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Abstract

A framework for optimal sensor placement (OSP) for virtual sensing using the modal expansion
technique and taking into account uncertainties is presented based on information and utility the-
ory. The OSP maximizes a utility function that quantifies the expected information gained from
the data for reducing the uncertainty of quantities of interest (QoI) predicted at the virtual sens-
ing locations. The utility function is extended to make the OSP design robust to uncertainties in
structural model and modelling error parameters, resulting in a multidimensional integral of the
expected information gain over all possible values of the uncertain parameters and weighted by
their assigned probability distributions. Approximate methods are used to compute the multidi-
mensional integral and solve the optimization problem that arises. The Gaussian nature of the
response QoI is exploited to derive useful and informative analytical expressions for the utility
function. A thorough study of the effect of model, prediction and measurement errors and their
uncertainties, as well as the prior uncertainties in the modal coordinates on the selection of the
optimal sensor configuration is presented, highlighting the importance of accounting for robustness
to errors and other uncertainties.

Keywords: Information gain, Kullback-Leibler divergence, relative entropy, Bayesian inference,
response predictions

1. Introduction

Virtual sensing is used to complement the physical sensing when the direct observations are
not available in field and laboratory experiments. Virtual sensing is accomplished by combin-
ing the information in output-only vibration measurements with the information contained in a
model (usually a finite element model) of the system to predict response time histories of various5

quantities of interest (QoI). The subject of virtual sensing, also known as response reconstruction,
has received a lot of attention recently due to its importance in monitoring critical performance
and safety-related quantities such as accelerations, displacements, structural shapes, interstory
drifts, strains/stresses and fatigue damage accumulation in structures that operate in a dynamic
environment.10

Filtering techniques for input, state and parameter estimation as well as modal expansion tech-
niques for response reconstruction are the two type of methods extensively used in the literature for
virtual sensing and response reconstruction. The optimal sensor placement techniques developed
in this work are based on modal expansion techniques for virtual sensing. The modal expansion
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technique represents the system response QoI (acceleration, displacement, strain, etc.) as a modal15

superposition involving the modeshapes of the structure (e.g. displacement or strain modeshapes)
and a fixed number of modal coordinates. This allows the prediction (virtual sensing) of any
response QoI by estimating the temporal variability of the modal coordinates from measured re-
sponse time histories and borrowing the information from a finite element model for representing
the rest of the quantities involved in the modal expansion. The modal expansion method has20

been used in structural dynamics for reconstructing stress/strain fields using limited number of
acceleration measurements [1] or displacement/strain measurements [2–4]. It is pointed out that
estimating the strains/stresses are important for fatigue damage identification. The potential of
providing fatigue damage accumulation predictions in the entire body of metallic structures based
on virtual strain/stress sensing has been demonstrated for the first time in [5, 6] by combining25

output-only vibration measurements, finite element models and filtering techniques with stochastic
and deterministic fatigue theories. Such predictions are based on the actual operating conditions
of structures and thus provide realistic fatigue estimates consistent with existing fatigue theories.

Following these works, the modal expansion and filtering techniques were applied for strain/
stress virtual sensing [3, 7–14] and fatigue estimation [15–20] for a number of structures using lim-30

ited number of displacement/strain physical sensors. In particular, modal expansion techniques
have been used in mechanical and aerospace systems for shape and/or strain reconstruction using
sparse displacement and/or strain measurements [21–28] or fusing acceleration and strain mea-
surements [29]. The aforementioned studies cover a number of applications, including mechanical
[1, 2] and civil [19] structures, wind turbine towers [10, 23], wind turbine blades [26, 27], offshore35

structures [9], roller coaster [17], rotating [25] and underwater structures [12], as well as biologicaly
inspired wing structures for robotic applications [28]. Recently, it is suggested to use virtual sens-
ing in isolated linear components of linear and nonlinear models of structures [30–33] considering
the forces at the interface between the analyzed linear component and the rest of the structure
as unknown forces. In a limited number of past studies the effect of the number and location40

of sensors, as well as the measurement error, on the accuracy of the response reconstruction was
investigated and its importance was pointed out [2, 21, 22, 24, 34].

Bayesian methods were applied for modal identification and virtual sensing using modal expan-
sion techniques to better account for the model and measurement errors in the modal coordinates
estimation [35] and response predictions [36–38] and also used for damage detection [39–41]. Such45

methods have the advantage of predicting also the uncertainty in the modal coordinates and/or
predictions. In particular, the uncertainty formulation is useful for optimizing the location and
number of sensors by minimizing the uncertainty in the estimates of the modal coordinates [35]
and response predictions or virtual sensing [37, 42, 43].

OSP techniques have been developed in the past for the purpose of extracting the most informa-50

tive data from a given number of sensors. A recent article [44] reviews methods and optimization
algorithms for optimizing the location of sensor in a structure. Selecting of the most informative
sensor configuration is often performed using information theory based approaches. Measures of
information that have been used in the past for structural dynamics problems include the Fisher
information matrix (FIM) [45–50], the information entropy [51–63], joint entropy [64, 65], the55

expected Kullback-Liebler divergence index and mutual information [66–77], and the value of in-
formation [78–80]. The aforementioned OSP techniques based on information theory approaches
address parameter estimation (modal estimation and physics-based model calibration), structural
health monitoring and damage detection problems. OSP for response reconstruction under uncer-
tain excitations has also been tackled using the kriging technique [81] and recently information60

theory formulations [37, 42, 43].
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In this work, an OSP framework is presented for accurate response reconstruction and virtual
sensing in linear systems based on modal expansion techniques and information theory. The
information gained by a sensor configuration is measured by the Kullback-Leibler divergence (KL-
div) [82] between the posterior and prior probability distribution of the response QoI to be virtually65

sensed or reconstructed, by combining available modal expansion techniques and data. The KL-div
is averaged over all possible QoI to be sensed. This is obtained using the Lindley’s utility function
[67, 83] quantifying the average information in the data over all possible measurements generated
by the prediction error model. The measure is extended to include uncertainties in the model
parameters, as well as in the model/prediction and measurement errors which are assigned in the70

modeling process for the Bayesian estimation of the posterior distribution of the modal coordinates.
The optimal sensor configuration is obtained by maximizing the utility function. For the case of
uncertainties in model parameters, the utility function involves a multidimensional integral over
the uncertain parameter space which can be computed using sparse grid or Monte Carlo techniques.
Due to the linearity of the response QoI and the modal coordinates, exact analytical expressions75

are developed for the utility function in terms of the variance of the responses of the QoI to be
sensed. The structure of the analytical expressions developed are used to derive useful formulas
that show the effect of measurements and model/prediction errors on the expected information
gained from the data, as well as derive the dependence of the information gain as a function of the
number of sensors.80

This study is organized as follows: In Section 2, the modal expansion is outlined for formulating
the uncertainty in the predictions of response QoI. In Section 3, the optimal sensor placement
methodology for predicting response time histories of desirable QoI (virtual sensing) with the least
uncertainty is presented based on utility and information theory. In Section 4, models for the
model/prediction and measurement errors required in the formulation are introduced. Section85

5 discusses implementation issues and the importance of taking into account the uncertainties
in the input characteristics for optimizing the sensor placement. An application on a square
plate structure is used in Section 6 to demonstrate the capabilities and effectiveness of the OSP
methodology for reliable virtual sensing. Conclusions are drawn in Section 7.

2. Bayesian Virtual Sensing Using the Modal Expansion Method90

Consider a structural model used to predict the temporal variability of the response vector
z
(
t;ϕ
)
∈ Rnz (e.g. accelerations, displacements, strain or stresses) at nz locations given the

values of a structural model parameter set ϕ (e.g. stiffness, mass and damping related parameters)

and the excitation vector u (t) ∈ Rnu . Let D =
{
y(t) ∈ RN0

}
be the vector of response time

history data collected by placing N0 sensors in the structure. These data depend on the sensor95

configuration vector δ ∈ RN0 indicating the location and measurement direction of sensors placed
in a structure. The data may consist of either acceleration, displacement and strain measurements.
In what follows, a linear model of the structure is assumed. Also it is assumed that the excitation
time histories u (t) are not available.

2.1. Modal Expansion for Virtual Sensing100

Given output-only data y (t), the modal expansion technique is used to predict responses at

measured and unmeasured output QoI z
(
t;ϕ
)

using modal coordinates and mode shape vectors.
Based on the modal expansion technique, the measured displacement or strain response time
histories at N0 degrees of freedom (DOF) are given with respect to the modal coordinates by the
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mode superposition equation
y(t) = L(δ)Φ(ϕ)ξ(t) + e(t) (1)

where ξ(t) ∈ Rm is the vector of m modal coordinates satisfying the modal equations, L(δ) ∈ RN0×n

is the observation matrix that maps the displacements at all n model DOF to the measured
displacement or strain quantities indicated by the sensor location vector δ, Φ

(
ϕ
)
∈ Rn×m is the

displacement mode shape matrix corresponding to the n model DOF and m contributing modes,
and e (t) is a multi-variable zero-mean Gaussian noise term with covariance matrixQe that accounts
for measurement and model errors. The modal equation can be written as

ξ̈(t) + Z(ϕ)ξ̇(t) + Λ(ϕ)ξ(t) = ΦT (ϕ)Mu(t) (2)

where Λ is the diagonal matrix of the squares ω2
r of the modal frequencies ωr, Z is the diagonal

matrix with the r-th diagonal element equal to 2ωrζr, ζr is the modal damping ratio, and M ∈
Rn×nu is a matrix of zeros and ones associating the independent excitations in the vector u(t) to the
DOF of the structural model. Displacement, strain and/or stress predictions at output locations
or DOF are given by the prediction equation

z(t) = Ψ(ϕ)ξ(t) + ε(t) (3)

where Ψ(ϕ) ∈ Rnz×m are the corresponding displacement, strain and/or stress mode shapes that
relates the modal coordinates to displacement, strain and/or stress QoI, and ε (t) is a zero-mean
prediction error with covariance matrix Qε accounting for model error. The mode shape matrices
Φ
(
ϕ
)

and Ψ
(
ϕ
)

are available by analyzing the model (e.g. finite element model) of the structure.
It should be noted that formulation using equations (1) and (3) can also be used when the105

available measurements and predictions consist of accelerations. In this case the modal vector ξ (t)
in equations (1) and (3) refers to the second derivatives of the modal coordinates with respect to
time.

2.2. Bayesian Virtual Sensing

Bayesian inference is next used to estimate the modal vector parameter ξ(t) ≡ ξ(t; δ, ϕ) and its
uncertainties based on the data collected from a sensor configuration δ and then propagate these
uncertainties to predictions of output QoI z(t) ≡ z(t; δ, ϕ). The posterior probability distribution

function (PDF) p
(
ξ(t)|y(t), δ, ϕ

)
quantifying the in the modal coordinates ξ(t) at time t, given

the data y(t), the sensor configuration δ and the model parameters ϕ, takes the form

p
(
ξ(t)|y(t), δ, ϕ

)
∝ p

(
y(t)|ξ(t), δ, ϕ

)
p
(
ξ(t)|ϕ

)
(4)

where, using the assumption that e(t) in (1) follows a Gaussian distribution N(e(t)|0, Qe) with
mean 0 and covariance Qe, the likelihood takes the form

p
(
y(t)|ξ(t), δ, ϕ

)
= N

(
y(t)|L(δ)Φ(ϕ)ξ(t), Qe

)
(5)

The prior PDF p(ξ(t)|ϕ) is postulated to be a zero-mean Gaussian p
(
ξ (t) |ϕ

)
= N

(
ξ (t) |0, S

)
with covariance matrix S. Substituting (5) into (4) it is straightforward to show that the output
modal coordinates follow a multi-variable normal distribution [40, 43, 54]

p
(
ξ(t)|y(t), δ, ϕ

)
= N

(
ξ(t)|ξ̂(t; δ, ϕ),Σξ|D(δ, ϕ)

)
(6)
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with mean

ξ̂(t; δ, ϕ) =
[
ΦT (ϕ)LT (δ)Q−1

e (δ, ϕ)L(δ)Φ(ϕ) + S−1
]−1

ΦT (ϕ)LT (δ)Q−1
e (δ, ϕ)y(t) (7)

and covariance matrix

Σξ|D(δ, ϕ) =
[
ΦT (ϕ)LT (δ)Q−1

e (δ, ϕ)L(δ)Φ(ϕ) + S−1
]−1

(8)

Using (3) and (6) to propagate uncertainty to output QoI z(t), it can be readily obtained that
z(t) also follows a multivariable normal distribution

p
(
z(t)|y(t), δ, ϕ

)
= N

(
z(t)|ẑ(t; δ, ϕ),Σz|D(δ, ϕ)

)
(9)

with mean
ẑ(t; δ, ϕ) = Ψ(ϕ) ξ̂(t; δ, ϕ) (10)

that depends on the data, and covariance matrix Σz|D(δ, ϕ) given by

Σz|D(δ, ϕ) = Ψ(ϕ)
[
ΦT (ϕ)LT (δ)Q−1

e (δ, ϕ)L(δ)Φ(ϕ) + S−1
]−1

ΨT (ϕ) +Qε (11)

In particular, the variance of the i-th element zi(t; δ, ϕ) of the response vector z(t; δ, ϕ) is given by
the i-th diagonal element Σzi|D(δ, ϕ) of the covariance matrix Σz|D(δ, ϕ) as follows

Σzi|D(δ, ϕ) = ψTi (ϕ)
[
ΦT (ϕ)LT (δ)Q−1

e (δ, ϕ)L(δ)Φ(ϕ) + S−1
]−1

ψi(ϕ) +Qεi (12)

where ψi(ϕ) denotes the i-th column of the matrix ΨT (ϕ), and Qεi is the i-th diagonal element of110

the matrix Qε.
For a Gaussian prior PDF N(ξ(t)|0,Σξ) of the modal coordinate vector ξ(t), the prediction

of the QoI z prior to the data can be readily obtained from (3) to be Gaussian with mean zero
and covariance matrix Σz(ϕ) = Ψ(ϕ)Σξ(ϕ)ΨT (ϕ) +Qε, where Σξ(ϕ) = S is the covariance matrix
corresponding to the assigned prior distribution. In particular, the variance of the i-th element
zi(t;ϕ) prior to the data is given by

Σzi(ϕ) = ψTi (ϕ)Sψi(ϕ) +Qεi (13)

The posterior and prior variances Σzi|D(δ, ϕ) in (12) and Σzi(ϕ) in (13), described in terms of
the parameters ϕ and the sensor locations δ, are the main quantities involved in the next section
to solve the optimal sensor location problem for virtual sensing and response reconstruction. It is
clear that these variances are independent of the measurements/data y(t) and depend only on the115

structural model parameters ϕ, the model and measurement error covariances Qe and Qε, as well
as the covariance matrix S of the prior probability distribution of the modal coordinates ξ(t). For
practical convenience and without loss of generality, stationarity conditions are assumed, where
the covariance matrices Qe, Qε and S are independent of time t. As a results the posterior and
prior variances defined in (12) and (13) do not depend on time t. The parameters that define120

the model/prediction and measurement error covariances can be included in the parameter set ϕ.

A probability distribution p
(
ϕ
)

can be postulated to quantify the uncertainties in the values of
model and input characteristics involved in ϕ.

Note that the matrix ΦT (ϕ)LT (δ)Q−1
e (δ, ϕ)L(δ)Φ(ϕ) in (12) is nonsingular only if the number

of sensors is greater or equal to the number of modes. Thus, for for S = 0, the condition N0 ≥ m125

should be met in order for the system to be identifiable [35]. The prior covariance matrix S is
particularly important when the condition N0 ≥ m is not met. This matrix contributes subjective
information from the prior that allows the inversion of the matrix appearing in the first term of
(11) for values of N0 < m.
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3. Optimal Sensor Placement Formulation130

3.1. Expected Utility Using Information Gain

Information theory is next combined with utility theory to measure the usefulness of a sensor
configuration for reliable virtual sensing that is robust to modeling and measurement uncertainties.
The objective is to select the sensor locations that maximize the information contained in the data
for predicting with the least uncertainty the output response QoI at desirable locations. A measure
of the information gain for estimating a response QoI zi, given a set of data y and the model
parameters ϕ, is the Kullback-Leibler (KL-div) divergence [82] between the prior and posterior
probability distribution of the output QoI zi, defined for an experimental design δ as

D̃i(δ, y, ϕ) =

∫
Zi

p(zi|y, δ, ϕ) ln
p(zi|y, δ, ϕ)

p(zi|ϕ)
dzi (14)

For several output QoI included in the vector z, the measure can be extended to the weighted
average of the information gain for all possible output QoI, given as

D̃(δ, y, ϕ) =
Nz∑
i=1

wiD̃i(δ, y, ϕ) (15)

with
∑Nz

i=1 wi = 1, wi ≥ 0, where the values of the weight wi are selected to quantify the importance
of the i-th QoI zi in the design of the sensor configuration.

In the initial design phase the data are not available. Instead they can be generated by the
prediction error model equation (1) for given values of the model parameters ϕ and the probability
distribution of the prediction error term e(t). Following Lindley’s work [67], utility theory is used
to measure the usefulness of the experiment with the utility function selected to be the expected
value of the information gain in (15) over all possible values of the experimental data. Extending
the utility function to include the uncertainty in the model parameters ϕ as well, one introduces
the expected utility function

U(δ) =

∫
Φ̃

∫
Y

D̃(δ, ϕ, y) p(y, ϕ|δ) dy dϕ =
Nz∑
i=1

wiUi(δ) (16)

that quantifies the usefulness of learning from the data for predicting the output QoI included in
the vector z, in the presence of model and measurement uncertainties, where

Ui(δ) =

∫
Φ̃

∫
Y

D̃i(δ, ϕ, y) p(y, ϕ|δ) dy dϕ (17)

is the expected utility function that accounts for a component zi of the response QoI z, p(y, ϕ|δ) =
p(y|ϕ, δ) p(ϕ), p(y|ϕ, δ) is the uncertainty in the outcome y given the model parameters ϕ, and135

p(ϕ) is the uncertainty in the model parameters. The utility function defined in (16) and (17) is
an average of the information gain over all the possible data outcomes.

It is shown in Appendix A that the expected utility function Ui(δ) can be formulated in terms
of the change in the expected information entropy before and after the data are collected, given
by

Ui(δ) =

∫
Φ

Hzi(ϕ) p(ϕ) dϕ−
∫

Φ̃

∫
Y

Hzi|D(δ, y, ϕ) p(y|ϕ, δ) dy p(ϕ) dϕ (18)

6
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where Hzi(ϕ) is the prior information entropy in zi(t) given the model parameter set ϕ, and
Hzi|D(δ, y, ϕ) is the posterior information entropy in zi(t) given the data y and the model parameter
set ϕ. For Gaussian probability distribution of the response zi(t), the posterior information entropy
given the values of the data set and the model parameter set ϕ is given in terms of the i-th diagonal
component of the covariance matrix Σz|D(δ, ϕ) of the error in the estimate of z as follows

Hzi|D(δ, y, ϕ) ≡ Hzi|D(δ, ϕ) =
1

2
[ln (2π) + 1] +

1

2
ln det Σzi|D(δ, ϕ) (19)

Thus it depends on the sensor locations and the values of the parameters set ϕ, while it is inde-
pendent of the data. For the prior information entropy Hzi(ϕ) an expression similar to (19) holds
with the posterior Σzi|D(δ, ϕ) replaced by the prior Σzi(ϕ).140

Taking into account that the prior information entropy Hzi

(
ϕ
)

in (18) is constant, independent
of the sensor configuration δ, and that the posterior information entropy Hz|D(δ, y, ϕ) does not
depend on the data, the expected utility function Ui finally takes the form

Ui(δ) = −∆H̄i(δ) = −
[
H̄zi|D(δ)− H̄zi

]
= −1

2

∫
Φ̃

ln
Σzi|D(δ, ϕ)

Σzi(ϕ)
p(ϕ) dϕ (20)

where

H̄zi|D(δ) =

∫
Φ̃

Hzi|D(δ, ϕ) p(ϕ) dϕ (21)

and

H̄zi =

∫
Φ̃

Hzi(ϕ) p(ϕ) dϕ (22)

are respectively the expected posterior and prior information entropies over all possible values of
the model parameters ϕ, weighted by the PDF p(ϕ) of the model parameters.

Substituting (20) into (16), the expected utility function that accounts for all response entries
in the vector z takes the form

U(δ) = −∆H̄(δ) = −
nz∑
i=1

wi∆H̄i(δ) = −1

2

nz∑
i=1

wi

∫
Φ

ln r(δ, ϕ) p(ϕ) dϕ (23)

where r(δ, ϕ) is defined as the ratio

r(δ, ϕ) =
Σzi|D(δ, ϕ)

Σzi(ϕ)
(24)

Using equal weight values wi = 1/nz, the utility function takes the form

U(δ) = − 1

2nz

∫
Φ̃

ln

∏nz
i=1

[
Σzi|D(δ, ϕ)

]∏nz
i=1

[
Σzi(ϕ)

] p(ϕ) dϕ (25)

The integral in (23) or (25) are probability integral over the space of uncertain parameters ϕ. This
integral represents the robust information entropy change before and after the data are available,
weighted over all possible values of the model parameters quantified by the PDF p(ϕ). The145

multidimensional integral can be evaluated using Monte Carlo techniques or sparse grid methods
[84, 85]. It is verified in Appendix B that the ratio r(δ, ϕ) in Eqn. (24) cannot exceed the value of
1 and so the information entropy change is always non-positive or, equivalently the utility function
is non-negative as expected, meaning that there can be only information gain when placing a given
number of sensors in the structure.150
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3.2. Optimal Sensor Placement

The optimal sensor configuration δopt is obtained by maximizing the utility U (δ) or, equiva-
lently, minimizing the change in information entropy ∆H̄z|D(δ), with respect to the design variables
δ, that is

δopt = argδ maxU(δ) = argδ min ∆H̄z|D(δ) (26)

The optimal number of sensors in the sensor configuration can be estimated by monitoring the gain
in information as additional sensors are placed in the structure. Usually, after sufficiently number
of sensors are placed in the structure, the information gain using additional sensors is relatively
small and the process of adding sensors in the structure is terminated.155

The optimization in (26) may result in multiple local/global solutions [54]. The optimization
problem can be solved using continuous design variables δ accounting for the location of the sensors
over the physical domain of the structure or discrete design variables δ accounting for the discrete
locations (e.g. DOF at nodes for placing displacement/acceleration sensors or Gauss integration
points for placing strains sensors in a finite element mesh). Stochastic optimization algorithms,160

such as CMA-ES [86] and genetic algorithms [44, 87–89] can be employed in order to avoid prema-
ture convergence to a local optimum. Alternative heuristic forward and backward sequential sensor
placement (FSSP/BSSP) algorithms [53, 54] are effective in solving the optimization problem. The
heuristic algorithm bypasses the problem of multiple local/global optima manifested in optimal
experimental designs, providing near optima solutions in a fraction of the computational effort165

required in stochastic optimization algorithms or exhaustive search methods [51]. For a total of
Nall possible sensors positions and N0 sensors to be placed in the structure, for N0 relatively small
compared to Nall the FSSP algorithm requires approximately NF = N0Nall function evaluations,
while the BSSP algorithm requires approximately NB = Nall(Nall + 1)/2 function evaluations [53].
Although the computational effort for the BSSP is approximately NB/NF ≈ 0.5Nall/N0 times170

larger than the computational effort of FSSP and thus FSSP should be preferred for N0 << Nall,
the estimate from BSSP may in some cases be better than the FSSP estimate and thus the com-
bined estimate should be used in the optimization. More details are presented in the applications
section 6.

4. Model Prediction Error Formulation175

Following the analysis in Section 2.1, the prediction error e = emeas + emodel in (1) is partly
due to a term, emeas, accounting for the measurement error and partly due to a term, emodel,
accounting for the model error. Assuming that measurement and model errors are independent
and zero-mean Gaussian vectors with covariance matrices Qe,meas and Qe,model, the covariance of
the total prediction error is

Qe = Qe,meas +Qe,model (27)

To proceed with the optimal sensor placement design one has to select the values of the covariance
matrices Qe,meas and Qe,model. The selection depends on the nature of the problem analyzed. The
following selections follow the suggestions presented in [90]. For the measurement error term it is
reasonable to assume independence of the values of the errors from the intensity of the response so
that Qe,meas = s2I, where I is the identity matrix, and the level s depends on the sensor accuracy180

and characteristics.
A reasonable choice of the model error variance Q

(ii)
e,model at the i-th DOF is to have it pro-

portional to the square of the intensity of the QoI at DOF i, given by Q
(ii)
y . That is, we select

Q
(ii)
e,model = σ2

eQ
(ii)
y , where σe denotes the level of model error in relation to the intensity of the
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QoI. In this way, the level of model error is independent on the intensity of the response. In ad-
dition, a certain degree of correlation is expected for the model errors between two neighborhood
locations, arising from the underlining model dynamics [54]. This correlation can be taken into

account by selecting a non-diagonal covariance matrix Qe,model. The correlation Q
(ij)
e,model between

the predictions errors ei,model and ej,model at DOFs i and j, respectively, can be assumed to be

Q
(ij)
e,model =

√
Q

(ii)
e,modelQ

(jj)
e,model ρ(dij) (28)

so that it accounts for the spatial distance dij between the DOFs i and j, where ρ(dij) is a
correlation function satisfying ρ(0) = 1. However, in the experimental design phase where data
are not available, the actual errors and correlations should be postulated in order to proceed with
the design of the optimal sensor locations. Several correlation functions can be explored. For
demonstration purposes in this study, the following exponentially decaying correlation function is
assumed:

ρ(dij) = exp

(
−dij
λ

)
(29)

where λ is a measure of the spatial correlation length. However, the formulation in this work is
general and does not depend on the choice of the correlation model.

Using the aforementioned selections, the covariance matrix Qe in Eqn. (27), required in (12),
simplifies to

Qe = s2I + σ2
eQ̃

1/2
y RQ̃1/2

y (30)

where the notation Q̃ denotes a diagonal matrix that contains in i-th diagonal entry the quantity
Q

(ii)
y , Q̃1/2 represent a diagonal matrix with elements the square roots of the elements in Q̃, and185

R is the correlation matrix with the (i, j) element Rij equal to ρ(dij).
A similar formulation can be used for the variance Qεi involved in Eqn. (12) of the error εi for

the predicted QoI zi. In this case only the model error exists and the i-th diagonal element of the
covariance matrix can be selected to be

Qεi = σ2
εQzi (31)

were Qzi is the square of the intensity of the predicted QoI zi(t), and σε is the level of model error
in relation to the intensity of the predicted QoI.

The formulation for the errors and the mathematical structure of the ratio r(θ, ϕ) in Eqn.
(24) can be used to show a number of useful properties for the utility function and thus for190

the information gain. Specifically, in Appendix B.1 it is shown that as the measurement and
model/prediction errors increase for a given sensor configuration, the ratio r(θ, ϕ) increases and so
the utility function decreases. This indicates that the higher the errors, the less the information
gain from the sensor configuration. Finally, another important property shown in Appendix B.2
is that adding a sensor in an existing sensor configuration increases the information gain, which195

is similar to the results presented in [53] for parameter estimation. This should be expected since
as a sensor is added in an existing sensor configuration, there can be null or extra information
provided by this sensor. As a result, the maximum and minimum value of the utility function is
an increasing function of the number of sensors. Lastly, the spatially correlated structure of the
model error, introduced in Eqn. (29), has the important effect of avoiding clustering of sensors as200

it was theoretically shown in [54] for OSP for parameter estimation.
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5. Implementation

It should be noted that the estimate (10) of the response QoI z and the error in the estimate,
quantified by the covariance matrix Σz(δ, ϕ) in Eqn. (12), depends on the measurement/model
and prediction error covariance matrices Qe and Qε, as well as the covariance matrix S of the205

prior Normal distribution assumed for the modal coordinates ξ(t). The effect of the values of these
covariance matrices on the optimal sensor placement for response predictions is investigated in this
work.

The selection of the the covariance matrix S of the prior normal distribution should take into
account the relative contribution of the different modal coordinates on the response of the system.210

Such contribution depends highly on the excitation characteristics. Eqns. (30) and (31) also
suggest that the values of the covariance matrices Qe and Qε of the model prediction errors should
be carefully selected based on the intensity of the measured and predicted responses which are not
known at the OSP design phase. To proceed with rational selections, the intensities of measured
and predicted QoI have to be considered which depend on the characteristics of the excitation.215

Thus, the characteristics of the excitation have to be considered in the analysis in order to decide
on the values of the covariance matrices S, Qe and Qε upon which the OSP design will be based.
Failing to consider the intensity of the modal coordinates and the responses in the selection of
the prior and error covariance matrices may lead to OSP designs that are based on non-rational
choices of these error covariance matrices.220

Due to the uncertainty in the excitation characteristics the values to be assigned for the
model/prediction and measurement errors involve large uncertainty. We proceed with a thor-
ough investigation of the effect of the model/prediction and measurement errors as well as the
effect of the uncertainty in the prior distribution on the information gain and the optimal sensor
location. Finally, the robust design proposed in this work will take into account these uncertainties225

in the design of the optimal sensor configuration.
To demonstrate concepts, we assume a zero-mean stationary white noise excitation. We also

assume, without loss of generality, that the location of the excitation is known. Unknown locations
or multiple excitation components can as well be treated in the formulation. However, such an
analysis is beyond the scope of the present work. Using a linear model (e.g. a finite element
model) of the structure, one can readily obtain the covariance Qξ of the modal quantities, as well
as the covariance of the response QoI (displacements, velocities, strains and stresses) Qy and Qz.
These matrices can be used in Eqns. (30) and (31) to make the proper assignment for Qe and
Qε through the proper selection of the prediction error parameters σe, σε and s. Furthermore,
accepting that the excitation is white noise, it is also reasonable to assume that the covariance
of the prior distribution for ξ(t) is selected to be proportional to the covariance Qξ of the modal
quantities ξ(t), i.e.

S = α2Qξ (32)

where α quantifies the extend of the uncertainty in the prior distribution. This assignment will
correctly take into account the participation of each mode in the vibration analysis of the structure.

The analysis for estimating the covariance matrix Qξ of the modal coordinates and the covari-
ance matrices Qy and Qz of various response QoI is presented next based on the finite element
model of the structure and a discrete state space representation of the modal equations (2). Intro-

ducing the state space vector xTk =
[
ξT
k

ξ̇
T

k

]T
at time instant t = k∆t, where ξ

k
= ξ(k∆t) and

∆t is the sampling time of a signal, the modal equation (2) can be written in the discrete state
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space form
xk+1 = Axk +Buk (33)

where, using zero-order hold, the state space matrices are given as A = exp(Ac∆t) and B =
(A− I)A−1

c Bc with

Ac =

[
0 I
−Λ −Z

]
, Bc =

[
0

ΦTM

]
(34)

An output vector QoI hk at time t = k∆t, either it corresponds to measured quantities y or
predicted quantities z, can be written in the form

hk = Cxk +Duk (35)

where the matrices C and D relate the response QoI to the state vector and input load vector,
respectively. For displacement, strain or stress responses at all DOF of the structure, the matrices230

C = GΦ[ I 0 ] and D = 0, where the matrix G relates the displacement DOF with the output QoI
(displacements, strains and stresses). For acceleration responses the matrices C = GΦ[ −Λ −Z ]

and D = GΦΦTM . Here it is assumed that Φ is mass normalized. In particular, to estimate ξ̈
k

one uses (35) with C = [ −Λ −Z ] and D = ΦTM .
Assuming a scalar stationary zero-mean Gaussian white noise excitation with variance σ2

wn, the
covariance Qx of the state vector under stationary conditions is given by Qx = σ2

wnQ̄x, where Q̄x

can be obtained by solving the discrete Liapunov equation

AQ̄xA
T − Q̄x +BBT = 0 (36)

Using Eqn. (35), the covariance of the output response QoI in the vector h(t) is given by

Qh = σ2
wn(CQ̄xC

T +DDT ) (37)

and is proportional to the variance σ2
wn of the discrete white noise excitation. Setting h = y, or235

h = z, or h = ξ, the covariance matrices Qy, or Qz, or Qξ are obtained, required in the error
covariance matrices Qe and Qεi in Eqns. (30) and (31) and the prior distribution S in (32).

6. Applications

The methodology is demonstrated for a square plate structure modeled by thin-shell finite
elements (FE). The plate is fixed at the left edge. The model is meshed with 8-node shell elements240

containing 6 DOFs per node (Figure 1). To investigate the effect of mesh size on the optimal
sensor placement, two models are considered corresponding to different mesh types: a coarse and
a fine mesh. The coarse mesh model consist of 420 elements, 441 nodes, while the fine mesh model
consists of 3660 elements and 3721 nodes. Linear elastic behavior is assumed. The lowest eight
natural frequencies of the models for the coarse and fine mesh are presented in Table 1.245

6.1. Strain Predictions using Strain Observations

Normal strain measurements and predictions are considered along the x direction at the mid-
points of all finite elements of the plate surface comprising the mesh. OSP of strain sensors is
performed for predicting the strains at all finite elements of the mesh (Figure 1). Contribution of
the lower eight modes to the dynamic behavior of the plate is assumed in designing the optimal250

location of sensors.
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Table 1
Modal frequencies of the plate modelled with coarse and fine mesh

(Hz)FrequencyNatural Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8
Coarse mesh 0.956 2.344 5.897 7.520 8.563 14.989 17.176 17.895
Fine mesh 0.956 2.344 5.868 7.497 8.532 14.934 16.909 17.696

% difference 0.00 0.00 0.49 0.31 0.36 0.37 1.55 1.11

(a) (b)

Fig. 1. Square thin plate with left edge fixed (shown in red line); (a) coarse mesh, (b) fine mesh

6.1.1. Model/prediction errors, measurement error and prior distribution

Reasonable choices of the error parameters s, σe and σε involved in the covariance matrices
Qe and Qε in (30) and (31) of the model/prediction and measurement error models are next
considered. For this, it is assumed that the plate is subjected to a concentrated load applied at255

the right bottom corner A, as shown in Figure 1. A broad band excitation is considered, modeled
by a discrete Gaussian white noise sequence with standard deviation σwn. To select the standard
deviation s of the measurement error, the intensity of the normal strain responses along the x
direction predicted for white noise input are computed and shown in Figure 2a and Figure 2b
for the coarse and fine mesh, respectively. The intensity of a response QoI zi is quantified by260

the standard deviation Q
1/2
zi computed by solving the Liapunov equation (36) and using Eqn.

(37). The results in Figure 2 are normalized with respect to the intensity σwn of the white noise
input. Approximately 98% of the computed intensities of the strains in all plate elements are
greater than εmin ≡ Q

1/2
z,min = 10−6, while the maximum strain intensity value is approximately

εmax ≡ Q
1/2
z,max = 2x10−5 = 20εmin. To investigate the effect of measurement error, the parameter265

s of the error covariance matrix in Eqn. (30) is selected as shown in Table 2 to have four different
values corresponding to very small, small, moderate and large measurement error, respectively.
The σe of the model error and σε of the prediction error involved in Eqns. (30) and (31) are
selected to be σe = σε = 0.01 and 0.001 corresponding to small and very small model/prediction
errors, respectively. The case of uncorrelated prediction error is considered (λ = 0 in Eqn. (29)).270

The intensity of the modal coordinates ξ(t) predicted for white noise input are shown in Fig-
ure 2c. It is clear that the intensities of the modal coordinates vary considerably from mode to
mode. This reinforces the fact that the covariance of the prior distribution of the modal coordi-

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2021                   



(a) (b)

(c)

Fig. 2. Intensities of normal strains computed along the x direction at the middle of the finite elements of the

mesh (a) for coarse mesh, (b) for fine mesh. (c) Intensities of the modal coordinates Q
1/2
ξ as a function of the

number of modes.
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Table 2
Different measurement errors s assumed. εmin = Q

1/2
z,min ≈ 10−6 is the minimum value of the element strain that

cover 98% of the plate surface. εmax = Q
1/2
z,max ≈ 2x10−5 is the maximum value of the strain in the plate surface.

errorMeasurement s s/εmin s/εmax

Very small 10−9 10−3 5x10−5

Small 10−8 10−2 5x10−4

Moderate 10−7 10−1 5x10−3

Large 10−6 100 5x10−2

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

9

(a)

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

9

(b)

Fig. 3. Comparison of the maximum and minimum utility values as a function of the number of sensors obtained
from FSSP and BSSP algorithms for (a) coarse mesh and (b) fine mesh

nates should carefully be chosen using Eqn. (32) to take into account the different intensities of
each mode. These modal intensities highly depend on the spatial and temporal excitation charac-275

teristics (number and location of excitation, frequency characteristics, etc.). The value of α in (32)
is selected to be α = 102 and α = 1 corresponding respectively to large and small uncertainties in
the prior distribution of the modal coordinates ξ.

6.1.2. FSSP and BSSP algorithms

The results for the utility values obtained using the FSSP and BSSP algorithms for σe =280

σε = 0.01 (small model/prediction errors), s = 10−7 (moderate measurement error) and α = 102

(large prior uncertainty in modal coordinates) are compared in Figure 3 for coarse (Figure 3a) and
fine meshes (Figure 3b). The estimates from the two algorithms differ due to the fact that both
algorithms are heuristic and provide approximate values. In this specific case and for the coarse
mesh, the BSSP algorithm provides better solutions for the maximum and minimum utility for more285

than 8 sensors, while the FSSP algorithm provides better solution than the BSSP algorithm for 1
to 7 sensor. This observation is not consistent for the fine mesh where FSSP algorithms provides
better estimates for the minimum utility for all number of sensors, while the BSSP provides a
better estimate for the maximum utility for 7 sensors. Similar behavior for the accuracy of the
results provided from the FSSP and BSSP algorithms is observed for other error cases as well.290

To increase the reliability of the estimates arising from the two heuristic algorithms, the final
solution is taken from the combination of the FSSP and BSSP solutions. Specifically, for each
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sensor configuration containing a fixed number of sensors, the final maximum utility value is taken
to be Umax = max(UF,max, UB,max), where UF,max and UB,max are the maximum values estimated
from the FSSP and BSSP algorithms, respectively. Also, the optimal sensor placement is selected295

among the FSSP and BSSP optimal sensor placement that corresponds to the value of Umax. A
similar procedure is used for the minimum utility value, i.e. Umin = max(UF,min, UB,min). The
combined FSSP/BSSP result will be referred from here on as the sequential sensor placement
(SSP) estimate.

The use of BSSP to obtain results has the effect of raising substantially the computational cost300

in relation to FSSP. Specifically, comparing the number of function evaluations NF and NB for
the FSSP and BSSP algorithms one has that for N0 = 30 sensors that NB/NF = 0.5Nall/N0 ≈ 6
for the coarse mesh and NB/NF ≈ 60 for the fine mesh. The number of functions evaluations for
BSSP for the fine mesh is two order of magnitude larger than the one required for FSSP. Also, for
the spatially correlated prediction error case, the FSSP and BSSP requires the repeated solution305

of algebraic linear system of equations of size (see Eqn. (12)) as high as N0 and Nall, respectively,
raising substantially the computational effort for BSSP in relation to FSSP for the common case
for which the number of possible sensor locations Nall is usually much higher than number of
sensors N0 (Nall >> N0) in a sensor configuration.

6.1.3. Information gain versus number of sensors310

The SSP results for the maximum and minimum utility values as a function of the number of
sensors for the optimal and worst sensor configurations for up to 30 sensors are shown in Figure 4
for different measurement and model/prediction errors for both coarse (Figures 4a and 4c) and
fine (Figures 4b and 4d) meshes. Large prior uncertainty in the modal coordinates is assumed
(α = 102). Comparing the maximum utility values in Figures 4a and 4c for the coarse mesh with315

the corresponding maximum utility values in Figures 4b and 4d for the fine mesh, it can be seen
that the results are almost indistinguishable. Thus, the mesh size does not affect the maximum
value of the expected information gain, as it should be expected since the dynamic characteristics
from both meshes do not differ significantly as shown in Table 1. However, the mesh size affects
the minimum value of the information gain, providing substantially lower values of the utility for320

the fine mesh. This is due to the fact that a fine mesh contains significantly more finite elements
and thus more strain sensor locations with non-informative strains than the coarse mesh does. It
should be noted that the difference between maximum and minimum expected information entropy
values for a fixed number of sensors gives the maximum information gain that can be achieved by
employing the optimal sensor placement methodology.325

To interpret the results in Figure 4, it should be kept in mind that for eight contributing modes
one needs at least eight sensors in order for the information matrix in Eqn. (12) to be invertible
and the problem to be identifiable without the use of the subjective information from the prior
PDF of the modal coordinates. For less than eight sensors the information matrix in Eqn. (12) is
not invertible without prior information. The prior covariance matrix S of the modal coordinates330

provides the missing information required to make the problem identifiable. From the results in
Figure 4a, it is observed that the expected information gain steadily increases as one adds from one
to seven sensors due to the increase of the information from the data, and rises sharply from seven
to eight sensors due to the fact that eight sensors placed at their optimal positions provide the
necessary information without the need of the small complementary information from the prior.335

Normalized utility values obtained by dividing the maximum and minimum utility values in
Figure 4 by the utility values obtained by placing the maximum number of strain sensors at all
finite elements of the mesh (420 for coarse mesh and 3660 for fine mesh) are presented in Figure 5
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(a) (b)

(c) (d)

Fig. 4. SSP results for maximum and minimum utility values for model/prediction error σe = σε = 0.001 (a,b)
and σe = σε = 0.01 (c,d) obtained for the coarse (a,c) and fine (b,d) meshes. Results are presented for different

measurement errors s as shown in the legend and for α = 102. The horizontal lines are the maximum utility values
that can be achieved by using strain sensors at all finite elements of the coarse and fine meshes.

for each measurement and model/prediction error case. By tracking the maximum normalized
information gain values as a function of the number of sensors, it is possible to decide on the340

number of sensors to be kept in an optimal sensor configuration. One should stop adding sensors
in the structure when the information gained by additional sensors is not significant compared
to the information gained by the existing sensors, or when the information gained by a number
of sensors is a sufficiently large percentage of the maximum information that can be achieved by
placing sensors at all possible locations (e.g. all finite elements of the mesh in the plate problem).345

6.1.4. Information gain versus measurement error

As seen in Figure 5a and Figure 5b, for very small model error (σe = σε = 0.001) and for very
small (s = 10−9) to small (s = 10−8) measurement error, eight sensors placed at their optimal
positions account for approximately 97% to 93% of the maximum information that can be gained
by adding strain sensors at all possible locations. For moderate (s = 10−7) and large (s = 10−6)350

measurement error, eight optimally located sensors provide an information gain of the order of

16

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2021                   



(a) (b)

(c) (d)

Fig. 5. Normalized utility values for model/prediction error σe = σε = 0.001 (a,b) and σe = σε = 0.01 (c,d)
obtained for the coarse (a,c) and fine (b,d) meshes. Results are presented for different measurement errors s as

shown in the legend and for α = 102.
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84% and 79% for the coarse mesh and 79% and 70% for the fine mesh compared to the maximum
information gain that can be achieved for the coarse and fine mesh, respectively. These lower
values are due to the fact that information extracted from sensors is affected by the model and
measurement errors. The higher the error, the less the information extracted from the sensors.355

Also comparing the normalized information gain values for the fine and coarse meshes, smaller
normalized information gain values are reported for the fine mesh due to the fact that in these
large error case the 3660 strain sensors provide more information than the 440 strain sensors placed
at all finite element of the fine and coarse mesh, respectively. Thus the normalizing quantity for
the fine mesh is highest for the fine mesh and as a result the normalized information gain values360

for the fine mesh appear smaller than the corresponding ones for the coarse mesh.
For the small measurement error cases (s = 10−9 and s = 10−8), 8 sensors placed at their

optimal positions provide most of the information for accurate response prediction (Figure 5).
Given that 8 sensors have been placed on the structure, there is very small gain in information (less
than 7%) if the plate is fully populated with sensors. This is mainly due to the fact that quality of365

the measurements is very good and/or the model error is small, so the number of sensors needed is
at most the number of sensors required for making the problem identifiable. For large measurement
errors in Figure 5, the quality of information deteriorate significantly due to measurements and/or
model error and so the minimum number of 8 sensors required for identifiability appears less
informative than the case of small measurement error. More than 8 sensors increase further370

the utility values, providing significant additional information to counterbalance the deteriorated
quality of the measurements.

Considering the cost of instrumentation, the process of placing more sensors optimally in the
structure in order to gain a higher percentage of the total information should be considered with
care and in some cases might not be justifiable (like in the case of small measurement and model375

error for the plate problem). Nevertheless, the final choice of the number of sensors to be placed
in the structure depends on the cost of instrumentation which may also affect the location of
sensors, especially for the cases where instrumentation cost depends on the location of a sensors.
For example, not easily accessible areas in a structure, such as underwater locations in off-shore
platforms or wind turbines [78], might substantially increase the cost of adding sensors in relation380

to the cost of instrumenting easily accessible areas. However, considering cost issues in designing
the sensor configuration falls outside the objectives of this work and the reader is referred to value
of information formulations (e.g. [79]).

Figure 6 and Figure 7 plots the information gain as a function of the measurement error s for
8, 30 and Nall sensors, for both the coarse and the fine mesh, where Nall is the number of finite385

elements in the coarse or fine mesh. For fixed number of sensors, the information gain decreases as
the measurement error increases. This is due to the fact that the quality of information contained
in measurements decreases due to higher noise to signal ratio and thus the information gain is lower
as the measurement error increases. The decrease is more pronounced for very small modeling error
(σe = σε = 0.001) since most of the error in this case, modelled in the covariance matrix Qe in (27),390

arises from the measurement error. For higher model error (σe = σε = 0.01) shown in Figures 6c
and 6d, the information gain values are less sensitive to the measurement error values of s = 10−9

(very small), s = 10−8 (small) and s = 10−7 (moderate), while there is a more pronounced drop in
information gain for large measurement error (s = 10−6). This insensitivity of the information gain
to smaller values of the measurement error is due to the fact that the larger value of model error395

dominates the very small to moderate measurement errors as seen by the mathematical model for
Qe in (30). The quality of information in the data will be further deteriorated only for sufficiently
large values of measurement error (here s = 10−6).
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Fig. 6. Information gain values versus measurement error for 8, 30 sensors and Nall sensors (Nall = 440 and 3660
respectively for the coarse and fine mesh), for α = 102 and α = 1; (a,b) σe = σε = 0.001, (c,d) σe = σε = 0.01,

(a,c) coarse mesh, (b,d) fine mesh.
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Fig. 7. Normalized information entropy versus measurement error for 8, 30 and Nall sensors (Nall = 440 and
3660 respectively for the coarse and fine mesh),for α = 102 and α = 1; (a,b) σe = σε = 0.001, (c,d) σe = σε = 0.01,

(a,c) coarse mesh, (b,d) fine mesh.
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Comparing the results in Figure 6 for values of α = 1 and α = 102 corresponding to small and
large prior uncertainty in the modal coordinates, it is clearly seen that the information gain for400

small prior uncertainty is less than the information gain for large prior uncertainty since significant
part of the information is provided from the more informative (due to narrower bounds) prior
distribution of the modal coordinates ξ(t), making the data effectively less informative. Comparing
the results in Figure 7, the decrease in the percentage information gain, normalized with respect to
the maximum information that can be achieved by fully populating the plate with strain sensors,405

is more pronounced as the measurement error increases. For example, 30 sensors placed at their
optimal position using α = 1 (narrower prior bounds) accounts for approximately 70% of the
information that can be gained from strain sensor placement as opposed to approximately 90%
of the percentage information gain that can be achieved with α = 102 (large prior uncertainty
bounds). This is expected since in the case of α = 1 the prior contains significant information in410

relation to the information provided from the data.

6.1.5. Optimal locations of strain sensors

Optimal strain sensor positions for 8 and 30 sensors are shown in Figure 8 and Figure 9 for
model/ prediction errors σe = σε = 0.001 and 0.01, respectively. The optimal sensor locations are
compared for different values of the measurement errors. Comparing Figure 8a and Figure 8b for 8415

sensors and Figure 8c and Figure 8d for 30 sensors, it can be seen that the results for the coarse and
the fine mesh are very similar for a given measurement error. For very small measurement error,
sensors are placed towards the right edge of the plate where strains are small compared to the
strains at the left side and middle area of the plate. The reason is that the OSP methodology for
predicting strain responses in all finite elements of the plate has a tendency to spread the sensors420

to cover the whole surface of the plate as long as the quality of information is very good over
the plate surface. In the very small measurement error case, the errors are much smaller than the
intensity of the strains and so signal to noise ratio is high and most strain locations in the plate are
informative. For large measurement errors, placing sensors in the right edge is avoided since the
signal to noise ratio decreases and the quality of information from sensors placed towards the right425

edge is substantially deteriorated. For higher model/prediction error values of σe = σε = 0.01
(see Figure 9) there is a tendency that the sensor move from left to the right, towards strains
with smaller intensities. This is due to the fact that higher model/prediction error dominates
the overall error, with the size of measurement error playing a lesser role in the optimal sensor
placement design. In this case, since the model error is assigned in each position as a fraction430

of the intensity of the strains measured in the respective positions, all positions on the surface
plate do provide similar information with the noise (here model error) to signal ratio to be the
same, thus the sensors towards the left edge are equally counted in the optimal sensor placement
methodology.

6.1.6. Effect of spatial correlation of model error435

It is observed in Figure 8(c,d) and Figure 9(c,d) that the 30 sensors placed optimally in the
structure are clustered in specific regions on the plate surface. The size of each clustering region
is proportional to the size of the finite element used for coarse and fine mesh. So clustering in
similar for both coarse and fine mesh sizes. To avoid sensor clustering one has to use the spatial
correlation function (29) [54] for the prediction error.440

The effect of correlation in the model error is next investigated as a function of the size of
measurement and model error. Figure 10 compares the optimal sensor locations for 30 sensors for
spatially uncorrelated (ρ = 0) and correlated (ρ = 0.1) prediction error models for different values
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(a) (b)

(c) (d)

Fig. 8. Best sensor positions obtained with model/prediction error σe = σε = 0.001 for 8 sensor for (a) coarse and
(b) fine mesh, and for 30 sensor for (c) coarse and (d) fine mesh.
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(a) (b)

(c) (d)

Fig. 9. Best sensor positions obtained with model/prediction error σe = σε = 0.01 for 8 sensor for (a) coarse and
(b) fine mesh, and for 30 sensor for (c) coarse and (d) fine mesh.
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of the measurement error and for model/prediction error equal to σe = σε = 0.01. The results
clearly indicate that for the correlated case clustering is avoided and the 30 sensors are more445

uniformly distributed over the surface of the plate for relatively small to moderate measurement
error. This is due to the fact that the model error dominates the prediction error for relatively small
measurement error and thus the measurement error has a small effect on the design of optimal
sensor locations. However, for large measurement error, clustering persists (Figure 10d) since the
measurement error is the dominant source of error compared to the model error. Thus model error450

and as a result the effect of spatial correlation structure of the model error is insignificant and
does not affect the design of the sensors for large (s = 10−6) values of the measurement error. So
the clustering problem reappears and the model error correlation structure has no effect on the
optimal sensor placement.

6.1.7. Effectiveness of optimal sensor configuration for response predictions455

The effectiveness of the best sensor configuration is next investigated using simulated mea-
surements. For this, simulated strain response time histories are generated from the model of the
plate subjected to white noise input at location A (Figure 1) and using up to eight contributing
modes. The simulations are generated using a sampling period ∆t = 0.01 and the standard de-
viation σwn = 1 of a Gaussian white noise sequence. To simulate measurement error (noise from460

sensors), zero mean Gaussian white noise with standard deviation 1% of the simulated response
at each time instant is added to generate the noise contaminated measurements. Alternatively,
to simulate model error, the measured data are simulated using a model with mass values for all
finite elements randomly perturbed by adding to the nominal mass values zero-mean Gaussian
distributed values with standard deviation equal to 5% of the nominal mass values.465

The relative error between the strain responses predicted by the modal expansion technique
given a fixed number of sensors and the simulated measurements are used to demonstrate the
effectiveness of the optimal sensor configuration in the presence of measurement or model error.
The relative strain error at each location is defined as the ratio of the root mean square error ε
between the predicted and measured responses over the root mean square value (intensity) of the
measured strain response time history, given by

εi,rel =

√
1
N

∑N
k=1 [ẑi (k)− zi (k)]2√
1
N

∑N
k=1 [zi (k)]2

(38)

where N is the number of data points in the time histories, ẑi (k) is the predicted values from the
nominal model based on the modal expansion Eqn. (10), and zi (k) is the simulated “measure-
ments” at the i-th DOF, and k indicates the time index corresponding to time instant tk = k∆t.

Figure 11(a,b) presents the results for the relative errors of the optimal sensor configuration
design for 8 sensors corresponding to information gain value of U = 8.38 (92% of the maximum470

that could be achieved by fully populating the plate surface with strain sensors), and for two
alternative sub-optimal sensor configurations for 8 sensors (Figure 11(c,d)) corresponding to lower
information gain value of U = 7.4 (81%) and for higher number of 10 sensors (Figure 11(e,f)) also
corresponding to lower information gain value of U = 7 (80%). For the optimal sensor configuration
cases the predictions are quite reliable with relative errors less than 2% and 0.8% over 90% of the475

surface of the plate for measurements simulated for noise and model error, respectively. The
errors are higher over 10% of the surface close to the right edge where strain level are very low
with high noise to signal ratio in the measured time histories. For both measurement errors
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(a) (b)

(c)

Uncorrelated

Correlated

(d)

Fig. 10. Comparison of optimal sensor placement for 30 sensors for the spatially uncorrelated (λ = 0) and
correlated (λ = 0.1) cases; σe = σε = 0.01, α = 102 and measurement error (a) very small (s = 10−9), (b) small

(s = 10−8), (c) moderate (s = 10−7), (d) large (s = 10−6).
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(Figure 11(a,c,e)) and model/prediction error (Figure 11(b,d,f)), the predictions from the optimal
sensor configuration (Figure 11(a,b)) are consistently better than the predictions obtained from the480

sub-optimal sensor configurations since the relative errors based on the optimal sensor configuration
are overall lower than the relative errors obtained from the sub-optimal sensor configurations over
the surface of the plate. In particular, for the case of measurement error, the predictions based on
a sensor configuration with higher number of 10 sub-optimal sensors (Figure 11e) are significantly
worse than the predictions from the optimal configuration containing less number of 8 sensors485

(Figure 11a), emphasizing the need of a cost-effective design of the sensor network in a structure.
It is also clear that the errors in response predictions obtained at the measured locations is lower
than errors in the predictions at other non-measured locations. Finally, it should be noted that
there exist sensor configurations corresponding to information gain values closer to the minimum
information gain (not shown in the figures) that provide relative errors higher than 100% which490

means that predictions can be completely unreliable from such non-optimal sensor configurations.
Figure 12 present relative error results for two optimal sensor configurations for 7 sensors

designed using large prior uncertainty (α = 102) in the modal coordinates and for two choices of
the covariance matrix S of the prior distribution. The first case corresponds to covariance matrix
of the prior proportional to the non-diagonal covariance matrix of the modal coordinates obtained495

for white noise input (see Eqn. (32)), while the second choice corresponds to diagonal isotropic
covariance matrix with strength proportional to the variance of the first modal coordinate (S =
α2Qξ(1, 1)I). In the first case the relative intensity of the modal coordinates is taken into account
in the definition of the prior covariance matrix, while in the second case this relative intensity is
ignored and all modal coordinates are equally considered in the definition of the covariance matrix500

S of the prior distribution. It can be seen that the error distribution ever the plate surface differ
for the two optimal design. Moreover, the relative errors in the predictions obtained from the
first optimal sensor configuration is lower than the errors obtained from the second optimal sensor
configuration, signifying the importance in considering the intensity of each mode, affected by the
excitation frequency content, in the choice of the prior.505

6.1.8. Robustness to model/prediction and measurement error uncertainties

Robust optimal sensor placement results are next obtained by taking into account the uncer-
tainties in the model/prediction error parameters σe and σε and the measurement error parameter
s. Specifically, the re-parameterization σe = σε = 10−βσ and s = 10−βs is used and uniform un-
certainty is assigned in the values of βσ and βs with bounds that cover the previously lower and510

upper values of these parameters. The distributions are selected to be βσ ∼ U(2, 3), βs ∼ U(6, 9),
where U(a, b) denotes a uniform distribution with lower bound a and upper bound b. This case
accounts for the realistic scenario of uncertain model/prediction and measurement errors assigned
in the formulation, arising mostly from the uncertain excitation intensities and frequency content
that have to be taken into account in the design of the optimal sensor configuration. The uncertain515

parameters βσ and βs are included in the nuisance parameter set ϕ and their uncertainty is taken
into account in the generalized utility function introduced in Eqn. (25). The sparse grid algorithm
[85] of order 4 is used to evaluate the integrals in Eqn. (25).

Results for the maximum robust information gain values are compared in Figure 13a and Fig-
ure 13b with the corresponding maximum information gain values obtained by fixing the uncertain520

error parameters values (σe, σε and s) to the minimum values by selecting βσ = 3 and βs = 9,
as well as maximum values by selecting βσ = 2 and βs = 6. The corresponding optimal sensor
locations are compared in Figure 13c and Figure 13d. It can be seen that the robust informa-
tion gain estimates differ from the estimates obtained from the fixed minimum and maximum
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Relative error in response predictions with 8 optimally located strain sensors corresponding to
information gain U = 8.38 (92%) (a,b), with alternative sensor locations with 8 sensors corresponding to

information gain U = 7.4 (81%) (c,d) and with 10 sensors corresponding to information gain U = 7 (77%) (e,f);
(a,c,e) for measurement error, (b,d,f) for model error. The location of sensors are shown with the box-cross

symbols in each subfigure. (σe = σε = 0.01, s = 10−7 and α = 102)
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(a) (b)

Fig. 12. Relative error in response prediction with 7 best sensor positions (a) with S = α2Qξ and (b) with
S = α2Qξ(1, 1)I. (σe = σε = 0.01, s = 10−7 and α = 102)

values of the model/prediction and measurement error parameters. As expected the results for525

the robust information gain values are found between the information gain values using the mini-
mum or maximum values of the error parameters. The optimal sensor configuration proposed by
the robust OSP methodology differ from the optimal sensor configuration obtained by the OSP
methodology corresponding to minimum values of the error parameters. Specifically, for the very
small model/prediction error case the sensors tend to be placed towards the right edge of the plate530

since, despite the smaller strain intensity in this area, the noise to signal ratio is very small and
thus the measurements from this right edge are also informative. The robust OSP design seem to
be closer to the OSP design corresponding to the maximum values of the error parameters. This
is due to the high measurement and model/prediction errors that are taken into account in the
assigned probability distribution of the error parameters. As a result, sensors designed according535

to the robust information gain are placed farther away from the right edge of the plate due to
larger noise to signal ratio in the locations close to the right edge.

6.2. Strain Predictions using Displacement Observations

The methodology is next applied to the case where displacement sensors are used for predicting
strains at the midpoints of all finite elements of the coarse mesh. Displacement sensors measure540

out-of-plane displacements at the nodes of the mesh, perpendicular to the plate surface. As
before, the number of contributing modes are kept to eight. For choosing the measurement and
model/prediction error parameters, the intensity of the displacement responses at all nodes of the
finite element mesh to a white noise excitation at the right lower corner of the plate (point A in
Figure 1) are shown in Figure 14. Based on the results in this figure the measurement errors can545

now be selected as in Table 3.
Uncertainties in the model/prediction error parameters σe and σε and the measurement error

parameter s are accounted for in the sensor placement design. As before, the re-parameterization
σe = σε = 10−βσ and s = 10−βs is used and uniform uncertainty is assigned in the values of βσ and
βs with bounds to cover the lower and upper values of these parameters shown in Table 3. Thus,550

the distributions are selected to be βσ ∼ U(2, 3), βs ∼ U(4, 7).
Results for the maximum robust information gain values are compared in Figure 15(a,b) with

the corresponding maximum information gain values obtained for very small errors (βσ = 3 and
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(a) (b)

(c) (d)

Fig. 13. Comparison of best SSP robust results with best SSP results obtained from large and small
model/prediction and measurement error cases for the coarse mesh and strain sensors; (a) maximum utility

values, (b) normalized utility values; Optimal sensor placement for (c) 8 sensors, and (d) 30 sensors
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Fig. 14. Intensities of the displacement observation Q
1/2
y as a function of the number of modes for the coarse

mesh

Table 3
Different measurement errors assumed. dmin = Q

1/2
z,min ≈ 10−4 is the minimum value of the node displacements to

discrete white noise input with σwn that cover 92% of the plate surface. dmax = Q
1/2
z,max ≈ 5x10−3 is the maximum

value of the displacement to same white noise input.

errorMeasurement s s/dmin s/dmax

Very small 10−7 10−3 2x10−5

Small 10−6 10−2 2x10−4

Moderate 10−5 10−3 2x10−4

Large 10−4 100 2x10−2

βs = 7) as well as large errors (βσ = 2 and βs = 4). The corresponding optimal sensor locations
are compared in Figure 15(c) for 8 sensors and Figure 15(d) for 30 sensors. Comparing the results555

for the robust error case with the ones for small and large error cases, the results are found to be
qualitatively similar to the ones obtained for strain sensor measurements in Figure 13. Specifically,
the robust sensor placement design differ significantly from the design based on small error case,
while it is closer to the sensor placement design based on the large error case. The optimal location
of displacement sensors for the small error case tend to also cover the left fixed edge of the plate560

where displacements are relatively small compared to the middle and right locations of the plate
since the noise to signal ratio from these displacement locations is small and thus the measured
displacements, despite their relative small values, are informative. The optimal sensor placement
for large error tend to move towards the left edge of the plate where the displacements are usually
large and the noise to signal ratio is small. The locations close to the left edge (fixed support) of565

the plate are avoided in this case due to high noise to signal ratio for large measurement errors.
Figure 16(a,b) presents the results for the relative errors for the optimal displacement sensor

configuration for 8 sensors corresponding to information gain value of U = 7.3 (84%), and for two
alternative sub-optimal sensor configurations for 8 sensors (Figure 16(c,d)) corresponding to lower
information gain value of U = 6.8 (78%) and for higher number of 10 sensors (Figure 16(e,f)) also570

corresponding to lower information gain value of U = 6.6 (75%). Comparing the effectiveness of
the optimal and the two sub-optimal sensor configurations, the results are qualitatively similar
to the ones presented in Figure 11(a,b) for the strain sensor case. The relative errors for the
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(a) (b)

(c) (d)

Fig. 15. Comparison of best SSP robust results with best SSP results obtained from large and small
model/prediction and measurement error cases for the coarse mesh and displacement sensors; (a) maximum utility

values, (b) normalized utility values; Optimal sensor placement for (c) 8 sensors, and (d) 30 sensors
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optimal sensor configurations are lower than the relative errors for the two sub-optimal sensor
configurations for both 8 and 10 sensors and for both measurement (Figure 16(1,c,e)) and model575

(Figure 16(b,d,f)) errors, pointing out the superiority of the optimal sensor configuration for reliable
response predictions.

Comparing Figure 15(a,b) with Figure 13(a,b), it is clear that the information gain values for
strain sensors in Figure 13(a,b) are higher than the information gain values for displacement sensors
in Figure 15(a,b). Thus, among the two type of strain and displacement sensors it is preferred580

to place in the structure strain sensors. This is also confirmed from the relative errors values for
the optimal sensor configuration obtained for the displacement sensors in Figure Figure 16(a,b).
These relative errors reach values as high as 13% and 1% for the simulated measurement error
and the model/prediction error cases, respectively, which are higher than the corresponding values
of 2% and 0.8% for strain sensors presented in Figure 11(a,b). The methodology proposed in585

this work can be extended to fuse sensors by optimally placing simultaneously displacement and
strain sensors for gaining the maximum information for response predictions with the smallest
uncertainty.

7. Conclusions

Using information and utility theory, the optimal sensor placement problem for reliable virtual590

sensing and response reconstruction is formulated based on the modal expansion technique as a
problem of maximizing a multi-dimensional integral quantifying the information gain from the
data. The framework provides optimal sensor configurations that are robust to uncertainties in
model parameters as well as in model/prediction and measurement errors. Such uncertainties are
usually not known in the initial optimal experimental design phase and thus need to be postu-595

lated using prior distributions. Sparse grid or Monte Carlo techniques can be used to estimate
the multidimensional integral that arises in the robust formulation. Computationally efficient
heuristic forward and backward sequential sensor placement strategies are combined to estimate
the near optimal sensor locations. Useful expressions are derived for the effect of measurement
and model/prediction errors on the information gained by a sensor configuration. As these errors600

increase, it was shown analytically that the information gain decreases. In addition, it was ana-
lytically derived that the information increases as one adds sensors in the structure, as it would
be intuitively expected.

The methodology was demonstrated by designing the optimal strain or displacement sensors
over a plate model of a structure. A thorough investigation was conducted on the effect of mea-605

surement and model/prediction errors, the size of the prior uncertainty in the modal coordinates,
the spatial correlation structure of the model error, the uncertainties in model/prediction and
measurement errors on the optimal sensor placement and the variation of the highest and lowest
utility (information gain) values as a function of the number of sensors. The issue of the effect of
the excitation characteristics on the design of the optimal sensor configuration was also pointed610

out. Excitation characteristics (locations, intensity and frequency content of excitations) affect
response intensities and thus the selection of the level of measurement errors due to sensor ac-
curacy and the model/prediction error levels due to different mechanisms activated/re-activated
from different excitation levels and/or excitation frequencies. It was demonstrated that sensor
accuracy (measurement error), related to noise to signal ratio, affected the optimal placement615

of sensors. The model/prediction error has also an effect on the optimal design. In particular,
when model/prediction error dominates the measurement error, the accuracy of the sensors plays
insignificant role in the design of the optimal sensor configuration. The level of noise to signal
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(a) (b)

(c) (d)

(e) (f)

.

Fig. 16. Relative error in response prediction with 8 optimally located displacement sensors corresponding to
information gain U = 7.3 (84%)(a,b), with alternative sensor locations with 8 sensors corresponding to

information gain U = 6.8 (78%) (c,d) and with 10 sensors corresponding to information gain U = 6.6 (75%) (e,f);
(a,c,e) for measurement error, (b,d,f) for model error. The location of sensors are shown with the box-cross

symbols in each sub-figure. (σe = σε = 0.01, s = 10−5)
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ratio are not known apriori since the intensity and frequency content of the excitation and thus
the level of measured response is not known. The size of model/prediction errors due to model620

inadequacy is also not known apriori. Thus a robust design is more rational to use in order to
better account for uncertainty in measurements and model/prediction errors. Such robust design
over wide uncertainty bounds of errors leads to optimal sensor placement designs that are closer
to the ones obtained for high measurement and model/prediction error, provided that measure-
ment error dominates the model/prediction error. The effectiveness of the optimal designs was625

validated against sub-optimal ones by comparing errors in the predictions between the modal ex-
pansion method and simulated, noise and/or model error contaminated, measurements. It was also
found that strain measurements are slightly more informative than displacement measurements for
virtual strain sensing.

The proposed OSP methodology is appropriate to use for reliably reconstructing responses630

that are important for providing data-driven safety and performance estimates of systems, as
well as reconstructing stress response time histories that are needed for predicting fatigue damage
accumulation.
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Appendix A. Proof of (18)

Substituting (14) into the inner integral of Eqn. (17) and using the properties of the logarithm
(ln(A/B) = lnA− lnB), one has∫

Y

D̃i(δ, ϕ, y) p(y, ϕ|δ) dy =

∫
Y

∫
Z

p(zi|y, δ, ϕ) ln p(zi|y, δ, ϕ) dzi p(y|ϕ, δ) dy

−
∫
Z

[∫
Y

p(zi|y, δ, ϕ) p(y|ϕ, δ) dy
]

ln p(zi|ϕ) dzi (A.1)

=

∫
Y

∫
Z

p(zi|y, δ, ϕ) ln p(zi|y, δ, ϕ) dzi p(y|ϕ, δ) dy

−
∫
Z

p(zi|ϕ, δ) ln p(zi|ϕ) dzi (A.2)

where the last equality is obtained by interchanging the order of integration of the double integral
in the second term of (A.1) and noting that∫

Y

p(zi|y, δ, ϕ) p(y|ϕ, δ) dy = p(zi|δ, ϕ) (A.3)

Introducing the prior information entropy

Hzi

(
ϕ
)

= −
∫
Z

p(zi|ϕ, δ) ln p(zi|ϕ) dzi (A.4)

of zi(t) given the model parameter set ϕ, and the posterior information entropy

Hzi|D(y, δ, ϕ) = −
∫
Z

p(zi|y, δ, ϕ) ln p(zi|y, δ, ϕ) dzi (A.5)
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of zi(t) given the data y and the model parameter set ϕ, the integral in (A.2) simplifies to640 ∫
Y

D̃i(δ, ϕ, y) p(y, ϕ|δ)dy = −
∫
Y

Hzi|D(y, δ, ϕ) p(y|ϕ, δ) dy +Hzi

(
ϕ
)

(A.6)

Eqn. (18) is readily obtained by substituting (A.6) into (17).

Appendix B. Properties of Information Gain (Utility Function)

For notational convenience, in the following analysis the dependence of the quantities on the
uncertain parameter set ϕ is dropped. From the mathematical structure of the covariance matrix
Σzi|D(δ) appearing in Eqn. (12), one can readily observe that the quantity Σzi|D(δ) is non-negative.
Also, for four matrices A1 ∈ Rn×n, B1 ∈ Rm×m, V ∈ Rm×n and U ∈ Rm×n, the following useful
property for the inverse of the sum of two matrices holds

(UTB1V + A1)−1 = A−1
1 − A−1

1 UT (B1 + V A−1
1 UT )−1V A−1

1 (B.1)

Setting A1 = S−1, B1 = Q−1
e , U = V = L(δ)Φ and applying (B.1), the covariance matrix Σzi|D(δ)

in (12) can be written in the alternative form

Σzi|D(δ) = ψT
i
S ψ

i
− ψT

i
SΦTLT (δ)

[
L(δ)ΦSΦTLT (δ) +Qe

]−1
L(δ)ΦSψ

i
+Qεi (B.2)

The ratio between the posterior and prior covariance matrices in Eqn. (24) can thus be simplified
in the form

rzi|D (δ) = 1−
(L(δ)ΦSψ

i
)T
[
L(δ)ΦSΦTLT (δ) +Qe

]−1
(L(δ)ΦSψ

i
)

ψT
i
S ψ

i
+Qεi

(B.3)

Taking into account that the matrices S and L(δ)ΦSΦTLT (δ) +Qe are semi-positive definite and
that Qεi > 0, it can be concluded that the second term in (B.3) is non-negative and thus the value
of the ratio is always less than or equal to one, i.e. rzi|D (δ) ≤ 1. As a results the utility function,645

quantifying the information gain from the data for least uncertainty in the response prediction, is
always greater than or equal to zero.

Appendix B.1. Effect of Modelling and Measurement Errors

Next we examine the effects of measurement and models errors quantified by the matrices
Qe and Qε. The higher the value of the prediction error variance Qεi , the higher the value of
the denominator ψT

i
S ψ

i
+ Qεi in (B.3) and the smaller the information gained by the sensor

configuration. Let now Q
′
e be an error covariance matrix similar to (30), corresponding to higher

values of the measurement and model error, so that it admits the representation Q
′
e = Qe + ∆Qe,

where ∆Qe is positive definite matrix. This representation is true for the case where the values
of σe and/or σem in Eqn. (30) are increased to represent higher measurement and/or modeling
error. Substituting Q

′
e in place of Qe in Eqn. (B.3) and using the expansion (B.1) for the inverse

of [L(δ)ΦSΦTLT (δ) +Q
′
e] = [L(δ)ΦSΦTLT (δ) +Qe + ∆Qe] by setting A = [L(δ)ΦSΦTLT (δ) +Qe],

B = ∆Qe and U = V = I, the following expression for the new ratio r
′

zi|D (δ) corresponding to the

error covariance matrix Q
′
e arises

r
′

zi|D (δ) = rzi|D (δ) +
gT
[
∆Qe + (L(δ)ΦSΦTLT (δ) +Qe)

−1
]−1

g

ψT
i
S ψ

i
+Qεi

(B.4)
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where g = (L(δ)ΦSΦTLT (δ) + Qe)
−1(L(δ)ΦSψ

i
). The numerator in the second term in the right

hand side of (B.4) is positive due to the fact that both the matrices ∆Qe and (L(δ)ΦSΦTLT (δ) +650

Qe) are positive definite matrices. Thus the ratio r
′

zi|D (δ) > rzi|D (δ) which implies that the

information gain decreases as the measurement and model/prediction errors increases. As the
model or measurement errors σe, σε and σem become very large (in the limit as errors approach
infinity), the ratio rzi|D(δ) between the posterior and prior covariance matrices approach zero and
the information gain is zero, independent of the number of sensors placed in the structure.655

Appendix B.2. Utility versus Number of Sensors

Consider a sensor configuration δ and a new sensor configuration δ1 which consists of the
sensors in the configuration δ and one additional sensor placed in the structure. We will show that
the utility value for the sensor configuration δ1, containing an extra sensor, cannot be lower than
the utility value of the sensor configuration δ, that is, Ui(δ1) ≥ Ui(δ). Let L(δ1) and Q̃e be the
sensor locator matrix and covariance error matrices in Eqn. (24) for rzi|D(δ1) corresponding to the
augmented sensor configuration δ1. Then one has the partitions

LT (δ1) =
[
LT (δ) `1

]
, Q̃1,e =

[
Qe q

1

qT
1

Q0

]
and Q̃−1

1,e =

[
Q̃−1
e p

1

pT
1

p−1
0

]
(B.5)

where using the properties of the inverse of a partitioned matrix Q̃e one has

p0 = Q0 − qT1Q
−1
e q

1
(B.6)

Q̃e = Qe − q1
Q−1

0 qT
1

(B.7)

Q̃−1
e = Q−1

e + ∆Q̃e (B.8)

∆Q̃e = Q−1
e q

1
[Q0 − qT1Q

−1
e q

1
]−1qT

1
Q−1
e (B.9)

and p
1

depends on the partitions of Q̃1,e. Eqn. (B.7) was derived using the identity in (B.1). Using

the third of (B.5) and (B.7), the quantity LT (δ1)Q−1
1,eL(δ1) involved in the ratio rzi|D(δ1) simplifies

to660

LT (δ1)Q−1
1,eL(δ1) =

[
LT (δ) `1

] [ Q̃−1
e p

1

pT
1

p−1
0

] [
L(δ1)
`T1

]
(B.10)

=
[
LT (δ) `1

] [ Q−1
e 0

0T 0

] [
L(δ)
`T1

]
+ LT (δ1)

[
∆Q̃−1

e p
1

pT
1

p−1
0

]
L(δ1)(B.11)

= LT (δ)Q−1
e L(δ) + LT (δ1)∆Q̃1,eL(δ1) (B.12)

where

∆Q̃1,e =

[
∆Q̃−1

e p
1

pT
1

p−1
0

]
(B.13)

Note that p0 in (B.6) is positive since it is the diagonal element of the inverse of a covariance
matrix. Thus ∆Q̃e in (B.9) is a positive definite matrix and as a result ∆Q̃1,e in (B.13) is also a
positive definite matrix.

Substituting in the numerator in Eqn. (24) for the sensor configuration δ1, setting E =
ΦTLT (δ)Q−1

e L(δ)Φ + S−1 and using (B.1) with A = E, B = ∆Q̃1,e and U = V = L(δ1)Φ,665
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the ratio r(δ1) for the sensor configuration δ1 takes the form
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(B.14)

where
Z(δ1) = E−1ΦTLT (δ1)[∆Q̃1,e + L(δ1)ΦE−1ΦTLT (δ1)]−1L(δ1)ΦE−1 (B.15)

from which it follows that rzi|D(δ1) ≤ rzi|D(δ) since the matrices ∆Q̃1,e, Qe, E and thus Z(δ1)
are symmetric and semi-positive definite. As a result Ui(δ1) ≥ Ui(δ) and thus the information
gained by adding a sensor in an existing sensor configuration, which is consistent with intuition.
Moreover, it is straightforward to conclude that the maximum information gain is an increasing670

function of the number of sensors.
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