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Abstract: In this paper, we present some new models for anisotropic compact stars within 
the framework of 5-dimensional Einstein-Gauss-Bonnet (EGB) gravity with a linear and 
nonlinear equation of state considering a metric potential proposed for Thirukkanesh and 
Ragel (2012) and generalized for Malaver (2014). The new obtained models satisfy all 
physical requirements of a physically reasonable stellar object. Variables as energy density, 
radial pressure and the anisotropy are dependent of the values of the Gauss-Bonnet 
coupling constant.  
Keywords: EGB Gravity, Compact Stars, Equation of State, Metric Potential, Coupling 
Constant 

1. Introduction  

   Mathematical modeling within the framework of the general theory of relativity has been 
used to explain the behavior and structure of massive objects as neutron stars, quasars, 
black holes, pulsars and white dwarfs [1,2] and requires finding the exact solutions of the 
Einstein-Maxwell system [3]. A detailed and systematic analysis was carried out by 
Delgaty and Lake [4] which obtained several analytical solutions that can describe realistic 
stellar configurations.  
    It is very important to mention the pioneering works of Schwarzschild [5], Tolman [6], 
Oppenheimer and Volkoff [7] and Chandrasekhar [8] in the development of the first 
theoretical models of stellar objects. Schwarzschild [5] obtained interior solutions that 
allows describing a star with uniform density, Tolman [6] generated new solutions for static 
spheres of fluid, Oppenheimer and Volkoff [7] studied the gravitational equilibrium of 
neutron masses using the equation of state for a cold Fermi gas and general relativity and 
Chandrasekhar [8] produced new models of white dwarfs in presence of relativistic effects. 
Some of these results have been extended to higher dimensions and the dimensionality of 
space-time apparently influence the stability of these fluid spheres [9].  
   Recently, astronomical observations of compact objects have allowed new findings of 
neutron stars and strange stars that adjust to the exact solutions of the 4-D Einstein field 
equations and the data on mass maximum, redshift and luminosity are some of the most 
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relevant characteristics for verifying the physical requirements of these models [10].  A 
great number of exact models from  the Einstein-Maxwell field equations have been 
generated by Gupta and Maurya [11], Kiess [12], Mafa Takisa and Maharaj [13], Malaver 
and Kasmaei [14], Malaver [15,16], Ivanov [17] and Sunzu et al [18]. In the development 
of these models, several forms of equations of state can be considered [19].   Komathiraj 
and Maharaj [20], Malaver [21], Bombaci [22], Thirukkanesh and Maharaj [23], Dey et al. 
[24] and Usov [25] assume linear equation of state for quark stars. Feroze and Siddiqui [26] 
considered a quadratic equation of state for the matter distribution and specified particular 
forms for the gravitational potential and electric field intensity. MafaTakisa and Maharaj 
[13] obtained new exact solutions to the Einstein-Maxwell system of equations with a 
polytropic equation of state. Thirukkanesh and Ragel [27] have obtained particular models 
of anisotropic fluids with polytropic equation of state which are consistent with the reported 
experimental observations. Malaver [28] generated new exact solutions to the Einstein-
Maxwell system considering Van der Waals modified equation of state with polytropic 
exponent. Tello-Ortiz et al. [29] found an anisotropic fluid sphere solution of the Einstein-
Maxwell field equations with a modified version of the Chaplygin equation of state. 
   The analysis of compact objects with anisotropic matter distribution is very important, 
because that the anisotropy plays a significant role in the studies of relativistic spheres of 
fluid [30-42].   Anisotropy is defined as Δ = 𝑝௧ − 𝑝௥where 𝑝௥ is the radial pressure and 𝑝௧ is 
the tangential pressure. The existence of solid core, presence of type 3A superfluid [43], 
magnetic field, phase transitions, a pion condensation and electric field [25] are most 
important reasonable facts that explain the presence of tangential pressures within a star. 
Many astrophysical objects as X-ray pulsar, Her X-1, 4U1820-30 and SAXJ1804.4-3658 
have anisotropic pressures. Bowers and Liang [42] include in the equation of hydrostatic 
equilibrium the case of local anisotropy. Bhar et al. [44] have studied the behavior of 
relativistic objects with locally anisotropic matter distribution considering the Tolman VII 
form for the gravitational potential with a linear relation between the energy density and the 
radial pressure. Malaver [45-46], Feroze and Siddiqui [26,47] and Sunzu et al.[18] obtained 
solutions of the Einstein-Maxwell field equations for charged spherically symmetric  
space-time by assuming anisotropic pressure. 
   The behavior and dynamics of the gravitational field can be extended to higher 
dimensions [48]. The history of higher dimensions goes back to the work done by Kaluza 
[49] and Klein [50] who introduced the concept of extra dimensions in addition to the usual 
four dimensions (4-D) to unify gravitational and electromagnetic interactions. In general 
theory of relativity, the results obtained in four dimensions can be generalized in higher 
dimensional context and study the effects due to incorporation of extra space-time 
dimensions [51]. Within this framework, a very useful and fruitful generalization is the 
Einstein-Gauss-Bonnet gravity, which has generated a lot of interest among researchers and 
has been influenced by many scientists working in this field [52]. The modeling of compact 
objects in EGB gravity has shown that some physical variables are modified when they are 
compared to their 4-D counterparts, but the condition of the Schwarzschild constant density 
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sphere has been demonstrated in EGB gravity [10]. Recently, Bhar et al. [53] performed a 
comparative study of compact objects in five dimensions (5-D) between EGB gravity and 
classical general relativity theory and found that many features as stability, causality and 
energy conditions remain unaffected in the stellar interior.  
   In this work, we have used the Thirukkanesh-Ragel-Malaver ansatz [27,37,54] in order to 
generate some stellar models with anisotropic matter distribution in EGB gravity. The 
system of field equations has been solved to obtain analytic solutions which are physically 
acceptable. The paper is organized as follows: In Section.2, we present the framework of 
EGB gravity. The modified Einstein-Maxwell field equations with the Gauss-Bonnet 
coupling constant are presented in Section.3. With the Thirukkanesh-Ragel-Malaver ansatz, 
we generate some models of an anisotropic star with a linear and nonlinear equation of state 
within EGB gravity in Section.4. In Section. 5, physical requirements for the new models 
are described. In Section.6, a physical analysis of the new solutions is performed. In final 
Section, we conclude.  
 

2.  Einstein-Gauss-Bonnet Gravity 
 
   The Gauss-Bonnet action in five dimensions can be written as 
 

         𝑆 = ∫ ඥ−𝑔 ቂ
ଵ

ଶ
(𝑅 + 𝛼𝐿ீ஻)ቃ 𝑑ହ𝑥 + 𝑆௠௔௧௧௘௥                                                                        

(1)    

where α is the Gauss-Bonnet coupling constant. The strength of the action LGB lies in the 

fact that despite the Lagrangian being quadratic in the Ricci tensor, Ricci scalar and the 
Riemann tensor, the equations of motion turn out to be second order quasi-linear which are 
compatible with Einstein’s theory of gravity [52,53].  
    The EGB field equations may be written as  

  
    𝐺௔௕ + 𝛼𝐻௔௕ = 𝑇௔௕                                                                                       
(2) 

   where 𝐺௔௕ represents the Einstein tensor,  𝑇௔௕ is the total energy-momentum tensor and 
the Lanczos tensor 𝐻௔௕is given by   

          𝐻௔௕ = 2(𝑅𝑅௔௕ − 2𝑅௔௖𝑅௕
௖ − 2𝑅௖ௗ𝑅௔௖௕ௗ + 𝑅௔

௖ௗ௘𝑅௕௖ௗ௘) −
ଵ

ଶ
𝑔௔௕𝐿ீ஻                                         

(3)        

where the Lovelock term has the form 

              𝐿ீ஻ = 𝑅ଶ + 𝑅௔௕௖ௗ𝑅௔௕௖ௗ − 4𝑅௖ௗ𝑅௖ௗ
                                                                             

(4) 
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3. Field Equations  
 

 The 5-dimensional line element for a static spherically symmetric space-time takes the 
form  
 
              𝑑𝑠ଶ = −𝑒ଶఔ(௥)𝑑𝑡ଶ + 𝑒2λ(௥)𝑑𝑟ଶ + 𝑟ଶ(𝑑θଶ + sinଶθ𝑑𝜙ଶ + 𝑠𝑖𝑛ଶ 𝜃 𝑠𝑖𝑛ଶ 𝜙 𝑑𝜓ଶ)                                
(5) 

where the metric functions 𝑒ఔand 𝑒ఒ
 are  the gravitational potentials. By considering the 

commoving fluid velocity as 𝑢௔ = 𝑒ିజ𝛿଴
௔

  , the EGB field equations (2) reduce to  
 

¨            𝜌 =
ଷ

௘రഊ௥య
൫4𝛼𝜆′ + 𝑟𝑒ଶఒ − 𝑟𝑒ସఒ − 𝑟ଶ𝑒ଶఒ𝜆′ − 4𝛼𝑒ଶఒ𝜆′൯                                (6) 

 
         

             𝑝௥ =
ଷ

௘రഊ௥య
൫−𝑟𝑒ସఒ + (𝑟ଶ𝜈 ′ + 𝑟 + 4𝛼𝜈 ′)𝑒ଶఒ − 4𝛼𝜈 ′൯                                  (7)      

      
 

            

𝑝௧ =
1

𝑒ସఒ𝑟ଶ
൫−𝑒ସఒ − 4𝛼𝜈″ + 12𝛼𝜈 ′𝜆′ − 4𝛼(𝜈 ′)ଶ൯ + 

1

𝑒ଶఒ𝑟ଶ
(1 − 𝑟ଶ𝜈 ′𝜆′ + 2𝑟𝜈 ′ − 2𝑟𝜆′ + 𝑟ଶ(𝜈 ′)ଶ) + 

ଵ

௘మഊ௥మ
(𝑟ଶ𝜈″ − 4𝛼𝜈 ′𝜆′ + 4𝛼(𝜈 ′)ଶ + 4𝛼𝜈″)                                               (8) 

 
 
Here primes means a derivation with respect to the radial coordinates r and ρ is the energy 
density, 𝑝௥ is the radial pressure and 𝑝௧  is the tangential pressure. With the transformations   

𝑥 = 𝑐𝑟ଶ,𝑍(𝑥) = 𝑒ି2λ and𝑦ଶ(𝑥) = 𝑒2ν suggested by Durgapal and Bannerji [55] and with c>0 
as arbitrary constant, the field equations (6)-(8) can be written as follows  
 

                  
ఘ

௖
= −3𝑍̇ −

ଷ(௓ିଵ)(ଵିସఉ௓̇)

௫                                                                                               (9) 
   

           
௣ೝ

௖
=

ଷ(௓ିଵ)

௫
+

଺௓௬̇

௬
−

଺ఉ(௓ିଵ)௓௬̇

௫௬                                                                             (10) 
 

   

 

௣೟

௖
= 4𝑍[𝛽(1 − 𝑍) + 𝑥]

௬̈

௬
+ ቂ

ଶఉ௓(ଵି௓)

௫
− 2(𝑥 + 𝛽)𝑍̇ + 6𝑍 − 2𝛽𝑍𝑍̇ቃ

௬̇

௬
+ 2 ቂ

௓ିଵ

௫
+ 𝑍̇ቃ 

      (11) 

where 𝛽 = 4𝛼𝑐 contains the Gauss-Bonnet coupling constant α and dots denote 
differentiation with respect to 𝑥.  
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  In this paper, we imposed the following equations of state, linear and quadratic, 

respectively, relating the radial pressure to the energy density, where γ is a positive constant  
 

                                       𝑝௥ = 𝛾𝜌         and      𝑝௥ = 𝛾𝜌ଶ
                                                                      (12) 

 

4. The New Anisotropic Models 
  In this research, we take the form of the gravitational potential Z(x) as 𝑍 = (1 −

𝑎𝑥)ଶproposed for Thirukanesh and Ragel [27] and subsequently generalized by Malaver 
[37], taking as an arbitrary parameter. This potential is regular at the stellar center and well 
behaved in the interior of the sphere. Using Z(x) in equation (9), we obtain  
 
                     𝜌 = 𝑐(12𝑎 + 48𝑎ଶ𝛽 − 9(1 + 8𝑎𝛽)𝑎ଶ𝑥 + 24𝑎ସ𝛽𝑥ଶ)                                         (13) 
 
Substituting the equation (13) in the expression of the linear equation of state for the radial 
pressure (12), we have  
             

                𝑝௥ = 𝛾𝑐(12𝑎 + 48𝑎ଶ𝛽 − 9(1 + 8𝑎𝛽)𝑎ଶ𝑥 + 24𝑎ସ𝛽𝑥ଶ)
                                   (14)         

 
With Z(x) and (14) in equation (10), we have  
 

      

                                                                                                                                         (15)    
 
Integrating equation (15) with respect to 𝑦, we obtain  
 

                               𝑦(𝑥) = 𝑐ଵ(𝑎𝑥 − 1)஺(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)஻𝑒
಴

(ೌೣషభ)
                                                 (16) 

where the constants A, B and C are given by    
 

                               𝐴 = −
଼௔మఉమఊାଵ଴௔ఉఊାଷఊ

ଶ(௔ఉାଵ)మ                                                                          (17) 
                  

                          𝐵 = −
଺௔ఉఊାହఊିଵ

ଶ(௔ఉା )మ                                                                            (18)  

                          𝐶 = −
ఊିଵ

ଶ(௔ఉାଵ)                                                                                                      (19) 
 
and 𝑐ଵis the constant of integration. 
 

 
   

 
   

2 2 4 2

2 2

12 48 9 1 8 243 2

6 1 1 2 6 1 1 2

a a a a x a xa axy

y ax a ax ax a ax

   

 

       
           


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For the metric functions 𝑒ଶఒ and 𝑒ଶఔ ,we have  
 

                                𝑒ଶఒ =
ଵ

(ଵି௔௫)మ                                                                                                     (20) 

                             𝑒
ଶఔ = 𝑐ଵ

ଶ(𝑎𝑥 − 1)ଶ஺(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)ଶ஻𝑒
మ಴

(ೌೣషభ)

                                              (21) 

and the anisotropy can be written as   

Δ = 𝑝௧ − 𝑝௥ = [4𝛽𝑎𝑥𝑐(1 − 𝑎𝑥)ଶ(2 − 𝑎𝑥)

+ 4𝑥𝑐(1 − 𝑎𝑥)ଶ]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
(𝐴ଶ − 𝐴)𝑎ଶ

(𝑎𝑥 − 1)ଶ
+

2𝐴𝑎ଷ𝐵𝛽

(𝑎𝑥 − 1)(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)

−
2𝐴𝑎ଶ𝐶

(𝑎𝑥 − 1)ଷ
+

𝐵ଶ𝑎ସ𝛽ଶ

(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)ଶ

−
𝐵𝑎ସ𝛽ଶ

(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)ଶ
−

2𝐵𝑎ଷ𝛽𝐶

(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)

+
2𝐶𝑎ଶ

(𝑎𝑥 − 1)ଷ
+

𝐶ଶ𝑎ଶ

(𝑎𝑥 − 1)ସ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

+[4𝑎𝛽𝑐(1 − 𝑎𝑥)ଶ(𝑎𝑥 − 2) + 4𝑎𝑐(𝑥 + 𝛽)(1 − 𝑎𝑥) + 4𝑎𝛽(1 − 𝑎𝑥)ଷ] ቈ
𝐴𝑎

𝑎𝑥 − 1
+

𝐵𝑎ଶ𝛽

𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1

−
𝐶𝑎

(𝑎𝑥 − 1)ଶ
቉ 

−4𝑎𝑐(1 − 𝑎𝑥) − 2𝑎𝑐(𝑎𝑥 − 2) 

                                                                                                                                     (22)             

With the quadratic equation of state, we obtain for the radial pressure  

            𝑝௥ = 𝛾𝑐ଶ(12𝑎 + 48𝑎ଶ𝛽 − 9(1 + 8𝑎𝛽)𝑎ଶ𝑥 + 24𝑎ସ𝛽𝑥ଶ)ଶ
                                (23) 

and for the equation (10),we have              
௬̇

௬
=

ଷ௔(ଶି௔௫)

଺(ଵି௔௫)మ[ଵା௔ఉ(ଶି௔௫)]
+

ఊ௖మൣଵଶ௔ାସ଼௔మఉିଽ(ଵା଼௔ఉ)௔మ௫ାଶସ௔రఉ௫మ൧
మ

଺(ଵି௔௫)మ[ଵା௔ఉ(ଶି௔௫)]  

   (24) 

Integrating (24) with respect to 𝑦, we obtain   

 𝑦(𝑥) = 𝑐ଶ(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)஽(𝑎𝑥 − 1)ா𝑒
ಷೣయశಸೣమశಹೣశ

(ೌೣషభ)

                                  (25) 

Again the constants D, E, F, G, H and I are given by  

                      
𝐷 = −

ଵ଴଼௔మఉమ௖మఊାଵ଼଴௔ఉ௖మఊା଻ହ௖మఊିఉ

ଶ(௔ఉାଵ)మఉ
                                                    (26) 
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𝐸 = −

ସ଼௔యఉమ௖మఊା଺ଷ௔మఉ௖మఊାଵ଼௔௖మఊାଵ

ଶ(௔ఉାଵ)మ

                                                    
(27) 

                 
𝐹 = −

ଽ଺௔లఉమ௖మఊାଽ଺௔ఱఉ௖మఊ

ଶ(௔ఉାଵ)
                                                                                 (28) 

                 
𝐺 = −

ସ଼௔య௖మఊିସଷଶ௔రఉ௖మఊିସ଼଴௔ఱఉమ௖మఊ

ଶ(௔ఉାଵ)
                                                      (29)             

                 
𝐻 = −

ଷ଼ସ௔రఉమ௖మఊାଷଷ଺ యఉ௖మఊିସ଼௔మ௖మఊ

ଶ(௔ఉାଵ)
                                                    (30)    

                       
𝐼 = −

ଷ௔௖మఊାଵ

ଶ(௔ఉାଵ)
                                                                                                          (31) 

𝑐ଶ is the constant of integration. 
For the metric functions, we have 𝑒ଶఒ and 𝑒ଶఔ 
 

                                    𝑒
ଶఒ =

ଵ

(ଵି௔௫)మ                                                                                              (32) 

                   𝑒
ଶఔ = 𝑐ଶ

ଶ(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)ଶ஽(𝑎𝑥 − 1)ଶா𝑒
మ൫ಷೣయశಸೣమశಹೣశ಺൯

(ೌೣషభ)

                                    (33) 

For the anisotropy Δ ,we have  

Δ = 𝑝௧ − 𝑝௥

= [4𝛽𝑎𝑥𝑐(1 − 𝑎𝑥)ଶ(2 − 𝑎𝑥)

+ 4𝑥𝑐(1 − 𝑎𝑥)ଶ]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

(𝐷ଶ − 𝐷)𝑎ସ𝛽ଶ

(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)ଶ
+

2𝐷𝑎ଷ𝛽𝐸

(𝑎𝑥 − 1)(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)

+
2𝐷𝑎ଶ𝛽

(𝑎ଶ𝛽𝑥 − 2𝑎𝛽 − 1)
ቈ
3𝐹𝑥ଶ + 2𝐺𝑥 + 𝐻

𝑎𝑥 − 1
−

(𝐹𝑥ଷ + 𝐺𝑥ଶ + 𝐻𝑥 + 𝐼)𝑎

(𝑎𝑥 − 1)ଶ
቉

+
(𝐸ଶ − 𝐸)𝑎ଶ

(𝑎𝑥 − 1)ଶ
+

2𝐸𝑎

(𝑎𝑥 − 1)
ቈ
3𝐹𝑥ଶ + 2𝐺𝑥 + 𝐻

𝑎𝑥 − 1
−

(𝐹𝑥ଷ + 𝐺𝑥ଶ + 𝐻𝑥 + 𝐼)𝑎

(𝑎𝑥 − 1)ଶ
቉

+
6𝐹𝑥 + 2𝐺

(𝑎𝑥 − 1)
−

2(3𝐹𝑥ଶ + 2𝐺𝑥 + 𝐻)𝑎

(𝑎𝑥 − 1)ଶ
+

2(𝐹𝑥ଷ + 𝐺𝑥ଶ + 𝐻𝑥 + 𝐼)𝑎ଶ

(𝑎𝑥 − 1)ଷ

ቈ
3𝐹𝑥ଶ + 2𝐺𝑥 + 𝐻

𝑎𝑥 − 1
−

(𝐹𝑥ଷ + 𝐺𝑥ଶ + 𝐻𝑥 + 𝐼)𝑎

(𝑎𝑥 − 1)ଶ
቉

ଶ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

+[4𝑎𝛽𝑐(1 − 𝑎𝑥)ଶ(𝑎𝑥 − 2) + 4𝑎𝑐(𝑥 + 𝛽)(1 − 𝑎𝑥) + 4𝑎𝛽(1 − 𝑎𝑥)ଷ] ቈ
𝐷𝑎ଶ𝛽

𝑎ଶ𝛽𝑥 − 2𝑎𝛽𝑥 − 1

+
3𝐹𝑥ଶ + 2𝐺𝑥 + 𝐻 + 𝐸𝑎

𝑎𝑥 − 1
−

(𝐹𝑥ଷ + 𝐺𝑥ଶ + 𝐻𝑥 + 𝐼)𝑎

(𝑎𝑥 − 1)ଶ
቉ 

−4𝑎𝑐(1 − 𝑎𝑥) − 2𝑎𝑐(𝑎𝑥 − 2)                                               (34) 
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        5.  Physical Acceptability in EGB Gravity 
 
  For a model to be physically acceptable in EGB gravity, the following conditions should 
be satisfied [10,53]:  

(i)  The metric potentials 𝑒ଶఒand 𝑒ଶఔassume finite values throughout the stellar interior and 
are singularity-free at the center r=0.  

(ii)  The energy density ρ and the radial pressure 𝑝௥  should be positive inside the star.  
(iii) The anisotropy is zero at the center r=0, i.e. Δ(r=0) =0.     
(iv) The energy density and radial pressure are decreasing functions with the radial 

parameter, i.e.  
ௗ௣ೝ

ௗ௥
≤ 0 and  

ௗఘ

ௗ௥
≤ 0 both in EGB gravity. 

(v) Any physically acceptable model must satisfy the causality condition, that is, for the 

radial sound speed 𝑣௦௥
ଶ =

ௗ௣ೝ

ௗఘ
 ,we should have  0 ≤ 𝑣௦௥

ଶ ≤ 1 .  

(vi) The boundary of the star defined by r=R should be matched with the Einstein –Gauss-
Bonnet- Schwarzschild exterior solution given by  

          𝑑𝑠ଶ = −𝐹(𝑟)𝑑𝑡ଶ +
ௗ௥మ

ி(௥)
+ 𝑟ଶ(𝑑θଶ + sinଶθ𝑑𝜙ଶ + 𝑠𝑖𝑛ଶ 𝜃 𝑠𝑖𝑛ଶ 𝜙 𝑑𝜓ଶ)                                      (35) 

  where R is the radius of the star and  

               𝐹(𝑟) = 1 +
௥మ

ସఈ
ቆ1 − ට1 +

଼ெఈ

௥ర
ቇ                                                                             

(36) 

In Equation. (36) ,M  is associated with the gravitational mass of the hypersphere.  

6. Physical Features of the New Models    

 For the linear equation of state, the metric potentials 𝑒ଶఒand 𝑒ଶఔhave finite values and 

remain positive throughout the stellar interior. At the center   𝑒ଶఒ(଴) = 1  , 𝑒ଶఔ(଴) =

𝑐ଵ
ଶ(−1)ଶ஺(−2𝑎𝛽 − 1)ଶ஻𝑒ିଶ஼ .We show that in r=0 , ൫𝑒ଶఒ(௥)൯

௥ୀ଴

′
= ൫𝑒ଶఔ(௥)൯

௥ୀ଴

′
= 0 and it 

is verified that the gravitational potentials are regular at the center.  

  The energy density and radial pressure are positive and well behaved in the stellar interior. 
The obtained central density are 𝜌(𝑟 = 0) = 𝑎𝑐(12 + 48𝑎𝛽) and  𝑝௥(𝑟 = 0) =

𝛾𝑐(12𝑎 + 48𝑎ଶ𝛽) , both positive if a,β, c > 0.  

   In the surface of the fluid sphere r=R ,we have 𝑝௥(𝑟 = 𝑅) = 0 and is obtained for the 
radius of the star  
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𝑅 =

ටఉ௖ቀଶସ௔ఉା ඥ଺ସ௔మఉమାଵ଺௔ఉାଽቁ

ସ௔ఉ௖

                                        (37)      

Differentiating Eq. (13) and Eq. (14), the expressions for density and radial pressure 
gradient are given by  

              

ௗఘ

ௗ௥
= 3𝑎ଶ𝑐𝑟[−6(1 + 8𝑎𝛽) + 32𝑎ଶ𝛽𝑐𝑟ଶ]

                                                                                  (38) 

             

ௗ௣ೝ

ௗ௥
= 3𝛾𝑐ଶ𝑎ଶ𝑟[−6(1 + 8𝑎𝛽) + 32𝑎ଶ𝛽𝑐𝑟ଶ]

                                                                        (39)       

The radial sound speed for this model of compact star is obtained as  

                   

𝑣௦௥
ଶ =

ௗ௣ೝ

ௗఘ
= 𝛾

                                                                                                      
(40)   

 

 For the physically acceptability of the model of anisotropic star, it should satisfy the 
causality condition, i.e. 0 ≤ 𝑣௦௥

ଶ ≤ 1. 
 Using the first fundamental form that consist in the continuity of the metric functions and 

their derivatives across the boundary r=R, we have  

      
ଵ

(ଵି௔௖ோమ)మ
=

ଵ

ଵା
ೃమ

రഀ
ቆଵିටଵା

ఴഀಾ

ೃర ቇ

                                                                           
(41)

 

 

  𝑐ଵ
ଶ(𝑎𝑐𝑅ଶ − 1)ଶ஺(𝑎ଶ𝛽𝑐𝑅ଶ − 2𝑎𝛽 − 1)ଶ஻𝑒

మ಴

(ೌ೎ೃమషభ) = 1 +
ோమ

ସఈ
ቆ1 − ට1 +

଼ఈ

ோర ቇ
                        (42) 

   
4 ቂ

஺௔௖

௔௖ మିଵ
+

஻௔మఉ௖

௔మఉ௖ோమିଶ௔ఉିଵ
−

஼௔௖

(௔௖ோమିଵ)మቃ 𝐶ଵ
ଶ(𝑎𝑐𝑅ଶ − 1)ଶ஺(𝑎ଶ𝛽𝑐𝑅ଶ − 2𝑎𝛽 − 1)ଶ஻𝑒

మ಴

ೌ೎ మషభ 

= −
ଵ

ଶఈ
቎

ଵିටଵା
ఴഀಾ

ೃర

ටଵା
ఴഀಾ

ೃర

቏
                                                                                                                                                                        

                                                                                                                                           (43) 
     

    and from the second fundamental form, we obtain   
 
         12𝑎 + 48𝑎ଶ𝛽 − 9(1 + 8𝑎𝛽)𝑎ଶ𝑐𝑅ଶ + 24𝑎ସ𝛽𝑐ଶ𝑅ସ = 0

                                             (44)      
The equations (41-44) are the conditions that allow determining the parameters a, A, B, C that 
describe the model.  
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With the quadratic equation of state, we have for the metric potentials   𝑒ଶఒ(଴) = 1  , 

𝑒ଶఔ(଴) = 𝑐ଶ
ଶ(−2𝑎𝛽 − 1)ଶ஽(−1)ଶா𝑒ିଶூ. Again in r=0 , it satisfies the condition  

൫𝑒ଶఒ(௥)൯
௥ୀ଴

′
= ൫𝑒ଶఔ(௥)൯

௥ୀ଴

′
= 0 verifying that also the gravitational potentials are 

singularity- free at the origin.  
  The radial pressure is positive throughout the fluid configuration and the central radial 

pressure is𝑝௥(𝑟 = 0) = 𝛾𝑐ଶ(12𝑎 + 48𝑎ଶ𝛽)ଶ , and is positive if a,β,γ, c > 0. For the radial 
pressure gradient, we have  

     

ௗ௣ೝ

ௗ௥
= 2𝛾𝑐ଶ[12𝑎 + 48𝑎ଶ𝛽 − 9(1 + 8𝑎𝛽)𝑎ଶ𝑐𝑟ଶ + 24𝑎ସ𝛽𝑐ଶ𝑟ସ][−18𝑎ଶ𝑐𝑟(1 + 8𝑎𝛽) + 96𝑎ସ𝛽𝑐ଶ𝑟ଷ]

              
(45) 
   
 For this case, the causality condition 0 ≤ 𝑣௦௥

ଶ ≤ 1  implies that  
                                                                                                                                                
                                    (46) 

Again, with the first fundamental form, we can obtain  

ଵ

(ଵି௔௖ோమ)మ
=

ଵ

ଵା
ೃమ

రഀ
ቆଵିටଵା

ఴഀಾ

ೃర ቇ

                                                                                (47)         

 

𝑐ଶ
ଶ(𝑎ଶ𝛽𝑐𝑅ଶ − 2𝑎𝛽 − 1)ଶ஽(𝑎𝑐𝑅ଶ − 1)ଶா𝑒

ଶி௖యோలାଶீ௖మோరାு௖ோమାଵ
௔௖ோమିଵ = 1 +

𝑅ଶ

4𝛼
ቌ1 − ඨ1 +

8𝛼𝑀

𝑅ସ
ቍ 

                                                                                                                                            (48)    

    

⎣
⎢
⎢
⎢
⎢
⎡

ସா௔௖

௔௖ோమିଵ
+

ସ஽௔మఉ௖

௔మఉ௖ோమିଶ௔ఉିଵ
+

ଵଶி యோరା଼ீ௖మோమାଶு஼

௔௖ோమିଵ
−

ଶ൫ଶி௖యோలାଶீ௖మோరାு௖ோమ൯௔௖

(௔௖ோమିଵ)మ ⎦
⎥
⎥
⎥
⎥
⎤

𝐶ଶ
ଶ(𝑎ଶ𝛽𝑐𝑅ଶ − 2𝑎𝛽 − 1)ଶ஽(𝑎𝑐𝑅ଶ − 1)ଶா𝑒

మಷ೎యೃలశమಸ೎మೃరశಹ೎ೃమశభ

ೌ೎ೃమషభ  

= −
ଵ

ଶఈ
቎

ଵିටଵା
ఴഀಾ

ೃర

ටଵା
ఴഀಾ

ೃర

቏

  

(49) 

and for the second fundamental form     

(12𝑎 + 48𝑎ଶ𝛽 − 9(1 + 8𝑎𝛽)𝑎ଶ𝑐𝑅ଶ + 24𝑎ସ𝛽𝑐ଶ𝑅ସ)ଶ = 0
                                                    (50)   

  From the equation (44) and considering some particular cases for the Gauss-Bonnet 

coupling constant, we can calculate the corresponding values of the parameter a . For α=1, 

2, 3, we obtain the values a=0.035; 0.0337; 0.03234, respectively. In all the cases was it has 

 2 2 2 2 4 2 42 12 48 9 1 8 24r
sr

dp
v c a a a a cr a c r

d
   


       
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been considered the radius R= 5.7 Km and c=1. The Figures 1 and 2 present the 

dependency of ρ and  
ௗఘ

ௗ௥
    with the radial coordinates, respectively. 

  

                            

Figure 1. Energy density against radial parameter for a= 0.035 and α=1 (solid 

line);  a=0.0337 and α=2 (long-dash line); a=0.03234 and α=3 (dashdot line).   

           

Figure 2. Energy density gradient against radial parameter for a= 0.035 and α=1 

(solid line);  a=0.0337 and α=2 (long-dash line); a=0.03234 and α=3 (dashdot 
line).   
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The Figures 3,4 and 5 show the dependence of 𝑝௥ , 
ௗ௣ೝ

ௗ௥
,  Δ ,respectively with the radial 

parameter in the linear regimen for the different values of coupling constant α  . In all the 

cases, it has been considered R= 5.7 Km, c=1and γ=1/3 .  

                       

Figure 3. Radial pressure against radial parameter in linear regimen for a= 0.035 

and α=1 (solid line);  a=0.0337 and  α=2 (long-dash line); a=0.03234 and α=3 
(dashdot line).   

    

Figure 4. Radial pressure gradient against radial parameter in linear regimen for a= 

0.035 and α=1 (solid line);  a=0.0337 and α=2 (long-dash line); a=0.03234 and α=3 
(dashdot line).   
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Figure 5. Anisotropy against radial parameter in linear regimen for a= 0.035 and 

α=1 (solid line);  a=0.0337 and α=2 (long-dash line); a=0.03234 and α=3 
(dashdot line).   

    In two cases, linear and quadratic, the energy density remains positive, continuous and is 
monotonically decreasing function throughout the stellar interior (Figure 1). It is also noted 
that the density increases with increasing α. The radial variation of energy density gradient 

has been shown in Figure 2, in which it is observed that 
ௗఘ

ௗ௥
< 0 in EGB gravity.  

   In the linear regimen, the radial pressure showed the same behavior by the energy 
density, that is, it is growing within the star and vanishes at a greater radial distance, but 

takes the higher values when α is increased and its results are shown in Figure 3. Again 

,according to Figure 4, the profile of 
ௗ௣ೝ

ௗ௥
  shows that radial pressure gradient is negative 

inside the stellar interior. The anisotropic factor is plotted in Figure 5 and it shows that 
vanishes at the centre of the star, i.e. Δ(r=0) =0 [30]. We can also note that Δ admits lower 
values when α increases.      

  The Figures 6,7,8 and 9 show the dependence of 𝑝௥ , 
ௗ௣ೝ

ௗ௥
,  𝑣௦௥

ଶ  and Δ  respectively with the 

radial coordinates  in the quadratic case for the different values of coupling constant α  . In 

all the cases, it has been considered R= 5.7 Km, c=1and γ=1/3 .  
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Figure 6. Radial pressure against radial parameter in quadratic regimen for a= 

0.035 and α=1 (solid line);  a=0.0337 and  α=2 (long-dash line); a=0.03234 and 

α=3 (dashdot line).   

                    

 Figure 7. Radial pressure gradient against radial parameter in quadratic regimen for a= 

0.035 and α=1 (solid line);  a=0.0337 and α=2 (long-dash line); a=0.03234 and α=3 
(dashdot line).   
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Figure 8. Radial sound speed against radial parameter in quadratic regimen for a= 0.035 

and α=1 (solid line);  a=0.0337 and α=2 (long-dash line); a=0.03234 and α=3 (dashdot 
line).   

                      

Figure 9. Anisotropy against radial parameter in quadratic regimen for a= 0.035 

and α=1 (solid line);  a=0.0337 and α=2 (long-dash line); a=0.03234 and α=3 
(dashdot line).   
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   As in the linear regimen, with the quadratic equation, the radial pressure always is 
positive inside the star and vanishes at a finite radial distance and its results are shown in 

Figure 6. Again, the radial pressure increases when α takes higher values.  In the Figure 7, 
it is also  

verified that the gradient  
ௗ௣ೝ

ௗ௥
 is negative in the stellar interior.

 
    A physically acceptable model must satisfy the causality condition, i.e., the radial sound 
speed must be within the range 0 ≤ 𝑣௦௥

ଶ ≤ 1. The profile of radial speed sound is plotted in 

Figure 8 for different values of coupling constant α. In all the cases 𝑣௦௥
ଶ  is in the expected 

range and is a monotonic decreasing function with the radial coordinates. Figure 9 shows 

that the anisotropy is zero at the center r=0 and its value increases towards the surface of 

the star. As in the linear case Δ takes lower values when α increases.   
 

7. Conclusions 
 
   In this paper, we have generated new models of compact stars within the framework of 
Einstein-Gauss-Bonnet gravity. With the use of Thirukkanesh-Ragel-Malaver ansatz for the 
gravitational potentials and with a linear and quadratic equation of state, we are able to 
produce two classes of exact solutions of the EGB field equations. We show that the 
developed configuration obeys the rigorous conditions required for the physical viability of 

the stellar model. It is to be noted in EGB gravity that the coupling constant α has non-
negligible effects on the physical quantities such as energy density and radial pressure of 

the star which increases with an increase in α.  As expected, the matching conditions 
require that the radial pressure vanishes at some finite radius of the stellar object and this 
defines the boundary of the star.  
  An evidence to the effect of the coupling constant can be observed in the behavior of 
energy density. In the two studied cases, linear and quadratic, when the Gauss-Bonnet 
constant increases, the energy density also increases and it allows that these models can 

support more masses. It is also noted that for all the values of the coupling constant α, 𝑣௦௥
ଶ  

is maximum at the centre and it decreases radially. Also, it is observed that inside of the 
star 0 ≤ 𝑣௦௥

ଶ ≤ 1 , which shows  that the models are stable. Within the framework of EGB 
gravity, it is plausible to consider that the proposed models can describe real compact 
objects such as white dwarfs, neutron stars and pulsars.  
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