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Abstract: This studies the plasmonic properties of the bimetallic quantum dot Ag@Au core-shell 

nanostructures embedded in the non-absorbent host medium.  Local field enhancement factor and 

coefficient of absorption of Ag-core and Au-shell are primarily studied based on quasi-static ap-

proximation of classical electrodynamics for 6-10 nm composite radius.  In this quantum dot ge-

ometry, two set of plasmonic resonances in visible spectral region are observed: the first resonance 

associated with inner interface of gold (Ag@Au) and the second resonance associated with outer 

interface of gold (Au@medium). The two plasmonic resonances are close each other and enhanced 

when the size of composite decreased for a fixed core size while shifted to in opposite direction 

and the amplitude of peak decreased when the core size is increased for a fixed composite size. For 

the optimized size of core/composite or shell thickness and other parameters to the desired values, 

such type of composites are recommended for various applications like; photocatalysis, biomedical, 

nano-optoelectronics. 
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1. Introduction 

Core-shell nanoparticles (CSNPs) are a composite form consisting of more than one material:  one as a core and the other as a coat 

using encapsulation process with different geometry and sizes for a particular application in order to acquire new materials with 

combined and/or other specific properties not shown by the components [1-5]. The core or/and shell martials can be one of the 

following materials: metal, semiconductor, dielectrics or organic/inorgamnic materials [2, 6, 7]. From different combination of core-

shell nanostructures, metal@metal core-shell nanocomposites have novel properties for various applications.  This new or special 

characteristics arise mainly from the interaction between metallic (plasmonic) materials and the incident electromagnetic field, 

which is very important Enhanced by the so-called surface plasmon resonance (SPR) phenomenon and the interaction of metal shell 

plasmons with metal interior material [8]. At the SPR frequencies, the collective oscillations of the conducting electrons in the 

metallic nanoparticle are driven by incident resonant light, which act as electric radiating dipoles. 

Two layer of bimetallic core-shell nano-structure (CSNS) is studied for the desire applications either experimentally [9-11] and 

theoretically [12, 13]. Due to their peculiar properties and possible applications in catalysis, electronics, optoelectronics, information 

storage, bio-sensors, optical sensor, and surface enhanced Raman spectroscopy, bimetallic core-shell nanostructures have attracted 

tremendous attention. Metallic core-shell nanoparticles of quantum dot size have optical features due to the SPR excitations. In the 

present study, the author reported the plasmonic response of the composite consists from the most applicable and has noble 

properties materials: Ag as a core and Au as a shell for a quantum dot size. There is an investigation into the properties and 

applications of nobel metal@metal to the best of our knowledge, but there is no further investigation into the local filed enhancement 

factor and the absorption coefficient for Ag@Au CSNSs of quantum dot size. Monometallic nanoparticles have a drawback for a 

certain or appropriate applications; so, to modify or generate new properties for the desired applications it should be combined with 
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other noble materials. By considering the noble properties and potential/versatile applications into account, the efforts are being 

made for plasminic properties of Ag coated by one of noble metal Au. Ag and Au NPs were most extensively investigated for their 

high catalytic, universal bio-compatibility, optical sensitivity, simple preparation, oxidation resistance, and surface plasmon 

resonance (SPR) band that can absorb and scatter visible light relative to other noble metals [10, 14, 15]. The plasmonic resonance 

of small size bimetallic Ag and Au tuned from visible to near-infrared (N-IR) spectral region [10, 16, 17]. Due to this noble properties 

and applications of Ag and Au NPs, core-shell combination of these materials is a desirable way to generate new/unique properties 

and enhanced applications.  

The paper is organized as follow: In Sect. 2, theoretical description of bimetallic quantum dot Ag@Au core-shell NPs is carried out 

using the electrostatic approximation. Numerical analysis and results are presented in Sect. 3. Finally, in Sect. 4 concluding remarks 

are given2. Materials and Methods. 

2. Materials and Methods 

 

Consider two layered core-shell nanoparticle (NP) consisting of a semiconductor core (Ag) of dielectric function (DF) 𝜀𝑐, and a 

metallic (Au) shell of DF 𝜀𝑠 embedded in a non-absorptive host matrix having a real DF 𝜀𝑚. The radius of core and shell is 𝑟𝑐  

and 𝑟𝑠 , respectively, in which the volume fraction shell to the composite is 𝜌 = 1 − (𝑟𝑐 𝑟𝑠⁄ )3  as depicted FIG.1. When the 

composite of two layered CSNP is irradiated (placed in) with an electromagnetic radiation, electric field is induced in the system 

due to polarization. 

 

FIG. 5: (Color online) The array of Ag@Au CSNSs embedded in the non-absorptive dielectrics host medium (left side) 

and cross-sectional view of nanoinclusion (right side). 

 In a uniform external electric field, a metallic object becomes polarized. In far field, the polarized object can be approximated as 

an electric dipole because the higher order field components decay quickly as a function of distance [18].  

The electric dipole movement of the composite can be expressed as [19],  

                   𝑝 = 𝜀𝑚𝛼𝐸0,                                                  (1) 

where 𝐸0 external applied electric field and 𝛼 is the polarizability of the system (core-shell+host medium) given by, 

                 𝛼 = 4𝜋 [𝟏 −
𝟑

𝟐
[

𝜺𝒎[𝜺𝒄+𝜺𝒔(
𝟑

𝝆
−𝟏)]

𝜷
]] 𝒓𝒔

𝟑.                                                  (2) 

The variable in Eq.2 is 

         𝛽 = 𝜺𝒔
𝟐 + 𝑪𝜺𝒔 + 𝜺𝒄𝜺𝒎,                                                           (3) 

where  

                𝐶 = (
3

2𝜌
− 1) 𝜀𝑐 + (

3

𝜌
− 1) 𝜀𝑚                                                      (4)  
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For simplicity, from FIG. 1, assume a Drude model metal which will be adequate for certain simple and noble metals within the 

appropriate ranges of light frequencies. The Drude model provides an effective description of the free carrier response in metals. 

Hence, we can write the metal silver (Ag) and gold (Au) dielectric function from the Drude Model as [20]: 

         𝜀𝑠(𝜔) = 𝜀∞ −
𝜔𝑝

2

𝜔[𝜔+𝑖𝜔0]
                                                                       (5) 

where 𝜀∞  is the phenomenological parameter describing the contribution of bound electrons to polarizability, 𝜔𝑝 is the bulk 

plasmon frequency, 𝜔0 is the damping constant of the bulk material, for Ag, 𝜀∞ = 4.5 , 𝜔0 = 0.072 𝑒𝑉 = and 𝜔𝑝 = 9.02 𝑒𝑉  

[12, 19] and  Au, 𝜀∞ = 9.84 , 𝜔0 = 0.011 𝑒𝑉 = and 𝜔𝑝 = 9.62 𝑒𝑉  [5, 21]. 

 

3. Results and Discussions 

The quasi-statics approach method is ideal for measuring polarizability for the small dimension of composite less than the 

wavelength of incident light.  Of small size composite, the incident electric field can be considered spatially uniform over the entry 

of the particle, such that the particle may be replaced by an oscillating dipole and this is called the quasi-static approximation. 

3.1. Local Field Enhancement Factor 

 

The intensity of applied electric field inside the core-shell nanocomposite can be enhanced due to the difference between the 

dielectrics properties of the two interfaces Ag/Au and Au/host-matrices as well as surface plasmon resonance of Ag/Au. The field 

enhancement factor is defined as the ratio of electric field intensity around the composite to applied electric field intensity. The local 

field enhancement factor (LFEF) (|𝜂|2) of the nano-composite is expressed as in the form [22], 

      |𝜼|𝟐 =
|𝑬|𝟐

|𝑬𝟎|𝟐 = |𝟏 +
𝜶

𝟐𝝅𝒓𝒔
𝟐|                                                                        (6) 

where 𝐸 is electric field inside the composite, 𝐸0 is applied electric field and 𝑟𝑠 is the radius of the composite. 

 

Using Eq. 6, the local field enhancement factor (LFEF) is depicted in FIG. 2. by optimizing the size of core and composite. As 

shown in the figure, two plasmonic resonances are observed: associated with the inner and outer interfaces of plasminic shell from 

left to right [23], respectively. For a fixed composite size 10 nm FIG. 2(a), when the core size decreased i.e.; increased shell thickness 

(𝑡) with the corresponding volume fraction 0.27, 0.33, 0.39, 0.44, 0.49; the first resonances correspond to Ag@Au interface are 

enhanced and red-shifted and the second resonances correspond to Au@medium interface are decreased without shifting. The 

plasmonic response of the composite is also vary by changing the size of composite, when the composite size decreased for a fixed 

core size 8 nm as depicted in FIG. 2(b), the first resonances are decreased and shifted towards higher energy and the second 

resonances are enhanced without shifting. When the size of nanocomposite decreased for a fixed core size simultaneously the shell 

thickness (𝑡) decreased and the correspondence volume fractions are 0.49, 0.45, 0.40, 0.35, and 0.30.  
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FIG. 2: (Color online) Local filed enhancement factor of Ag@Au core-shell nanostructures, (a) a decreasing core size for 

a fixed composite size and (b) a decreasing composite size for a fixed core size. 

 

Among different parameters which affect the plasmonic response of core-shell nanostructures are dielectric function of host medium 

and the concentration of shell material (𝜌, volume fraction of shell material to the composite) on the core. As depicted in FIG. 3(a), 

when the concentration of shell Au increased ( 𝜌 = ~1, the composite is pure Au) the first resonance is become diminished while 

the second resonance is enhanced. This indicates that, there is only one interaction at the interface of Au and the host medium. The 

other important parameter is DF of host medium which highly determine the plasmonic property of core-shell nanostructure. As 

shown in FIG. 3(b), all dielectrics materials including air and water are incorporated. As shown in this figure, the first resonance is 

more enhanced and red-shifted but the second resonance is slightly decreased. 

  

 

FIG. 3: (Color online) Local filed enhancement factor of Ag@Au core-shell nanostructures, (a) as a function of shell 

material concentration for a fixed 𝜀𝑚 value and (b) as a function of DF of host medium for 𝑡 = 2 𝑛𝑚. 

From the result, we understood that the applied electric field is enhanced and shifted to infrared spectral region for the host medium 

which has high DF. The nanocomposites which have enhanced electric field near infrared spectral region can be applicable in 

different application areas. 
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3.2. Absorption Coefficient 

 

By considering the quasi-static limit approximation method, the absorption (𝜎𝑎𝑏𝑐), scattering ((𝜎𝑠𝑐𝑐) and extinction coefficient ((𝜎𝑒𝑥𝑐) 

can be modeled as the optical response and have the following relation [24], 

    𝜎𝑎𝑏𝑐 =
𝑘

𝜋𝑟𝑠
2 𝐼𝑚[𝛼]                                                                              (7)                                   

𝜎𝑠𝑐𝑐 =
𝑘2

6𝜋2𝑟𝑠
2 |𝛼|2,                                                                                   (8) 

         𝜎𝑒𝑥𝑐 = 𝜎𝑎𝑏𝑐 + 𝜎𝑠𝑐𝑐,                                                                             (9) 

where  𝑘 = 2𝜋√𝜀𝑚/𝜆  [2]. 

 

Incident light, in general, propagating in the composite is attenuated both by absorption and scattering [21]. The coefficient of 

nanocomposite depends on the size and other parameters; the absorption coefficient is more enhanced than the scattering coefficient 

for small size composite [25]. The diameter of Ag@Au core-shell nanostructure (20 nm) is less than the incident wavelength, so 

that, the absorption coefficient dominated scattering coefficient. For the quantum size core-shell nanoparticles, extinction coefficient 

is almost equal to absorption coefficient. 

Simply the plasmonic properties core-shell nanostructure is varied due to the shell thickness or the size of core/composite. By 

considering these parameters in account, the paper is focused on the plasmonic response of novel material composite by optimizing 

core/composite size simultaneously the shell thickness. 

The absorption coefficient of Ag@Au core-shell nanostructures is depicted in FIG. 4, as shown in the figure, the absorption 

coefficient is varied due the size of core/composite. Figure 4(a) depicted that, the first plasmonic resonances are enhanced and peak 

position is shifted to lower energy (red-shifted) and the second resonances are decreased without shifting when the core size 

decreased for a fixed composite size 10 nm. In the other hand, when the composite size decreased for a fixed core size 8 nm, the 

first plasmonic resonances in the visible spectral region are decreased and shifted towards higher energy (see FIG. 4(b)). The volume 

fractions of FIG. 4(a) and (b) for corresponding shell thickness are the same with FIG. 2(a) and (b), respectively. 

 

  

FIG. 4: (Color online) Extinction coefficient of Ag@Au core-shell nanostructures, (a) a decreasing core size for a fixed 

composite size and (b) a decreasing composite size for a fixed core size. 
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In the other case, we plotted absorption coefficient of the bimetallic core-shell nanocomposite by varying the radius of the system 

for a fixed shell thickness 1.0 nm. As shown in FIG. 5(a), when the dimension of Ag@Au CSNSs is decreased (from 6 nm to 10 

nm), the first absorption coefficient resonances are slightly increased and shifted to higher incident photon energy. But, the second 

resonances in this case are enhanced without shifting. As explained in the above section, the nature of host medium is affected the 

plasmonic properties of bimetallic core-shell nanostructure of the absorption coefficient. When the DF of host-medium is changed 

the plasminic properties correspondingly its application is changed. As shown in the FIG. 5(b), the peak position of the two 

absorption coefficient resonances is red-shifted when the dielectrics function of host-medium is increased from 1 to 3 with range of 

0.5. Similar to FIG. 3(b), the resonances associated with inner interface of Au are enhanced and more shifted than the resonances 

associated with outer interface. 

  

 

FIG. 5: (Color online) Extinction coefficient of Ag@Au core-shell nanostructures for a fixed shell thickness 𝑡 =

1.0 𝑛𝑚  (a) and the effect of dielectric function of the host-medium on the plasmonic response for a shell 

thickness 𝑡 = 2.0 𝑛𝑚 (b). 

 

 

 

4. Conclusion 

 

In this paper, by using the electrostatic approximation, I investigated local field enhancement factor (LFEF) and the absorption 

coefficient of Ag@Au CSNSs embedded in non-absorbent host-medium. Local filed enhancement factor and absorption coefficient 

as a function of incident photon energy possess two plasmonic resonances correlated with interior interface from 2.60 eV to 2.75 

eV and external interface about 3.30 eV of metallic Au shell. In both cases, the first plasmonic resonances are enhanced and moved 

towards higher energy as the core size for a fixed composite size decreased.  But, when the composite size decrease for a fixed core 

dimension, it decreased and shifted in the opposite direction.  The second plsmonic resonances, for decreasing core size and 

decreasing composite size, are decreased and enhanced respectively.  The first and second resonances of plasmonics are decreased 

and enhanced for both LFEF and the absorption coefficient when the volume fraction is increased, respectively. As the dielectric 

function of the host medium increases, the first plasmonic resonances of LFEF and the absorption coefficient are red-shifted and 

enhanced, while the second resonances are reduced and red-shifted. Note, that the results showed two layered bimetallic core-shell 
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nanostructures are composed of a metal core Ag coated by tick Au NP can be ideal candidate for enhancing biological, solar-cell, 

catalysis, optical sensor, and information storage application. 
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