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Abstract  

  Brain development during the prenatal period is rapid and unparalleled by any other time 

during development. Biological systems undergoing rapid development are at higher risk for 

disorganizing influences. Therefore, certain prenatal exposures impact brain development, 

increasing risk for negative neurodevelopmental outcome. While prenatal exposures have been 

associated with cognitive and behavioral outcomes later in life, the underlying macroscopic brain 

pathways remain unclear. Here, we review studies investigating the association between prenatal 

exposures and infant brain development focusing on prenatal exposures via maternal physical 

health factors, maternal mental health factors, and maternal drug and medication use. Further, we 

discuss the need for studies to consider multiple prenatal exposures in parallel and suggest future 

directions for this body of research. 
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Infant neuroimaging for understanding prenatal exposures.  

Prenatal exposures (e.g., maternal physical health, maternal mental health, or maternal 

medication and drug use) pose risk for future neurodevelopmental complications, such as deficits 

in language and social development, in offspring [1-5]. However, risk alone does not capture 

individual differences in outcomes—i.e., of those exposed, some never develop deficits. The 

human brain experiences its most rapid development in utero and in the first 20 postnatal weeks 

[6-8] (see Box 1) with an extraordinarily complex array of biological processes, which 

potentially make the brain highly vulnerable to insults (see Box 2). Thus, brain development 

likely mediates in the associations between prenatal exposures and developmental outcomes. 

Assessing the impact of prenatal exposures on brain development, and its role in mediating risk, 

has the potential to elucidate individual differences in developmental outcomes. Accordingly, 

there is a wealth of studies demonstrating associations between prenatal exposures and brain 

structure and function in children, adolescents, and adults [9-12]. 

With its recent increased feasibility [6, 7], infant neuroimaging studies have become the 

standard for assessing the impact of prenatal exposures on brain development. Acquiring data 

soon after birth minimizes postnatal influences on individual differences [7], allowing for altered 

brain development to be attributable largely to prenatal, rather than postnatal, factors. These 

correlations between prenatal exposures and the infant brain have potential to serve as brain 

mediators for identifying individual differences in risk of poorer developmental outcomes [13, 

14] before behavioral deficits are present [15-18]. Nevertheless, this rapidly growing body of 

research is nascent.  

In this review, we examine the existing studies linking prenatal exposures to variations in 

brain structure and function using infant neuroimaging (e.g., structural, diffusion weighted, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2021                   doi:10.20944/preprints202104.0457.v1

https://doi.org/10.20944/preprints202104.0457.v1


PRENATAL EXPOSURES SHAPE THE INFANT BRAIN 4 

 

functional MRI) during the first year of life. We present these studies grouped by exposure type 

(e.g., maternal physical health, maternal mental health, drug and medication exposures; see 

Figure 1 and Table 1). Within each exposure type, we present the brain outcomes for a specific 

exposure (e.g., prenatal, maternal stress), followed by behavioral outcomes for that specific 

exposure. Then, for exposure type, we present commonalities across each of the specific 

exposures for that type. Unless otherwise noted, all infants in these studies were scanned around 

1 month of postnatal age (Table 1). Next, we highlight preliminary findings suggesting that 

alterations in the infant brain mediate the association between exposures and developmental 

outcomes. Further, we discuss the need to consider how fetal sex moderates the impact of 

exposures and to explore unique and shared associations between multiple exposures. Finally, we 

suggest future directions for this body of research. 

Maternal physical health exposures. 

 Maternal inflammation: Maternal inflammation is a commonly studied exposure in 

preclinical models that has recently been investigated in humans. Inflammatory cytokines and 

proteins are activated from a wide range of events (e.g., infection, stress, poor physical health) 

and can cross the placenta, making them a potential common mechanistic pathway underlying 

the association between maternal inflammation and infant brain development (see Multiple 

exposures). While many inflammatory cytokines and proteins exist, the impact of only two—

interleukin-6 (IL-6) and C-reactive protein (CRP; see Glossary.)—have been studied using 

infant neuroimaging.  IL-6 Higher maternal IL-6 levels during pregnancy related to larger right 

amygdala volume and stronger bilateral amygdala functional connectivity with sensory 

processing/integration, salience detection, and memory regions [19]. Using the same sample, 

maternal IL-6 levels correlated with greater functional connectivity within the salience network, 
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subcortical-dorsal attention networks, subcortical-cerebellar networks, and visual-dorsal 

attention networks [20]. Maternal IL-6 level (averaged across pregnancy) also inversely 

correlated with fractional anisotropy (FA) (see Glossary) of the uncinate fasciculus and 

positively correlated with FA increase in this tract across the first year of life [21]. In an 

independent study, higher maternal IL-6 levels during the 3rd trimester corresponded to greater 

connectivity between the left insula (a key node in the salience network) and medial prefrontal 

cortex and to weaker connectivity between the dorsal anterior cingulate cortex (dACC; another 

key node in the salience network) and dorsomedial prefrontal cortex [22]. CRP Finally, in single 

study, higher maternal CRP associated with greater connectivity between left insula and right 

temporoparietal junction and between the right insula and basal ganglia [22].  

 Importantly, these associations between maternal inflammation during pregnancy and 

infant brain structure and function are correlated with developmental outcomes in infancy. The 

larger right amygdala volume and stronger left amygdala functional connectivity further 

correlated with poorer impulse control in infants measured at 24 months of age [19]. The greater 

change in FA in the uncinate fasciculus correlated with lower cognitive scores on the Bayley 

Scales of Infant and Toddler Development, Third Edition (BSID-III) at 12 months of age [21]. 

Lastly, the greater connectivity between the dorsal anterior cingulate and medial prefrontal 

cortex corresponded to lower cognitive scores on the BSID at 14 months of age [22]. 

Additionally, strong negative relationship between IL-6 and both cognitive scores at 12 months 

and working memory at age 2 were observed [19, 21]. In contrast, higher maternal IL-6 and CRP 

during the 3rd trimester related to higher cognitive scores (BSID-III) in toddlers at 14 months of 

age [22].  
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Maternal Adiposity and Nutrition: There is growing evidence of maternal adiposity 

(body fat) and nutrition during pregnancy being linked to variations in infant brain development. 

Infants born to overweight or obese mothers exhibited altered functional connections located in 

sensory, reward, cognitive, and motor regions [23] and weaker connectivity between the dACC 

and prefrontal cortex (PFC) [24]. Infants from obese mothers also had lower FA values in 

multiple white matter regions [25]. In addition, higher pre-pregnancy body-mass index (BMI) 

associated with higher local thalamic connectivity and lower fronto-thalamic connectivity in 

neonates [26]. Related to maternal adiposity, variations in maternal nutrition, such as 

micronutrient iron, have been linked to infant brain development. Self-reported prenatal iron 

intake and cord blood ferritin levels had an inverse correlation with FA values in cortical gray 

matter [27]. To date, studies linking maternal adiposity and nutrition during pregnancy, infant 

brain development, and developmental outcomes are lacking. 

Commonalities: Across the studies of maternal physical health factors, several 

commonalities emerge. Across studies, maternal inflammatory proteins during pregnancy were 

related regions of the salience network and the amygdala [19, 20, 22]. For studies of prenatal 

maternal obesity, associations were consistently found between maternal BMI and regions 

involved in reward processing and evaluation [23, 26].  

Maternal mental health exposures. 

Maternal stress: The experiencing stress is universal and ranges from normal and 

elevated levels for an individual [28]. Prenatal maternal stress has been linked to infant brain 

development using numerous measures, (e.g., self-report, biological, and social support). Self-

report measures Using self-report measures, increased maternal perceived and pregnancy-

specific stress in the 3rd trimester was associated with weaker hippocampal–cingulate cortex and 
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stronger hippocampal–temporal lobe functional connectivity in offspring [29]. Exposure to 

prenatal, maternal stress also corresponded to weaker connectivity between the left amygdala 

and thalamus, hypothalamus, and peristriate cortex in infants born preterm, than in infants born 

extremely preterm that did not have prenatal maternal stress exposure [30]. Additionally, preterm 

infants exposed to prenatal, maternal stress exhibited weaker connectivity between the left 

amygdala and thalamus, hypothalamus, and peristriate cortex compared to preterm infants 

unexposed to  prenatal maternal stress [30]. Finally, self-reported prenatal stress was associated 

with weaker functional connectivity, but greater structural connectivity between the amygdala 

and medial prefrontal cortex in infants [31]. Cortisol Cortisol is an important stress hormone in 

the body, can cross the placenta, and is a well-studied biological marker of psychological stress 

[18]. Higher prenatal maternal cortisol levels in the 2nd trimester has been associated with weaker 

hippocampal–cingulate cortex and stronger hippocampal–temporal lobe functional connectivity 

[29]. For female infants, higher prenatal maternal cortisol levels were related to stronger bilateral 

amygdala functional connectivity with cortical regions; whereas, for male infants, high prenatal 

maternal cortisol levels were related to weaker bilateral amygdala functional connectivity with 

the same regions [18]. Similarly, sex differences in the association between prenatal maternal 

cortisol and infant amygdala microstructure and structural connectivity have been observed [32]. 

Social Support Socioeconomic disadvantage can also contribute to higher levels of maternal 

psychosocial stress. Infants born to mothers experiencing lower socioeconomic status had greater 

volumes in the right occipital lobe, left temporal pole, left inferior frontal lobe, and ACC [33] 

and altered striatal and ventrolateral PFC connectivity [34].  

As with maternal inflammation, in utero stress exposure and corresponding neuroimaging 

findings have been associated with later developmental outcomes. Higher prenatal maternal 
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cortisol and stronger right amygdala–supramarginal gyrus functional connectivity was related to 

higher internalizing symptoms at 24 months using the Child Behavior Checklist [18]. 

Additionally, lower maternal perceived stress and higher infant functional connectivity between 

the right hippocampus and dACC was associated with higher infant memory score at 4 months 

[29]. Regions associated with prenatal maternal socioeconomic status further correlated with 

externalizing symptom and behavioral inhibition at 2 years, measured by the Infant-Toddler 

Social Emotional Assessment [34] and poorer language scores [33]. 

Maternal depression: Maternal depression during pregnancy represents another 

common maternal, mental health exposure studied with infant neuroimaging. Several studies 

have been interested in potential intergenerational transmission of maternal depression and 

therefore focused on the amygdala for its role in socioemotional processes [35]. Maternal 

depressive symptoms during pregnancy have been associated with the microstructure of the right 

amygdala in neonates, such that greater symptoms correspond to lower fractional anisotropy and 

axial diffusivity [36]. In addition, prenatal maternal depressive symptoms were associated with 

greater functional connectivity between the amygdala to left temporal cortex, insula and bilateral 

ACC, medial orbitofrontal cortex and ventromedial PFC [37] and greater negative connectivity 

between the amygdala and dorsal PFC [38] in offspring. Finally, correlations between depressive 

symptoms during pregnancy and bilateral amygdala volume were only found in male infants [39] 

(see Sex differences. for further discussion).  

In addition to the amygdala, the hippocampus is a region of interest for neuroimaging 

studies of prenatal exposure to maternal depression due to its putative role in depression [40]. 

Prenatal, maternal depressive symptoms have been associated with lower hippocampal volumes 

in infants [41]. Neonatal FKBP5, a gene involved in stress response, moderated this association 
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[41]. Higher prenatal maternal depressive symptoms were also correlated with weaker 

hippocampal–cingulate cortex and stronger hippocampal–temporal lobe functional connectivity 

[29]. Additionally, infant genotype served as moderator of the relationship between prenatal, 

maternal depression and infant amygdala and hippocampus morphometry [42]. 

While several studies have found associations between prenatal maternal depression and 

infant brain structure and function, there are a dearth of studies further linking maternal 

depression and infant brain development to developmental outcomes.  

Maternal anxiety:  Commonly co-occurring with stress and depression [43, 44], infant 

neuroimaging studies have also assessed the impact of maternal anxiety. Greater maternal 

anxiety during pregnancy was correlated with lower FA and axial diffusivity but not gray matter 

volume in the right amygdala in neonates [45]. Prenatal, maternal distress (measures as a 

composite of depression and anxiety symptoms) was associated with greater brain diffusivity and 

lower infant neurite density [46]. While no relationship between prenatal, maternal anxiety and 

hippocampal volume were observed at birth, higher prenatal, maternal anxiety was related with 

slower bilateral hippocampal volume growth from birth to 6 months of age [47]. Finally, a gene 

by environment interaction has been reported for prenatal maternal anxiety symptoms and 

amygdala and hippocampal volumes in neonates. Variants in the brain-derived neurotropic 

factors gene Val66Met moderated the impact of anxiety during pregnancy on amygdala and 

hippocampal volumes in infants [48], suggesting epigenetic modifications. Like maternal 

depression, there are a lack of studies examining how prenatal maternal anxiety and infant brain 

development are further associated with developmental outcomes. 

Commonalities: In sum, studies of in utero exposure to maternal mental health factors 

and infant brain development have focused on prenatal maternal distress (see Glossary). Given 
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the overlap of stress, anxiety, and depression, common affected circuits (e.g., the amygdala [30, 

36-38] and hippocampus [29, 41, 49] have been observed (see Multiple exposures for more on 

this). Outside of maternal distress, a lack of investigations of other mental health disorders—for 

example, prepartum psychosis—exist. Common among several of the studies was the evidence 

of the variations in infant brain development being further associated with developmental 

outcomes, such as impulse control or internalizing symptoms [18, 21].  

Maternal drug use and medication exposures. 

Drug exposures: Common forms of prenatal drug exposure include nicotine (primarily 

cigarette smoking), alcohol, cannabis, cocaine, and opioid use [50]. While legal, use of alcohol 

and smoking during pregnancy is controversial and, generally, not recommended due to 

detrimental effects on offspring [51]. Smoking Frontal lobe and cerebellar volumes were smaller 

in very low birth weight and gestational age infants exposed to smoking in utero [52]. In 

contrast, larger temporal and occipital lobes were also observed for prenatal smoking exposure 

[53]. Similarly, in infants with poly-drug exposure, functional connectivity in the lateral and 

medial frontal lobes associated with prenatal nicotine exposure [54]. Alcohol Infants with 

prenatal alcohol exposure had lower total gray matter volume and wide-spread lower regional 

gray matter volume [53, 55]. Prenatal alcohol exposure also corresponded to altered connectivity 

with the motor cortex [54].  

In addition to legal drugs, the long-term developmental consequents of prenatal 

exposures to illicit drugs (cannabis, cocaine, heroin) is well-characterized [51]. Cannabis Lower 

gray matter volume in the frontal and occipital lobes, higher FA in several tracts, and higher N-

acetylaspartate (NAA; a marker of neuronal injury) concentrations in the white matter was 

associated with prenatal cannabis exposure [53]. In infants with poly-drug exposure, reduced 
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connectivity in caudate and cerebellum were specific to prenatal cannabis exposure [56]. 

Prenatal cannabis exposure also correlated with altered PCC and left frontal, temporal, and 

parietal lobe connectivity [54]. Cocaine Infants that had experienced prenatal cocaine exposure 

had lower total gray matter volume and greater cerebrospinal fluid volume compared to infants 

without prenatal cocaine exposure [57]. Wide-spread decreased gray matter volume across the 

cortex, greater FA in several tracts, and greater NAA concentrations in the white matter were 

related to prenatal cocaine exposure [53]. Prenatal cocaine exposure correlated with 

hyperconnectivity between the thalamus and frontal regions [58], with functional connectivity in 

the supplementary motor area and medial frontal lobe [54], and between the frontal lobe and the 

amygdala and the insula [59]. Opioids Additionally, prenatal opioid exposure associated with 

functional connectivity in middle frontal and angular gyrus [54].  

Finally, studies are beginning to examine how variations in infant brain structure and 

function associated with prenatal drug exposure further associated with developmental outcomes 

in infancy. Anatomical correlates of prenatal exposure to cannabis and cocaine associated with 

social communication and adaptive behavior scores on the Vineland Adaptive Behavior Scales at 

12 months [53]. Infant connectivity related to various prenatal drug exposures explained a 

substantial amount of variance in cognitive, language, and motor outcomes at 3 months [54, 58]. 

Similar studies are needed to characterize how infant brain measures that are related to prenatal 

drug exposures lead to outcomes later in development. 

 Maternal medications: In utero exposures to maternal medications have been linked to 

cognitive and behavioral difficulties later in life [60, 61]. In particular, exposure to selective 

serotonin reuptake inhibitors (SSRIs), methadone, and anesthesia during labor and delivery have 

been studied with infant neuroimaging. These studies are critical as there are important 
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considerations regarding weighing the potential developmental consequences of using or not 

using the medication as the condition the medication is treating may also be harmful for brain 

development (e.g., maternal depression or opioid use). SSRIs are commonly used—even during 

pregnancy—to treat depression, as well as other neuropsychiatric disorders, and have been 

shown to impact infant brain development. For infants exposed prenatally to SSRIs, mean and 

radial diffusivity was greater in several white matter tracts [62] and structural connectivity was 

greater between the right amygdala and right insula [63]. Prenatal exposure to SSRIs associated 

with gray matter volume expansions in the right amygdala and right insula [63] and connectivity 

in the visual cortex [54]. Methadone is a long-acting full opioid agonist used to treat opioid use 

disorder. Given the recent opioid use crisis, there is great interest in understanding how treatment 

during pregnancy may impact offspring development. Infants experiencing prenatal methadone 

exposure exhibited lower gray matter volume in the frontal lobe and greater volume in the 

temporal lobe and the posterior cingulate [53]. Higher mean diffusivity was observed in the 

superior longitudinal fasciculus and other tracts of infants that had experience prenatal 

methadone exposure [53, 64]. Anesthesia during labor and delivery is another common 

medication that is associated with developmental disorders [65] and may impact infant brain 

development. Neonates exposed to maternal anesthesia had greater volumes in bilateral frontal 

and occipital lobes and the right posterior portion of the cingulate gyrus [66]. Further, longer 

durations of exposure were positively correlated with occipital lobe volumes.  

There are few studies linking variations in the brain associated with maternal medication 

use during pregnancy to developmental outcomes. Brain regions associated with anesthesia 

exposures correlated with expressive language on the BSID-III at 12 months [66]. Overall, 
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additional work linking prenatal mediation exposure to brain and developmental outcome is 

needed.  

Commonalities: Broadly, there are both shared and unique structural and functional 

associations with infant brain development for specific drug and maternal medication exposures 

[53, 59]. For the studies that examined multiple exposures in the study, correlations with 

prefrontal regions were found to be common among prenatal drug and medication exposures. 

Shared among several types of drug exposures were associations with thalamic connectivity [55, 

58, 62, 67]. Also, several of the studies found associations in the salience network [55, 56, 63]. 

These findings are interesting due to the role of these networks in drug addiction, which may 

suggest a pathway for intergenerational transmission [68, 69].  

Evidence that the infant brain mediates exposure and later outcomes. 

A major goal of studying of prenatal exposures with infant neuroimaging is to find brain 

mediators of individuals differences in risk of neurodevelopmental disorders before deficits are 

present. Thus, studies are explicitly testing whether infant brain structure and function mediates 

the associations between prenatal exposures and infant developmental outcomes with promising 

results [19, 21, 22, 29, 34, 38, 53] (See Figure 2 for an overview of statistical mediation). 

Evidence of infant brain development mediating associations between prenatal exposures and 

developmental outcomes has been found for maternal inflammation [19, 21]. Striatum-

frontopolar connectivity mediated the relationship between SES and both externalizing symptom 

and behavioral inhibition at age 2 [34]. Slow cortical maturation in prefrontal regions mediated 

the association between multiple types of drug exposures and lower social communication and 

adaptive behavior scores at 12 months of age [53]. Similarly, several functional connections 

(particularly in the prefrontal regions) mediated the associations between prenatal drug exposure 
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and the language outcomes measured at 3 months of age [54]. Neonatal brain morphometry 

mediated the relationship between anesthesia exposures during delivery and expressive language 

at 12 months [66]. Testing infant brain development as a mediator of associations between 

prenatal exposures and developmental outcomes has the potential identify potential underlying 

pathways for future studies as well as potential pathways for intervention.  

Sex differences. 

Evidence suggests that, for some prenatal exposures, the association with brain 

development may be moderated by sex. These findings primarily have been found in animal 

studies [70-72]. However, evidence in humans is emerging, particularly suggesting the 

interaction effects of maternal mental health and sex on the amygdalar development. 

Correlations between depressive symptoms and bilateral amygdala volume was only found in 

males [39]. For females, higher prenatal maternal cortisol corresponded to greater amygdala 

functional connectivity and greater internalizing behaviors. This pattern was reversed in males 

[18]. Additionally, amygdala microstructure associations with prenatal maternal cortisol was 

only observed in males, while connectivity associations were only observed in females. 

Similarly, increased maternal distress related to increased FA in the stria terminalis in males, but 

decreased FA in females [46]. Finally, when studying prenatal drug exposure, only males 

exposed to methamphetamine/tobacco had lower FA and higher diffusivities in the superior and 

posterior corona radiate; while, only females exposures methamphetamine/tobacco or tobacco 

had lower FA in the anterior corona radiation [73]. These studies suggest that biological sex is an 

important consideration for studies of prenatal exposures and highlight the need for future 

studies to examine mechanisms underlying these sex-specific associations. 

Multiple exposures. 
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Prenatal exposures do not occur in isolation. Multiple exposures are common [74, 75] 

and complex interactions exist among them. Effects of multiple exposures can be shared or 

unique. In other words, two exposures may activate the same or different mechanistic pathways 

to impact offspring brain. For example, inflammatory pathways can be activated by a majority of 

exposures discussed above. Further, there are common anatomical and functional correlates 

across different prenatal drug/medication exposures [53, 54]; and prenatal, maternal distress 

appears to commonly disrupt the development of the amygdala and hippocampus [29, 30, 36-38, 

41, 49]. However, these apparent shared patterns need to be interpreted cautiously and formally 

tested. Many of the published analytical approaches focused on particular regions of interest 

(such as the amygdala and hippocampus) and, thus, may bias results to apparent similar brain 

alteration. Data-driven, whole-brain approaches, like [20], can mitigate biases in results caused 

by focusing on a single region. In addition, when explicitly tested, maternal self-report stress, 

depressive symptoms, and cortisol all associated with hippocampal connectivity, but each 

associated with a different specific functional connection to the hippocampus [29].  

Effects of multiple exposures can also be viewed as additive or, even, protective. For 

example, maternal medication has been associated with altered brain development in offspring 

(such as SSRI’s [63]), but these medication may protect the fetus from altered brain development 

associated with exposures related to maternal physical and mental health. Regarding additive 

effects, infants that had experienced both prenatal stress and preterm birth (also a significant 

stressor) showed greater reductions in amygdala-thalamus functional connectivity than those 

experiencing a single exposure [30]. Additionally, SSRI use during pregnancy strengthened the 

association between prenatal cocaine exposure and neonate functional connectivity [58]. 
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Nevertheless, the majority of current studies only include a single exposure. To fully 

understand the associations between prenatal exposures and infant brain development, it will be 

critical to disentangle and characterize the effects of multiple prenatal exposures that occur in 

parallel.  

Future directions. 

We suggest that future directions for research on the association between prenatal 

exposures and infant brain development could include fetal scanning, longitudinal data, large 

neuroimaging datasets, and machine learning/predictive modeling.  

Most existing studies of prenatal exposures measure infant brain development in neonates 

to attempt to mitigate postnatal factors. However, fetal neuroimaging is an emerging technique 

for exposure studies as it can examine brain development in utero [76]. To date, only prenatal 

lead [77], maternal BMI [78], gestational diabetes [79], and maternal distress [80, 81] exposures 

have been investigated with fetal neuroimaging, leaving this line of research largely unexplored.  

Additionally, longitudinal studies that collect exposure information at multiple time 

points during pregnancy and infancy will be critical to fully characterize the impact of prenatal 

exposures. Exposures may have different impact depending on the gestation age of the fetus at 

the time of exposures. For example, 3rd—but not 2nd—trimester maternal distress correlated with 

infant hippocampal connectivity [29]. Additionally, exposures may not impact the brain during 

the new-born period, but rather the growth over the first year of life [47]. Ultimately, a better 

understanding of the timing effects of the exposure and the critical periods of brain development 

these exposures alter will be needed to inform pre and postnatal care.  

While laborious and expensive to conduct—especially in infants, “big data” has the 

potential to answer many questions that are currently intractable [82]. Presently, most prenatal 
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exposures studies using infant neuroimaging data have samples with fewer than 100 participants. 

Given potential overlap of exposures (see Multiple exposures.), larger samples will be needed 

to disentangle common and unique brain pathways associated with different exposures. To make 

these larger datasets a reality, large-scale, infant neuroimaging studies, such as the Baby 

Connectome Project and Developing Human Connectome Project [83, 84], will help facilitate the 

use of “big data” in investigating the impact of prenatal exposures on the developing brain.  

Using machine learning to investigate associations between prenatal exposures and infant 

brain development is an important future direction. Traditional approaches (e.g., correlation) 

tend to over-fit the data and generalize poorly to other studies [85]. This is problematic if the 

goal is to find brain markers of prenatal exposures that are robust across studies. Machine 

learning mitigate data overfitting and poor generalization using internal (i.e., cross-validation) 

and external validation [85, 86]. These validation steps often require larger datasets as models 

are typically ‘trained’ in one dataset (or one portion of the dataset) and ‘tested’ in another [87]. 

While these methods are increasing in popularity in neuroimaging, they are not readily used to 

investigate prenatal exposures.  

Concluding remarks. 

 Across a multitude of prenatal exposures, there is strong evidence suggesting prenatal 

exposures shape infant brain development. Converging evidence from infant neuroimaging 

highlight their associations with variations in brain development as possible brain pathway 

underlying associations between prenatal exposures and risk for negative neurodevelopmental 

outcomes. Understanding these complex associations, as well as the role of multiple exposures in 

brain development, will be critical to guide interventions aimed at mitigating prenatal exposures 

and associated negative outcomes later in life. 
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Glossary 

Big data: larger, more complex data sets than typically used in a field of study. 

Body mass index: (BMI) a person’s weight in kilograms divided by the square of height in 

meters; a high BMI can be an indicator of obesity.   

Connectome: a map of the brain’s connections, rendered as a connectivity matrix or network 

[91]. 

C-reactive protein: (CRP): an acute phase reactant and another marker of immune activation 

made by the liver that is found in blood plasma. Its circulating concentrations rise in response to 

inflammation.  

Distress: an umbrella concept encompassing multiple negative psychological states including 

stress, anxiety, and depression. 

fMRI: (functional magnetic resonance imaging) a procedure that uses MRI (magnetic resonance 

imaging) technology to measure and map brain activity by detecting changes in the 

magnetization difference between oxy- and deoxyhaemoglobin [90]. 

Fractional anisotropy: (FA) is a scalar value between zero and one that describes the degree 

of anisotropy of a diffusion process. A value of zero means that diffusion is isotropic, i.e. it is 

unrestricted (or equally restricted) in all directions. FA is a common measure of white matter 

organization derived from diffusion weighted imaging in which values closer to 1 correspond to 

axonal density/higher myelination. 

Functional connectivity: is the temporal correlation in the high amplitude, low-frequency 

spontaneously generated blood oxygenation level dependent signal brain regions [92]. Regions 

are considered to have high functional connectivity if they have a high temporal correlation [93]. 
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IL-6: (interleukin-6) is a proinflammatory cytokine and marker of immune activation. It helps 

regulate immune responses, which makes testing it potentially useful as a marker of immune 

system activation. 

N-acetylaspartate (NAA): the second-most-concentrated molecule in the brain and a putative 

marker of neuronal injury 

Overfitting: is a modeling error that occurs when a function is too closely fit to a limited set of 

data points. 

Salience network: a large-scale brain network anchored in the dorsal anterior cingulate cortex, 

anterior insula, and amygdala involved in a variety of complex brain functions regarding filtering 

of salient information such as communication, social behavioral, and self-awareness [94]. 

Selective serotonin reuptake inhibitor: (SSRI) a type of antidepressant drug that inhibits the 

reabsorption of serotonin by neurons, so increasing the availability of serotonin as a 

neurotransmitter. 

Stria terminalis: a major output pathway of the amygdala 

Uncinate fasciculus: a long-range white matter association fiber tract that connects the frontal 

and temporal lobes; it is implicated in several neurodevelopment and psychiatric disorder 

including ASD, conduct disorder, and substance abuse [95]. 
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Boxes 

Box 1. Developmental programming examines how prenatal experiences may shape 

development. The theory of developmental programming hypothesizes that during times of 

rapid growth for an organism, systems are more vulnerable to disorganization influences [11, 

96]. Therefore, due to its rapidity, fetal brain development may be highly vulnerable to 

environmental factors [11, 96-98], which in turn could have long-lasting effects on health and 

well-being. Fetal programming describes the process in which in utero conditions elicit structural 

and functional changes in cells, tissues, and organ systems that may have long-term 

consequences [11]. Fetal programming focuses on how the developing fetus senses, receives, and 

responds to the intrauterine environment [98]. Regarding fetal brain development, fetal 

programming provides a framework for understanding the complex and bidirectional interplay 

between an organism’s genotype and early environment [11, 98]. Therefore, certain 

environmental conditions (such as prenatal exposures) a fetus experiences in utero may shape 

individual differences in early trajectories of brain development [11]. According to fetal 

programming theory, even small changes in the environment may have large consequences on 

the developing brain due to its vulnerability at this developmental time period. Therefore, it is 

critical to understand how prenatal exposures ‘program’ early brain developmental trajectories 

and how these deviations in brain development may underly increased risk for 

neurodevelopmental and psychiatric disorders. 
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Box 2. Infancy is a developmental period of rapid development of the brain’s functional 

architecture. The human brain experiences its most rapid brain growth in utero and in the first 

20 postnatal weeks [6]. Regarding brain function, brain activity is initially incoherent and 

unorganized [8]. However, by the 24th week, brain activity is more coherent and organized 

signals begin to emerge [99]. During this period, the brain undergoes rapid development of its 

large-scale networks [6, 100]. The development of the ‘functional connectivity’ of brain 

networks can be measured by temporal correlation in brain activity, generally using functional 

magnetic resonance imaging (fMRI) data [93, 101]. Functional connectivity increases in inter- 

and intra- hemispheric connectivity across gestational age and has peak increases between 24- 

and 31-weeks gestation [102]. Most functional brain networks are present at birth [100, 103] 

however they are immature and undergo developmental changes into childhood, adolescence, 

and adulthood. Typically, primary sensorimotor and visual networks develop first, while higher-

order functional networks (such as the default mode networks) are still immature at birth and 

have ‘scattered’ connectivity patterns indicating activity that is not temporally synchronized [6, 

100]. Substantial individual differences in structural and functional network development have 

been identified in infancy [6, 100, 103-105], as these individual differences have been linked to 

cognitive and behavioral outcomes later in life [7, 105]. Therefore it is critical to examine the 

relations between prenatal exposures, infant brain structure/function, and risk for 

neurodevelopmental and psychiatric disorders.  
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Figures 

 

Figure 1: Clustering of exposure types. Numerous prenatal exposures have been associated 

with infant brain development, leading to a heterogeneous literature, often with little overlap 

between exposures. Yet, recent reports suggest that there may be common—along with 

disparate—pathways by which prenatal exposures exert their influence on the developing 

offspring brain through direct transfer from the mother to the fetus. As such, clustering exposures 

simplify the diverse exposures in the literature along with helping to identify common pathways 

of brain alterations. Here, we operationalize three clusters of prenatal exposures: maternal 

physical health, maternal mental health, and maternal drug use. For maternal physical health, 

exposures include measures of maternal inflammation and maternal adiposity and nutrition. For 

maternal mental health, exposures include measures of psychosocial stress, maternal depression, 

and anxiety. For maternal drug and medication use, exposures include nicotine, alcohol, 

cannabis, cocaine, heroin (drugs) and selective serotonin reuptake inhibitors (SSRIs), methadone, 

anesthesia (medications).   
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Maternal Physical Health

    Drug/Medication Use

DepressionStress

Medication UseDrug Use
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Figure 2: Statistical Mediation. A mediation model seeks to identify a mediator variable (M; 

infant brain structure/function) that underlies an observed association between an independent 

variable (X; prenatal exposure) and a dependent variable (Y; developmental outcome). To test 

mediation, significant correlations between all three variables (i.e., prenatal exposure, 

developmental outcome, infant brain structure/function) need to be present. To establish M as a 

mediator, the indirect effect (effect of X on Y through M) is tested and if significant it can be 

determined the amount of variance explained by the mediator. While prenatal exposures are 

linked to risk of future developmental disorders, risk alone does not capture individual 

differences in outcomes. Mediation analyses can test whether prenatal exposures are associated 

with developmental outcomes via infant brain structure and function. These brain mediators can 

potential act as markers of individual differences in risk of poorer developmental outcomes [13, 

14] before behavioral deficits are present [15-18]. 

Prenatal Exposure (X) Developmental Outcome (Y)

Infant Brain Structure/Function (M)
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Tables 

Table 1. Study, maternal exposure cluster, maternal exposure, and chronological age at the 

MRI scan (in weeks). 

Study Exposure Cluster Exposure Time of Exposure 

(GA weeks (SD)) 

Age at Scan in 

Weeks (SD) 

Graham et al., 2018 physical inflammation (IL-6) 21.2 (1.47) 3.79 (1.84) 

Li et al., 2016 physical BMI ~10 3.21 (0.34) 

Monk et al., 2016 physical iron intake 34-36 2.8 (1.18) 

Ou et al., 2015 physical BMI 0-10 2.15 (0.35) 

Rasmussen et al., 2019 physical inflammation (IL-6) 21.2 (1.47) 3.79 (1.84) 

Rudolph et al., 2019 physical inflammation (IL-6) 21.2 (1.47) 3.73 (1.7) 

Salzwedel et al., 2019 physical BMI 1-10 2.05 (0.24) 

Spann et al., 2018 physical inflammation (IL-6 

and CRP) 

34-37 3.1 (0.4) 

Spann et al., 2020 physical BMI pre-pregnancy 3.21 (0.34) 

Chen et al., 2015 mental anxiety 26-28 1.4 

Dean et al., 2018 mental depression/anxiety 28-35 4.72 

Graham et al., 2018 mental cortisol 21.2 (1.47) 3.65 (1.72) 

Humphreys et al., 2020 mental stress 16-32 4.81 (0.93) 

Lehtola et al., 2020 mental depression/anxiety 14, 24, 34 3.74 (1.1) 

Posner et al., 2016 mental depression 34-37 5.82 (1.8) 

Qiu et al., 2013 mental anxiety 26 1.4 

Qiu et al., 2015 mental depression 26 27.98 (0.53) 

Qiu et al., 2017 mental depression 26 1.39 (0.08) 

Ramphal et al., 2020 mental stress (SES) 26-40 5.8 

Rifkin-Graboi et al., 2013 mental depression 26 1.4 (0.1) 

Rifkin-Graboi et al., 2015 mental anxiety 26-28 1.42 (0.01) 
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Scheinost et al., 2020 mental stress 24-37 3.1 (0.4) 

Spann et al., 2020 mental stress (SES) 28-40 2.8 (0.7) 

Stoye et al., 2019 mental  cortisol 0.5 (0.35) postnatal 3.5 

Wang et al., 2018 mental depression 26 1.4 

Donald et al., 2016 drug/medication alcohol 20-24 3.05 (0.86) 

Ekblad et al., 2010 drug/medication smoking cigarettes per day 

across pregnancy 

2.78 

Grewen et al., 2014 drug/medication cocaine 26-40 3.87 

Grewen et al., 2015 drug/medication cannabis 26-40 3.62 

Lugo-Candelas et al., 

2018 

drug/medication SSRI 19-39 3.43 (1.5) 

Jha et al., 2016 drug/medication SSRI preconception - 12 3.7 (1.89) 

Peterson et al., 2020 drug/medication multiple drug/med. assessed once per 

trimester 

3.65 (3.15) 

Salzwedel et al., 2016 drug/medication cocaine 26-40 4.24  

Salzwedel et al., 2020 drug/medication multiple drug/med. 26-40 4.15 (0.41) 

Spann et al., 2015 drug/medication anesthesia 39-40 2.7 (0.7) 

Walhovd et al., 2012 drug/medication methadone 26-40 3.27 (0.94) 
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