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Abstract: Lipid metabolism is clearly associated to Parkinson´s disease (PD). Although lipid ho-

meostasis has been widely studied in multiple animal and cellular models as well as in blood de-

rived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely 

unexplored. In this study, we have characterized the CSF lipidomic imbalance between neurolog-

ically intact controls (n=10) and PD subjects (n=20). The combination of dual extraction with ul-

tra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass 

spectrometry (UPLC-ESI-qToF-MS/MS) allowed to monitor 257 lipid species across all samples. 

Complementary multivariate and univariate data analysis pointed out that glycerolipids (mono-, 

di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, 

glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids 

(ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) 

were significantly increased in the CSF of PD compared to control group. These results, despite the 

limitation of being obtained in a small population, demonstrate and extensive CSF lipid remodel-

ling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify 

potential lipid markers as well as discriminatory lipid species between PD and other atypical par-

kinsonisms. 
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1. Introduction 

Due to the lipid heterogeneity, it has been estimated that the human lipidome may 

be composed by 100,000 different lipid species 1, 2. Lipids play multiple roles in brain 

function, affecting the elasticity and structural organization of synaptic membranes, and 

modulating protein activity involved in cellular signalling dynamics 3−5. In the context of 

PD, a genetic risk has been characterized between lipid/lipoproteins traits and the disease 
6. Mutations in lipid-producing enzymes (associated with familial PD; GBA) and SNPs in 

multiple genes involved in lipid metabolism (SREBF1, DGKQ, ASAH1, SMPD1) have 

been linked to sporadic PD 7−10. Moreover, lipids not only influence in the aggregation 

potential of alpha-synuclein in vitro and in vivo 11 but also are present in high concen-

tration as components of crowded membranes, vesicle structures and dismorphic orga-

nelles present in Lewy bodies 12. All these data evidence that lipid metabolism should be 

tightly regulated to counteract the appearance and progression of PD. 

Lipidomics is emerging as a powerful approach that complements protein and 

gene-centric workflows in the biomarker search to evaluate the neurodegenerative risk or 

the neurodegenerative progression 13. Although the scientific community is in a contin-

uous learning curve to obtain a comprehensive portrait of the human brain lipidome 14, 

the deployment of different variants of chromatographic separations coupled to 

mass-spectrometry is considered the gold standard approach to study lipid profiles in a 

high-throughput manner. However, multiple efforts are needed to solve and standard-
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ized the associated analytical challenges 15. Several lipidomic platforms have been re-

cently used to characterize the lipid composition of biofluids in neurological disorders 

such as amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer´s disease (AD) 
16−20. In this study, we have applied a discovery workflow to determine the global lip-

idomic changes at the CSF level between PD and controls using ultra-performance liquid 

chromatography-electrospray ionization time-of-flight mass spectrometry 

(UPLC-ESI-ToF-MS), monitoring more than 250 lipid species and detecting a new meta-

bolic signature associated to the disease that should be further validated in extensive 

sample cohorts in terms of biomarker sensitivity and specificity. 

2. Materials and Methods 

2.1. Materials 

Internal standard (IS) compounds: nonadecanoid acid, dehydrocholic acid and 

tryptophan-(indole-d5) were purchased from Sigma-Aldrich. 

1-tridecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (13:0 Lyso PC), 

N-hexanoyl-D-erythro-sphingosylphosphorylcholine SM (d18:1/6:0), 

1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine (17:0 PE), 

1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (19:0 PC) and 

N-heptadecanoyl-D-erythro-sphingosine Ceramide (d18:1/17:0) were purchased from 

Avanti Polar Lipids. Tritridecanoylglycerol (13:0 TG), Triheptadecanoylglycerol (17:0 

TG) and Cholesteryl Laurate ChoE (12:0) were purchased from Larodan Fine Chemicals. 

All chemicals and solvents (acetonitrile, methanol, water, isopropanol, formic acid, am-

monium formate) were of analytical, HPLC or HPLC-MS grade. See Appendix A for IS 

working solution preparations (Table A1 and A2). 

2.2. Metabolite extraction from CSF 

Control (n=10; mean age: 77.7 years; 4F/6M) and PD (n=20; mean age: 79.9 years; 

7F/13M) CSF samples were obtained from the Parkinson’s UK Brain Bank funded by 

Parkinson’s UK, a charity registered in England and Wales (258197) and in Scotland 

(SC037554) (Table 1). 150 µL of CSF were vortexed with 600 µL of ice-cold IS working 

solution for platform 1, 30 µL of ice-cold IS working solution for platform 2 and 570 µL of 

ice-cold CHCl3. After shaking (20 min. room temperature) and incubation (1 h at 4 ºC), a 

centrifugation step was performed (18,000 x g for 15 min at 4 ºC). For lipidomic platform 

1, 650 µL were dried at 40 ºC in a vacuum concentrator. After centrifugation (18,000 x g 

for 15 min at 4 ºC), dried samples were dissolved in 50 µL methanol and vortexed at 

room temperature for 20 min. A centrifugation step (18,000 x g for 5 min at 4 ºC) was 

performed to precipitate any particulates, transferring the supernatant to a plate for 

analysis of lipidomic platform 1. For lipidomic platform 2, 650 µL were mixed with 50 µL 

of H2O and vortexed for a few seconds. After centrifugation (18,000 x g for 5 min at 4 ºC), 

400 µL of the lower organic phase were dried at 40 ºC in a vacuum concentrator. Dried 

samples were dissolved in 50 µL of acetonitrile:isopropanol 1:1, and shaken vigorously at 

room temperature for 10 min. A centrifugation step (18,000 x g for 5 min at 4 ºC) was 

performed to precipitate any particulates, transferring the supernatant to a plate for 

analysis of lipidomic platform 2.
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Table 1. Chromatographic and mass-spectrometric workflows used in this study. 
 Platform 1 Platform 2 

Column type 
UPLC BEH C18, 1.0 × 100 

mm, 1.7 μm 

UPLC BEH C18, 2.1 x 100 

mm, 1.7 μm 

Flow rate 0.140 mL/min 0.400 mL/min 

Solvent A 
0.05% Formic Acid in wa-

ter 

Water:Acetronitrile (2:3) + 

10mM Ammonium Formate 

Solvent B 
0.05% Formic Acid in ace-

tonitrile 

Acetonitrile:Isopropanol 

(1:9) + 10mM Ammonium 

Formate 

(%B), time 0%, 0 min 40%, 0 min 

(%B), time 50%, 2 min 100%, 10 min 

(%B), time 100%, 13 min 40%, 15 min 

(%B), time 0%, 18 min 40%, 17 min 

Column temperature 40 °C 60 °C 

Injection volume 2 μL 3 μL 

Autosampler temperature 10 °C 10 °C 

Source temperature 120 °C 120 °C 

Nebulisation N2 flow 600 L/hour 1000 L/hour 

Nebulisation N2 temperature 350 °C 500 °C 

Cone N2 flow 30 L/hour 30 L/hour 

Ionization ESI -ve ESI +ve 

Capillary voltage 2.8 kV 3.2 kV 

Cone voltage 50 V 30 V 

Type of data Centroid Centroid 

Scan time 0.2 s 0.2 s 

Acquisition range 50-1000 Da 50-1200 Da 

Analysis of fatty acyls, bile acids, steroids and lysoglycerophospholipids was carried out with lip-

idomic platform 1 and analysis of glycerolipids, cholesterol esters, sphingolipids and glycer-

ophospholipids was performed with lipidomic platform 2. 

2.3. Chromatography and mass-spectrometry 

Lipidomic profiling was carried out by OWL Metabolomics S.L. (Derio, Spain). 

Briefly, chromatographic separation and mass spectrometric detection conditions em-

ployed for each UHPLC-ToF-MS-based platform is indicated in Table 1. An Acquity-LCT 

Premier XE system and an Acquity-Xevo G2QTOF (Waters Corp., Milford, MA) were 

used as Platform 1 and 2 respectively. 

2.4. Data processing and normalization 

TargetLynx application manager for MassLynx 4.1 software (Waters Corp. Milford, 

USA) was used for data processing. A set of parameters associated to metabolites in-

cluded in the analysis (Rt m/z, mass-to-charge ratio pairs, retention time)were inco-

porated into the program. Using a mass tolerance window of 0.05 Da and after peak de-

tection and noise reduction (at LC and MS levels), only true metabolite related features 

were processed by the software. For each sample injection, a list of chromatographic peak 

areas was generated. Data normalization was performed following the procedure de-

scribed by Barr et al. 21 where the ion intensity corresponding to each peak present in each 

CSF sample was normalized respect to the sum of peak intensities in each CSF sample. 

There were no significant differences (t-test=0.1031) between the total intensities used for 

normalization of the sample groups compared in the study. 

2.5. Data analysis 
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Once normalized, the dimensionality of the complex data set was reduced to enable 

easy visualization of any metabolic clustering of the different groups of samples. This 

was achieved by multivariate data analysis, including the non-supervised principal 

components analysis (PCA) and/or supervised orthogonal partial least-squares to latent 

structures (OPLS) approaches. Univariate statistical analyses were also performed cal-

culating group percentage changes and unpaired Student’s t-test p-value (or Welch´s 

t-test where unequal variances were found) for the comparison between both experi-

mental groups. 

3. Results 

During a neurodegenerative process, different type of molecules could be released 

and finally diffused into the CSF circuit, being considered potential cerebrospinal fluid 

(CSF) biomarkers. Due to cell membrane breakdown is a characteristic feature of a neu-

rodegenerative process in brain syndromes, the deep characterization of CSF metabo-

lomic profiles could reveal specific lipid molecules released by damaged neuronal or glial 

cell populations, establishing novel molecular panels to help us in the characterization of 

neurodegenerative diseases. In the current study, we have focused our attention on the 

metabolic profile of CSF lipids in PD. 

3.1. Categorization of the detected CSF lipidome 

Due to the wide concentration range of lipids and to their extensive chemical diver-

sity 1, it is not possible to analyze the full lipidomic profile in a single experiment. 

Therefore, lipid extraction was carried out by fractionating the CSF samples into groups 

of species with similar physicochemical properties, using appropriate solutions of or-

ganic solvents (methanol, chloroform/methanol) and then analyzing the different extracts 

in specific analytical platforms 21. In our case, two UHPLC-MS based platforms were used 

(Figure 1) to maximize the analysis of CSF lipidomic profiles derived from neurologically 

intact controls and PD subjects (Table 2), performing an optimal profiling of: i) Fatty 

acyls, bile acids, steroids and lysoglycerophospholipids, and ii) Glycerolipids, glycer-

ophospholipids, sterol lipids and sphingolipids. Using this dual workflow, a total of 257 

metabolic features were detected in all human CSF samples, including 6 bile acids, 10 

fatty amides, 3 acylcarnitines, 65 glycerolipids, 111 glycerophospholipids, 22 

non-esterified fatty acids, 33 sphingolipids and 7 sterols (Supplementary Table 1). 
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Table 2. CSF samples included in the lipidomic study. PD: Parkinson´s disease; C: controls. Dura-

tion (years). 

SAMPLE.ID Age Sex Onset Duration 

PD354 88 F 77 11 

PD423 66 F 53 13 

PD436 90 M 82 8 

PD520 80 M 56 24 

PD530 85 M 77 8 

PD357 71 M 37 34 

PD450 66 M 47 19 

PD495 88 F    

PD501 89 F 82 7 

PD537 84 M 84 9 

PD550 83 F 77 7 

PD562 79 M 72 7 

PD636 84 M 65 20 

PD295 83 M 67 16 

PD340 67 M 53 14 

PD356 86 F 75 9 

PD541 72 M 66 6 

PD546 84 F 71 13 

PD579 76 M 55 21 

PD591 77 M 68 9 

C022 65 M     

C023 78 F    

C030 77 M    

C008 93 F    

C015 82 M    

C026 78 F    

C032 88 M    

C054 66 M    

C064 63 F    

C076 87 M     

 

Figure 1. Lipidomic workflow applied in our pilot study. 

3.2. CSF lipidomic profiling in Parkinson´s disease 

The 257 detected lipid features were analyzed across all CSF samples. Once nor-

malized, the dimensionality of the complex dataset was reduced to enable easy visuali-

sation of any metabolic clustering of the PD and control CSFs. The quality of the global 

experiment was assessed (see Appendix A). 
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3.2.1. Multivariate analysis 

A supervised OPLS model was also calculated in order to achieve the maximum 

separation between both experimental groups. Figure 2 (left panel) shows the score 

scatter plot of this model, in which a clear clustering of CSF samples according to the 

presence or absence of PD was observed. Similar to what was found for the Loadings 

scatter plot displayed in Figure A4 (Appendix A), metabolites responsible for the dif-

ferences observed were mainly glycerolipids (MAG, DAG, TAG), fatty acids (SFA, 

MUFA), FAA, glycerophospholipids (PC, PE) and sphingolipids (Cer, SM), which were 

increased in PD group (Figure 2, right panel). However, this model had a low predictive 

ability (Q2X= 0.150) being necessary to extend this pilot study including additional sam-

ple cohorts. 

 

Figure 2. Score scatter plot (left panel) and Loadings scatter plot (right panel) of the OPLS-DA 

model of CSF samples after square root transformation of the data. Model diagnostics (A=9; R2X= 

0.860 Q2X=0.150). red triangules and blue circles represent the ontrol and PD group respectively. 

3.2.2. Univariate analysis 

Univariate data analysis was also performed, calculating group percentage changes 

and unpaired Student’s t-test p-value (or Welch´s t test where unequal variances were 

found) for the PD vs. control comparison. As mentioned in Appendix A, Shapiro-Wilk 

test revealed that the majority of the CSF metabolites measured from PD were not fol-

lowing a normal distribution. Then, in addition to the untransformed data analysis, a 

square root (sqrt) transformation of the data was also applied. Raw intensity data, aver-

age group intensities, fold changes and unpaired Student’s t-test of each individual me-

tabolite and of each metabolic class for both untransformed and sqrt transformed data 

are included in Supplementary Table 1. The raw data per metabolic class was calculated 

as the sum of the normalized areas of all the metabolites with the same chemical charac-

teristics. In order to help in the visualization of the results, a heatmap was generated. The 

heatmap in Figure 3 displays the log2 (fold-change) of the 257 metabolites included in the 

analysis together with the unpaired Student’s t-test for the PD vs. control comparison 

obtained using untransformed data (left column) and the square root (Sqrt) transfor-

mation of the data (right column). 
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Figure 3. Heatmap representing differential individual metabolic features obtained from the PD 

and control comparison. Log transformed ion abundance ratios are depicted, as represented by the 

scale. Darker green and red colours indicate the change intensity of the metabolite levels, respec-

tively. Grey lines correspond to significant fold-changes of individual metabolites, darker grey 

colours have been used to highlight higher significances (p<0.05, p<0.01 or p<0.001). It is relevant to 

highlight that metabolites have been ordered in the heatmap according to their carbon number and 

unsaturation degree of their acyl chains. Heatmap colour codes for log2 (fold change) and unpaired 

Student’s t-test p-values are indicated at the bottom of the heatmap. Metabolite order is supplied in 

the “Heatmap datasheet” in Supplementary Table 1. 

As shown in Figure 3, a similar trend in the levels of the lipid metabolites was found 

when using the untransformed data or the square root transformation of the data (right 

column, Figure 3). Additionally, in order to complement the heatmap, a volcano plot was 

generated highlighting the most significant metabolites considered individually for the 

PD vs. control comparison (Figure 4). 
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Figure 4. Volcano plot [-log10(p-value) vs.log2(fold-change)] for the PD vs. control subjects com-

parison. This volcano plot highlights the significance p-value <0.01 for DG02 –DG(32:0)-, DG05 

–DG(34:0)-, FAA10 -22:0 amide-, TG04 –TG(44:0)-, TG13_TG14 –TG(47:0)-, TG15 –TG(47:1)-, TG23 

–TG(49:1)-, TG59 –TG(56:1)- and TG121 –TG(40:0)- and the significance p <0.001 for DAPC37 

–PC(22:4/20:4)-, TG09 –TG(46:0)-, TG16 –TG(48:0)-, TG22 –TG(49:0)-, TG26 –TG(50:0)- and TG44 

–TG(53:1)-. The vast majority of them were glycerolipids and more specifically, triacylglycerols 

(TAG). 

Lipid classes were also calculated as the sum of the normalized areas of all the lipid 

metabolites with the same chemical characteristics (Supplementary Table 1). Interest-

ingly, all lipid classes significantly altered in PD subjects were increased. Changes in 

some of the most relevant metabolite classes are depicted in the boxplots shown in Fig-

ures 5. 

 

Figure 5. Boxplots of glycerolipids (monoacylglycerols -MAG-, diacylglycerols -DAG-, triacyl-

glycerols -TAG-), phosphatidylcholines -PC- and sphingolipids (ceramides -Cer-, sphingomyelins 

-SM-) (left). Boxplots of non-esterified fatty acids -NEFA- (saturated fatty acids -SFA-, monoun-

saturated fatty acids -MUFA-), primary fatty amides -FAA- and sterol lipids (cholesteryl esters 

-ChoE-, steroids -ST-) (right). 

4. Discussion 

Brain lipids act as the major source of energy, provide insulation to cells and struc-

tural integrity to membranes and can be rapidly converted to signalling molecules or to 

inflammatory intermediates 22. Thus, changes in lipid metabolism and its reflection on 
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CSF lipid content might have a significant impact on brain function contributing to PD 

pathogenesis. Although the exact role of lipids in PD is not totally understood, the effects 

and/or levels of a subset of the lipidome has been partially characterized in plasma as 

well as in animal/cellular PD models 23. However, brain levels of lipids may not correlate 

with plasma levels, so additional CSF measurements are needed to address the gap in 

knowledge about the potential pathological or compensatory composition of the brain 

lipidome in PD. In our case, all the lipid species which were found to be significantly in-

creased in parkinsonian CSF were: i) Several non-esterified fatty acids (NEFA), including 

the complete profile of saturated fatty acids (SFA), some monounsaturated fatty acids 

(MUFA) and a few polyunsaturated fatty acids (PUFA); ii) various primary fatty amides 

(FAA) and N-acyl ethanolamines (NAE), iii) almost the complete profile of glycerolipids, 

including monoacylglycerols (MAG), diacylglycerols (DAG) and triacylglycerols (TAG), 

iv) several cholesteryl esters (ChoE) and steroids (ST), v) almost the complete profile of 

phosphatidylcholines (PC) and vi) the majority of ceramides (Cer) and sphingomyelins 

(SM). 

It has been speculated that SFA could exacerbate PD pathology 24. Moreover, higher 

SFA levels are present in frontal cortical lipid rafts from PD subjects respect to controls 25. 

Although different CSF MUFA levels have been detected between several PD pheno-

types, MUFA levels remain unchanged in the temporal cortex from PD subjects 26, 27. 

PUFA levels in the anterior cingulate cortex are increased in PD, although their CSF lev-

els depend on the disease etiology27, 28. At molecular level, PUFA and alpha-synuclein are 

involved in synaptic vesicle cycle 29. Moreover, it has been evidenced that PUFA increase 

alpha synuclein oligomerization through the interaction with the N-terminal region 30, 31. 

Respect to glycerolipids, the exact function of MAG is unknown. While DAG is a sec-

ondary lipid messenger that plays a role in the synaptic vesicle cycle 32, 33, TAG is directly 

involved in energy storage 34. In the context of PD, plasma DAG and TAG tend to be di-

minished in PD, and higher serum TAG have been linked to reduce risk of PD 35−37. Al-

pha-synuclein overexpression has been directly related with intracellular TAG deposi-

tion 38, 39. 

In spite of CSF alterations in several cholesteryl esters (ChoE) and steroids (ST), little 

is known about the impact of sterols in PD pathogenesis 23. In general, sterols are known 

to play a role in immunity, membrane fluidity and serve as signaling mediators 40, 41. In 

PD, the cholesterol esterifying activity is reduced in fibroblasts and specific ChoE are 

reduced in the visual cortex 42, 43. Based on data obtained using several PD-related bio-

logical systems, it is not evident whether modulation of specific ChoE metabolic events 

may have a protective or pathological impact 44, 45. Phosphatidylcholine (PC), the most 

abundant glycerophospholipid in membranes is involved in the control of inflammation, 

neuronal differentiation and cholesterol homeostasis 46−48. Our data pointed out an in-

crement in almost the complete profile of PC at the level of CSF derived from PD subjects. 

However, decreased levels in multiple PC have been observed in plasma, frontal cortex 

and substantia nigra from PD patients 35, 49, 50. This tendency has been also observed in 

substantia nigra and brain tissue derived from a mouse model of PD and from 

MPTP-treated goldfish respectively 51, 52. Morever, specific alpha-synuclein isoforms dif-

ferentially interacts with PC membranes 53−56. It has been proposed that different variation 

in ceramide (Cer) levels across brain areas may be linked to alpha-synuclein accumula-

tion 23. However, controversial data exist about the Cer plasma levels in PD patients 35, 57, 

58. In general, an increment in Cer levels is commonly observed in different studies per-

formed in PD animal and cellular models 59−62. However, the consequences associated to 

Cer increment are not fully understood, being potentially detrimental or beneficial for 

different PD-related mechanisms. Sphingomyelin (SM), a major myelin component, is 

considered a source of bioactive lipidic molecules which play a role in inflammation, 

autophagy and cell death 63−66. According to our data obtained in CSF, SM accumulation 

has been also observed in: i) LB aggregates 67, ii) primary visual cortex from PD subjects 

as well as in substantia nigra from males with PD 42, 50 and iii) PD patients with sphin-

gomyelinase-1 mutations (risk factor) 68, 69. Although multiple factors suggest a potential 
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role of SM accumulation in PD-associated neurodegeneration, more experimental evi-

dences are needed to further elucidate the concise function of SM not only in al-

pha-synuclein aggregation, but also in inflammatory balance. 

It is important to note that our data obtained at the level of CSF partially corroborate 

previous associations between PD and the levels of fatty acils, glycerolipids, glycer-

ophospholipids, sphingolipids and sterols. Moreover, our pilot study establishes novel 

links between primary fatty amides (FAA) and N-acyl ethanolamines (NAE) with PD. 

However, although our untargeted lipidomic work has uncovered many intricacies in the 

CSF lipidomic homeostasis in the context of PD, there are potential limitations of our 

study that warrant discussion. First, due to the technological approach used, we failed to 

accurately monitor many lipid species present at low levels that might also participate in 

PD pathophysiology. Second, and based on the current knowledge, it is unclear whether 

the CSF lipid imbalance observed reflects pathological or compensatory mechanisms. 

Third, our study does not consider the effect of variables such as sex, age, PD etiology 

and/or mutational profiles. Finally, this study should be validated and complemented 

with additional patient cohorts with the aim to potentiate the deployment of biofluid li-

pid-based studies in paired CSF and plasma samples to identify potential biomarkers 

and/or druggable targets to be monitored across PD and other atypical parkinsonisms. 

5. Conclusions 

A CSF lipidomic approach performed in PD and control subjects (n=30) has detected 

257 metabolic features by ultra-high performance liquid chromatography – mass spec-

trometry (UHPLC-MS). A supervised OPLS model showed a clear separation between 

control and PD subjects indicating that the lipids responsible for this separation were 

mainly glycerolipids (MAG, DAG, TAG), fatty acids (SFA, MUFA), primary fatty amides, 

glycerophospholipids (PC, PE) and sphingolipids (Cer, SM), which were increased in PD 

group. Univariate data analysis also revealed a general increase in the CSF lipid meta-

bolic profile in PD. Overall, these results suggest that multiple CSF lipid species tend to 

be increased in PD compared to control subjects. However, the predictive ability of the 

OPLS model was low, indicating that further follow-up studies are needed to validate 

this lipidomic signature in large CSF cohorts with the aim to potentially use CSF lipids as 

discriminatory biomarkers in terms of sensitivity and specificity. 

Abbreviations. AC: Acyl carnitines; BA: Bile acids; Cer: Ceramides; ChoE: Cholesteryl esters; 

DAG: Diacylglycerides; FAA: Fatty acid amides (Primary Fatty Amides); LPE: Lysophosphatidyl-

ethanolamines; LPI: Lysophosphatidylinositols; LPC: Lysophosphatidylcholines; MAG: Mono-

acylglycerides; MUFA: Monounsaturated fatty acids; NAE: N-acyl ethanolamines; NEFA: 

Non-esterified fatty acids; OPLS: Orthogonal partial least-squares to latent structures; PC: Phos-

phatidylcholines; PCA: Principal Component Analysis; PE: Phosphatidylethanolamines; PUFA:  

Polyunsaturated fatty acids; SFA: Saturated fatty acids; SM: Sphingomyelins; TAG: Triacylglycer-

ides; UFA: Unsaturated fatty acids. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1 Supple-

mentary Table 1: “Raw data per metabolite_1” and “Raw data per chemical class_1” contain raw 

intensity data per metabolites and per metabolite class of the untransformed data, respectively. 

“Raw data per metabolite_2” and “Raw data per chemical class_2” contain raw intensity data per 

metabolites and per metabolite class of the data after square root transformation of the data. These 

sheets also include: i) “Individual notation” refers to the confirmed identification of the metabo-

lites. Overlapping of two or more metabolites or non-confirmed identification is indicated in “In-

dividual composition (or probable ID)”, ii) Average group intensities and standard errors, iii) 

Shapiro test: used for testing the normality of data (Shapiro test (p) row is marked in red if sample 

comes from normally distributed population), iv) Fold-changes and unpaired Student’s t-test 

p-values (or Welch´s t test where unequal variances were found) for the comparison PD vs. control 

and v) “Heatmap” contains the metabolites´ identification code, log2(fold-changes) and unpaired 

Student’s t-test p-values illustrated in the heatmap. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2021                   doi:10.20944/preprints202104.0324.v1

https://doi.org/10.20944/preprints202104.0324.v1


 

Author Contributions: Conceptualization, Enrique Santamaría.; software, Enrique Santamaría, 

Joaquín Fernández-Irigoyen.; formal analysis, Enrique Santamaría, Joaquín Fernández-Irigoyen, 

Paz Cartas-Cejudo; investigation, Enrique Santamaría, Joaquín Fernández-Irigoyen, Paz Car-

tas-Cejudo; resources, Enrique Santamaría, Joaquín Fernández-Irigoyen; funding acquisition, En-

rique Santamaría, Joaquín Fernández-Irigoyen; writing—original draft preparation, Enrique San-

tamaría. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was funded by grants from the Spanish Ministry of Science Innovation and 

Universities (Ref. PID2019-110356RB-I00 to JF-I and ES) and the Department of Economic and 

Business Development from Government of Navarra (Ref. 0011-1411-2020-000028 to ES). 

Institutional Review Board Statement: The study was conducted in accordance with the Declara-

tion of Helsinki of 1975 (revised in 2013) and all assessments, post-mortem evaluations, and pro-

cedures were previously approved by the Local Clinical Ethics Committee (protocol code: 2016/36). 

Cerebrospinal fluid (CSF) samples and associated clinical and neuropathological data from patients 

with PD were supplied by the Parkinson’s UK Brain Bank, funded by Parkinson’s UK, a charity 

registered in England and Wales (258197) and in Scotland (SC037554). 

Informed Consent Statement: According to the Spanish Law 14/2007 of Biomedical Research, in-

form written consent forms were obtained for research purposes from relatives of patients included 

in this study. 

Data Availability Statement: Data available on request from the authors. 

Acknowledgments: The authors are very grateful to the patients who generously donated the 

brain tissue and fluid samples for research purposes. The authors thank the collaboration of Par-

kinson’s UK Brain Bank funded by Parkinson’s UK, a charity registered in England and Wales 

(258197) and in Scotland (SC037554). The authors want to kindly thank Djordje Gveric (Centre for 

Brain Sciences, Imperial College London, London, UK) and technical personnel from OWL Metab-

olomics company (Derio, Spain) for their help in the management of associated clinical, neuropa-

thological and molecular data. The Proteomics Unit of Navarrabiomed is a member of ProteoRed 

and PRB3-ISCIII and is supported by grant PT17/0019, of the PE I+D+I 2013-2016, funded by ISCIII 

and ERDF. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Internal Standard Solutions Platform 1. 

IS 
IS Stock Solu-

tion (µg/mL) 
IS Stock Solution 

IS Intermedi-

ate Solution in 

CHCl3:MeOH 

(2:1) (µg/mL) 

IS Working Solu-

tion in MeOH 

(µg/mL) 

13:0 Lyso PC 10000 CHCl3 10 0.1 

Dehydrocholic 

acid 
5000 CHCl3:MeOH (1:1) 30 0.3 

Nonadecanoic 

acid 
10000 CHCl3 500 5.0 

Trypto-

phan-(indole-d

5) 

5000 
0.05% Formic acid 

in water 
200 2.0 
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Table A2. Internal Standard Solutions Platform 2. 

IS 

IS Stock 

Solution 

(µg/mL) 

IS Stock Solution 
Working IS Solution 

CHCl3:MeOH (2:1) (µg/mL) 

SM (d18:1/6:0) 5000 CHCl3 5 

PE (17:0/17:0) 10000 CHCl3:MeOH:H2O 50 

PC (19:0/19:0) 10000 CHCl3 10 

TG (13:0/13:0/13:0) 10000 CHCl3 5 

TG (17:0/17:0/17:0) 10000 CHCl3 5 

Cer(d18:1/17:0) 10000 CHCl3 10 

ChoE(12:0) 10000 CHCl3 250 

Multivariate data analysis of all CSF samples, pool samples and quality control (QC) samples was 

initially performed. Score scatter plot corresponding to PCA analysis of these samples is shown in 

Figure 2. Proximity and overlap of the Pool and QC injections provides a good indication of the 

reproducibility and quality of the measurements. 

 

Figure A1. Score scatter plot of the PCA model of CSF, Pool and QC samples. Pool: 15 µl of each 

CSF sample were collected and pooled together. Model diagnostics (A=6, R2X=0.829, Q2X=0.496). 

After validating the quality of the experiment, the Pool and QC injections were re-

moved from the analysis and a score scatter plot of the PCA model of all cerebrospinal 

fluid samples was generated. 

 

Figure A2. Score scatter plot of the PCA model of cerebrospinal fluid samples. Model diagnostics 

(A=6, R2X=0.807, Q2X=0.401). 

Shapiro-Wilk test was used for testing the normality of data (results included in 

Supplementary Table 1), revealing that the majority of the metabolites measured in the 
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CSF samples from PD patients were not following a normal distribution. Then, Box–Cox 

method for correcting non-normally distributed data by variable transformations was 

applied, identifying the square root transformation as the optimal for most of the me-

tabolites. This kind of transformations are a common pre-treatment method in metabo-

lomics for the conversion of the data, which correct aspects that hinder the biological in-

terpretation of data sets by emphasizing the biological information and thus, improving 

their physiological interpretability. Score scatter plot corresponding to PCA analysis of 

CSF samples after square root transformation of the data is shown in Figure A3. 

 

Figure A3. Score scatter plot of the PCA model of cerebrospinal fluid samples after square root 

transformation of the data. Model diagnostics (A=4, R2X=0.752, Q2X=0.505). 

This Score scatter plot showed certain clustering of samples according to the pres-

ence or absence of the disease and identified sample PD353 as a potential outlier since it 

appeared outside the Hotelling´s T2 ellipse. Following Chauvenet’s criterion, further 

inspection of the data relating to this sample revealed that it presented elevated levels of 

sphingolipids compared to the rest of the samples from PD group. However, the levels of 

the majority of the metabolites in this sample were similar to those of the samples from 

the same group and thus, it was not excluded from the multivariate and univariate 

analyses. Metabolites responsible for this certain separation observed between CSF sam-

ples of PD and control subjects can be observed in the loadings scatter plot (Figure A4), 

which is a graph related to the score scatter plot shown in Figure A3. 

 

Figure A4. Loadings scatter plot of the PCA model of cerebrospinal fluid samples after square root 

transformation of the data. Model diagnostics (A=4, R2X=0.752, Q2X=0.505). 

Lipids lying away from the plot origin have stronger impact on the model; besides, 

variables positively correlated are grouped together, while variables negatively corre-

lated are positioned in the opposite sides of the plot origin. In this case, the metabolites 
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responsible for the differences observed were mainly glycerolipids (monoacylglycerols 

-MAG-, diacylglycerols -DAG-, triacylglycerols -TAG-), fatty acids (saturated fatty acids 

-SFA-, monounsaturated fatty acids -MUFA-), primary fatty amides (FAA), glycer-

ophospholipids (phosphatidylcholines -PC-, phosphatidylethanolamines -PE-) and 

sphingolipids (ceramides -Cer-, sphingomyelins -SM-), which were increased in PD 

compared to control group; and lysoglycerophospholipids (lysophosphatidylcholines 

-LPC-, lysophosphatidylethanolamines -LPE-, lyshophosphatidylinositols -LPI-) and bile 

acids (BA), which seemed to be increased in controls compared to PD group. 
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