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Abstract: In this paper, we present some new models for anisotropic compact stars within
the framework of 5-dimensional Einstein-Gauss-Bonnet (EGB) gravity with a linear and
nonlinear equation of state considering a metric potential proposed for Thirukkanesh and
Ragel (2012) and generalized for Malaver (2014). The new obtained models satisty all
physical requirements of a physically reasonable stellar object. Variables as energy density,
radial pressure and the anisotropy are dependent of the values of the Gauss-Bonnet
coupling constant.

Keywords: EGB Gravity, Compact Stars, Equation of State, Metric Potential, Coupling
Constant

1. Introduction

Mathematical modeling within the framework of the general theory of relativity has been
used to explain the behavior and structure of massive objects as neutron stars, quasars,
black holes, pulsars and white dwarfs [1,2] and requires finding the exact solutions of the
Einstein-Maxwell system [3]. A detailed and systematic analysis was carried out by
Delgaty and Lake [4] which obtained several analytical solutions that can describe realistic
stellar configurations.

It is very important to mention the pioneering works of Schwarzschild [5], Tolman [6],
Oppenheimer and Volkoff [7] and Chandrasekhar [8] in the development of the first
theoretical models of stellar objects. Schwarzschild [5] obtained interior solutions that
allows describing a star with uniform density, Tolman [6] generated new solutions for static
spheres of fluid, Oppenheimer and Volkoff [7] studied the gravitational equilibrium of
neutron masses using the equation of state for a cold Fermi gas and general relativity and
Chandrasekhar [8] produced new models of white dwarfs in presence of relativistic effects.
Some of these results have been extended to higher dimensions and the dimensionality of
space-time apparently influence the stability of these fluid spheres [9].

Recently, astronomical observations of compact objects have allowed new findings of
neutron stars and strange stars that adjust to the exact solutions of the 4-D Einstein field
equations and the data on mass maximum, redshift and luminosity are some of the most
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relevant characteristics for verifying the physical requirements of these models [10]. A
great number of exact models from the Einstein-Maxwell field equations have been
generated by Gupta and Maurya [11], Kiess [12], Mafa Takisa and Maharaj [13], Malaver
and Kasmaei [14], Malaver [15,16], Ivanov [17] and Sunzu et al [18]. In the development
of these models, several forms of equations of state can be considered [19]. Komathiraj
and Mabharaj [20], Malaver [21], Bombaci [22], Thirukkanesh and Maharaj [23], Dey et al.
[24] and Usov [25] assume linear equation of state for quark stars. Feroze and Siddiqui [26]
considered a quadratic equation of state for the matter distribution and specified particular
forms for the gravitational potential and electric field intensity. MafaTakisa and Maharaj
[13] obtained new exact solutions to the Einstein-Maxwell system of equations with a
polytropic equation of state. Thirukkanesh and Ragel [27] have obtained particular models
of anisotropic fluids with polytropic equation of state which are consistent with the reported
experimental observations. Malaver [28] generated new exact solutions to the Einstein-
Maxwell system considering Van der Waals modified equation of state with polytropic
exponent. Tello-Ortiz et al. [29] found an anisotropic fluid sphere solution of the Einstein-
Maxwell field equations with a modified version of the Chaplygin equation of state.

The analysis of compact objects with anisotropic matter distribution is very important,
because that the anisotropy plays a significant role in the studies of relativistic spheres of
fluid [30-42]. Anisotropy is defined as A = p; — p,-where p,. is the radial pressure and p; is
the tangential pressure. The existence of solid core, presence of type 3A superfluid [43],
magnetic field, phase transitions, a pion condensation and electric field [25] are most
important reasonable facts that explain the presence of tangential pressures within a star.
Many astrophysical objects as X-ray pulsar, Her X-1, 4U1820-30 and SAXJ1804.4-3658
have anisotropic pressures. Bowers and Liang [42] include in the equation of hydrostatic
equilibrium the case of local anisotropy. Bhar et al. [44] have studied the behavior of
relativistic objects with locally anisotropic matter distribution considering the Tolman VII
form for the gravitational potential with a linear relation between the energy density and the
radial pressure. Malaver [45-46], Feroze and Siddiqui [26,47] and Sunzu et al.[ 18] obtained
solutions of the Einstein-Maxwell field equations for charged spherically symmetric
space-time by assuming anisotropic pressure.

The behavior and dynamics of the gravitational field can be extended to higher
dimensions [48]. The history of higher dimensions goes back to the work done by Kaluza
[49] and Klein [50] who introduced the concept of extra dimensions in addition to the usual
four dimensions (4-D) to unify gravitational and electromagnetic interactions. In general
theory of relativity, the results obtained in four dimensions can be generalized in higher
dimensional context and study the effects due to incorporation of extra space-time
dimensions [51]. Within this framework, a very useful and fruitful generalization is the
Einstein-Gauss-Bonnet gravity, which has generated a lot of interest among researchers and
has been influenced by many scientists working in this field [52]. The modeling of compact
objects in EGB gravity has shown that some physical variables are modified when they are
compared to their 4-D counterparts, but the condition of the Schwarzschild constant density


https://doi.org/10.20944/preprints202104.0381.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 April 2021 d0i:10.20944/preprints202104.0381.v1

sphere has been demonstrated in EGB gravity [10]. Recently, Bhar et al. [53] performed a
comparative study of compact objects in five dimensions (5-D) between EGB gravity and
classical general relativity theory and found that many features as stability, causality and
energy conditions remain unaffected in the stellar interior.

In this work, we have used the Thirukkanesh-Ragel-Malaver ansatz [27,37,54] in order to
generate some stellar models with anisotropic matter distribution in EGB gravity. The
system of field equations has been solved to obtain analytic solutions which are physically
acceptable. The paper is organized as follows: In Section.2, we present the framework of
EGB gravity. The modified Einstein-Maxwell field equations with the Gauss-Bonnet
coupling constant are presented in Section.3. With the Thirukkanesh-Ragel-Malaver ansatz,
we generate some models of an anisotropic star with a linear and nonlinear equation of state
within EGB gravity in Section.4. In Section. 5, physical requirements for the new models
are described. In Section.6, a physical analysis of the new solutions is performed. In final
Section, we conclude.

2. Einstein-Gauss-Bonnet Gravity

The Gauss-Bonnet action in five dimensions can be written as

S = f\/—_g E (R + aLGB)] dsx + Smatter
6]

where a is the Gauss-Bonnet coupling constant. The strength of the action Lgs lies in the
fact that despite the Lagrangian being quadratic in the Ricci tensor, Ricci scalar and the
Riemann tensor, the equations of motion turn out to be second order quasi-linear which are
compatible with Einstein’s theory of gravity [52,53].

The EGB field equations may be written as

Gap + aHyp = Ty
(2

where G, represents the Einstein tensor, T, is the total energy-momentum tensor and
the Lanczos tensor H,,is given by

1
Hab = 2(RRab - ZRach(; - 2RCdRacbd + RcczdeRbcde) - EgabLGB
(3)
where the Lovelock term has the form

Lep = R* + RabcdRade - 4RcdRCd
“4)
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3. Field Equations

The 5-dimensional line element for a static spherically symmetric space-time takes the
form

ds? = —e?Mdt? + e dr? 4 r2(d9” + sin*9d¢? + sin? 6 sin? ¢ dip?)
)
where the metric functions eVand e are the gravitational potentials. By considering the
commoving fluid velocity as u® = e~ V38§ , the EGB field equations (2) reduce to

p= M ~(4ad +re*t —re*t —r2e?) — 4qe?*}) ©)

py = eM ~(—re** + (rv + 1 + 4av)e? — 4av)

(7

1
_ 41 " Iq! "2
pe = gy (e a4 120w~ 4047 +

prrw (1—72vA +2rv —2r2' +r2(v)? +

r*v' —4av' 2 + 4a(v)? + 4av")

ez/l 2

@®)

Here primes means a derivation with respect to the radial coordinates » and p is the energy
density, p, is the radial pressure and p, is the tangential pressure. With the transformations
x = cr?,Z(x) = e~ ?* andy?(x) = e? suggested by Durgapal and Bannerji [55] and with ¢>0
as arbitrary constant, the field equations (6)-(8) can be written as follows

P_ _35_ 3(z-1)(1-4B2)

c x )

pr _ 3(Z-1) + 6Zy 68(z-1)zy
c  x y xy (10)

= 42[p(1-2) + 212 + 52

(11)
where B =4ac contains the Gauss-Bonnet coupling constant a and dots denote
differentiation with respect to x.

—2(x+B)Z+6Z- ZﬁZZ] +2[=2+ 7]
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In this paper, we imposed the following equations of state, linear and quadratic,
respectively, relating the radial pressure to the energy density, where y is a positive constant

pr=yp and p.=yp? (12)

4. The New Anisotropic Models

In this research, we take the form of the gravitational potential Z(x) as Z = (1 —
ax)?proposed for Thirukanesh and Ragel [27] and subsequently generalized by Malaver
[37], taking as an arbitrary parameter. This potential is regular at the stellar center and well
behaved in the interior of the sphere. Using Z(x) in equation (9), we obtain

p =c(12a + 48a%B — 9(1 + 8apB)a’x + 24a*Bx?) (13)

Substituting the equation (13) in the expression of the linear equation of state for the radial

pressure (12), we have

pr =yvc(12a + 48a?p — 9(1 + 8apf)a’x + 24a*fx?) (14)

With Z(x) and (14) in equation (10), we have

y_ 3a(2 - ax) +7/[12a+48a2ﬂ—9(1+8aﬂ)a2x+24a4ﬂx2]
y 6(l—ax)2 [l+aﬂ(2—ax)] 6(1—ax)2 [1+aﬂ(2—ax)]
(15)
Integrating equation (15) with respect to y, we obtain
_c
y(x) = c;(ax — D)4 (a?Bx — 2af — 1)Bel@x-1 (16)
where the constants 4, B and C are given by
A=— 8a?p%y+10afy+3y
- 2(af+1)2 (17)
_ 6afy+5y—1
- 2(af+ )2 (18)
___y-1
2(af+1) (19)

and c; is the constant of integration.
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For the metric functions e?* and e?¥ ,we have

22 1

e = (1-ax)? (20)

2C
e?V = c2(ax — 1)?4(a?Bx — 2af — 1)?Belax-1

1)
and the anisotropy can be written as

A=p,—p, = [4Baxc(1 —ax)?(2 — ax)

(4% — A)a? 2Aa3Bf
(ax —1)? + (ax — 1)(a?Bx — 2aB — 1)
B 24a?*C N B?%a*p?
—1)3 2Ry — —1)2
+ 4xc(1 — ax)?] (ox ;)014'32((1 Px = 2af le?)a3ﬁC
" (a?fx —2af —1)? (a?Bx—2aB —1)
2Ca? C%a?
_+ (ax —1)3 + (ax — 1)*

Aa Ba?p

+l4ape(1l - ax)(ax = 2) + dacGe+ (1 = ax) +4af (1 - a0’ | + o oy

Ca
(ax — 1)2
—4ac(1 — ax) — 2ac(ax — 2)

(22)
With the quadratic equation of state, we obtain for the radial pressure
pr =vc?(12a + 48a%p — 9(1 + 8apB)a’x + 24a*px?)? 23)
X _ 3a(2—ax)
and for the equation (10),we have y — 6(1—ax)?[1+aB(2—ax)]
ycz[12a+48azﬁ—9(1+8aﬁ’)¢12x+24a4ﬁx2]2
6(1—ax)?[1+ap(2—ax)]
(24)
Integrating (24) with respect to y, we obtain
Fx3+Gx2+Hx+
y(x) = cy(a?Bx — 2af — 1P (ax — 1)Ee” @D (25)

Again the constants D, E, F, G, H and [ are given by

_ 108a®B?c?y+180aBc’y+75c*y—B
2(ap+1)?p

D =
(26)
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48a®B?c?y+63a’Bc?y+18ac?y+1

E= 2(aB+1)? (27)
Fe_ 96a®B2c?y+96a’Bc?y
- 2(af+1)
(28)
G=— 48a3c?y—432a*Bc?y—-480a°B3c?y
- 2(aB+1)
(29)
H=_ 384a*B%c?y+336 3Bc?y—48a?c?y
- 2(af+1)
(30)
_ 3ac’y+1
T 2(aB+1)
(31
c, 1s the constant of integration.
For the metric functions, we have e? and e?V
p2h = 1
(1—ax)? (32)
2(Fx3+Gx? +Hx+I)
e?V =c2(a’fx — 2af — 1)?P(ax — 1)?6e (@D (33)
For the anisotropy A ,we have
A=ps—pr
= [4Baxc(1 — ax)?(2 — ax)
(D? — D)a*p? N 2DaBE
(a®?Bx — 2aB — 1)?  (ax — 1)(a?Bx —2ap — 1)
N 2Da?p 3Fx?>+26x+H (Fx3+Gx?>+ Hx+ Da
(a?Bx —2aB — 1) ax —1 (ax — 1)?
| (E? — E)a? N 2Ea [3Fx?>+2Gx+H (Fx3+Gx?+ Hx+1a
+4xc(1 - ax)’] (ax —1)?  (ax—1) ax — 1 (ax —1)2
6Fx +2G 2(3Fx?+2Gx + H)a N 2(Fx3 + Gx? + Hx + )a?
(ax — 1) (ax — 1)2 (ax —1)3
3Fx2+26x+H (Fx3 + Gx? + Hx + Dal’
ax — 1 (ax — 1)?
Da?
+[4aBc(1 — ax)?(ax — 2) + 4ac(x + B)(1 — ax) + 4aB (1 — ax)3] [azﬁx — Za[;x —

N 3Fx?+26x+H+Ea (Fx3+Gx*+ Hx+ I)a]

—4ac(1 —ax) — 2a

ax — 1 (ax — 1)?
clax — 2) (34)
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5. Physical Acceptability in EGB Gravity

For a model to be physically acceptable in EGB gravity, the following conditions should
be satisfied [10,53]:
(i) The metric potentials e>*and e?"assume finite values throughout the stellar interior and
are singularity-free at the center »=0.
(i) The energy density p and the radial pressure p, should be positive inside the star.
(ii1) The anisotropy is zero at the center =0, i.e. A(r=0) =0.
(iv) The energy density and radial pressure are decreasing functions with the radial
parameter, i.e. % < 0and Z—i < 0 both in EGB gravity.

(v) Any physically acceptable model must satisfy the causality condition, that is, for the

. d
radial sound speed v, = dl;r ,we should have 0 < v2. < 1.

(vi) The boundary of the star defined by »=R should be matched with the Einstein —Gauss-
Bonnet- Schwarzschild exterior solution given by

2 _ _ 2, ar? 2 2 .2 2 20 win2 2
ds® = —F(r)dt +F(T)+r (d9” + sin“0d¢* + sin” 0 sin® ¢ dyp©) (35)

where R is the radius of the star and

r4

2
Fir)=1 +L<1 - 1+ 8““)
4a
(36)
In Equation. (36) ,M is associated with the gravitational mass of the hypersphere.

6. Physical Features of the New Models

For the linear equation of state, the metric potentials e?*and e?have finite values and
remain positive throughout the stellar interior. At the center e?4@ =1 | ¢2v(0 =
c2(—1)?4(—2ap — 1)?Be~2¢ We show that in =0, (e”(r))rzo = (ez"(r))rzo =0 and it

is verified that the gravitational potentials are regular at the center.

The energy density and radial pressure are positive and well behaved in the stellar interior.
The obtained central density are p(r =0) =ac(12+48af) and p,.(r=0)=
yc(12a + 48a?pB) , both positive if ¢, 8, ¢ > 0.

In the surface of the fluid sphere »=R ,we have p,(r = R) = 0 and is obtained for the
radius of the star
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Jﬁc(24aﬁ+ ‘/64azﬁz+16aﬁ+9)

4afc

G37)

Differentiating Eq. (13) and Eq. (14), the expressions for density and radial pressure
gradient are given by

Z—f = 3a?cr[—6(1 + 8ap) + 32a%Bcr?]

(38)

e~ 3yc2a?r[~6(1 + 8ap) + 32a%Ber?]

39)
The radial sound speed for this model of compact star is obtained as

2 —
vsr_g_y

(40)

For the physically acceptability of the model of anisotropic star, it should satisfy the
causality condition, i.e. 0 < v3. < 1.

Using the first fundamental form that consist in the continuity of the metric functions and
their derivatives across the boundary »=R, we have

1 1
(1—acR2)2 ( 8aM> (41)
1+ 1- |1+
2 2 240,20 D2 2B oo R? 8a
ci(acR® —1)*“(a*BcR* — 2af — 1)*"elack*-1) = 1 4 vl RN E e (42)

[ Aac Ba?Bc
ac 2-1  a?BcR?-2aB-1
2C

—_— 2 2A 2 2 _ 2B ac——
(acR?- 1)2]C1 (acR* —1)““*(a“BcR 2af — 1)?Beac 71

SaM

20.' SaM
R4—

(43)
and from the second fundamental form, we obtain

12a + 48a?B — 9(1 + 8aB)a’cR? + 24a*Bc?R* = 0 (44)

The equations (41-44) are the conditions that allow determining the parameters a, A, B, C that
describe the model.
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With the quadratic equation of state, we have for the metric potentials e?4(® =1
e?(0) = c2(=2apB — 1)?P(-1)?Fe~?!. Again in r=0 , it satisfies the condition
(92’1(7));:0 = (ezv(r));=0 =0 verifying that also the gravitational potentials are
singularity- free at the origin.

The radial pressure is positive throughout the fluid configuration and the central radial
pressure isp,(r = 0) = yc?(12a + 48a?B)? , and is positive if a,f,y, ¢ > 0. For the radial
pressure gradient, we have

% = 2yc?[12a + 48a?pB — 9(1 + 8aB)a’cr? + 24a*Bc?r*][—18a?cr(1 + 8ap) + 96a*fc?r3]
(45)

For this case, the causality condition 0 < v2. < 1 implies that

2 _%_ 20 2 2 4902 4
s =2yc[12a+48a’ f—-9(1+8ap) a’cr’ +24a" Bc’r* | 6
Again, with the first fundamental form, we can obtain

1 1

(1—acR2)2 ~ _ R2 saM
1+E 1- 1+R—4

(47)

2Fc3R5+2Gc?R*+HCcR?+1 R? 8aM
c5(a?BcR? — 2apB — 1)?P (acR? — 1)%Ee acRZ-1 =1+ e 1— 1+ i

(48)

4Eac 4Da?fc
acR?-1 ~ a?BcR?-2aB-1 356 2 pd 2
12F 3R4+86C2R2+2HC 2 2 2 2D 2 2F 2Fc°R +ZGCZR +HcR“+1
acR2-1 - C2 (a ﬁCR - 2aﬁ - 1) (acR - 1) e acR?-1
2(2Fc®R®+2Gc?R*+HcR?)ac
(acR%-1)2

, saM
1- 1+R—4

2(1 SaM
R4

(49)
and for the second fundamental form

(12a + 48a?f — 9(1 + 8apB)a?cR? + 24a*Bc?R*)?> =0 (50)

From the equation (44) and considering some particular cases for the Gauss-Bonnet
coupling constant, we can calculate the corresponding values of the parameter a . For a=1,
2, 3, we obtain the values a=0.035; 0.0337; 0.03234, respectively. In all the cases was it has
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been considered the radius R= 5.7 Km and c=I. The Figures 1 and 2 present the
dependency of p and Z—’: with the radial coordinates, respectively.
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Figure 1. Energy density against radial parameter for a= 0.035 and a=1 (solid
line); a=0.0337 and a.=2 (long-dash line); a=0.03234 and a.=3 (dashdot line).
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Figure 2. Energy density gradient against radial parameter for a= 0.035 and o.=1
(solid line); a=0.0337 and a=2 (long-dash line); a=0.03234 and a.=3 (dashdot
line).
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The Figures 3,4 and 5 show the dependence of p,. , %, A respectively with the radial

parameter in the linear regimen for the different values of coupling constant o . In all the
cases, it has been considered R= 5.7 Km, c=1Iand y=1/3 .

Figure 3. Radial pressure against radial parameter in linear regimen for a= 0.035
and o=1 (solid line); a=0.0337 and o=2 (long-dash line); a=0.03234 and o=3
(dashdot line).
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Figure 4. Radial pressure gradient against radial parameter in linear regimen for a=
0.035 and o=1 (solid line); a=0.0337 and a=2 (long-dash line); a=0.03234 and o.=3
(dashdot line).
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Figure 5. Anisotropy against radial parameter in linear regimen for a= 0.035 and
o=1 (solid line); a=0.0337 and o=2 (long-dash line); a=0.03234 and o=3
(dashdot line).

In two cases, linear and quadratic, the energy density remains positive, continuous and is
monotonically decreasing function throughout the stellar interior (Figure 1). It is also noted
that the density increases with increasing a. The radial variation of energy density gradient

has been shown in Figure 2, in which it is observed that %< 0 in EGB gravity.

In the linear regimen, the radial pressure showed the same behavior by the energy
density, that is, it is growing within the star and vanishes at a greater radial distance, but

takes the higher values when «a is increased and its results are shown in Figure 3. Again

dpr
dr

inside the stellar interior. The anisotropic factor is plotted in Figure 5 and it shows that
vanishes at the centre of the star, i.e. A(r=0) =0 [30]. We can also note that A admits lower
values when a increases.

,according to Figure 4, the profile of shows that radial pressure gradient is negative

r

The Figures 6,7,8 and 9 show the dependence of p, , %, vZ. and A respectively with the

radial coordinates in the quadratic case for the different values of coupling constant a . In
all the cases, it has been considered R= 5.7 Km, c=1and y=1/3 .
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Figure 6. Radial pressure against radial parameter in quadratic regimen for a=
0.035 and a=1 (solid line); a=0.0337 and o=2 (long-dash line); a=0.03234 and
0=3 (dashdot line).
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Figure 7. Radial pressure gradient against radial parameter in quadratic regimen for a=
0.035 and o=1 (solid line); a=0.0337 and a=2 (long-dash line); a=0.03234 and 0=3
(dashdot line).
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Figure 8. Radial sound speed against radial parameter in quadratic regimen for a= 0.035
and a=1 (solid line); a=0.0337 and o.=2 (long-dash line); a=0.03234 and a=3 (dashdot
line).
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Figure 9. Anisotropy against radial parameter in quadratic regimen for a= 0.035
and o=1 (solid line); a=0.0337 and o=2 (long-dash line); a=0.03234 and o=3
(dashdot line).
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As in the linear regimen, with the quadratic equation, the radial pressure always is
positive inside the star and vanishes at a finite radial distance and its results are shown in
Figure 6. Again, the radial pressure increases when a takes higher values. In the Figure 7,
it is also

. . dpy . o o
verified that the gradient % is negative in the stellar interior.

A physically acceptable model must satisfy the causality condition, i.e., the radial sound
speed must be within the range 0 < v2. < 1. The profile of radial speed sound is plotted in
Figure 8 for different values of coupling constant a. In all the cases v2. is in the expected
range and is a monotonic decreasing function with the radial coordinates. Figure 9 shows
that the anisotropy is zero at the center =0 and its value increases towards the surface of
the star. As in the linear case A takes lower values when a increases.

7. Conclusions

In this paper, we have generated new models of compact stars within the framework of
Einstein-Gauss-Bonnet gravity. With the use of Thirukkanesh-Ragel-Malaver ansatz for the
gravitational potentials and with a linear and quadratic equation of state, we are able to
produce two classes of exact solutions of the EGB field equations. We show that the
developed configuration obeys the rigorous conditions required for the physical viability of
the stellar model. It is to be noted in EGB gravity that the coupling constant a has non-
negligible effects on the physical quantities such as energy density and radial pressure of
the star which increases with an increase in a. As expected, the matching conditions
require that the radial pressure vanishes at some finite radius of the stellar object and this
defines the boundary of the star.

An evidence to the effect of the coupling constant can be observed in the behavior of
energy density. In the two studied cases, linear and quadratic, when the Gauss-Bonnet
constant increases, the energy density also increases and it allows that these models can
support more masses. It is also noted that for all the values of the coupling constant a, v2.
1s maximum at the centre and it decreases radially. Also, it is observed that inside of the
star 0 < v2. < 1, which shows that the models are stable. Within the framework of EGB
gravity, it is plausible to consider that the proposed models can describe real compact
objects such as white dwarfs, neutron stars and pulsars.
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