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Abstract. The article obtains large deviation asymptotic for sub-critical communi-
cation networks modelled as signal-interference-noise-ratio(SINR) random networks.
To achieve this, we define the empirical power measure and the empirical connectivity
measure, as well as prove joint large deviation principles(LDPs) for the two empirical
measures on two different scales. Using the joint LDPs, we prove an Asymptotic
equipartition property(AEP) for wireless telecommunication Networks modelled as
the subcritical SINR random networks. Further, we prove a Local Large deviation
principle(LLDP) for the sub-critical SINR random network. From the LLDPs, we
prove the large deviation principle, and a classical McMillan Theorem for the stochas-
tic SINR model processes. Note that, the LDPs for the empirical measures of this
stochastic SINR random network model were derived on spaces of measures equipped
with the τ− topology, and the LLDPs were deduced in the space of SINR model pro-
cess without any topological limitations. We motivate the study by describing a
possible anomaly detection test for SINR random networks.
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1. Introduction

In telecommunication, Wireless networks are usually modelled by the SINR random networks. In
the SINR random network model two nodes are deemed to communicate if SINR is bigger than a
certain threshold as specified by some technical constant. In the process of addressing the additional
requirement imposed on wireless communication networks, in particular, a higher availability of a
highly accurate modeling of the SINR is required. Example, each transmission may be equipped with
some battery power which may be called the mark of the node and the quantity SINR defined by the
inclusion of the marks in the definition. Further study of the SINR network model has shown that
an SINR model of interference is a more realistic model of interference than the protocol model of
interference: a receiver node receives a packet so long as the signal to interference plus noise ratio is
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2 LLDP AND LDP FOR SUB-CRITICAL COMMUNICATION NETWORKS

above a certain threshold. See, Bakshi et al. [2].

There are many applications of large deviation techniques to the SINR networks, which are used as
models for telecommunication networks. Some of these applications include, the analysis of bi-stability
in networks, such as notorious bi-stability in multiple access protocols the Aloha, and the stochastic
behaviour of ATM the admission control, sizing of internal buffers, and the simulation of ATM mod-
els, see,[13]. and prevention of cyber-attacks on wireless telecommunication networks, see example [12].

Cybersecurity of the devices in a telecommunication system is a major issue when the devices become
increasing dependent on computer and other local networks. And an anomaly detection in the
devices networks is key to avoiding disruption in the telecommunication systems. Cybersecurity of
the intelligent electronic devices in telecommunication substations has been recognized as a critical
issue for smooth running of the system. One main approach to dealing with these issues is to develop
new technologies to detect and disrupt any malicious activities over the networks.An Anomaly
detection may be regarded as an early warning mechanism to extract relevant cybersecurity events
from devices locations and correlate these events. Large deviation principles have played key role
in the formulation of efficient anomaly inference algorithm for systems such as power grid, Wireless
Sensor Network systems and Telecommunication systems.

In this article, we prove joint large deviation principles on the scales λ and λ2aλ, where λ is the
intensity measure of the underlining PPP of the subcritical SINR model. See, [9] or [10] or [11]
for similar results fore the dense SINR random network models. From these LDPs, we prove an
asymptotic equipartition property; see example [9], for the SINR models.

Further, the study shows a LLDP for the SINR models. See example, [9] and references therein.
From the LLDP, we deduce asymptotic bounds on the cardinality of the set of SINR models for a
given typical empirical marked measure. In addition, the study shows that from the LLDP an LDP
for the SINR modelled processes.

1.1 Background

This study set a dimension d ∈ N and some measureable set D ⊂ Rk with reference to the Borel-σ
algebra B(Rd). Given λµ : D → [0, 1], an intensity measure and probability kernel density function
from D to R+, K and a path loss model, π(η) = η−α, where α ∈ R+, and some technical constraint;

ι(λ), ζ(λ) : R+ → R+. The study defined the SINR network model to as follows:

• We select σ = (σu)u∈I , a Poisson Point Process (PPP) with rate measure λµ : D → [0, 1].
• Given the process σ, the locations, each σu is assigned a mark or power `(σu) = `u indepen-

dently according to the kernel density function K(· , σu).
• For any two set of marked points ((σu, `u), (σv, `x)) we link an edge if and only if

SINR(σu, σv, σ) ≥ ι(λ)(`v) and SINR(σv, σu, σ) ≥ ι(λ)(`u),

where

SINR(σv, σu, σ) =
`uπ(‖σu − σv‖)

N0 + ζ(λ)(`v)
∑

u∈I\{v} `uπ(‖σu − σv‖)

We let E denote the set of edges in the SINR random network and observe Y λ := Y λ(`, σ, µ) ={
[(σu, `u), u ∈ I], E

}
under the joint law of the marked PPP and the network. In this article, we
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call Y λ an SINR Network model and (σu, `u) := σλu as the mark of site u. Recall from [9] that
if N0 = 0, then the connectivity function of the SINR random network model, T λ, is defined as

T λ((u, `u), (v, `v)) = e−λt
D
λ ((u,`u),(v,`v)), where

tDλ ((u, `u), (v, `v)) =

∫
D

[
ι(λ)(`u)ζ(λ)(`u)

ι(λ)(`u)ζ(λ)(`u)+(‖r‖η/‖u−v‖η)
+ ι(λ)(`v)ζ(λ)(`v)

ι(λ)(`v)ζ(λ)(`v)+(‖r‖η/‖v−u‖η)

]
µ(dr).

This article assumes that there exists aλ and a function t : D×R+ → (0,∞) such that λ2aλ → 0 and

lim
λ↑∞

a−1
λ T λ((a, `a), (b, `b)) = t((a, `a), (b, `b)).

Sakyi-Yeboah et. al [10] and Sakyi-Yeboah et. al [11] investigates the critical SINR network model
(that is λaλ → 1) and super-critical SINR network model ( that is λaλ → ∞) respectively . In this
articles, we shall focus this study on sub-critical SINR Networks( that is limλ→∞ λaλ → 0).

For a given set D) we define S(D) by

S(D) = ∪x⊂D
{
x : |x ∩W | <∞ , for any bounded W ⊂ D

}
. (1.1)

Let W = S(D × R+) and M(W), represent the space of positive measures on the space W equipped
with τ− topology. Note, W is a locally finite subset of the set D × R+. See, example, [10]. Without
abuse of notation we shall refer toM(W×W) as the space of symmetric measure onW×W endowed
with the τ− topology. For any SINR random network model Y λ we define a probability measure, the

empirical power measure, MY λ
1 ∈M(W), by

MY λ

1

(
(a, `a)

)
:=

1

λ

∑
u∈W

δσλu
(
(a, `a)

)
and a finite measure, the empirical connectivity measure MY λ

2 ∈M(W ×W), by

MY λ

2

(
(a, `a), (b, `b)

)
:=

1

λ2aλ

∑
(u,v)∈E

[δ(σλu ,σ
λ
v ) + δ(σλv ,σ

λ
u)]
(
(a, `a), (b, `b)

)
.

It should be noted that the total mass ‖MY λ
1 ‖ of the empirical power measure is 1l and total mass of

the empirical connect measure is 2|E|/λ2aλ.

1.2 Motivation: Anomaly detection in spatial networks

Consider, SINR random network model as a model that account for the connectivity structure of the
Wireless telecommunication networks (WTN). In particular, consider the subcritical SINR random
networks as model for the WTNs since, in the implementation, the multihop network formed by the
sensor nodes may adopt a network structure. The network will be formed randomly according to an
arbitrary rule that is dependent on the distances between the device locations. Assume the device
locations are marked according to their battery power, and the propagation of events is un-directed on
the network. Our objective is to estimate network parameters and possible identify possible deviations
form the actual values.

For instance, given a long sequence of realization Y λ,k of this sub-critical marked SINR random
network, one would like to approximate parameter of the model, µ × K and t, by taking the average

frequencies of the corresponding samples. In particular, if MY λ,k
1 and MY λ,k

2 ; the empirical power
measure and the empirical connectivity measure of Y λ, the kth realization then

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2021                   



4 LLDP AND LDP FOR SUB-CRITICAL COMMUNICATION NETWORKS

lim
k→∞

1
k

k∑
r=1

MY λ,r

1 (a, `a)→ µ⊗K(a, `a)

and

lim
k→∞

[
1
k

k∑
r=1

MY λ,r

2

(
(a, `a), (b, `b)

)
/ 1
k

k∑
r=1

MY λ,k

2 (a, `a)⊗ 1
k

k∑
r=1

MY λ,r

1 (b, `b)
]
→ t

(
(a, `a), (b, `b)

)
,

with probability 1.

Assuming that we have estimated µ ⊗ K and t. We are interested in a test that determines whether
a particular realization Y λ is typical or not. Thus, we want to differentiate between µ × K and t
(Hypothesis H0) and any other unknown law (Hypothesis H1). Theorem 2.1 will be the bases of
providing generalized Neyman-Pearson criterion,See [7, pp.96-100],and hence an anomaly detection
test for the sub-critical marked SINR random networks.

This article is structured as follows: Section 2 presents the main results; Theorem 2.1, Theorem 2.2,
Theorem 2.3, Corollary 2.4 and Corollary 2.5. In Section 3 we prove the main results of the article,
Theorem 2.1. Section 4 provides the proof of the AEP, see Theorem 2.2 and Section 5; Proof of
Theorem 2.3, Corollary 2.4 and Corollary 2.5. Lastly, Section 6 presents the conclusion to the article.

2. Main Results

Theorem 2.1, is a joint large deviation principle for the empirical measures of the SINR network
models.With reference from Subsection 1.1, we recall the definition of tDλ as

tDλ ((a, `a), (b, `b)) =

∫
D

[
ι(λ)(`u)ζ(λ)(`u)

ι(`u)ζ(`u)+(‖r‖η/‖i−y‖η) + τ (λ)(`v)γ(λ)(`v)

τ (λ)(`v)γ(λ)(`v)+(‖r‖η/‖y−x‖η)

]
µ(dr)

and note that

tβ ⊗ β((a, `a), (b, `b))) := t((a, `a), (b, `b))µ((a, `a))µ((b, `b)).

Theorem 2.1. Let Y λ is a sub-critical marked SINR network model with rate measure λµ : D → [0, 1]
and a power transition kernel function K(·, y) = ce−cy, y > 0 and path loss function π(η) = η−α, for
α > 0. Thus, the link kernel function T λ of Y λ satisfies a−1

λ T λ → t and λaλ → 0. Then, as λ→∞, the

pair of measures (MY λ
1 ,MY λ

2 ) satisfies a large deviation principle in the space M(W)×M(W ×W)

(i) with speed λ and a good rate function

I1
(
β, φ

)
=

{
H
(
β
∣∣∣µ⊗K) if φ = tβ ⊗ β

∞ elsewhere.
(2.1)

(ii) with speed λ2aλ and good rate function

I2
(
β, φ

)
=

{
H(φ‖tβ ⊗ β), if β = µ⊗K
∞ elsewhere.

(2.2)
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where

H(φ‖tβ ⊗ β) :=

{
H(φ ‖ tβ ⊗ β) +

(
‖tβ ⊗ β‖ − ‖φ‖

)
, if ‖φ‖ > 0.

∞ elsewhere.
(2.3)

Theorem 2.2. Suppose Y λ be a sub-critical marked SINR network model with rate measure λβ : D →
[0, 1] and a power probability function K(·, y) = ce−cy, y > 0 and path loss function π(η) = η−α, for
α > 0. Thus, the connectivity probability T λ of Y λ satisfies a−1

λ T λ → t and λaλ → 0. Suppose the

sequence aλ of Y λ is such that λaλ log λ→ 0 and aλ/ log λ→ −1. Then, we have

lim
λ→∞

P
{∣∣∣− 1

aλλ2 log λ
logP (Y λ)− Ef

[
t((·, ·), (·, ·))

]∣∣∣ ≥ ε} = 0,

where the expectation was taken with respect to the distribution function

f((x, `x), (y, `y)) = c2e−c(x+y)µ(d`x)µ(d`y)dxdy, x > 0, y > 0, `x > 0, `y > 0.

Note that the H(f) := Ef
[
t((·, ·), (·, ·))

]
is an entropy.

Interpretation: To transmit information contain in a large SINR random network modls one require
with a large probability

−λ2aλ log λ
[
H(f)

]
/ log 2 bits.

Let G be the set of all SINR networks with rate measure λµ : D → [0, 1] and state the Local Large
deviation principle as follows:

Theorem 2.3. Suppose Y λ is a sub-critical marked SINR network model with rate measure λµ : D →
[0, 1] and a mark transition kernel M(y) = ce−cy, y > 0 and path loss function π(η) = η−α, for η > 0
and α > 0. Thus, the link probability T λ of Y λ satisfies a−1

λ T λ → t and λaλ → 0. Then,

• for any functional φ ∈ G and a number ε > 0, there exists a weak neighbourhood Bφ such that

Pβ
{
Y λ ∈ G

∣∣∣MY λ

2 ∈ Bφ
}
≤ e−

1
2λ

2aλH(φ‖tβ⊗β)−λaλε, where β = µ⊗K.

• for any φ ∈ Gβ, a number ε > o and a fine neighbourhood Bφ, we have the compute:

Pβ
{
Y λ ∈ G

∣∣∣MY λ

2 ∈ Bφ
}
≥ e−

1
2λ

2aλH(φ‖tβ⊗β)+λλaλε, where β = µ⊗K.

For the given telecommunication network model, we define an entropy as h :M(W ×W)→ [0.∞] by

h(φ) :=
(
‖φ‖ − ‖λβ ⊗ β‖ −

〈
φ , log φ

‖tβ⊗β‖

〉)
/2, where β = µ⊗K. (2.4)

Corollary 2.4 (McMillian Theorem). Let Y λ be a sub-critical marked SINR network model with rate
measure λµ : D → [0, 1] and a mark transition kernel K(·, y) = ce−cy, y > 0 and path loss function
π(η) = η−α, for η > 0 and where β = µ ⊗ K. α > 0. Thus, the link probability T λ of every Y λ ∈ G
satisfies a−1

λ T λ → t and λaλ → 0.

(u) For any empirical link measure φ on W ×W and ε > 0, there exists a neighborhood Bφ such
that

Card
({
Y λ ∈ G |MY λ

2 ∈ Dφ

})
≥ eλ

2aλ(h(φ)−ε
)
.
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6 LLDP AND LDP FOR SUB-CRITICAL COMMUNICATION NETWORKS

(ii) for any neighborhood Bρ and ε > 0, we have

Card
({
Y λ ∈ G |MY λ

2 ∈ Bφ
})
≤ eλ

2aλ(h(φ)+ε
)
,

where Card(γ) means the cardinality of γ.

remark 1 Given φ = tβ⊗β, we have Card
({
j ∈ G

})
≈ eλ

2 aλ‖tβ⊗β‖H
(
tβ⊗β/‖tβ⊗β‖

)
, where β = µ⊗K.

Interpretation: Note from Corollary 2.4 that, for the typical empirical connectivity measure, tµ2 ⊗
K2, the cardinality of the space of SINR models is nearly equal to eλ

2aλ‖tµ2⊗K2‖H
(
tµ2⊗K2/‖tµ2⊗K2‖

)
.

The next theorem is the LDP for the SINR random network processes.

Corollary 2.5. Let Y λ be a sub-critical marked SINR random network model with rate measure
λµ : D → [0, 1] and a mark kernel function K(·, y) = ce−cy, y > 0 and path loss function π(η) = η−α,
for α > 0. Thus, the link probability T λ of Y λ satisfies a−1

λ T λ → t and λaλ → 0.

• Let U be closed subset G. Then we have

lim sup
λ→∞

1

λ2aλ
logPµ×K

{
Y λ ∈ G

∣∣∣MY λ

2 ∈ U
}
≤ −1

2 inf
φ∈U

{
H(φ‖tµ×K ⊗ µ×K)

}
• Let O be open subset G. Then we have

lim inf
λ→∞

1

λ2aλ
logPβ

{
Y λ ∈ G

∣∣∣MY λ

2 ∈ O
}
≥ −1

2 inf
φ∈O

{
H(φ‖tµ×K ⊗ µ×K)

}
.

3. Proof of Main Results

3.1 Proof of Theorem 2.1(i)

Suppose W1, ...,Wn is a decomposition of the space D×R+. Note that, for every (u, v) ∈ Ax×Ay, x, y =

1, 2, 3, ..., n, λMY λ
2 (u, v) given λMY λ

1 (u) = λβ(u) denotes a number of bernoulli trial with parameters
λ2β(u)β(v)/2 and T λ(u, v). Consider K to represent as the gamma distribution with mean 1/c. With
reference to the function tDλ from the preceding sections, we observe that Lemma 2.3 is fundamental
in the application of the Gartner-Ellis Theorem. See [7].

Lemma 3.1. Suppose Y λ is a sub-critical marked SINR random model with rate measure λµ : D →
[0, 1] and a power probability function K(·, y) = ce−cy, y > 0 and path loss function π(η) = η−α, for
η > 0 and α > 0. Thus, the link probability T λ of Y λ satisfies a−1

λ T λtot and λaλ → 0. Suppose Y λ

be a sub-critical SINR network model, conditional on the event MY λ
1 = β. Let q : W ×W → R be

bounded function. Then,

lim
λ→∞

1

λ
logE

{
eλ〈q,M

Y λ

2 〉
∣∣∣MY λ

1 = β
}

=
1

2
lim
n→∞

n∑
y=1

n∑
x=1

〈
q, tβ ⊗ β

〉
Ax×Ay

=
1

2

〈
q, tβ ⊗ β

〉
W×W

.

Proof. Now we observe that

E
{
e
∫ ∫

λq(u,v)MY λ

2 (du,dv)/2
∣∣∣MY λ

1 = β
}

= E
{ ∏
u∈W

∏
v∈W

eλq(u,v)λ2 (du,dv)/2
}
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E
{ ∏
u∈W

∏
v∈W

eq(u,v)λMY λ

2 (du,dv/2)
}

=

n∏
x=1

n∏
y=1

∏
u∈Wx

∏
v∈Wy

E
{
eq(u,v)λMY λ

2 (du,dv)/2
}

log
{
eλ〈q,M

Y λ

2 〉/2
∣∣∣MY λ

1 = β
}

=

n∑
y=1

n∑
x=1

∫
Wy

∫
Wx

log
[
1−T λ(u, v)+T λ(u, v)eq(u,v)/λaλ

]λ2β⊗β(du,dv)/2
+o(n)

Introducing the dominated convergence theorem

1

λ
logE{eλ〈q,MY λ

2 〉/2 |MY λ

1 = β} =
1

λ

n∑
y=1

n∑
x=1

∫
Wx

∫
Wy

log
[
1−
(
1−eq(u,v)/λaλ)T λ(u, v)

]λ2β⊗β(du,dv)/2
+o(n)/λ

1

λ
logE{eλ〈q,MY λ

2 〉/2∣∣MY λ

1 = β} = lim
λ→∞

n∑
y=1

n∑
x=1

∫
Wx

∫
Wy

log
[
1+q(u, v)t(u, v)/λ+o(λ)/λ

]λβ⊗β(du,dv)/2
+o(n)/λ

lim
λ→∞

1

λ
logE{eλ〈q,MY λ

2 〉/2 |MY λ

1 = β} =
1

2

n∑
y=1

n∑
x=1

〈
g, tβ ⊗ β

〉
Wx×Wy

lim
λ→∞

1

λ
logE{eλ〈q,MY λ

2 〉/2
∣∣∣MY λ

1 = β} =
1

2
lim
n→∞

n∑
y=1

n∑
x=1

〈
q, tβ ⊗ β

〉
Wx×Wy

=
1

2

〈
q, tβ ⊗ β

〉
W×W

.

Hence,by the Gartner-Ellis theorem, conditional on the event
{
MY λ

1 = β
}

, MY λ
2 obey a large deviation

principle with speed λ and variational formulation of the rate function

Iβ(φ) =
1

2
sup
q

{〈
q, φ

〉
W×W

−
〈
q, tβ ⊗ β

〉
W×W

}
the solution can be found, see example [4], would obviously reduces to the good rate function as such

Iβ(φ) = 0. (3.1)

3.2 Proof of Theorem 2.1(ii)

Analogously we consider W1, ...,Wn as decomposition of the space D×R+. We refer to tDλ and observe
that, Lemma 3.2 will play an important role in the application of the Gartner-Ellis Theorem. See, [7].

Lemma 3.2. Let Y λ be a sub critical powered SINR network with rate measure λµ : D → [0, 1] and
a power probability function K(y) = ce−cy, y > 0 and path loss function π(η) = r−α, for η > 0 and
α > 0. Thus, the link probability T λ of Y λ satisfies a−1

λ T λ → t and λaλ →∞. Let Y λ be a sub-critical

SINR network, conditional on the event MY λ
1 = β. Let q :W ×W → R be bounded function. Then,

lim
λ→∞

1

λ2aλ
logE

{
eλ

2aλ〈q,MY λ

2 〉
∣∣∣MY λ

1 = β
}

= −1

2
lim
n→∞

n∑
y=1

n∑
x=1

〈
1− eq, tβ ⊗ β

〉
Wx×Wy

= −1

2

〈
1− eq, tβ ⊗ β

〉
W×W

.
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8 LLDP AND LDP FOR SUB-CRITICAL COMMUNICATION NETWORKS

Proof. Now we note that

E
{
e
∫ ∫

λ2aλq(u,v)MY λ

2 (du,dv)/2
∣∣∣MY λ

1 = β
}

= E
{ ∏
i∈W

∏
j∈W

eλ
2aλq(u,v)MY λ

2 (du,dv)/2
}

E
{ ∏
i∈W

∏
j∈W

eq(u,v)λMY λ

2 (du,dv/2) =
∏
x=1

∏
y=1

∏
i∈Wx

∏
j∈Wy

E
{
eλ

2aλq(u,v)MY λ

2 (du,dv)/2
}
× eo(n)

log
{
eλ

2aλ〈q,MY λ

2 〉/2
∣∣∣MY λ

1 = β
}

=
n∑
y=1

n∑
x=1

∫
Wy

∫
Wx

log
[
1−T λ(u, v))+T λ(u, v)eq(u,v)

]λ2β⊗β(du,dv)/2
+o(n)

Using the dominated convergence theorem

1

λ2aλ
logE{eλ〈q,MY λ

2 〉/2 |MY λ

1 = β} =
1

λ2aλ

∑
y=1

∑
x=1

∫
Wx

∫
Wy

log
[
1−
(
1−eq(u,v))T λ(u, v)

]λ2β⊗β(du,dv)/2
+o(n)/λ2aλ

1

λ2aλ
logE{eλ〈q,MY λ

2 〉/2∣∣MY λ

1 = β} = lim
λ→∞

∑
y=1

∑
x=1

∫
Wx

∫
Wy

log
[
1−(1−eq(u,v))T λ(u, v)

]λβ⊗β(du,dv)/2
+o(n)/λ2aλ

lim
λ→∞

1

λ2aλ
logE

{
eλ〈q,M

Y λ

2 〉/2∣∣MY λ

1 = β
}

= −1

2

∑
y=1

∑
x=1

∫
Wx

∫
Wy

[
(1− eq(u,v))t(u, v)β ⊗ β(du, dv)

]

lim
λ→∞

1

λ2aλ
logE{eλ〈q,MY λ

2 〉/2∣∣MY λ

1 = β} = −1

2

n∑
y=1

n∑
x=1

〈
1− eq, tβ ⊗ β

〉
Wx×Wy

lim
λ→∞

1

λ2aλ
logE{eλ〈q,MY λ

2 〉/2
∣∣∣MY λ

1 = β} = −1

2
lim
n→∞

n∑
y=1

n∑
x=1

〈
1− eq, tβ ⊗ β

〉
Wx×Wy

= −1

2

〈
1− eq, tβ ⊗ β

〉
W×W

Hence,by the Gartner-Ellis theorem, conditional on the event
{
MY λ

1 = β
}

, MY λ
2 obey a large deviation

principle with speed λ and variational formulation of the rate function is given by

Iβ(φ) =
1

2
sup
q

{〈
q, φ

〉
W×W

+
〈

1− eq, tβ ⊗ β
〉
W×W

}
which when solved, see example [4], will clearly reduce to the good rate function given by

Iβ(φ) =
1

2
H(φ‖tβ ⊗ β). (3.2)

3.3 Proof of Theorem 2.1(ii) by Method of Mixtures. For any λ ∈ (0,∞) we define

Mλ(W) :=
{
β ∈M(W) : λβ(u) ∈ N for all u ∈ W

}
,

M̃λ(W ×W) :=
{
φ ∈M(W ×W) : λφ(u, v) ∈ N, for all u, v ∈ W

}
.
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We denote by Υλ :=Mλ(W) and Υ :=M(W). We write

P
(λ)
βλ

(φλ) := P
{
MY λ

2 = φλ
∣∣MY λ

1 = βλ
}
,

P (λ)(βλ) := P
{
MY λ

1 = βλ
}

Th joint distribution of MY λ
1 and MY λ

2 is the mixture of P
(λ)
βλ

with P (λ)(βλ), as follows:

dP̃ λ(βλ, `λ) := dP
(λ)
βn

(`λ) dP (λ)(βλ). (3.3)

(Biggins, Theorem 5(b), 2004) provides condition for the validity of large deviation principles for the
mixtures and for the goodness of the rate function if individual large deviation principles are known.
The following three lemmas ensure validity of these conditions.

Note that the family of measures (P (λ) : λ ∈ (0,∞)) is exponentially tight on Υ.

Lemma 3.3. (u) The family of measures (P̃ λ : λ ∈ (0,∞)) is exponentially tight on Υ×M̃(W×
W).

(ii) The family measures (T λ : λ ∈ (0,∞)) is exponentially tight on Υ×M(W ×W).

We refer to [9, Lemma 4.3] for similar proof for Large Deviation Principle on the scale λ2

Define the function I2
sc, I

1
sc : Υ×M(W ×W)→ [0,∞], by

I1
(
β, φ

)
=

{
H
(
β
∣∣∣µ⊗K) if φ = tβ ⊗ β

∞ otherwise.
(3.4)

I2
(
β, ν

)
=

1

2
H
(
ν‖tβ ⊗ β

)
. (3.5)

Lemma 3.4. (u) I1 is lower semi-continuous.
(ii) I2 is lower semi-continuous.

By (Biggins, Theorem 5(b), 2004) the two previous lemmas, the LDP for the empirical power measure,
see, [9, Theorem 2.1] and the large deviation principles we have established Theorem 2.1 ensure that

under (P̃ λ) and T λ the random variables (βλ, `λ) satisfy a large deviation principle onM(W)×M(W×
W) and Υ×Mλ(W ×W) on the speeds λ and λ2aλ with good rate functions I1 and I2 respectively,
which ends the proof of Theorem 2.1.

4. Proof of Theorem 2.2 by Large deviations

To prove the Shannon-Mcmillian Breiman (SMB) or the AEP, we first prove a weak law of large
numbers (WLLN) for the empirical marked measure and the empirical connectivity measure of the
SINR network model.

Lemma 4.1. Let Y λ be a sub-critical marked SINR model with rate measure λµ : D → [0, 1] and a
marked transition function K(·, y) = ce−cy, y > 0 and path loss function π(η) = η−α, for α > 0. Thus,
the link probability T λ of Y λ satisfies a−1

λ T λ → t and λaλ → 0. Then,

lim
λ→∞

P
{

sup
(a,`a)∈W

∣∣∣MY λ

1 (a, `a)− µ⊗K(a, `a)
∣∣∣ > ε

}
= 0

and

lim
λ→∞

P
{

sup
([yu,`u],[yv ,`v ])∈W×W

∣∣∣MY λ

2 ([u, `u], [yv, `v])− tµ⊗K × µ⊗K([yu, `u], [yv, `v])
∣∣∣ > ε

}
= 0
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Proof. Let

U1,W =
{
β : sup

(a,`a)∈W
|β(a, `a)− µ⊗K(a, `a)| > ε

}
,

U2,W =
{
φ : sup

([u,`u],[j,`v ])∈W×W
|φ([yu, `u], [yv, `v])− tµ⊗K × µ⊗K([yu, `u], [yv, `v])| > ε

}
and U3,W = U1,W ∪ U2,W . Now, observe from Theorem 2.1 that

lim
λ→∞

1

λ
logP

{
(MY λ

1 ,MY λ

2 ) ∈ U c3,W
}
≤ − inf

(β,φ)∈F c3,W
I(β, φ).

It meets the requirement for the study to prove that I is strictly positive. For instance,there is a
sequence (βn, φn) → (β, φ) such that I(βλ, φλ) ↓ I(β, φ) = 0. This means β = µ ⊗ K and φ =
tµ⊗K × µ⊗K which contradicts (β, φ) ∈ U c3 . This ends the proof of the Lemma. �

We write Mλ
∆ = 1

λ

∑
u∈I δ(σλ,σλ) and observe that the distribution of the marked SINR random network

P (y) = P
{
Y λ = y

}
is given by

Pλ(u) =
I∏

u=1

|µ⊗K(yu, `u)
∏

(u,v)∈E

T r
λ
([yu, `u], [yv, `v])

1− T λ([yu, `u], [yv, `v])

∏
(u,v)∈E

(1−T λ([yu, `u], [yv, `v]))
I∏

x=1

(1−T λ([yu, `u], [yv, `v]))

− 1

aλλ2 log λ
logPλ(y) =

1

aλλ log λ

〈
− logµ⊗ T ,MY λ

1

〉
+

1

log λ

〈
− log

(
T r
λ

1−T rλ

)
,MY λ

2

〉
+

1

aλ log λ

〈
− log(1− T rλ) ,MY λ

1 ⊗MY λ

1

〉
+

1

aλλ log λ

〈
− log(1− T λ) ,Mλ

∆

〉
Notice,

lim
λ→∞

1

aλλ log λ

〈
−logµ⊗K ,MY λ

1

〉
= lim

λ→∞

1

λ

〈
−log(1−T λ ,Mλ

∆

〉
= lim

λ→∞

1

aλ log λ

〈
−log(1−T rλ) ,MY λ

1 ⊗MY λ

1

〉
= 0.

Using, Lemma 4.1 we have

lim
λ→∞

1

log λ

〈
− log

(
T λ/(1− T λ

)
,MY λ

2

〉
=
〈

1l , tµ⊗K × µ⊗K
〉

which concludes the proof of Theorem 2.2.

5. Proof of Theorem 2.3, Corollary 2.4, Corollary 2.5

For β ∈ M(W) we define the spectral potential of the marked SINR graph (Y λ) conditional on the

event
{
MY λ

1 = β
}
, ρt(q, β) as

ρt(q, β) =
〈
− (1− eq) , tβ ⊗ β

〉
. (5.1)

Note that remarkable properties of a spectral potential, see [1] or [9] holds for ρt.

For β ∈M(W ×W), we observe that Iβ(φ) is the Kullback action of the marked SINR graph Y λ.

Lemma 5.1. The following hold for the Kullback action or divergence function Iβ(φ):
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•
Iβ(φ) = sup

g∈C

{
〈g, φ〉 − φt(g, β)

}
• The function Iβ(φ) is convex and lower semi-continuous on the space M(W ×W).

• For any real α, the set
{
φ ∈M(W ×W) : Iβ(φ) ≤ α

}
is weakly compact.

The proof of Lemma 5.1 is excluded from the article. Scholars of interest may infer to [10] for likewise
proof for empirical measures of ‘ the supercritical marked SINR random network processes and/or
the references therein for proof of the lemma for empirical measures on measurable spaces.

Note from Lemma 5.1 that, for any ε > 0, there exists some function q ∈ W ×W such that

Iβ(φ)− ε
2 < 〈q , β〉 − φt(q, φ).

We define the probability distribution of the powered R by Pβ by

Pβ(y) =
∏

(u,v)∈E

eq(u,v)
∏

(u,v)∈E

egλ(u,v),

where

gλ(u, v) =
1

aλ
log
[
1− T λ(u, v) + T λ(u, v)eq(u,v)

]
Then, clearly that

dPβ

dP̃β
(y) =

∏
(u,v)∈E

e−q(u,v)
∏

(u,v)∈E

e−gλ(u,v)aλ

= e−λ
2aλ(〈12 q,M

Y λ

2 〉−λ2aλ〈
1
2hλ,M

Y λ

1 ⊗MY λ

1 〉)+〈12gλ,M
λ
∆〉

Now define the neighbourhood of φ, Bφ by

Bφ :=
{
ω ∈M(W ×W) : 〈q, ω〉 − ρt(q, β) > 〈q, φ〉 − ρt(q, φ)− ε/2

}
Note that under the condition MY λ

2 ∈ Bφ we have

dPβ

dP̃β
(y) < e−λ

2aλ(〈12g,L
λ
2 〉−λ2aλ〈

1
2hλ,M

Y λ

1 ⊗MY λ

1 〉)+〈12hλ,M
λ
∆〉 < e−λ

2aλIsc(ν)+λ2aλε

Thus, the study can deduce that

Pβ

{
Y λ ∈ G

∣∣∣MY λ

2 ∈ Dφ

}
≤
∫

1l{MY λ
2 ∈Dφ}

dP̃β(Y λ) ≤
∫
e−λ

2aλIsc(β)−λεdP̃β(Y λ) ≤ e−λ2aλIsc(φ)−λ2aλε.

.

Given that I2(φ) = 0 means Theorem 2.2 (ii), hence it is enough us to obtain that the result is true
for a probability distribution of the form φ = eqβ⊗β and for I2(φ) = 1

2H(φ‖tβ⊗β), where β = µ⊗K.
Fix any number ε > 0 and any neigbourhood Bφ ⊂M(W ×W). Now define the sequence of sets

Gλ =
{
yλ ∈ G : Myλ

2 ∈ Bφ
∣∣∣〈q,Myλ

2 〉 − ρt(q, β)
∣∣∣ ≤ ε

2

}
.

Note that for all q ∈ Gλ we have
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dPβ

dP̃β
(y) > e−λ

2aλ〈
1
2 q,φ〉+λ

2aλφt(q, β)+λ2aλ
ε
2 .

This yields

Pπ(Gλ) =

∫
Gλ
dPβ(y) ≥

∫
e−λ

2aλ〈
1
2g,ν〉+λ

2aλρt(g, β)+λ2aλ
ε
2dP̃β(y) ≥ e−λ

2aλ
1
2H(ν‖tβ⊗β)+λ2aλεP̃β(Gλ).

Applying the law of large numbers, we have that limλ→∞ P̃β(Gλ) = 1. This completes of the Theorem.

Proof of Corollary 2.4

The proof of Corollary 2.4 follows from the definition of the Kullback action and Theorem 2.3 if we
set β = µ⊗K and λβ ⊗ β(a, b) = ‖λβ ⊗ β‖, for all (a, b) ∈ Y × Y.

Proof of Corollary 2.5

In this scenario, the result was obtained by Lemma 3.3 the law of empirical link measure is exponen-
tially tight. Moreover, without loss of generality, we can assume that the set U in Corollary 2.5(ii)
above is relatively compact. If the study chooses any ε > 0; then for each functional φ ∈ U the
researchers can find a weak neighborhood such that the estimate of Theorem 2.3(u) above holds.
From all these neighborhood, the study select a finite cover of G and sums up over the value in
Corollary 2.5(u) above to obtain

lim sup
λ→∞

1

λ
logPβ

{
Y λ ∈ G

∣∣∣Mλ
2 ∈ U

}
≤ − inf

φ∈U
Iβ(φ) + ε, where β = µ⊗K.

As ε was arbitrarily chosen and the lower bound in Theorem 2.1(ii) means in the lower bound in
Theorem 2.5 holds, the study obtains the desired results which completes the proof.

6. Conclusion

The study provided a joint large deviation principle for the empirical power measure and the empirical
connectivity measure of telecommunication networks in the τ− topology. Adopting the concept of the
large deviations,we have proved Shannon-McMillian Breiman Theorem for the telecommunication
network modelled as the sub-critical SINR network model. In addition, we have proved a local large
deviation principle for the empirical connectivity measure given the empirical power measure and
from this result;we have obtained the classical McMillian theorem and for a given PPP. Finally, we
have obtained an asymptotic bound on the set of all possible sub-critical SINR network processes .
Conclusively, we have presented large deviation principles for the sub-critical SINR networks. Note,
that our results may form the bases for designing an anomaly inference algorithms for subcritical
wireless telecommunication network models.
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