

1 Article

2 Influences of CO₂ on the Microstructure in sheared olivine 3 Aggregates

4

5 Huihui Zhang ^{1,3}, Ningli Zhao ², Chao Qi ¹, Xiaoge Huang ^{1,*} and Greg Hirth ²

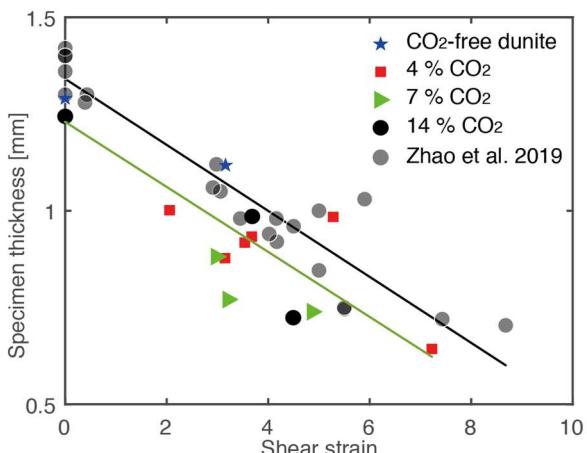
6

7 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
8 zhanghuihui@mail.igcas.ac.cn (H.Z.); qichao@mail.igcas.ac.cn (C.Q.)

9

10 Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02906, USA;
11 ningli_zhao@brown.edu (N.Z.); greg_hirth@brown.edu (G.H.)

12

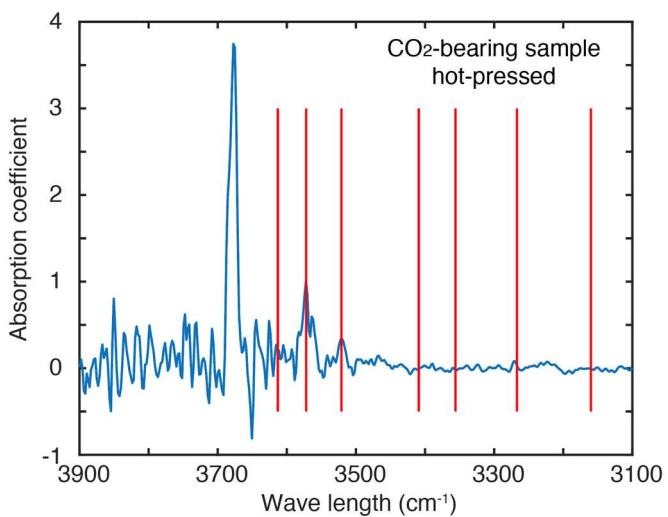

13 University of Chinese Academy of Sciences, Beijing 100049, China

14

* Correspondence: xghuang@mail.igcas.ac.cn; Tel.: +010 82998429

15 Appendix A

16 Contents of this file: Appendix Figures A1 to A4; Tables A1



17 **Figure A1.** The thickness of the specimens as a function of the shear strain. The result includes
18 data from different CO₂ contents (4 %, 7 %, 14 %) and CO₂-free dunite. Gray circles are data from
19 Zhao et al. [1]. The green line is a least square fit to data from this work; the black line is a least
20 square fit to the data from Zhao et al. [1].

21 Water contents in the polycrystalline aggregates were determined by Fourier transform
22 infrared (FTIR) spectroscopy in transmission. To calculate hydroxyl concentration,
23 we integrated spectra between 3650 cm⁻¹ and 3000 cm⁻¹, which covered infrared hydroxyl
24 stretching bands for Ol, CPx, and OPx [1–4].

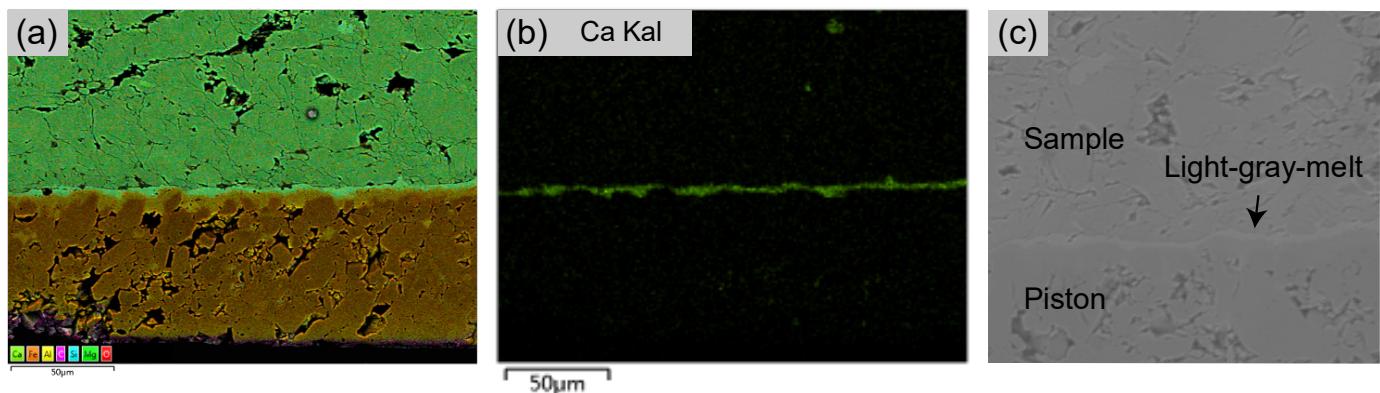
25 We examine the hot-pressed sample to obtain water contents that the thickness of
26 the sample wafer was 0.3 mm. The polycrystal of the hot-pressed sample (including grain
27 boundaries) contained ~9 ppm H₂O by weight (~150 H/10⁶ Si), indicate that olivine aggregates are
28 anhydrous prepared through this procedure. FTIR results are presented in Figure A2.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
553230
553231
553232
553233
553234
553235
553236
553237
553238
553239
553240
553241
553242
553243
553244
553245
553246
553247
553248
553249
553250
553251
553252
553253
553254
553255
553256
553257
553258
553259
553260
553261
553262
553263
553264
553265
553266
553267
553268
553269
553270
553271
553272
553273
553274
553275
553276
553277
553278
553279
553280
553281
553282
553283
553284
553285
553286
553287
553288
553289
553290
553291
553292
553293
553294
553295
553296
553297
553298
553299
553300
553301
553302
553303
553304
553305
553306
553307
553308
553309
553310
553311
553312
553313
553314
553315
553316
553317
553318
553319
553320
553321
553322
553323
553324
553325
553326
553327
553328
553329
553330
553331
553332
553333
553334
553335
553336
553337
553338
553339
553340
553341
553342
553343
553344
553345
553346
553347
553348
553349
553350
553351
553352
553353
553354
553355
553356
553357
553358
553359
553360
553361
553362
553363
553364
553365
553366
553367
553368
553369
553370
553371
553372
553373
553374
553375
553376
553377
553378
553379
553380
553381
553382
553383
553384
553385
553386
553387
553388
553389
553390
553391
553392
553393
553394
553395
553396
553397
553398
553399
553400
553401
553402
553403
553404
553405
553406
553407
553408
553409
553410
553411
553412
553413
553414
553415
553416
553417
553418
553419
553420
553421
553422
553423
553424
553425
553426
553427
553428
553429
553430
553431
553432
553433
553434
553435
553436
553437
553438
553439
553440
553441
553442
553443
553444
553445
553446
553447
553448
553449
553450
553451
553452
553453
553454
553455
553456
553457
553458
553459
553460
553461
553462
553463
553464
553465
553466
553467
553468
553469
553470
553471
553472
553473
553474
553475
553476
553477
553478
553479
553480
553481
553482
553483
553484
553485
553486
553487
553488
553489
553490
553491
553492
553493
553494
553495
553496
553497
553498
553499
553500
553501
553502
553503
553504
553505
553506
553507
553508
553509
553510
553511
553512
553513
553514
553515
553516
553517
553518
553519
553520
553521
553522
553523
553524
553525
553526
553527
553528
553529
553530
553531
553532
553533
553534
553535
553536
553537
553538
553539
553540
553541
553542
553543
553544
553545
553546
553547
553548
553549
553550
553551
553552
553553
553554
553555
553556
553557
553558
553559
553560
553561
553562
553563
553564
553565
553566
553567
553568
553569
553570
553571
553572
553573
553574
553575
553576
553577
553578
553579
553580
553581
553582
553583
553584
553585
553586
553587
553588
553589
553590
553591
553592
553593
553594
553595
553596
553597
553598
553599
553600
553601
553602
553603
553604
553605
553606
553607
553608
553609
553610
553611
553612
553613
553614
553615
553616
553617
553618
553619
553620
553621
553622
553623
553624
553625
553626
553627
553628
553629
553630
553631
553632
553633
553634
553635
553636
553637
553638
553639
553640
553641
553642
553643
553644
553645
553646
553647
553648
553649
553650
553651
553652
553653
553654
553655
553656
553657
553658
553659
553660
553661
553662
553663
553664
553665
553666
553667
553668
553669
553670
553671
553672
553673
553674
553675
553676
553677
553678
553679
553680
553681
553682
553683
553684
553685
553686
553687
553688
553689
553690
553691
553692
553693
553694
553695
553696
553697
553698
553699
553700
553701
553702
553703
553704
553705
553706
553707
553708
553709
553710
553711
553712
553713
553714
553715
553716
553717
553718
553719
553720
553721
553722
553723
553724
553725
553726
553727
553728
553729
553730
553731
553732
553733
553734
553735
553736
553737
553738
553739
5537340
5537341
5537342
5537343
5537344
5537345
5537346
5537347
5537348
5537349
5537350
5537351
5537352
5537353
5537354
5537355
5537356
5537357
5537358
5537359
5537360
5537361
5537362
5537363
5537364
5537365
5537366
5537367
5537368
5537369
5537370
5537371
5537372
5537373
5537374
5537375
5537376
5537377
5537378
5537379
5537380
5537381
5537382
5537383
5537384
5537385
5537386
5537387
5537388
5537389
5537390
5537391
5537392
5537393
5537394
5537395
5537396
5537397
5537398
5537399
5

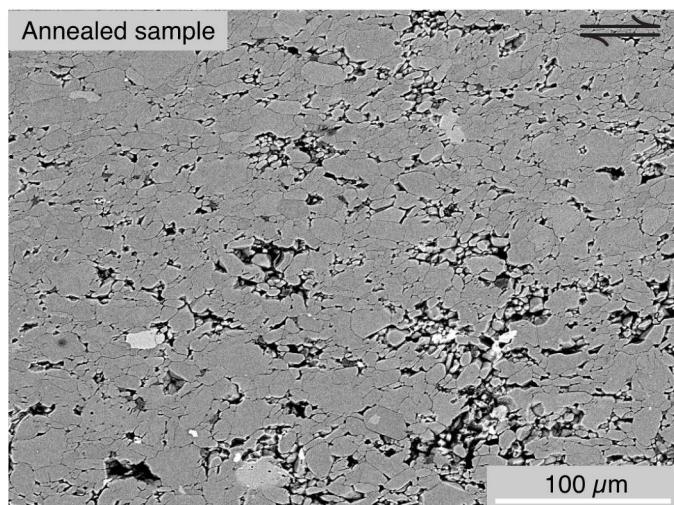
Figure A2. FTIR spectra from hot-pressed polycrystalline sample (W2261). The characteristic OH stretching bands in Ol (3613, 3572, 3521, 3409, 3356, 3267, 3160 cm^{-1}) were presented by solid red lines.

At our experiment condition (1 GPa and 1100°C), the system of Ol + CPx + CO_2 remains stable according to the solidus curve [5,6]. EMPA shows the composition of the starting sample and deformed sample. The results of Table A1 show the composition of the dark gray melt in Figures 2a and 2b and the light gray melt at Figure 2b, and the light gray melt between sample and piston (Figure A3). Images of Figure A3 obtained from initial sample not etched. According to Table A1, the light hollow on triple junctions is the Ca-rich carbonate melt and the anomalous dark mineral is the Mg-rich carbonate melt. From A3(a) and (b), the melt was aggregated to the boundary of the sample according to the EDS result (Ca).

Table A1. Summary of the EPMA


No.	CaO	MgO	FeO	SiO ₂	Al ₂ O ₃	Cr ₂ O ₃	TiO ₂	Na ₂ O	K ₂ O	MnO	NiO	CO_2	Total	Comment
W2261-light ¹ -gray-melt	48.17	7.21	1.54	5.84	0.00	0.00	0.00	0.01	0.01	0.03	0.05	37.17	100.00	Hot-pressed specimen
W2261-dark ² -gray-melt	1.17	36.89	5.88	5.66	0.03	0.00	0.03	0.05	0.00	0.08	0.14	50.08	100.00	Hot-pressed specimen
W2264-dark ³ -gray-melt	1.42	45.45	7.75	38.42	0.60	0.20	0.02	0.03	0.00	0.09	0.37	5.64	99.99	Deformed specimen
W2264-light ⁴ -gray-melt	23.98	19.99	2.13	48.93	6.30	0.02	0.09	0.10	0.00	0.04	0.13	0.00	101.75	Deformed specimen
Dolomite	34.40	23.08	0.02	-0.09	0.00	0.01	-0.01	0.00	0.01	0.00	-0.02	42.28	99.88	Dolomite
W2261-olivine	0.13	49.24	8.60	40.04	0.01	0.02	0.02	-0.01	-0.01	0.13	0.43	1.34	99.96	Hot-pressed specimen
W2261-diopside	13.34	30.36	5.12	47.19	3.14	0.40	0.37	0.27	0.00	0.12	0.19	0.00	100.49	Hot-pressed specimen

light¹: is the light triple junctions of Figure 2(b).


dark²: is the dark gray melt of Figure 2(a) and 2(b).

dark³: is the dark gray melt of deformed sample not etched.

light⁴: is the light gray melt between sample and piston of Figure A3(c).

47
48 **Figure A3.** The sample section for the deformed sample (W2264, not etched). (a) and (b) The en-
49 ergy-dispersive X-ray spectroscopy (EDS). (c) A BSE image. The composition of light-gray-melt
50 was analyzed by EPMA.

51
52 **Figure A4.** The BSE image of the annealed sample (W2266) with etched.

53 References

54 1. Zhao, N.; Hirth, G.; Cooper, R.F.; Kruckenberg, S.C.; Cukjati, J. Low viscosity of mantle rocks linked to phase boundary
55 sliding. *Earth and Planetary Science Letters* **2019**, *517*, 83–94, doi:10.1016/j.epsl.2019.04.019.

56 2. Berry, A.J.; Hermann, J.; O'Neill, H.S.C.; Foran, G.J. Fingerprinting the water site in mantle olivine. *Geology* **2005**, *33*, 869–
57 872, doi:10.1130/G21759.1.

58 3. Demouchy, S.; Ishikawa, A.; Tommasi, A.; Alard, O.; Keshav, S. Characterization of hydration in the mantle lithosphere:
59 Peridotite xenoliths from the Ontong Java Plateau as an example. *Lithos* **2015**, *212–215*, 189–201,
60 doi:10.1016/j.lithos.2014.11.005.

61 4. Ferriss, E.; Plank, T.; Walker, D. Site-specific hydrogen diffusion rates during clinopyroxene dehydration. *Contributions to
62 Mineralogy and Petrology* **2016**, *171*, 1–24, doi:10.1007/s00410-016-1262-8.

63 5. Wyllie, P.J.; Huang, W.L. Influence of mantle CO₂ in the generation of carbonatites and kimberlites. *Nature* **1975**, *257*, 297–
64 299, doi:10.1038/257297a0.

65 6. Dalton, J.A.; Presnall, D.C. Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al₂O₃–SiO₂–
66 CO₂ from 3 to 7 GPa. *Contributions to Mineralogy and Petrology* **1998**, *131*, 123–135, doi:10.1007/s004100050383.

67