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Abstract: Major progress in the field of regenerative medicine are expected from the design of arti-
ficial scaffolds that mimic both the structural and functional properties of the ECM. The bionano-
composites approach is particularly well fitted to meet this challenge as it can combine ECM-based 
matrices and colloidal carriers of biological cues that regulate cell behavior. Here we have prepared 
bionanocomposites under high magnetic field from Tilapia fish scale collagen and multifunctional 
silica nanoparticles (SiNPs). We show that scaffolding cues (collagen), multiple display of signaling 
peptides (SiNPs) and control over the global structuration (magnetic field) can be combined into a 
unique bionanocomposite for the engineering of biomaterials with improved cell performances. 
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1. Introduction 
Bionanocomposites include different types of materials with common features that 

are the combination of elements of different chemical nature, one being of biological 
origin. Most importantly, their development is part of a strategy aimed at synergistically 
improving their physical and chemical stability as well as their functionality, including 
their interface with cells and living systems [1,2]. Our research focuses on the design of 
biomimetic fibrillary extracellular matrices (ECMs) for guiding cells in regenerative con-
texts. While this may include biological or synthetic polymers [3], we focus here on type I 
collagen, which is of particular relevance for designing biomimetic ECMs as it is a major 
constituent of connective tissues [4,5]. Many different processes have been used to shape 
collagen while preserving its native conformation [6], including extrusion [7], aerosols [8], 
electrospinning [9] and freeze-drying technologies [10]. High magnetic field has also been 
used to control collagen alignment, as collagen fibrils orient perpendicularly to the field 
direction [11-14]. This behavior can be explained by the torque induced by magnetic field 
in the planar peptide bonds of collagen due to their diamagnetic anisotropy, Δχ. With a 
constant magnetic field B, the total energy needed for collagen fibril orientation can be 
noted E1 = VΔχB²/(2µ0), with V the volume of self-assembled collagen fibrils and µ0 the 
permeability of vacuum, while thermal energy, i.e. Brownian motion, can summarily be 
noted E2 = kBT, with kB the Boltzmann's constant, and T the temperature. When E1 be-
comes superior to E2 (VΔχH²/(2µ0) > kBT), or to be more accurate, to the total internal 
energy of collagen solution, then controlled alignment of collagen fibrils can be achieved. 
Moreover, as collagen fibrils spontaneously self-assemble into thicker bundles, V and 
therefore E1 keeps increasing and their alignment intensifies [15]. 
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Previous works showed the possibility to tune the orienting effect of magnetic field 
throughout the anisotropic hydrogel over a given fibrillogenesis period, playing with tem-
perature, collagen concentration and magnetic strength [15,16]. Twenty years after their 
discovery, Torbet et al. successfully oriented magnetically collagen fibrils to develop an 
assembled plywood structure as an artificial scaffold for corneal transplantation [17]. 
Since that time, several works in the literature reported the possibility to use magnetic 
orientation for the engineering of tissues naturally showing fibril alignment, including 
bone, tendon and nervous tissues [18-21]. Magnetically-oriented ECM-like materials also 
find a high relevance in biomedical research given that aligned collagen scaffolding is one 
feature of the tumor ECM [22,23]. 

Composite approaches have been developed by mixing collagen with paramagnetic 
iron oxide beads, where the particles were found to orient under low magnetic field, re-
sulting in collagen fibril alignment [24]. Here we design bionanocomposites from non-
magnetic silica nanoparticles (SiNPs) where the orientation of collagen fibers relies on 
high magnetic field. SiNPs are used owing to their versatile chemistry that allows conju-
gating a broad diversity of biologically-relevant functional groups. We have previously 
shown that engineering the SiNP surface affects the scaffold structure and ultimately im-
pacts cell response [25,26]. Beyond scaffolding, biochemical signaling can be provided by 
the conjugation of selected peptide epitopes. Integrin receptors are a common target for 
ensuring cell adhesion to biomaterials. This includes the RGDS peptide sequence within 
fibronectin, which synergizes with the PHSRN sequence in a distance-dependent manner, 
substantially enhancing cell adhesion mediated by the α5 β1 integrin receptor for fibron-
ectin [27,28]. We have recently reported that surface modification of SiNPs can be success-
fully used to simultaneously display RGDS and PHSRN enabling enhanced cell adhesion 
and spreading [29]. Significant advances for regenerative medicine can be expected by 
coupling signaling abilities with fine control over structure. In this context, we report here 
the design of bionanocomposites from Tilapia fish scale collagen and functionalized SiNPs 
prepared under high magnetic field. We show that dynamic control of collagen fibrillo-
genesis under magnetic field is a robust process that can accommodate bioconjugated 
nano-objects and achieve their controlled dispersion while preserving a global anisotropic 
structure of the composite. Most importantly, being fully compatible with cell studies, this 
process is shown to preserve the ability of the composite - via the use of multifunctional 
SiNPs - to interact with cells and enhance their adhesion and spreading. 

2. Materials and Methods 

2.1. Synthesis of functionalized SiNPs 
2.1.1. Synthesis of nf-SiNPs 
According to the Stöber procedure [30], 21 mL tetraethyl orthosilicate (TEOS 98%, Sigma 
Aldrich) was added dropwise to a solution containing 32 mL ultrapure water, 600 mL 
absolute ethanol (VWR, GPR RectaPur) and 45 mL ammonium hydroxide solution (25%, 
Carlo Erba). The solution was left under stirring overnight at RT. SiNPs were washed with 
ethanol through an ultrasonic redispersion-centrifugation process (10 000 rpm for 5 min) 
and dried overnight at 30°C under vacuum. Size of the resulting nf-SiNPs was 214 ± 10 
nm, as determined by transmission electron microscopy. 
2.1.2. Synthesis of SiNP-SO3- 

nf-SiNPs were first functionalized with thiol groups by silylation with MPTMS (95%, 
Sigma Aldrich). Typically, 4.12 g of silica particles were redispersed in a mixture of 410 
mL absolute ethanol and 9.1 mL NH4OH before addition of 3.2 mL MPTMS. The mixture 
was stirred for 40 min at RT. Then, the reaction mixture was heated to 80°C until evapo-
ration of the two thirds of the volume. The mixture was left to cool down to RT and sub-
sequently washed three times with absolute ethanol through an ultrasonic redispersion-
centrifugation process (12 000 rpm for 15 min) and dried under vacuum. Finally, oxidation 
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of thiol groups leads to sulfonic acid functionalized particles [31]. In a typical reaction, 0.6 
g of thiol-modified particles were suspended in 30 mL hydrogen peroxide (H2O2 35%, 
Acros Organics) under stirring at RT for 48 hours. The powder was washed by centrifu-
gation before addition of 25 mL sulfuric acid (H2SO4, Sigma Aldrich) and stirred for 2 h at 
RT. Resulting SiNP-SO3- particles were washed with ethanol and water through an ultra-
sonic redispersion-centrifugation process (10 000 rpm for 5 min) before drying under vac-
uum at 30°C. 
2.1.3. Synthesis of amine-modified particles SiNP-NH2 (for peptide conjugation). 
nf-SiNPs were modified with amine groups thanks to 3-aminopropyltriethoxysilane 
(APTES). Typically, 0.77 g of nf-SiNPs were dispersed in a mixture of 76.6 mL ethanol and 
1.7 mL ammonium hydroxide solution before addition of 0.75 mL APTES. The mixture 
was stirred for 2 h at RT. Then, the reaction mixture was heated to 80°C until evaporation 
of the two thirds of the volume. The mixture was left to cool down to RT and subsequently 
washed three times with absolute ethanol through an ultrasonic redispersion-centrifuga-
tion process (10 000 rpm for 5 min) before drying the obtained SiNP-NH2 particles under 
vacuum at 30°C. 
2.1.4. Peptide coupling between amine groups on SiNPs and peptides 
The RGDS and PHSRN peptides were synthesized and purified at the Protein Engineering 
and Q-PCR Platform of the Institut de Biologie Paris-Seine (Sorbonne Université, Paris) 
by C. Piesse. A rink Amide resin was used, with the classical Fmoc-strategy on a 0.2 mM 
scale. The peptide PHSRN was cleaved from the resin with deprotection of all protective 
groups, which was not the case of RGDS because of a pending carboxylic group due to 
the presence of aspartic acid. Peptide conjugation of RGDS, PHSRN or a stoichiometric 
1:1 mixture of the two was performed between final carboxylic acid on RGDS or PHSRN 
and amine groups at the surface of SiNP-NH2. Typically, 33.4 mg of SiNP-NH2 (5.1.10-4 
mmol) were dispersed in a mixture of 140 µL DMSO and 34 µL DMF, with 4 equivalents 
of peptide, HOBT.H2O and hexafluorophosphate benzotriazole tetramethyl uranium 
(HBTU, 98%, Iris Biotech GmbH) and 8 equivalents of N,N-diisopropylethylamine (DIEA, 
99.5%, Sigma-Aldrich). The mixture was stirred for 40 min and subsequently washed 
twice with DMSO and twice with dichloromethane (DCM, Carlo Erba) through a ultra-
sonic redispersion-centrifugation process (10 000 rpm for 5 min) before drying under vac-
uum. To deprotect the amine from the BOC group, an acidic treatment with trifluoroacetic 
acid (TFA, Sigma Aldrich) was performed under sonication for 20 min. SiNP-RGDS and 
SiNP-PHSRN were washed three times with absolute ethanol through a ultrasonic redis-
persion-centrifugation process (10 000 rpm for 5 min) before drying under vacuum. 

2.2. Particle characterization 
2.2.1. Zeta-potential measurements 
Zeta-potential measurements were performed on a Malvern Zetasizer Nano spectrometer, 
at a concentration of particle of 0.5 g.L-1 in DTS1060C cells in 100 mM KCl buffer at differ-
ent pHs adjusted with NaOH and HCl at RT. 
2.2.2. Transmission electron microscopy 
A drop of sample in aqueous solution was deposited on carbon-coated copper grids (300 
mesh). After 3 min, the excess liquid was blotted with filter paper. TEM was performed at 
RT using a Tecnai spirit G2 electron microscope operating at 120 kV and the images were 
recorded on a Gatan Orius CCD camera. 

2.3. Preparation of the bionanocomposites 
Freeze-dried type I collagen from Tilapia fish-scales was purchased from Taki Chemical 
Co., Ltd (Japan), and prepared at 0.62 wt% in HCl 0.64 mM [32]. 
After depositing collagen and PBS in a plastic pot, a planetary centrifugal bubble free 
mixer (Thinky U.S.A., Inc.) was used during 30 s at 2000 rpm to mix collagen and PBS 
solutions, and 30 s at 2200 rpm to degas the viscous mixture (Figure 1). Then, a Microman 
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micropipette was used to introduce 800 µL of the resulting solution in the silicone rubber 
mold between two slide glasses. Six silicone molds were introduced in a suitable plastic 
beaker. Three of these beakers were placed on the three slots for stirring on the bench 
(Figure 2). Care was taken towards the best alignment of the beakers along the direction 
of magnetic field, i.e. along the cylindrical hole inside the magnet. The 60 rpm rotation 
was tested before starting experiment thanks to a VEXTA OPX-1 motor (Oriental Motors), 
and the bench was introduced into the JASTEC superconductor 13 T magnet until the 
middle beaker is located at 282 mm from the entrance, where the magnetic field is actually 
equal to 13 T (both other beakers face a 12 T magnetic field). Before preparing the compo-
site solutions, the thermostat made of 28°C water-filled tubes was introduced inside the 
magnet and water heating was turned on. 
2.4. Characterization of the structural and biological properties of the bionanocomposites 
2.4.1. Scanning electron microscopy (SEM) 
Composite membranes made of magnetically aligned collagen fibrils were deposited on 
carbon-tape coated aluminum pads. Samples were coated with a 10 nm gold layer before 
observations. SEM imaging was performed using a Variable Pressure Hitachi S-3400N 
working at an accelerating voltage of 10 kV, using an in lens secondary electron (SE) de-
tector, with a working distance ca. 4.2 mm. 
2.4.2. Polarized light microscopy (PLM) 
PLM was performed using a transmission Nikon Eclipse E600 Pol, equipped with crossed 
polarizers, a waveplate and a Nikon DXM 1200CCD camera. 
2.4.3. Cell culture 
Composites underwent a gamma-ray treatment of 5 h for sterilization. A crosslinking car-
bodiimide treatment is then applied to the membranes, based on a 24 h soaking in 1% w/v 
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC.HCl) in PBS solu-
tion, before 5 washings in PBS. 
3T3 cells were maintained in growth medium containing Dulbecco’s Modified Eagle’s Me-
dium (DMEM), supplemented with 10% fetal bovine serum (FBS), 1% glutamax, 1% fun-
gizone and 1% penicillin-streptomycin (P/S). All culture reagents were purchased from 
Gibco. The cells were grown in 75 mm² flasks (BD Falcon), kept at 37°C in a 5% CO2 at-
mosphere and passaged every three days. Before confluence, cells were removed from 
culture flasks by treatment with 0.1% trypsin and 0.02% EDTA. Cells were rinsed and 
suspended in complete culture medium before use. For cell morphology experiments on 
membranes, fibroblasts were seeded at a low density (5k cells per well) in order to mini-
mize cell–cell contacts. Cells were incubated at 37°C and 5% CO2 for 24 h on the mem-
branes into a 48-well plate. Cell culture experiments were performed in triplicates (n = 3). 
2.5.4. Fluorescence microscopy 
For fluorescence imaging, cells were fixed with 4% paraformaldehyde with 1 mM CaCl2 
in PBS at RT for 10 min. For immunostaining, fixed samples were first permeabilized with 
0.1% Triton X-100 in PBS (20 min, RT). Actin filaments were fluorescently labeled with 
AlexaFluor-488-conjugated phalloidin (Life Technologies; 165 nM, 1 h at RT in a dark 
chamber) for visualization. Cell nuclei were stained with DAPI (Life Technologies; 300 
nM, 10 min at RT in a dark chamber). Samples were analyzed using an Axio Imager D.1, 
Zeiss fluorescence microscope. 
Cell metabolic activity was monitored at 24 h using Alamar Blue assay. Fibroblasts were 
incubated with 200 µL of a resazurin solution at 0.01% (w/v) for 3 h. The supernatant in 
each well was then collected and the absorbance measured at λ = 570 nm and 600 nm. The 
percentage of resazurin reduction was calculated following the formula provided by the 
supplier. Cell metabolic activity was compared to control samples, i.e. cells cultivated 
without membranes. The arbitrary value of 100% was given to control samples. 
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Cell number was quantified from phalloidin and DAPI stained fluorescent images ac-
quired by a 4× objective along a randomly selected 4 mm² composite surface. 
Cell morphology was quantified from phalloidin stained fluorescent images acquired by 
a 10× objective from randomly selected regions on the coverslip (at least 100 cells analyzed 
on each membrane). Acquired images were analyzed using ImageJ software. 
2.5.5. Statistical analysis 
Statistical analysis was performed on Graphpad Prism v.6 software using a Mann-Whit-
ney non parametric test; each condition was tested from three independent experiments. 
Values in graphs are the mean and standard error of mean (SEM). 
Collagen fiber orientation was determined using ImageJ software by measuring the angle 
of a length of 1-µm fiber with respect to the trigonometric circle. The resulting standard 
deviations for each condition (at least 20 measurements for at least 3 pictures for each 
condition) were determined and compared using Graphpad software. For low means, we 
concluded that the fibers had a better global orientation towards one given direction. 

3. Results 

3.1. Biocomposite engineering 

3.1.1. Obtaining self-supported collagen films 
Collagen-based gels were prepared in PBS 10x with a concentration (6.2 mg.mL-1 in HCl 
0.64 mM) selected to ensure gel formation in the time course of high magnetic field expo-
sure (6 hours). Collagen and PBS were deposited at the bottom of a plastic pot in a 9:1 v:v 
ratio (Figure 1a), and mixing with planetary centrifugation was implemented to ensure 
the formation of an homogeneous gel and avoid air bubbles (Figure 1b). The resulting 
viscous mixture was transferred into a silicon mold (Figure 1c). After dehydration, a self-
supported film was obtained, with a thickness of ca. 40 µm showing a homogeneous en-
tangled collagen fibril network (Figure 1d). 

 
Figure 1. Collagen gel preparation (no magnetic alignment). (a) Collagen and PBS are introduced into a plastic pot (9:1, v:v). (b) A 
double rotation system allows removing air bubbles. (c) After transfer into a 2 mm thick silicone mold, gelling solutions are left at 
28°C for 3 h. (d) SEM images of collagen fibrillary networks. 

For the exposition of samples to high magnetic field, the silicone mold was placed between 
glass slides (Figure 2a). Collagen fibrils were expected to align perpendicularly to the high 
magnetic field direction (y axis) i.e. in the xz plan (Figure 2b). Thus, in order to favor fibril 
alignment along only one axis, rotation of the mold around the z axis was additionally 
performed (Figure 2c). Gels were thus placed on a sample holder with three positions with 
independent rotations and introduced into the magnet, which was covered with water 
filled-tubes playing the role of a thermostat (Figure 2d,e). A magnetic field of 12 T was 
applied after investigations of different field strengths and exposure times, all ending up 
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with materials exhibiting the 67-nm D-periodic structure specific to native collagen, and 
with adjustable properties [33]. 
Finally, collagen hydrogels were dehydrated and crosslinked by an ethyl-dimethylcar-
bodiimide (EDC) 1% w/v solution in PBS. Fibril crosslinking prior or after magnetic field 
exposure had no influence on the resulting viscoelastic properties of the gels, indicating 
that crosslinking takes place within the collagen fibril and not between two fibrils, and 
enhancing fibril mechanical properties [13,34]. Polarized light microscopy (PLM) showed 
that EDC treatment enhances the birefringence of the collagen films indicating that the 
cross-linking favored fiber alignment (Figure S1). 
 

 
Figure 2. (a) Magnetic field application in a collagen gel. (b) Under a high magnetic field along y axis 
and without rotation, collagen fibers perpendicularly align against magnetic field (xz plan). (c) Upon 
rotation, only fibrils along the axis of rotation (z axis) remain. (d) Photo of the set-up, and (e) scheme 
of the essential characteristics: electric motor for stirring samples, magnetic field and thermostat. 
3.1.2. Surface-engineered SiNPs. 
SiNPs, 214 nm in size (Figure 3a), were synthesized and added to the collagen solution 
prior gel formation. The surface chemistry of SiNPs has then been varied to impact (1) the 
scaffold structure and/or (2) the signal transduction abilities of the biocomposite. For the 
former, sulfonate-modified SiNPs (SiNP-SO3-) were selected for their strong electrostatic 
interactions with positively-charged soluble triple helices of collagen [25]. For the signal 
transduction, we focused on the clustering of bioactive signals onto SiNP surface by con-
jugating two integrin-binding peptides, RGDS and PHSRN, which are known to improve 
cell adhesion in a synergistic manner (Figure 3b) [27,28]. Synergistic interactions are 
known to be effective only for a peptide inter-distance of ca. 5 nm, which can happen when 
both peptides are statistically distributed at SiNP surface [29]. To fulfill this requirement, 
SiNPs were synthesized bearing one of these two peptide sequences (SiNP-RGDS, SiNP-
PHSRN), or bifunctionalized with both peptides (SiNP-RGDS-PHSRN) (Figure 3c). 
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Figure 3. (a) TEM image of nf-SiNP. (b1-2) Molecular structures of the RGDS and PHSRN peptides. (c) Scheme of the different SiNP 
surface chemistries. (d) Characterization of SiNPs by zeta potential measurements. 

The functionalization of SiNPs was checked by zeta-potential measurements (Figure 3d). 
Non-functionalized particles (nf-SiNPs) showed neutral zeta potentials at low pH and 
negative values from pH 3-4 that reflect the presence of silanol groups (pKa ca. 3.5). The 
presence of sulfonate groups was confirmed as the zeta potential of SiNP-SO3- was ca. - 30 
mV at all pHs, in agreement with the pKa of alkyl sulfonic acids (ca. 1). Zeta potentials of 
peptide-conjugated SiNPs were highly positive (between + 20 and + 30 mV) in acidic pHs, 
in agreement with the fact that RGDS bears one positive charge (arginine side group, pKa 
ca. 12) and PHSRN two positive charges (arginine and histidine side groups, pKa ca. 5) in 
such conditions. At pH 7and above, zeta potentials start to decrease for all peptide-conju-
gated SiNPs, with a more negative slope for SiNPs presenting RGDS at their surface. This 
is consistent with the presence of a negative charge due to aspartic acid side chain of RGDS 
(pKa ca. 4). The positive values measured in basic conditions suggest that some unreacted 
amine groups are still present at the surface. 

3.2. Birefringence of the composites and collagen alignment 

Polarized light microscopy (PLM) was used for its sensitivity to the birefringence of ma-
terials reflecting aligned structures. Series of images were acquired with multiple sample 
orientations relative to the crossed polarizers separated by 45°. In this configuration, a 
variation of contrasts, i.e. transmitted light, for different polarizer orientations would sign 
for a structural anisotropy of the materials: the composite interacts with light in an angle-
dependent manner. In contrary, isotropic materials interact with light independently of 
the orientations of the polarizer. 

3.2.1. Collagen and composite films in absence of peptides 
The pure collagen films showed a homogeneous birefringence characterized by a strong 
contrast when comparing images acquired with different polarizer orientations (Figure 
4a1,a2). This reflects the alignment of collagen fibrils after high magnetic field exposure. 
The two biocomposites which do not incorporate peptides {collagen + nf-SiNP} and {col-
lagen + SiNP-SO3-}, exhibited numerous homogeneously dispersed black spots, that we 
attribute to the presence of silica particles aggregates. In presence of nf-SiNPs, an im-
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portant area of the sample seems not to change contrast with polarizer orientation (delim-
ited by white dotted lines, Figure 4b1,b2), signing for a local disorganization of the colla-
gen network. 

 
Figure 4. PLM images of (a) collagen films and composites with (b) nf-SiNP and (c) SiNP-SO3- after EDC crosslinking. PLM imaging 
was performed by taking 2 serial images with the sample oriented vs the cross polarizers (white arrows) at maximal transmission (1) 
and at extinction (2). A waveplate was added to improve contrast. 

In presence of SiNP-SO3-, no difference of contrast between the two polarizer orientations 
was evidenced (Figure 4c1,c2). This indicates a more general loss of collagen network or-
ganization upon introduction of these particles. 

3.2.2. Collagen : peptide composites 
For all composites embedding peptide-conjugated SiNPs, no black dots similar to the 
above-described ones could be evidenced, suggesting the absence of extended SiNP ag-
gregation. For {collagen + SiNP-RGDS} films, the contrast between two orientations of the 
crossed polarizers was strong and rather homogeneous, indicating similarities in terms of 
collagen alignment with the pure collagen film. A similar birefringence was observed for 
the {collagen + SiNP-PHSRN} biocomposite, with the presence of a few millimetric fibril 
bundles having a width of ca. 100-200 µm (yellow arrows, Figure 5b1). 
The absence of clusters and the presence of fibril bundles were also observed when mix-
tures of SiNP-RGDS and SiNP-PHSRN or bifunctionalized SiNPs were present (yellow 
arrows in Figure 5c1,d1). However, for these two biocomposites, the lack of contrast be-
tween the two polarizers positioning signs for the disorganization of collagen within the 
films, similarly to {collagen + SiNP-SO3-} biocomposites (Figure 4c1,c2). Unexpectedly, 
when combining these conditions within a single bionanocomposite, i.e. {collagen + SiNP-
RGDS-PHSRN + SiNP-SO3-}, a rather homogeneous material could be observed, lacking 
nanoparticle clusters and exhibiting a strong birefringence (Figure 5e1,e2). 
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Figure 5. PLM photos of composites made of collagen combined with (a) SiNP-RGDS, (b) SiNP-PHSRN, (c) SiNP-RGDS + SiNP-
PHSRN, (d) SiNP-RGDS-PHSRN and (e) SiNP-RGDS-PHSRN + SiNP-SO3- after EDC crosslinking. PLM imaging was performed by 
taking 2 serial images with the sample oriented vs the cross polarizers (white arrows) at maximal transmission (1) and at extinction 
(2). Yellow arrows show the presence of millimetric fibrils. A waveplate was added to improve contrast. 

Overall, PLM investigations showed that a global structural anisotropy was reached for 
most of the bionanocomposites investigated: {collagen + nf-SiNPs}, {collagen + SiNP-
RGDS}, {collagen + SiNP-PHSRN} and {collagen + SiNP-RGDS-PHSRN + SiNP-SO3-}. Such 
an anisotropy was found to be disturbed after adding SiNP-SO3- particles and when com-
bining the two peptides, either on two populations of particles (SiNP-RGDS + SiNP-
PHSRN) or combined on a single particle (SiNP-RGDS-PHSRN). 

3.3. Microstructure of the different bionanocomposites 
SEM imaging was then performed to examine the gel structure at the fiber level. Concern-
ing the distribution of SiNPs, Figure 6 shows that nanoparticle aggregates are mainly ob-
served in presence of nf-SiNPs and SiNP-SO3- (yellow arrows), whereas, in all other nano-
composites, isolated SiNPs prevail, in agreement with PLM observations. In parallel, var-
iations in fiber alignment between the different samples are not straightforward to iden-
tify, except for the {collagen + SiNP-RGDS-PHSRN + SiNP-SO3-} composite, where fiber 
alignment seems more pronounced and correlated with a larger fiber diameter compared 
to all composites and similar to pure collagen (Figure 6h). 
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Figure 6. SEM images of (a) collagen, (b) + nf-SiNP, (c) + SiNP-SO3-, (d) + SiNP-RGDS, (e) + SiNP-PHSRN, (f) + SiNP-RGDS + SiNP-
PHSRN, (g) + SiNP- RGDS-PHSRN, and (h) + SiNP-PHSRN-RGDS + SiNP-SO3-. 

To support these observations, fiber diameters and orientations were determined by im-
age analysis. Concerning the diameters of fibers compared to the pure collagen film, sig-
nificant decrease were measured in presence of nf-SiNPs, SiNP-SO3-, and when adding the 
two peptides, either as mixture of monofunctional SiNPs or as bifunctionalized SiNPs. 
(Figure 7a). Meanwhile, no significant variation in diameter compared to collagen could 
be observed in presence of SiNPs conjugated with a unique peptide (SiNP-RGDS, and 
SiNP-PHSRN) or in presence of the SiNP-RGDS-PHSRN + SiNP-SO3- mixture. In contrast, 
although there was a general trend in the decrease of the average fiber orientation in the 
presence of particles, especially for the SiNP-RGDS and SiNP-RGDS-PHSRN + SiNP-SO3- 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2021                   doi:10.20944/preprints202104.0426.v1

https://doi.org/10.20944/preprints202104.0426.v1


 11 of 16 
 

samples, such variations were not statistically significant, with the distribution of orien-
tations showing a ca. 60° standard deviation in all cases (Figure 7b, and see the Materials 
and Methods section). 

 
Figure 7. Fibril diameters and orientations measured from SEM images (performed with ImageJ 
software on 50 fibers for each condition). Statistical tests realized using ANOVA (Dunnett) para-
metric test. Each column represents mean with SEM. 

Overall, SEM observations confirm that playing with the surface chemistry and function-
alization of SiNPs affects the structure of the resulting bionanocomposites, in terms of 
nanoparticle distribution, collagen fiber organization and, but to a limited extent only, 
fibril diameter. Further in vitro assays were then implemented to decipher the impact of 
collagen network structure and SiNP incorporation on the adhesion and spreading of 
cells. 

3.4. Biological behavior 
3T3 fibroblast cells were seeded on the different bionanocomposites and their adhesion 
and proliferation investigated by immunostaining of actin cytoskeleton and nuclei (Figure 
8). The spreading of fibroblasts on the different biomaterials, characterized by a spindle-
like shape morphology with clearly visible stress fibers (Figure 8a2, white arrows), shows 
that those magnetically-aligned bionanocomposites are perfectly suitable for cell adhesion 
and spreading. Alamar blue assay revealed that only the {collagen + SiNP-RGDS-PHSRN 
+ SiNP-SO3-} bionanocomposites induced a significantly different, and superior, metabolic 
activity of the cells after 24 h compared to pure collagen (Figure 8b). Cell number pre-
sented no significant difference between all biocomposites investigated but high standard 
deviations were noticed for several samples (Figure 8c). Finally, in terms of cell attach-
ment, as evaluated by measurement of cell area, the {collagen + SiNP-RGDS-PHSRN + 
SiNP-SO3-} bionanocomposites was again the only one showing a significant and im-
proved cell behavior (Figure 8d). 
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Figure 8. (a) Fluorescence microscopy images of 3T3 cells cultured for 24 h on magnetically-aligned collagen films. Actin (green: 
phalloidin) and nucleus (blue: DAPI) staining. White arrows show stress fibers. (b) Metabolic activity measured by Alamar blue 
assay. Statistical test realized using Mann-Whitney non parametric test; each condition issued from three independent experiments. 
(c) Cell number obtained by counting all cells on a 4 mm² composite surface. (d) Cell attachment obtained by measuring the projected 
areas of cells. Statistical tests for (c,d) realized using ANOVA (Dunnett) parametric test. Each column represents mean with SEM. 

4. Discussion 

Bionanocomposites can be advantageously designed to enhance the performances of 
(bio)materials by playing at the structural level and/or by providing additional function-
alities. This can be typically achieved by combining biological scaffolds and biofunction-
alized silica nanoparticles, as recently reported [26,29]. The processing of the materials can 
also be used to further tune their properties. This is the case with the use of high magnetic 
field that has been shown to control the alignment of fibers in collagen biomaterials [11-
13,17,18]. Here, we have combined the magnetic alignment of collagen fibers with the in-
corporation of functionalized SiNPs able to modify scaffold structure and/or to confer sig-
naling abilities to the composite materials. Table 1 summarizes the structural features as 
revealed by PLM and SEM for the eight bionanocomposites investigated, together with 
their biological performances in terms of adhesion and spreading of fibroblasts. From 
these data, several points can be discussed: 
(1) High magnetic field can successfully be implemented on collagen-based bionanocom-

posites to induce a structural anisotropy at the micron and millimeter scale after ad-
dition of silica nanoparticles. Indeed, birefringence and fiber alignment were ob-
served for most bionanocomposites investigated in this study. 

(2) From a biological perspective, and very importantly, all magnetically-exposed bi-
onanocomposites were suitable for cell adhesion and spreading as no decrease in 
terms of metabolic activity, cell number and attachment were observed after fibroblast 
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seeding with neither of the composites investigated compared to the pure collagen 
membrane. 

(3) From a structural point of view, the loss of birefringence of the composites can be to 
some extent related to the formation of SiNP clusters, as partially observed with the 
formation of nf-SiNP clusters, and strongly evidenced in presence of SiNP-SO3-. In the 
latter case, the strong interaction between sulfonate groups and collagen triple helices 
may prevent fiber from alignment as shown by PLM. 

(4) Conversely, the loss of birefringence was also observed in absence of clusters (see 
{collagen + SiNP-RGDS + SiNP-PHSRN} and {collagen + SiNP-RGDS-PHSRN} com-
posites). In this case, it may be attributed to the formation of large bundles of collagen 
fibers evidenced by PLM, which are believed to hamper alignment at the macroscale. 
However, local alignment of the fibers at the micrometer scale would still be possible, 
explaining why no difference could be evidenced for this parameter by analysis of the 
SEM images. 

Of particular interest is the magnetically aligned {collagen + SiNP-RGDS-PHSRN + SiNP-
SO3-} bionanocomposite, which appears to be the most promising candidate for biomateri-
als engineering. This composite combines sulfonated SiNPs – as structural cue – and 
SiNPs conjugated with the two integrin-binding sequences RGDS and PHSRN – as bio-
chemical cue. After the application of a high magnetic field, strong birefringence and fiber 
alignment was observed. Moreover, while qualitatively similar to the structure of the col-
lagen biomaterials, performances in terms of metabolic activity and cell attachment were 
significantly improved owing to the presence of scaffolding and signaling cues. While 
corresponding peptide-based collagen composites do not show improved biological prop-
erties compared to collagen alone, the combined addition of SiNP-SO3- favor both fibro-
blast metabolic activity and attachment. In parallel, the scaffolding effect attributed to the 
presence of sulfonate alone does not secure birefringence nor does it improve cell activity 
either, as observed with {collagen + SiNP-SO3-} composites. 

 This result can be discussed in light of recent studies on the design of bionanocom-
posites, which incorporate SiNPs displaying scaffolding (sulfonate) and / or signaling 
(peptide) cues. In a first one, composite collagen threads (millimeter in diameter) were 
fabricated to promote neuron-like cell differentiation [26]. In this situation, the optimal 
biomaterial was obtained in the presence of SiNP-SO3-, while the addition of peptide-con-
jugated SiNP had no clear benefit. This was attributed to the structuring effect of sulfonate 
that induced local heterogeneities in the collagen network, creating gradients that pro-
moted neuron cell differentiation. However, limited accessibility of the biofunctionalized 
particles that were mostly buried within the millimeter thread bulk prevented their inter-
action with cells. In a second work, nanocomposite films with a thickness ca. tens of mi-
crometers were processed to improve peptide epitope accessibility to cells. This success-
fully enhanced fibroblast adhesion and spreading when incorporating biofunctionalized 
SiNPs similar to those used here (i.e. SiNP-RGDS, SiNP-PHSRN and SiNP-
RGDS+PHSRN) [29]. In this case, the use of peptide amphiphiles as ECM building blocks 
instead of collagen decreased the impact of sulfonate-modified particles as no strong in-
teraction with the matrix was expected. In this light, the present study combines (1) spe-
cific interactions between collagen and SiNP-SO3-, (2) micrometer-scale thickness of the 
materials for improved accessibility of conjugated peptides to cells, and (3) dual display 
of RGDS and PSHRN sequences. Here, these elements act in a synergetic way as the col-
lagen network structure induced by the sulfonated nanoparticles seems to be particularly 
favorable to cell accessibility to the peptide-bearing ones. This has allowed the design of 
an optimal bionanocomposite for fibroblasts adhesion and spreading. Very importantly, 
this work shows that magnetic alignment can occur during collagen fibrillogenesis in 
presence of these multi-functional nanoparticles as revealed by SEM and PLM imaging 
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and controlling collagen fiber alignment and the global anisotropy of the matrix respec-
tively. From the optimization of magnetic orientation on collagen-silica bionanocompo-
sites, future works will now focus on the impact of alignment on cells having a higher 
sensitivity to matrix alignment, including neurons and invading cancer cells. 

 
Table 1. Structural features revealed by PLM and SEM and biological performances from cell in vitro assays for the eight bionano-
composites investigated in this study. The boxes left empty correspond to non-significant results compared to pure collagen films. 

5. Conclusions 

Collagen-silica bionanocomposites can be designed as efficient ECM mimics to enhance 
fibroblast adhesion and spreading. This is achieved by the careful engineering of the in-
terface of their constitutive components, and the fine tuning of their composition. With 
these tools in hand, scaffolding cues and multiple display of signaling peptides can be 
combined into a unique bionanocomposite material. Beyond all this, high magnetic field 
can be implemented to add an additional level of control over the global structuration of 
the bionanocomposites. We showed in this work that inducing collagen fibrillogenesis 
under magnetic field accommodate bioconjugated nanoobjects with preserved dispersion, 
while controlling the global anisotropic structure of the composite. This highlights that 
magnetic field alignment is compatible with the engineering of collagen-silica composites 
with improved cell performances. Managing these multiscale interplays – collagen / 
SiNPs; SiNPs / cells; collagen / SiNPs / magnetic field – opens news perspective for the 
engineering of collagen-silica composites with improved cell performance that will be in-
vestigated in the future with cells exhibiting high sensitivity to matrix alignment. 

Supplementary Materials: Figure S1: PLM images of pure collagen films before and after EDC 
crosslinking. 
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