges, each defined as a health
state. The defined ranges are based on medical standards [21]. We note that the defined
range structure can be designed according to varying medical needs. Specifically, h; <
100, 100 < h, < 180 and 180 < h,.

Sensors and Actions

The glucose data was measured using a single sensor, which was activated every 5
minutes (defined as a single epoch). We define a decision time-frame as k consecutive
epochs, for which the controller must select a sample plan, i.e. during which epochs is the
sensor activated. We assume that during the decision time-frame, the sample plan remains
fixed. In the POMDP based model, the set of actions the controller may take contains a set
of acceptable combinations of activated sensors. Since the data was obtained using a single
sensor per each patient, we define the set of actions as the number of epochs during the
decision time frame in which the sensor will be activated. This definition substitutes the
assumption that the system consists of multiple sensors and allows us to define multiple
actions. We note that the actions defined above could be described as selecting the sensor’s
frequency throughout the decision epoch or activating sensors with different sampling
frequencies. We also note that the set of actions will not necessarily consist of all possible
epoch combinations throughout the decision time frame k. For example, given k = 6,
the decision time-frame will consist of 6 epochs (30 minutes). We may define the set of
actions as S = {(4),(2,6),(1,3,5)}, where each tuple contains the index of epochs for
which the sensor will carry out a measurement. The first tuple can be expressed as setting
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the sensor to a low frequency setting, whereas the last may be expressed as a high fre-
quency setting. Intuitively, the higher the sensing frequency, more energy is consumed in
creating a final measurement for the k epochs. The collected measurements are then ag-
gregated to a single observation using an aggregation function, and discretized according
to the states defined in the previous sections to provide sensor outputs | € {1,2,3}. The
aggregation function may be defined, for example, as an average or maximum over the
collected records.

This serves as the output obtained by the sensor.

In principle, more advanced aggregation functions could be designed to average all
observation throughout the decision epoch, unless there exists an observation which is
relatively far from the other observations throughout the decision epoch. This allows to
design the system so that extreme observations are handled differently than decision
epochs where the observation values are relatively close to each other, promising that ex-
treme glucose measurements are not missed due to the averaging of observations in the
decision epoch. For example, this could be done by considering the number of STDs each
observation is from the average of all observations in the decision epoch (a process known
as SPC). If, for a certain observation, the absolute distance in STDs from the average
crosses a predefined threshold, the observation would be considered extreme, thus solely
defining the patient’s health state in that decision epoch (unlike the average of all obser-
vations). The higher the number of STDs, the more tolerant the controller will be to high
value observations.

We note that k can be selected by the system designer according to varying system
requirements. Smaller values of k may provide better monitoring performance, due to
the fact that controller decision will be made more frequently. On the other hand, small
values would require higher computational resources.

Transition Matrix

Using a portion of the patient’s measurements, the transition matrix can be estimated
based on actual health state transitions. The conditional probability T;;, is calculated as
the ratio between the number of transitions between h; and h; and the number of tran-
sitions from h; to any of the other health states, over the selected portion. The calculated
transition matrix may be used for future monitoring.

Sensor Accuracies

The sensor accuracy matrix is also calculated using a portion of the patient’s data.
For each sensor n we calculate the probabilities to obtain a certain output, given the pa-
tient is in a certain health state. Since each sensor may provide an output [ € {1,2, 3}, the
sensor accuracy matrix per sensor n will be of the form A3*3. For example, given the pa-
tient is currently occupying h;, the probability to obtain an output value [ = 2 from sen-
sor n =3 is (A3)1,-

In order to calculate the probability to receive a specific output [ given the patient is
in health state j, we calculate the ratio between the number of epochs where the patient
was in health state j and the sensor returned an output [, divided by the number of
epochs the patient was in health state j.

5.4. Model Parameter Extraction

Initially, we have divided the data for each patient to train and test sets to 75% and
25% of the records, respectively. Using the training set, we first extract the transition ma-
trix and sensor accuracies per patient. We then use all parameters needed for the POMDP
based model (set of health states H, transition matrix T, sensor accuracies matrix 4, set
of possible actions S, cost parameters Cry, Cpp) to apply a policy over the test set data.
Finally, we compare the overall performance of the policy to a baseline. The baseline is
defined as an inclusive policy - the sensor is activated at all epochs. The collected meas-
urements are then aggregated using the aggregation function, thus creating a baseline
health state prediction, for each k epochs. To compare between policies, we will examine
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the Total Cost, the power cost and the health state classification accuracy (calculated using
the most likely health state, according to the belief state vector).

We set the following parameters: k=6, Cpy =100, Cepp =50 and S=
{(4),(2,6),(1,3,5)}, where the last one is the set of possible actions (the epoch indices in
which the sensor is activated).

The activation costs are defined to be the number of epochs where the original sensor
is activated during the decision time frame of k epochs. For example, if the sensor is ac-
tivated for 3 epochs out of a 6-epoch decision time frame, the activation cost will be 3.

5.5. Policy Comparison

Table 2 compares the overall costs of the greedy policy and the naive (inclusive) so-
lution, averaged over all patients:

Table 1. Activation costs and accuracy results.

Activation Costs Accuracy
Naive 100% 85.1%
Greedy 48.33% 83.5%
Difference -51.67% -1.88%

We observe that the activation costs were reduced by 51.67%, whereas the accuracy
was reduced by a small factor of 1.88%, resulting in an accuracy score of 83.5%.

6.99

7 @ FP Costs
ETA FN Costs

6 EEX Activation Costs

Value Iteration Greedy Inclusive

Figure 4. : Activation and misclassification costs obtained by the different proposed policies.

Figure 4 compares the performance of value iteration, greedy, and inclusive. Clearly,
the inclusive policy inflicts higher activation and misclassification costs, compared to the
greedy and value iteration solutions. In addition, the value iteration solution obtained
results similar to the greedy solution. This is probably caused due to the discretization of
the belief states and the fact that the sensor accuracies are high enough for the greedy
solution to obtain a near optimal solution. For the scenario presented here and the defined
system parameters, the greedy solution provides good performance.

5.6. Sensitivity Analysis

Our results from Subsection 5.5 suggest that the greedy policy is nearly optimal for
the scenario we extracted from the real Glucose data. To establish this statement, we now
conduct a sensitivity analysis of two main system parameters. As our benchmark, we use
the discretized dynamic programming solution with 15 discretization levels, since our re-
sults in Subsection 6.2 show that the performance barely improves with more than 15 dis-
cretization levels. We start by varying the parameter w between 0 and 1, thus changing
the weight of the two cost components in equation (16). The graph below demonstrates
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the cost ratio between the greedy and value iteration methods. Each point considers the
total costs obtained over all patients, and the error bars show the standard deviation of
this ratio over the patients.

greedy-value iteration total costs ratio vs. w
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Figure 5. Ratio between total costs obtained by greedy and value iteration methods obtained over
all.

patients for varying w values, for the following set parameters: k =6, Cpy =
100, Cp = 50

One can observe that the performance (total cost) of the greedy policy is never far
behind the optimal policy. For the extreme case of w = 1, in which the controller will aim
at minimizing misclassification costs only, the greedy method obtains costs of approxi-
mately 13.5% higher, compared to the value iteration method. However, for medical ap-
plications, the regime of interest is when the misclassification cost is more important than
the energy cost. This follows since very small misclassification probabilities are required
in practice. When w < 0.5, the cost of the greedy policy is never more than 2% more than
that of the optimal policy. Hence, the greedy policy is nearly optimal for the practical re-
gime of interest in WBAN health monitoring systems in this case.

We next demonstrate the trade-off between the misclassification cost and the activa-
tion cost in the Glucose use-case, by varying the parameter w between 0 and 1, thus
changing the weight of the two cost components in equation (16). We note that although
the policy is obtained given the weighting parameter, the calculated costs reflect the true
costs obtained when applying the solution to the test set. Lower values of w result in
emphasizing power cost reduction while higher values result in minimizing misclassifi-

cation costs. The obtained data points have a high fit of R*=0.997 to f(x)=
145.09

276.96x+27.65

designer to adjust w for the Glucose monitoring case.

— 0.07. This high fit in Figure 6 suggests that f(x) can be used by the system
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Figure 6. Activation costs vs. misclassification costs per w, averaged over all patients.

Another main system parameter is the length of the decision epoch k. Higher values
of k require lower computational resources but will introduce more noise into the system,
caused by the aggregation of more raw observations. Figure 7 shows that the greedy pol-
icy is nearly optimal for a wide ranges of values of k.
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greedy-value iteration total costs ratio vs. k
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Figure 7. Ratio between total costs obtained by greedy and value iteration methods obtained over all patients for k values, for the

following set parameters: w = 0.5, Cry = 100, Crp = 50

Health State

6. Empirical analysis and sensitivity analysis on Synthetic DATA

In this section, we provide simple numerical examples that will allow us to study the
behavior of the greedy policy compared to the optimal policy in more detail, and to pro-
vide more intuition and interpretability for the proposed greedy policy. For the glucose
data, the transition matrix and sensor accuracies were estimated for the data so they do
not represent a degree of freedom. Here all parameters are arbitrary, allowing for a more
general sensitivity analysis.

6.1. WBAN Dynamics for the Greedy Policy

We define the model parameters as follows: | = 4 (the number of health states),
N =5 (the number of sensors). Additional parameters are as follows:
.90 .04 .04 .02]
|02 90 .04 .04]. . . .
e T= 01 .01 90 .oglis the transition matrix, from state i (row) to state

.01 .01 .03 .95l
j (column)

.99 .01 .50 .50
.50 .90 .10 .50
e A=[.50 .50 .90 .10| isthe sensor accuracy matrix.

.90 .10 .50 .50

o (= [56 1 41 1 02]5 denotes the sensors’ activation costs,
e (, =[50 100] denotes the misclassification costs (FP, FN)

The transition matrix T was chosen based on the reasonable assumption that the
probability of remaining in a certain health state is larger than the probability of transi-
tioning between health states. In practice, the transition probabilities can be estimated us-
ing historical clinical data like we did for the Glucose data in Section 5. The cost parame-
ters were selected to reflect a clear trade-off between the misclassification costs and the
sensors’ activation costs. In practice, the sensor activation costs can be based on the cost
of recharging the sensors, and the misclassification costs can be estimated based on the
cost of the medical care needed due to health state misclassification.

—— Health State
----- Most Likely State

Time Step

Figure 8. The unknown health state and the most likely health state (using the greedy policy) over
20 epochs.
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We simulate the greedy algorithm described in Section 4.2 to derive a greedy policy.
The most likely state shown in Figure 8 is generated by h"* = argmax;(b}). One can ob-
serve that the greedy policy generally provides accurate predictions of the actual health
states in the proposed example.

—— # of Sensors

AL el N

Time Step

Number of Sensors
O =N W B Wb

Figure 9. The number of sensors activated throughout the simulation using the greedy policy.

Figure 9 shows the number of sensors activated throughout the simulation. One can
observe that the largest number of sensors is usually activated during health state transi-
tions, i.e., in periods where the patient’s health is relatively unstable. In addition, Table 1
summarizes the dynamics of the activated sensors regarding their different accuracies and
costs. For example, even though sensor 5 incurs low costs, it is almost never activated due
to the low accuracy it provides. Sensors 1 and 4 are informative regarding h; and h,.
Although sensor 1 is very accurate compared to sensor 4, it is activated during a smaller
number of epochs, which follows due to the lower costs incurred by sensor 4.

Table 2. Percent of epochs during which each sensor was activated throughout the simulation.

Sensor Usage
1 2 3 4 5
28% 64% 61% 69% 3%

6.2. Comparison of the Greedy Policy to the Optimal Policy

We now compare the proposed greedy policy with the optimal dynamic program-
ming approaches, presented in Sections 4.2 and 4.1, respectively.

For this section, we define a more compact problem, which will allow deeper analy-
sis. The parameters are defined as follows: | = 3, N = 2. Additional parameters are as

follows:
.90 .06 .04
e T=|04 .90 .06| and 4= '28 'ég 'ig
.01 .04 .95 ) ' )

e (C,=[2 2] and C, =[17 34]
The selected policy gives the number of sensors activated given a certain belief state
vector.

Sensing Policies

1.0

Il Both sensors
Il First sensor
B Second sensor
No sensors

0.75

bz 5

0.25

0.0 . . . 10
b1
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Figure 10. Greedy sensing policy over the belief state space b. Since b; = 1 — (b; + b;), the belief
space forms a simplex and may be described by only the belief over the first two states.

Figure 10 maps the belief states into the subset of activated sensors. We observe that
the controller tends to activate both sensors in the mid-ranges of the belief states, i.e., in
areas where the information concerning the patient’s active health state is not definitive.
As the belief states move towards the edges of the graph, fewer sensors are needed be-
cause there is higher certainty concerning the patient’s active health state. In the far cor-
ners of the graph, no sensors are activated. We note that the distinction between the use
of the first and second sensors, when activating only one sensor, is related to each sensor’s
ability to differentiate between a different pair of health states.

We now examine the different behaviors displayed by the proposed greedy policy
and the dynamic programming policy. For this purpose, we use the average total costs
obtained by both solutions over 30 random transition matrices as the main performance
indicator. We note that all transition matrices share the property that the probabilities of
remaining in certain health states are generally higher than those of transitioning to other
health states. As discussed in Section 4.4, the optimal dynamic programming solution re-
quires belief state discretization. Higher discretization resolutions will allow more accu-
rate health state monitoring but will incur an exponentially higher computational load.

Figure 11 demonstrates the effect of varying the discretization resolution on the per-
formance of the dynamic programming solution. The x-axis shows the “binning” resolu-
tion defined for the discretized belief state space. Higher discretization levels lead to
higher accuracy when approximating actual belief states. We can see that for lower values
of discretization levels, the greedy policy outperforms the dynamic programming formu-
lation, while for higher levels, the value iteration solution outperforms the greedy solution
and converges to an average total cost that is approximately 3% lower than that of the
greedy solution. Overall, the greedy solution shows a maximum gap of less than 4% from the
dynamic programming solution for high discretization levels.

Performance of different discretization levels
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Figure 11. Performance of the value iteration and greedy policies as a function of the discretization
level, averaged over 100 i.i.d. Monte Carlo simulations.

We observe also that there is a downward trend up to a discretization level of 15,
where the trend plateaus. From this graph, we can see that a discretization level of 15

(meaning each element in the belief state vector could be approximated by a factor of %)

provides sufficient performance while maintaining a lower computational load compared
to larger discretization levels. Hence, in the rest of the simulations, we will use 15 as the
discretization level.

6.3. Sensor Accuracy Sensitivity Analysis
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We now analyze the effect of the sensor accuracies on the policies’ performances.
Generally, using sensors with poor accuracies introduces more noise into the systems that
may hinder the performance. We define a group of accuracy matrices using a parameter
€ as follows:

A= [1 —€ €

€ 1—€

According to the above definition, each of the two sensors differentiates between a
pair of health states. Larger values of € result in weaker differentiation between the pairs

of health states.

i}osEsos

Performance over different sensor accuracies
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Figure 12. Total costs of the greedy policy and the value iteration policy over different sensor ac-
curacy matrices A defined by 0 < € < 0.3 (step size 0.05), averaged over 100 i.i.d. Monte Carlo
simulations.

As expected, higher values of € result in higher costs for all policies, whereas near-
zero values provide low costs down to the point where the sensors are perfect, which
results in identical low costs for all the policies (see Figure 12). For e values higher than
0.3, the sensors yield very low-accuracy outputs, causing the controller to deactivate the
sensors throughout the sensing period. For the majority of examined e values, the pro-
posed greedy policy was nearly optimal. Only for very inaccurate sensors with € = 0.25
the total cost of the greedy policy is higher by more than 5% than that of the (approxi-
mately) optimal value iteration. This is encouraging since medical sensors are typically
required to be highly accurate in practice, due to the possible implications.

6.4. Transition Matrix Sensitivity Analysis

Finally, we demonstrate the effect of stability in the patient’s health state trajectories
on the policies” performances. Less stable health state trajectories, in which the patient
tends to change health states often, will be reflected by a more equally distributed transi-
tion matrix. For that purpose, we define a group of transition matrices using a parameter

T:

. 1-T 1-T
T~ 2 2
r=|1=T F 122,03731
2 2
1-T 1-T .
L 2 2 T_

Note that T determines the stability of the health state trajectories. For lower values
of T, the obtained transition matrix is more uniform. For the value T = 0.3, the policies
yield the highest possible costs, since then T provides no information concerning the pa-
tient’s potential health state trajectory. For higher values of T, the transition matrix T
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causes higher-stability health state trajectories. For the majority of T values examined,
the greedy policy is nearly optimal, showing the largest gap when the total costs of both
policies decline for higher values of 7. For the most extreme value of T = 1.0 (not
shown in the left graph in Figure 13), for which the heath state is static, the total cost of
the greedy policy is 450% compared to the value iteration policy.

Performance over different transition matrices
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Figure 13. Total costs of the greedy policy and the value iteration policy over different transition matrices T, definedby 03 <T <

1 (step size 0.05), averaged over 100 i.i.d. Monte Carlo simulations.

7. Conclusions

We studied the energy consumption versus accuracy trade-off in WBAN health mon-
itoring systems. In our setting, the controller decides which subset of sensors to activate
at every epoch. The objective is to monitor the unknown patient’s health state while min-
imizing the power and misclassification costs over time.

We studied the performance of the simple one-step look-ahead approach for sensor
activation. This simple policy is much easier to implement and offers better interpretabil-
ity than the optimal one based on dynamic programming. Furthermore, since the optimal
policy works with a continuous belief state space, it must be discretized which degrades
the performance and requires storing large policy tables.

Our extensive empirical study on Glucose levels of 232 patients over 6 months reveals
that the proposed greedy policy saves 50% of the energy cost while losing only 1.8% of
the misclassification cost compared to the most accurate policy possible that activates all
sensors at all times. Our sensitivity analysis confirms that the greedy policy is nearly op-
timal as long as the weight of the misclassification cost is at least twice that of the energy
cost. Since in medical application the misclassification probabilities must be very low, this
weight regime includes the practical regime we would aim to use in practice.

Our encouraging findings suggest that the greedy policy can be an appealing policy
to use in practice. Our sensitivity analysis suggests that the reason the greedy policy is so
effective is that, as we estimate from the data, the health state transitions are not extremely
slow and the sensor accuracies are not extremely bad.

Since this is typically the case for various medical applications, studying the perfor-
mance of the greedy policy on other medical datasets will further establish the greedy
policy as a practical health monitoring control for WBAN systems.

Furthermore, additional cost structures may be considered in improving the applica-
bility and real-world value of the solutions. For example, costs that dynamically change
over time or different misclassification costs for more severe health states could be used.
Additional extensions include relaxing model assumptions, such as binary sensors and
known POMDP parameters (transition matrix, patient health states, etc.). For example,
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assuming the transition matrix is unknown to the controller, sensor outputs from a group
of patients may be used to initially estimate a generalized transition matrix.
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