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Abstract 

Fermatean fuzzy linguistic (FFL) set theory provides an efficient tool for modeling a higher level of uncertain 

and imprecise information, which cannot be represented using intuitionistic fuzzy linguistic (IFL)/Pythagorean 

fuzzy linguistic (PFL) sets. On the other hand, the linguistic scale function is the better way to consider the 

semantics of the linguistic terms during the evaluation process. In the present paper, we first define some new 

modified operational laws for Fermatean fuzzy linguistic numbers (FFLNs) based on linguistic scale function 

(LSF) to overcome the shortcomings of the existing operational laws and prove some important mathematical 

properties of them. Based on it, the work defines several new aggregation operators (AOs), namely, the FFL-

weighted averaging (FFLWA) operator, the FFL-weighted geometric (FFLWG) operator, the FFL-ordered 

weighted averaging (FFLOWA) operator, the FFL-ordered weighted geometric (FFLOWG) operator, the FFL-

hybrid averaging (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator under FFL environment. 

Several properties of these AOs are investigated in detail. Further, based on these operators, a multiple attribute 

group decision-making (MAGDM) approach with FFL information is developed. Finally, to illustrate the 

effectiveness of the present approach, a real-life supplier selection problem is presented where the evaluation 

information of the alternatives is given in terms of FFLNs.  

 

Keywords: Fermatean fuzzy set, Fermatean fuzzy linguistic set, Fermatean fuzzy linguistic number, MAGDM, 

supplier selection 

 

1. Introduction 

The intuitionistic fuzzy set (IFS) theory was introduced by Atanassov [1] in 1983 to accommodate the uncertain 

and vague concepts more precisely in complex real-life situations. An IFS assigns each element a degree of 

membership (DM) and a degree of non-membership (DNM), whose sum is always less than or equal to one. It 

has become an important and widely studied generalization of fuzzy sets[2]. Due to the applicability and 

effectiveness of the IFS theory, several researchers started work in this direction and established many 

significant results. For aggregating different intuitionistic fuzzy numbers (IFNs), a large number of AOs have 

been defined by considering various aspects of available information [3–13]. Besides, several information 

measures have been proposed under an IF environment, including distance measure [14–20], similarity measure 

[21–25], entropy measure [26–31], divergence measure [27, 28, 32, 33], and inaccuracy measure [34] and 

applied them in different application areas.  

In 2013, Yager [35] and Yager and Abbasov [36] proposed the notion of the Pythagorean fuzzy set (PFS) as a 

new generalization to IFS. PFSs are more effective in modeling imperfect or vague information, which cannot 

be represented in terms of IFSs.  For example: suppose an expert provides the DM of an alternative 

corresponding to a criterion as 0.8 and the DNM as 0.5. As we see, the sum of both degrees is 1.3, which does 

not satisfy the essential condition of IFS. Further, if we consider the sum of the squares of both the degrees, i.e., 

0.82+0.52, that gives 0.89 <1, hence this information can be represented in the form of PFS, not in IFS. In a 

short span, the PFS theory has become an efficient tool to solve various real-life problems [37–46].  

Let us consider the above-discussed example again by assuming the DM as 0.9 and the DNM as 0.6. It is clear 

that we do not express this information by using IFS and PFS. To cope with this problem, Senapati and 

Yager[47] proposed the concept of Fermatean fuzzy set (FFS), where the DM and DNM are both real numbers 

lies between 0 and 1 and satisfied the condition 0≤(DM)3 +(DNM)3≤1. The main advantage of the FFS is that 

it provides a better tool over IFS and PFS for handling the higher level of uncertainties arising in many real-life 

decision-making problems. It is easy to verify that 0.93+0.63<1, hence FFS is an appropriate tool to capture this 
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uncertain information. Further, Senapati and Yager[48] defined some operations on FFSs and discussed their 

application in decision-making. To aggregate different Fermatean fuzzy numbers (FFNs), Senapati and 

Yager[49] developed some weighted averaging/geometric AOs and utilized them to solve decision-making 

problems with multiple criteria.  

In many real-life situations, due to the increase of complexities and uncertainties in practical decision problems, 

an expert feels difficulty expressing his/her preference information by exact numerical values. Besides, many 

attributes and criteria can be evaluated quickly and effectively in terms of linguistic values. Firstly, Zadeh [50–

52] developed the idea of the linguistic term set (LTS) in 1975. For example- suppose an expert assesses the 

performance of a motorbike, then he/she may be used good, excellent, etc., to express his/her evaluation 

information because linguistic terms (LTs) are very close to human cognition. In 2010, Wang and Li[53] 

developed a hybrid set theory by combining the notions of LTS and IFS in a single formulation, which is known 

as the intuitionistic linguistic fuzzy sets (ILFS). In the literature, several research studies have been conducted 

under the ILF environment. Liu[54] proposed some generalized dependent AOs with intuitionistic linguistic 

fuzzy numbers (ILNs) and studied their application in decision-making. Liu and Wang[55] defined some 

intuitionistic linguistic generalized power aggregation operators. Su et al.[56] studied ordered weighted distance 

averaging operators with ILF information. Yu et al.[57] presented an extended TODIM method for solving 

MAGDM problems with ILNs.  

Recently, Liu et al.[58] generalized the notion of ILFSs and introduced the Fermatean fuzzy linguistic set 

(FFLS) theory by integrating the idea of LTS with FFS. Besides, a MCDM approach was formulated for solving 

decision problems with FFL information. Further, Liu et al.[59] defined some new distance and similarity 

measures between FFLSs based on linguistic scale function (LSF) and utilized them in the development of 

TODIM and TOPSIS methods. FFLS theory has a broader scope of applications in different practical areas. 

However, a limited investigation has been conducted on FFLSs and their applications. It is also worth noting 

that the operational laws defined by Liu et al.[59] for FFLNs are not valid in general. Therefore, it is significant 

to pay attention to the research studies under the FFL environment. The main objective of this work is to define 

the modified operational laws for Fermatean fuzzy linguistic numbers (FFLNs) and study different AOs based 

on them to aggregate FFL information. For doing so, firstly, the work defines some new modified operational 

laws for FFLNs based on LSF, which overcome the drawbacks of the existing operational laws. We also study 

several essential properties of the proposed modified operational laws. Then, the paper develops several new 

AOs such as the FFL-weighted averaging (FFLWA) operator, the FFL-weighted geometric (FFLWG) operator, 

the FFL-ordered weighted averaging (FFLOWA) operator, the FFL-ordered weighted geometric  (FFLOWG) 

operator, the FFL-hybrid averaging (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator for 

aggregating different FFLNs. Several properties of the proposed AOs are discussed and proved. Further, a 

decision-making approach is formulated to solve MAGDM problems under the FFL environment.  

The rest of the manuscript is organized as follows: In Section 2 we briefly review some preliminary results on 

linguistic variables (LVs), LSFs, FFS, FFLS and discuss some significant drawbacks of the FFL operational 

laws defined by Liu et al.[59]. Section 3 presents modified algebraic operational laws for FFLNs based on LSF 

and proves several important properties of FFLNs using proposed operation laws. Then, we define the FFLWA, 

FFLWG, FFLOWA, FFLOWG, FFLHA, and FFLHG AOs to aggregate different FFLNs. In Section 4 based 

on the developed AOs, a MAGDM approach is formulated for solving real-life decision problems with FFL 

information. Then, a real-life supplier selection problem is given to illustrate the decision-making steps and 

effectiveness of the developed approach. In Section 5 we conclude the paper and discuss some future works. 

 

2. Preliminaries 
 
2.1: Linguistic Variables 

The linguistic variable provides a useful tool to represent qualitative information in terms of linguistic values. 

According to Herrera and Martínez [60], the linguistic variable can be defined as follows:  

Definition 1[60]: Let  ˆ | 0,1. ,2dL d t= = be a totally ordered discrete LTS with the odd cardinality. Any level

d
denotes a possible value for a linguistic variable and t is a positive integer. The LTS should meet the 

following properties: 

i. ;i j i j    ii. ( ) 2 ;d t dneg −=  
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iii. ( )max , ;i j i i j=    iv. ( )min , ;i j i i j=  

where neg denotes the negation operator. 

For example, a well-known set of seven linguistic terms can be defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 2 3 4 5 6
ˆ N , VL , L , M medinone very .ium , H ,  low low  h gh P eVH ,very high p rfectL = = = = = = = =       

Further, Xu[61] defined the extended continuous LTS     0 20,2
| , 0,2d d tt

L d t=    , where, if d L , then 

d
is called the original linguistic term (OLT), otherwise 

d
is called the virtual linguistic term (VLT). However, 

d L is usually used by the decision-makers to evaluate attributes/alternatives while  0,2d t
L only appears in 

the calculation process.  

Definition 2[61]: Let  0,2
,

t
L   and  1 2, , 0,1    , then some operational laws are given as follows 

(i).    + = ; 

(ii).     = ; 

(iii). 
  = ; 

(iv). ( )      =  ;  

(v). ( )1 2 1 2     + =  . 

2.2: Linguistic scale function 

In the evaluation process, an expert uses LTs directly rather than their corresponding semantics. In general, the 

simplest way to deal with LTs is to use the levels of LTs directly. However, in different semantics decision-

making environments, LTs have some differences in expressing evaluations. To resolve these issues, Wang et 

al.[62] defined the LSF to deal with linguistic information. According to the decision-making environment, 

experts can choose different linguistic scale functions, which express available linguistic information more 

flexibly and precisely in different semantic situations.  

Definition 3[62]: Let  ˆ | 0,1,2, ,2dL d t= = be a discrete LTS with the odd cardinality and  0,1d  be a real 

number, then the LSF can be defined as 

                                                            : ,  0,1,2, ,2 .d d d t → = ,                                                              (1) 

where  is a strictly monotonically increasing function with respect to subscript .d   

In general, there are three different linguistic scaling functions, given as  

LSF1[63]: When the semantics of linguistic terms are uniformly (balanced) distributed, i.e., the absolute 

semantic gap (ASG) between any adjacent LTs is always equal. 

                                                             ( )1 , 0,1,2, ,2 .
2

d d

d
d t

t
 = = =                                                       (2) 

LSF 2[63]: When the ASG between two semantics of the adjacent LTs increases with the extension from t to 

both ends of LTS. 

                                                      ( )
( )

( )

2

,           0,1,2, , ,
2 1

2
,    1, 2, ,2 ,

2 1

t t d

t

d d t d t

t

d t

d t t t

 


 

 



−

−

 −
=

−
= = 

+ − = + +
 −


                                          (3) 

where is a threshold, which can be determined by a subjective method according to the specific problem, and 

it should be greater than or equal to 1. If the LTS is a set of seven terms, then  1.37,1.40  . 

LSF 3[63]: When the ASG between two semantics of the adjacent LTs decreases with the extension from t to 

both ends of LTS. 
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                                                      ( )

( )

( )
3

,           0,1,2, , ,
2

,    1, 2, ,2 ,
2

d d

t t d
d t

t

t d t
d t t t

t









 

 − −
=


= = 

+ −
= + +



                                          (4) 

where  , 0,1   are determined according to the specific problem. If the LTS is a set of seven terms, then

0.8 = = . 

Example 1: Let 
( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 2 3

4 5 6

N , VL , L , M medium ,
ˆ

                 

none very  low low

  high very high perfe              tH , VH c, P
L

 = = = = 
=  

= = =  

 be a LTS with seven 

terms. Figs. 1, 2, and 3 show the balanced distribution of L̂ , unbalanced distribution of L̂  in an increasing 

trend and the unbalanced distribution of L̂ in a decreasing trend, respectively. Besides, Fig. 4 represents the 

relationships between LTs of L̂ and their corresponding semantics under different situations. 

 

Fig 1: The uniformly distributed linguistic terms set 

 

Fig 2: The semantics of the unbalanced distributed LTS in ASG increasing trend 

 

Fig 3: The unbalanced distributed LTS in ASG decreasing trend 

 

Fig 4: The relationships between LTs and their corresponding semantics under different situations 

Meanwhile, to avoid an information loss and to facilitate the calculation process, the LSF can be further 

generalized to an extended continuous LTS as follows: 
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Definition 4[62]: Let     0 20,2
ˆ | , 0,2d d tt
L d t=    be an extended continuous LTS and  0,1d  be a real 

number, then the linguistic scale function (LSF) *  is defined as 

                                                                           
*

0,2
ˆ: dt
L → ,                                                                       (5)                                                      

where * is also a strictly monotonically increasing function, and its inverse is expressed as * 1 − . 

Example 2: Let     0,6
ˆ | 0,6dL d=  be a continuous LTS, then the inverse corresponding to the LSFs 1

 , 2


and 3
 can be obtained as follows: 

(1) If ( )  ( )1  0,6
6

d d

d
d  = = = , then ( )  ( )1

1 6 0,1 .
dd d  −

=   

(2) If ( )
( )

( )

3 3

3

2 3 3

3

,           0 3
2 1

2
,     3< 6

2 1

d

d d d

d

d

 


 

 



−



−

 −
 

−
= = 

+ − 
 −


,  then ( )
( )

 

( )
( 

3 3

3 3

3 log 2 2
1

2

3 log 2 2 2

,     0,0.5 ,

,   0.5,1 .   

d

d

d

d

d





  

  



 


 − − −  −

 + − − +  

 


= 




 

(3) If ( )

( )

( )
3

3 3
,      0 3

2 3

3 3
,       3< 6

2 3

d d

d
d

d
d









 

 − −
 

 
= = 

+ −




,  then ( )
 

( 

1

1

3 3 2 3
1

3

3 2 3 3

,    0,0.5 ,

,     0.5,1 .   

d

d

d

d

d


 


 







 


 − −  
 −

 +   −
 

 


= 




 

2.3: Fermatean fuzzy linguistic set 

Definition 5[47]: A FFS F  in a fixed set  1 2, , , nX x x x=  is given by 

                                                                   ( ) ( ) , , |j j j jF F
F x x x x X =  ,                                                   (6) 

where ( )jF
x  and ( )jF

x  denote, respectively, the DM and DNM of jx X  to the set F , with the conditions 

 : 0,1
F

X → ,  : 0,1
F

X →  and  ( )( ) ( )( )
3 3

0 1  .j jF F
x x x X  +     

For all jx X , the corresponding degree of hesitancy (DH) is defined as ( ) ( )( ) ( )( )
3 3

3 1 .j j jF F F
x x x  = − −  In 

the interest of simplicity, Senapati and Yager [47] called the pair ( ) ( ),j jF F
x x   a FFLN and denoted by 

, ,   =  which satisfies the conditions    0,1 , 0,1     and ( ) ( )
3 3

0 1.   +   

Definition 6[58]: Let  1 2, , , nX x x x= be a fixed set and     0 20,2
ˆ | , 0,2d d tt
L d t=    be an extended 

continuous LTS, then a FFLS can be defined as 

                                                          
( ) ( ) ( ) , , , |

F j
j F j F j jx

F x x x x X


 =  ,                                                  (7) 

where
( )  0,2

ˆ
F j

tx
L


 ,  : 0,1F X →  and  : 0,1F X →  , satisfying ( )( ) ( )( )

3 3

0 1  .F j F j jx x x X  +    The 

numbers ( )F jx  and ( )F jx represent, respectively, the DM and DNM of jx X  to the linguistic term 
( )F jx

. 

For all jx X , if ( ) ( )( ) ( )( )
3 3

3 1F j F j F jx x x  = − − , then ( )F jx is called the DH of jx X  to
( )F jx

. 

Note that when ( ) 1F jx = and ( ) 0  F j jx x X =   , the FFLS reduces to the LTS. In particular, when X has only 

one element, the FFLS is reduced into
( ) ( ) ( ), ,

F
F Fx

x x


  . For convenience, the triplet 
( ) ( ) ( ), ,

F
F Fx

x x


  is 
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called a FFLN and simply denoted by
( )

, ,


  
= , which meets the conditions    0,1 , 0,1     and 

( ) ( )
3 3

0 1.   +   We indicate the collection of all FFLNs by  .  

Definition 7[59]: Let  0,2
ˆ

t
L  be an extended continuous LTS,

( )
, ,


  

= , 
( ) 1 11

1 , ,


  
 = and 

( ) 2 22
2 , ,


  

 = be any three FFLNs, where ( ) ( ) ( )  1 2 0,2
ˆ, ,

t
L

    
 . Further, consider that * and * 1 −  

denote a linguistic scale function and its inverse function, respectively. Then, by using the LSF, some algebraic 

operational laws on FFLNs were defined by Liu et al. [59] as follows: 

(i). ( )( ) ( )( )( ) 1 2 1 2 1 21 2

* 1 * * 3 3 3 33
1 2 , , ;

 
        −

      
  = + + −  

(ii). ( )( ) ( )( )( ) 1 2 1 2 1 21 2

* 1 * * 3 3 3 33
1 2 , , ;

 
        −

      
  = + −  

(iii). 
( )( )( ) ( ) ( )* 1 * 33, 1 1 , ,  0;

 


     −

 
= − −   

(iv). ( )( )( ) ( ) ( )* 1 * 33, , 1 1 ,  0;
 


    −

 

 
 = − −  

 
 

(v). ( ) ( ) ( )( )( )* 1 * *

2 , , .tneg


    −

 
 = −  

Definition 8[59]: Let 
( )

, ,


  
=  be a FFLN and * be a LSF, the score and accuracy functions of   are 

defined as 

                                 ( ) ( )( )
3 3

*
1

2


 


 



 + −
 =   

 

S           and         ( ) ( )( ) ( )* 3 3


   

 =  +A .                   (8) 

For any two FFLNs
( ) 1 11

1 , ,


  
 = and

( ) 2 22
2 , ,


  

 = , the comparison rules between 
1 and 

2 are 

given as  

(i). If ( ) ( )1 2 1 2,  then ;    S S  

(ii). If ( ) ( )1 2 , = S S then: (a) ( ) ( )1 2 1 2,  then ;    A A  (b) ( ) ( )1 2 1 2,  then . =   =A A  

Some shortcomings of the operational laws given in Definition 7: 

Here, we consider a numerical example in order to show the shortcomings of the operations on FFLNs defined 

by Liu et al.[59]. 

Example 3: Let     0,6
ˆ | 0,6dL d=  be an extended continuous LTS, 1 3,0.3,0.6 = , 2 5 ,0.5,0.7 =

3 1,0,0.5 = , 4 3,0,0.7 = , 5 4 ,0.8,0 =  and 6 6 ,0.6,0 =   be six FFLNs. If 

( )( ) ( )( )( )*

2 1.4
a a 

  = = and 4 = , then according to the operational laws given in Definition 7, we have 

(i). ( ) ( )( ) 31 3 3 3 3

1 2 2 2 3 2 5 , 0.3 0.5 0.3 0.5 ,0.6 0.7  −    = + + −   

     ( ) ( )1 1

2 2,0.5279,0.4200 ,0.5279,0.42000.5000  0.7752 1.2752 − −=+= . 

Here, we see that ( ) ( )2 3 2 5 11.2752  + =  , therefore, ( ) ( )( ) ( )1 1

2 2 3 2 5 2 1.2752   −   −+ =  is undefined.  

(ii). ( ) ( )( ) 31 3 3 3 3

1 3 2 2 3 2 1 ,0.3 0, 0.6 0.5 0.6 0.5  −    =  + −   
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     ( ) 0.46 9

1

12 ,0.0000,0.6797 ,0.0000,0.67970.5000  0.2248−=  = ,                                                        (9) 

and 

        ( ) ( )( ) 31 3 3 3 3

1 4 2 2 3 2 3 ,0.3 0, 0.6 0.7 0.6 0.7  −    =  + −   

      ( ) 6

1

2 ,0.0000,0.7856 ,0.0000,0.78560.5000  0.5000− += = .                                                            (10) 

From Eq. (9) and (10), it is clear that there is no effect of nonmembership values onto the membership values 

of
1 3   and

1 4  . This outcome does not match our intuition.  

(iii). ( ) ( )( ) 31 3 3 3 3

2 5 2 2 5 2 4 , 0.5 0.8 0.5 0.8 ,0.7 0,  −    = + + −    

     ( ) ( )1 1

2 2,0.8306,0.0000 ,0.8306,0.00000.7752  0.6147 1.3899 − −=+= ,                                            (11) 

and 

        ( ) ( )( ) 31 3 3 3 3

2 6 2 2 5 2 6 , 0.5 0.6 0.5 0.6 ,0.7 0  −    = + + −    

      ( ) ( )1 1

2 2,0.6797,0.0000 ,0.6797,0.00000.7752  1.0000 1.7752 − −=+= .                                             (12) 

The obtained resulting values in Eq. (11) and Eq. (12) indicate that there is no effect of the membership values 

on the nonmembership values of
1 3   and 

1 4  . Also, ( )1

2 1.3899−  and ( )1

2 1.7752−  are undefined.  

(iv) ( )( ) ( ) ( ) ( )
4 41 3 13

1 2 2 3 24 4 , 1 1 0.3 , 0.6 2.0000 ,0.4698,0.1296 ,  −  − =  − − =                                              (13) 

      ( )( ) ( ) ( ) ( )
4 41 3 13

2 2 2 5 24 4 , 1 1 0.5 , 0.7 3.1008 ,0.7452,0.2401  −  − =  − − = ,                                              (14) 

From Eq. (13) and Eq. (14), we can see that ( )1

2 2.0000−  and ( )1

2 3.1008−  are undefined because here 1.d 

Hence 
14  and 

24 are not FFLNs. 

Based on the above analysis, we conclude that the operational laws defined in Definition 7 are not suitable for 

FFLNs. Therefore, in order to nullify the above shortcomings, it is necessary to modify these operational laws. 

In the next section, we first define some new modified operational laws for FFLNs based on LSF and discuss 

their properties in detail. Then, we introduce some aggregation operators for aggregating different FFLNs.   

3. Fermatean fuzzy aggregation operators  

3.1: Improved operational laws for FFLNs based on LSF 

Here, we define some improved operational laws for FFLNs, which overcome the shortcomings of the existing 

operations. 

Definition 9: Let  0,2
ˆ

t
L  be an extended continuous LTS, 

( )
, ,


  

= , 
( ) 1 11

1 , ,


  
 = and 

( ) 2 22
2 , ,s


  

 = be three FFLNs, where ( ) ( ) ( )  1 2 0,2
ˆ, ,

t
L

    
 . Further, consider that * and * 1 −  denote a 

linguistic scale function and its inverse function, respectively. The improved operational laws between them 

based on LSFs are defined as  

(i).
( )( ) ( )( ) ( )( ) ( )( )( ) 1 2 1 2 1 2 1 2 1 2 1 21 2 1 2

* 1 * * * * 3 3 3 3 3 3 3 3 3 3 3 33 3
1 2 , ,  

   
                −

              
 = + − + − + − − −   

( )( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )
1 2 1 2 1 1 2 21 2

* 1 * * 3 3 3 3 3 3 3 3
3 31 1 1 , 1 1 1 ,  1 1 1 1 ;

 
          −

        
= − − − − − − − − − − + − +  
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(ii). ( )( ) ( )( )( ) 1 2 1 2 1 2 1 2 1 2 1 21 2

* 1 * * 3 3 3 3 3 3 3 3 3 3 3 33 3
1 2 , ,

 
              −

            
 = + − − − + −  

  
( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )

1 2 1 1 2 2 1 21 2

* 1 * * 3 3 3 3 3 3 3 333, 1 1 1 1 , 1 1 1 ;
 

          −

        
= − − − − + − + − − −  

(iii). ( )( )( ) ( ) ( ) ( )( )* 1 * 3 3 3 33 31 1 , 1 1 , 1 1 ,  0;
  


       −

   

 
= − − − − − − − +  

 
 

(iv). ( )( )( ) ( ) ( )( ) ( )* 1 * 3 3 3 333^ , 1 1 , 1 1 ,   0.
  


       −

   

 
 = − − − + − −  

 
 

Theorem 1: The numbers 1 2 , 1 2 ,  , and ^  are also FFLNs. 

Proof: Here, we shall prove only 1 2  and   are FFLNs, while others can be shown similarly. Since 

( ) ( ), , 1,2
i ii

i i


  
 = =  are two FFLNs, where ( )  0,2

ˆ
i t

L
 

 ,  , 0,1
i i

    and 3 30 1
i i

   +  , 1,2.i =  For

( ) ( )  1 2 0,2
ˆ,

t
L

  
 , based on the definition of the LSFs, we know

( )( ) ( )( )
1 2

* *0 , 1.
 

 
 

  Then 

( )( )( ) ( )( )( )
1 2

* *0 1 1 1 1
 

 
 

 − − − 
( )( )( ) ( )( )( )( )  1 2

* 1 * *

0,2
ˆ1 1 1 .

t
L

 
  −

 
 − − −   Now 

1 2
0 , 1    , which 

implies ( )( ) ( )( )
1 2 1 2

3 3 3 330 1 1 1 0 1 1 1 1       − −    − − −  . Moreover, because 
1 1 1

3 3 31 1    −  − − and 

2 2 2

3 3 31 1    −  − − , then ( )( ) ( )( ) ( )( )
1 2 1 1 2 2

3 3 3 3 3 330 1 1 1 1 1           − − − − + − +  . 

Further
( )

( )

( )

( )

( )( )

( )( )
( )( ) ( )( )

1 11 1

1 1 2 2

2 2 2 2

33
3 33 3

3 3 3 3
3 3

3 3 3 3

11 1
1 1 1 1 1.

1 1 1

  
   

   

  

   

   

        − +− −       − + − = − − + − +        − −  − +           

Thus 1 2a a

is a FFLN.   

For any 0  , ( )( )( )*0 1 1 1






 − −  , which gives 

( )( )( )  
* 1 *

0,2
ˆ1 1 .

t
L




 −



 
− −  

 
 Also, 

1 2 1 2
0 , , , 1        , which implies ( )330 1 1 1



 − −   and ( ) ( )( )3 3 330 1 1 1


     − − − +  . Further 

( ) ( ) ( )( ) ( )( )
33

3 3 3 3 3 33 31 1 1 1 1 1 1.
  

          

  
− − + − − − + = − − +   

   
 Hence   is a FFLN. 

This completes the proof.             ∎ 

Example 4: Let     0,6
ˆ | 0,6dL d=  be an extended continuous LTS, 2 ,0.4,0.5= , 1 3,0.3,0.6 = , 

2 5 ,0.5,0.7 = be three FFLNs and 5 = . Then according to the modified operation laws, we obtained the 

following results as shown in Table 1: 

Table 1: Values of different operations 

Operation ( )( ) ( )( )*

1 
 

 
=  

( )( ) ( )( )*

2  and 1.4
 

  

 
= =  

( )( ) ( )( )*

3 and 0.8
 

   

 
= = =  

1 2  5.4996 ,0.5297,0.7655  5.5418 ,0.5297,0.7655  5.4896 ,0.5297,0.7655  

1 2  2.5002 ,0.4826,0.7856  5.5418 ,0.4826,0.7856  5.4896 ,0.4826,0.7856  

 5.2098 ,0.6149,0.6945  5.6440 ,0.6149,0.6945  4.7348 ,0.6149,0.6945  

^  0.0246 ,0.5355,0.7452  0.0323,0.5355,0.7452  0.0157 ,0.5355,0.7452  
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Further, if we consider Example 3 again and utilize the improved operational laws summarized in Definition 9, 

Table 2 presents the obtained results. 

 

Table 2: Calculation results of different operations 

Operation ( )( ) ( )( )*

2  and 1.4
 

  

 
= =  

1 2  5.5418 ,0.5279,0.7655  

1 3  5.5418 ,0.2869,0.6797  

1 4  6.0000 ,0.2608,0.7856  

2 5   5.6534 ,0.8306,0.5541  

2 6   6.0000 ,0.6797,0.5541  

14  5.7540 ,0.4698,0.8281  

24  5.9902 ,0.7452,0.7969  

 

The obtained calculation results verify that the improved operational laws are more reasonable and realistic as 

per our intuition.  

Theorem 2: Let  0,2
ˆ

t
L  be an extended continuous LTS, and

( ) 1 11
1 , ,


  

 = , 
( ) 2 22

2 , ,


  
 = and 

( ) 3 33
3 , ,


  

 = be three FFLNs, where ( ) ( ) ( )  1 2 3 0,2
ˆ, ,

t
L

    
 . The following results hold: 

(i). 1 2 2 1 =  ; 

(ii). 1 2 2 1 =  ; 

 

(iii). ( ) ( )1 2 3 1 2 3  = ; 

(iv). ( ) ( )1 2 3 1 2 3 .  =

Proof: Results follow directly from Definition 9, so we omit the proofs of them. 
 

Theorem 3: Let  0,2
ˆ

t
L  be an extended continuous LTS, 

( )
, ,


  

=
( ) 1 11

1 , ,


  
 = , and 

( ) 2 22
2 , ,


  

 =  be three FFLNs and 
1 2, , 0    , where ( ) ( ) ( )  2 2 0,2

ˆ, ,
t

L
    

 , then 

(i). ( ) ( ) ( )1 2 1 2     =   ; 

(ii). ( ) ( ) ( )1 2 1 2
ˆ      = +   

(iii). ( ) ( ) ( )1 2 1 2^ ^ ^    =  ; 

(iv). ( ) ( ) ( )1 2 1 2^ ^ ^     = + ; 

(v). ( ) ( )1 2 1 2     =  ; 

(vi). ( ) ( )1 2 1 2^ ^ ^   = . 

(vii). ( ) ( ) ( )1 2 1 2neg neg neg =     

(viii). ( ) ( ) ( )1 2 1 2neg neg neg =    ; 

(ix). ( )( ) ( )^neg neg  =  ; 

(x). ( )( ) ( )^neg neg   =  . 

 

Proof: Here, we only prove the parts (i), (iii), (v), (vii), and (ix); the others can be proved similarly. 

(i) From Definition 9, we have 

                             ( )( )( ) ( ) ( ) ( )( )
1 1 1 11

* 1 * 3 3 3 33 3
1 1 1 , 1 1 , 1 1 ,

  


      −

   

 
 = − − − − − − − + 

 
                 (15) 

and 
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                           ( )( )( ) ( ) ( ) ( )( )
2 2 2 22

* 1 * 3 3 3 33 3
2 1 1 , 1 1 , 1 1 ,

  


      −

   

 
 = − − − − − − − + 

 
                 (16) 

 

Using Eq. (15) and Eq. (16), we get 

( ) ( )1 2     

( )( )( ) ( )( )( ) ( ) ( )

( ) ( )

1 11 2

1 2

3 3

* 1 * * 1 * * * 1 * 3 33 33

3 3

3 33 3

1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 ,

1 1 1 1 1 1

 

   

 

 

        

 

− − −

  

 

               
− − − − − − − − − − − − − −                                   

     
= − − − − − −         

( ) ( ) ( )( ) ( ) ( ) ( )( )
1 1 1 1 2 2 2 2

3 3 33 3

3 3 3 3 3 3 3 33 33 3          1 1 1 1 1 1 1 1 1 1
    

              





                − − − − + − − − + − − − + − − − +                      

 

( )( )( ) ( )( )( )( ) ( )( )( ) ( )( )( ) ( )( ) ( )( )( )1 2 1 2 1 1 2 21 2

* 1 * * 3 3 3 3 3 3 3 33 31 1 1 , 1 1 1 , 1 1 1 1
  

 
          −

        

 
= − − − − − − − − − − + − + 

 
 

( )1 2=   .    

 

(iii) According to Definition 9, we have 

                                  ( )( )( ) ( ) ( )( ) ( )
1 1 1 11

* 1 * 3 3 3 333
1^ , 1 1 , 1 1 ,

  


      −

   

 
 = − − − + − − 

 
                     (17) 

and 

                                   ( )( )( ) ( ) ( )( ) ( )
2 2 2 22

* 1 * 3 3 3 333
2 ^ , 1 1 , 1 1 .

  


      −

   

 
 = − − − + − − 

 
                   (18) 

By Eq. (17) and Eq. (18), we get 

( ) ( )

( )( )( ) ( )( )( )

( )

( )

( ) ( )( )

1 2

1 1 1

1 1

2

* 1 * * 1 * * * 1 *

3

3 3 33

3

33

1 2
3

33

,

1 1

1

1 1 1                     1 1

^ ^

1 1 1

 

 







      

  

 

 



− − −

 

  

 



       
       

       

 
− − − + 

 
−

   
 − − −  + − −     

   = − 
   
− − −        

( )

( ) ( )( )

( )

2 2 2

2

3

33

3
3

3 3 33

3

33

 ,

1 1

1

                      1 1

                               







  



  



   
   
   
   
    

    
    

       − − − +      −  
    

+ − −         

( ) ( )
1 2

3 3

3 33 33 1 1 1 1 1 1 1
 

  

     
− − − − − − −            

 

                         
( )( ) ( )( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( )( )

1 2 1 1 2 21 2

1 2

* 1 * * 3 3 3 3 3 33

3 33

, 1 1 1 1  ,

;

                                                                                                            1 1 1

 

 



        

 

−

      

 

 
− − − − + − + 

 =

− − −

 

                        ( )1 2 ^ .=   

(v) For two positive real numbers 1 and
2 , we have 

( ) ( )( )( ) ( ) ( ) ( )( )
2 22 2* 1 * 3 3 3 33 3

1 2 1 1 1 , 1 1 , 1 1 ,
  


        −

   

  
  = − − − − − − − +  
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( )( )( ) ( )

( ) ( ) ( ) ( )( )

11
2

2

11

22 2 2

3

* 1 * * 1 * 333

33 3

3 3 3 3 33 3 33

1 1 1 1 , 1 1 1 1 ,

1 1 1 1 1 1 1 1


 





  

    

    

− −



    

         − − − − − − − −                 
=

          − − − − − − − + − − − +                   

 

              ( )( )( ) ( ) ( ) ( )( )
1 2 1 21 2 1 2* 1 * 3 3 3 33 31 1 , 1 1 , 1 1
      


     −

   

 
= − − − − − − − + 

 
 

              ( )1 2= . 

 (vii) From Definitions 7 and 9, we have 

( )
( ) ( )( )( ) ( )( )( )( )( )
( )( ) ( )( ) ( )( ) ( )( )

1 2

1 2 1 1 2 2 1 2

* 1 * * * 1 * *

2

1 2

3 3 3 3 3 3 3 333

1 1 1 ,

        1 1 1 1 , 1 1 1

t

neg
 

     

       

− −

 

       

 
− − − − 

  =

− − − − + − + − − −

 

                  
( ) ( )( )( ) ( )( )( )( )( )
( )( ) ( )( ) ( )( ) ( )( )

1 2

1 2 1 1 2 2 1 2

* 1 * * *

2

3 3 3 3 3 3 3 333

1 1 1 ,

         1 1 1 1 , 1 1 1

t  
   

       

−

 

       

− − − −

=

− − − − + − + − − −

 

                 
( ) ( )( )( ) ( ) ( )( )( )( )

( )( ) ( )( ) ( )( ) ( )( )

1 2

1 2 1 1 2 2 1 2

* 1 * * * *

2 2

3 3 3 3 3 3 3 333

,

;

1 1 1 1 , 1 1 1

t t 
    

       

−

 

       

− −

=

− − − − + − + − − −

 

                 ( ) ( )1 2neg neg=    . 

(ix) ( )( ) ( ) ( )( )( )( )* 1 * *

2^ , ,tneg



     −

 
 = −  

                             ( ) ( )( )( ) ( ) ( )( ) ( )* 1 * * 3 3 3 333
2 , 1 1 , 1 1t

  


      −

   

 
= − − − − + − − 

 
 

                             ( ) ( )( )( ) ( ) ( )( ) ( )* 1 * * * 1 * 3 3 3 333
2 1 1 , 1 1 , 1 1t

  


        − −

   

   
= − − − − − − + − −   

   
   

                            
( )( )( ) ( ) ( ) ( )( )* 1 * 3 3 3 33 31 1 , 1 1 , 1 1neg

  


     −

   

  
= − − − − − − − +  

  
 

                            ( ).neg =   

Hence, the theorem proved.             ∎ 
 
Next, by utilizing proposed improved operational laws on FFLNs, we propose some arithmetic and geometric 

aggregation operators for fusing a collection of FFLNs
( ) ( ), , 1,2, , .

i ii
i i n


  

 = =   

 
3.2: FFL-weighted average (FFLWA) operator 

The weighted average (WA) is the most commonly used mean operator in a wide range of application areas. 

Here, we extend the idea of WA to the FFL information environment and propose the following formal 

definition. 

Definition 10: Let
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs. The FFL-weighted average 

(FFLWA) operator is a mapping FFLWA : n → , such that 
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                                                             ( ) ( )1 2
1

FFLWA , , , ,
n

n i i
i

w
=

   =                                                         (19) 

where ( )1 2, , ,
T

nw w w w= is the weight vector of 
i  with  0,1iw  ,

1

1.
n

i

i

w
=

=  Especially when
1 1 1

, , ,

T

w
n n n

 
=  
 

, 

the FFLWA operator reduces to FFL-average (FFLA) operator, which is defined as 

                                                            ( )1 2
1

1
FFLWA , , , .

n

n i
in =

 
   =   

 
                                                      (20) 

Theorem 4: Let 
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be a collection of n  FFLNs and ( )1 2, , ,
T

nw w w w=  be the 

weight vector of 
i  with  0,1iw  ,

1

1,
n

i

i

w
=

= then the aggregated value by using the FFLWA operator is also a 

FFLN and 

            ( )
( )( )( ) ( )

( ) ( )( )

* 1 * 3
3

1 1

1 2

3 3 3
3

1 1

1 1 , 1 1 ,  

FFLWA , , , .

                                   1 1

i
i

ii

ii

i i i

n nw w

i i

n
n n ww

i i


  

  

−


= =

  

= =

 
− − − − 

 
   =

− − − +

 

 

         (21) 

Proof: The first result directly holds from Theorem 1. Using the principle of mathematical induction, we shall 

prove the result stated in Eq. (21). Firstly, for 2n = , by Definition 9, we get 

                       

( )( )( ) ( ) ( ) ( )( )

( )( )( ) ( ) ( ) ( )( )

1 11 1

1 1 1 11

2 22 2

2 2 2 22

* 1 * 3 3 3 33 3
1 1

* 1 * 3 3 3 33 3
2 2

1 1 , 1 1 , 1 1 ,

.

1 1 , 1 1 , 1 1

w ww w

w ww w

w

w





     

     

−

   

−

   

 
 = − − − − − − − +  

  


  
 = − − − − − − − +    

               (22) 

 

Hence                        

                         ( )
( )( )( ) ( )

( ) ( )( )

2 2
* 1 * 3

3

1 1

1 2
2

3 3 3
3

1 1

1 1 , 1 1 ,  

FFLWA ,

                                          1 1

i
i

ii

ii

i i i

w w

i i

n ww

i i


  

  

−


= =

  

= =

 
− − − − 

 
  =

− − − +

 

 

.               (23) 

Hence, the result is valid for 2n = . 

Next, assume that Eq. (21) is true for n k= , i.e., 

                  ( )
( )( )( ) ( )

( ) ( )( )

* 1 * 3
3

1 1

1 2

3 3 3
3

1 1

1 1 , 1 1 ,  

FFLWA , , ,

                                      1 1

i
i

ii

ii

i i i

k kw w

i i

k
k k ww

i i


  

  

−


= =

  

= =

 
− − − − 

 
   =

− − − +

 

 

.                (24) 

Then, for 1n k= + , by Definition 10, we have 

( ) ( ) ( )1 2 1 1 2 1 1FFLWA , , , , FFLWA , , ,k k k k kw+ + +    =              

              
( )( )( ) ( )

( ) ( )( )
( ) 1 11

* 1 * 3
3

1 1

3 3 3
3

1 1

1 1 , 1 1 ,  

, ,

                              1 1

i
i

ii

k kk

ii

i i i

k kw w

i i

k k ww

i i





  

 

  

+ ++

−


= =

 

  

= =

 
− − − − 

 
= 

− − − +
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( )( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

1

1

11

1 1 1

* 1 * * 3 3
3

1 1

3 3 3 3 3 3
3

1 1

1 1 1 , 1 1 1 ,  

                               1 1 1 1

i k i
i k

i ki k i

i ki k

i k i i k k

k kw w w w

i i

k k w ww w

i i

 
    

     

+
+

++

++

+ + +

−

  
= =

     

= =

 
− − − − − − 

 
=

− − − − + − +

 

 

 

              
( )( )( ) ( )

( ) ( )( )

1 1
* 1 * 3

3

1 1

1 1
3 3 3

3

1 1

1 1 , 1 1 ,  

                                               1 1

i
i

ii

ii

i i i

k kw w

a
i i

k k ww

i i


  

  

+ +
−



= =

+ +

  

= =

 
− − − − 

 
=

− − − +

 

 

                                                (25) 

i.e., Eq. (21) holds for 1n k= + . Hence, the theorem.       ∎ 

Theorem 4: The FFLWA operator, defined in Eq. (21), holds the following properties: 

 (P1)(Idempotency): If 
( )

, ,i i


  
 ==  , then 

                                                            ( )1 2FFLWA , , , .n   =                                                                    (26)      

(P2) (Monotonicity): Let
( )

, ,
i ii

i 
  

 = and 
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be two collections of FFLNs 

such that ( ) ( )
 , ,  

i i i ii i
i

 
       

    , then  

                                                 ( ) ( )1 2 1 2FFLWA , , , FFLWA , , , .n n                                                      (27) 

(P3) (Boundedness): Let ( ) ( ) ( )( ) ( ) ( )
1 2 1 21 2

min , , , ,min , , , ,max , , ,
n nn  

     −

       
 = and 

( ) ( ) ( )( ) ( ) ( )
1 2 1 21 2

max , , , ,max , , , ,min , , ,
n nn  

     +

       
 = , then   

                                                              ( )1 2FFLWA , , , .n

− +       

(P4): If 
( )

, ,s


  
= is another FFLN, then  

                                           ( ) ( )1 2 1 2FFLWA , , , =FFLWA , , , .n n                                        (28) 

(P5): Let 0  be a real number, then  

                                          ( ) ( )( )1 2 1 2FFLWA , , , = FFLWA , , , .n n                                               (29) 

(P6): Let 
( )

, ,s


  
= be another FFLN and 0  be a real number, then  

                            ( ) ( ) ( )( ) ( )( )( )1 2 1 2FFLWA , , , = FFLWA , , , .n n b                                  (30) 

(P7): Let
( )

, ,
i ii

i 
  

 = and 
( ) ( ), , ,  1,2, ,

i ii
i s i n


  

 = = be two collections of FFLNs, then  

                         ( ) ( ) ( )1 1 2 2 1 2 1 2FFLWA , , , =FFLWA , , , FFLWA , , , .n n n n                          (31)                                    

Proof: (P1) Assume that
( )

, ,i i


  
 ==  , then 

( ) ( )1 2FFLWA , , , FFLWA , , ,n   =    

                    
( )( )( ) ( )

( ) ( )( )

* 1 * 3
3

1 1

3 3 3
3

1 1

1 1 , 1 1 ,  

                                                    1 1

i
i

ii

n nw w

i i

n n ww

i i


  

  

−


= =

  

= =

 
− − − − 

 
=

− − − +
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( )( )( ) ( )

( ) ( )( )

1 2
1 2

1 21 2

* 1 * 33

3 3 33

1 1 , 1 1 ,  

                                       1 1

n
n

nn

w w w w w w

w w ww w w


  

  

+ + + + + +
−



+ + ++ + +

  

 
− − − − 

 =

− − − +

 

                                      
( )

, , .


  
= =                                 ∎ 

(P2) Since ( ) ( )
 , ,  

i i i ii i
i

 
       

    and * is a strictly monotonically increasing function, then  

             

( )( )( ) ( )( )( )

( ) ( )

( ) ( )( ) ( ) ( )( )

* 1 * * 1 *

1 1

3 3
3 3

1 1

3 3 3 3 3 3
3

1 1 1

             1 1 1 1 ,

                                    1 1 1 1 ,

1 1 1 1

i i

i i

i i

i i

i ii i

i i i i i i

n nw w

i i

n n
w w

i i

n n nw ww w

i i i

 
   

 

     

− −

 
= =

 

= =

     

= = =

   
− −  − −   

   

− −  − −

− − − +  − − − +

 

 

  3

1

n

i=














.                     (32) 

According to Definition 10, we have 

( )
( )( )( ) ( )

( ) ( )( )

* 1 * 3
3

1 1

1 2

3 3 3
3

1 1

1 1 , 1 1 ,  

FFLWA , , ,

                                  1 1

i
i

ii

ii

i i i

n nw w

i i

n
n n ww

i i


  

  

−


= =

  

= =

 
− − − − 

 
   =

− − − +

 

 

. 

and 

( )
( )( )( ) ( )

( ) ( )( )

* 1 * 3
3

1 1

1 2

3 3 3
3

1 1

1 1 , 1 1 ,  

FFLWA , , ,

                                  1 1

i
i

ii

ii

i i i

n nw w

i i

n
n n ww

i i


  

  

−


= =

  

= =

 
− − − − 

 
   =

− − − +

 

 

. 

Therefore 

                                                    ( ) ( )1 2 1 2FFLWA , , , FFLWA , , , .n n                  ∎ 

(P3) It directly follows from Property 2.                  ∎       

(P4) Since, so 

                        
( )( )( ) ( )( )( )( ) ( )( )

( )( ) ( )( ) ( )( )

* 1 * * 3 33

3 3 3 3 3 33

1 1 1 , 1 1 1 ,

                                   1 1 1 1

ii

i i i

i

 
    

     

−

  

     

− − − − − −

=

− − − − + − +

.                     (33) 

Therefore, 

( )1 2FFLWA , , , n       

                             
( )( )( ) ( )( )( )( ) ( )( )( )

( )( )( ) ( )( ) ( )( )( )

* 1 * * 3 3
3

1 1

3 3 3 3 3 3
3

1 1

1 1 1 , 1 1 1 ,  

                   1 1 1 1

i i

ii

ii

i i i

n nw w

i i

n n ww

i i

 
    

     

−

  
= =

     

= =

 
− − − − − − 

 
=

− − − − + − +

 

 

 

                    
( )( )( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

* 1 * * 3 3
3

1 1

3 3 3 3 3 3
3

1 1

1 1 1 , 1 1 1 ,  

                   1 1 1 1

i
i

ii

ii

i i i

n nw w

i i

n n ww

i i

 
    

     

−

  
= =

     

= =

    
− − − − − −    
    

=

   
− − − − + − +   
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( )( )( ) ( )

( ) ( )( )
( )

* 1 * 3
3

1 1

3 3 3
3

1 1

1 1 , 1 1 ,  

, ,

                                 1 1

i
i

ii

ii

i i i

n nw w

i i

n n ww

i i





  

 

  

−


= =

 

  

= =

 
− − − − 

 
= 

− − − +

 

 

 

                           ( )1 2=FFLWA , , , .n                 ∎ 

(P5) For any 0  , we have 

                        ( )( )( ) ( ) ( ) ( )( )* 1 * 3 3 3 33 31 1 , 1 1 , 1 1 .
i i i ii

i

  


      −

   

 
 = − − − − − − − + 

 
                        (34) 

Therefore, 

( )
( )( )( ) ( )( )

( )( ) ( )( )

* 1 * 3
3

1 1

1 2

3 3 3
3

1 1

1 1 , 1 1 ,  

FFLWA , , ,

                               1 1

i
i

ii

ii

i i i

w wn n

i i

n
wwn n

i i

 





  

  

  

−


= =

  

= =

  
− − − −     

   =

 − − − + 
 

 

 

 

                                                 
( )( )( ) ( )( )

( )( ) ( )( )

* 1 * 3
3

1 1

3 3 3
3

1 1

1 1 , 1 1 ,  

                                1 1

i
i

ii

ii

i i i

n nw w

i i

n n ww

i i

 





  

  

−


= =

  

= =

  
− − − −     

=

 − − − + 
 

 

 

 

                                                ( )( )1 2FFLWA , , , .n=                ∎  

(P6) From Property 4, we know 

                                               ( ) ( )1 2 1 2FFLWA , , , =FFLWA , , ,n n      ,                             (35) 

and according to Property 5, we have 

                                               ( ) ( )( )1 2 1 2FFLWA , , , = FFLWA , , , .n n                                          (36) 

From Eq. (35) and Eq. (36), we get the desired results.       ∎ 

(P7) Since ,i i   , then           

                     
( )( )( ) ( )( )( )( ) ( )( )

( )( ) ( )( ) ( )( )

* 1 * * 3 33

3 3 3 3 3 33

1 1 1 , 1 1 1 ,  

.

                                          1 1 1 1

i ii i

i i i i i i

i i

 
    

     

−

  

     

− − − − − −

 =

− − − − + − +

              (37) 

Therefore, 

( )1 1 2 2FFLWA , , , n n        

( )( )( ) ( )( )( )( ) ( )( )( )

( )( )( ) ( )( ) ( )( )( )

* 1 * * 3 3
3

1 1

3 3 3 3 3 3
3

1 1

1 1 1 , 1 1 1 ,  

                  1 1 1 1

i i

i ii i

ii

i i i i i i

n nw w

i i

n n ww

i i

 
    

     

−

  
= =

     

= =

 
− − − − − − 

 
=

− − − − + − +

 

 

 

          
( )( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

* 1 * * 3 3
3

1 1 1 1

3 3 3 3 3 3
3

1 1 1 1

1 1 1 , 1 1 1 ,  

                1 1 1 1

i i
i i

i ii i

i ii i

i i i i i i

n n n nw w w w

i i i i

n n n nw ww w

i i i i

 
    

     

−

  
= = = =

     

= = = =

 
− − − − − − 

 
=

− − − − + − +
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( )( )( ) ( )

( ) ( )( )

( )( )( ) ( )

( ) ( )( )

* 1 * 3 * 1 * 3
3 3

1 1 1 1

3 3 3 3 3 3
3 3

1 1 1 1

1 1 , 1 1 ,  1 1 , 1 1 ,  

                  1 1                   1 1

i ii i

i ii i

i ii i

i i i i i i

n n n nw ww w

i i i i

n n n nw ww w

i i i i

  
     

     

− −

 

= = = =

     

= = = =

   
− − − − − − − −   

   
= 

− − − + − − − +

   

   

       

                            ( ) ( )1 2 1 2=FFLWA , , , FFLWA , , , .n n               ∎ 

3.3 FFL- ordered weighted average (FFLOWA) operator 

The ordered weighted averaging (OWA) operator [64]  is an aggregation operator that provides a parameterized 

family of aggregation operators between the minimum and the maximum. In this subsection, we extend the idea 

of the FFLWA operator into the FFLOWA operator based on the OWA operator. 

Definition 11: Let 
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs, the FFLOWA operator of 

dimension n is a mapping FFLOWA: n → , that has an associated weight vector ( )1 2, , ,
T

n   = such that 

 0,1i   and 
1

1,
n

i

i


=

= then 

                                                           ( ) ( )( )1 2
1

FFLOWA , , ,
n

n i i
i




=
   =   ,                                                   (38) 

 where ( )i
 is the thi largest value of ( )1,2, ,i i n = .  

Theorem 5: Let 
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs, then the aggregated value by using 

the FFLOWA operator is also a FFLN and 

                    ( )
( )( ) ( )( )

( )( ) ( ) ( )( )( )

* 1 * 3
3

1 1

1 2

3 3 3
3

1 1

1 1 , 1 1 ,  

FFLOWA , , ,

                           1 1

i
i

i
i

ii

i i i

n n

i i

n
n n

i i




  








  

  

−


= =

  

= =

   
− − − −          =

− − − +

 

 

.               (39) 

Proof: The proof of this theorem is similar to Theorem 4, so it is omitted here.       ∎ 

It can be easily proved that the FFLOWA operator holds the following properties.  

(P1) (Idempotency): If 
( )

, ,  i i


  
 ==  , then 

                                                                     ( )1 2FFLOWA , , , .n   =                                                         (40) 

(P2) (Monotonicity): Let
( )

, ,
i ii

i 
  

 = and 
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be two collections of FFLNs 

such that ( ) ( )
, ,  

i i i ii i
i

 
       

    , then  

                                                        ( ) ( )1 2 1 2FFLOWA , , , FFLOWA , , , .n n                                          (41) 

(P3) (Boundedness): Let 

( ) ( ) ( )( ) ( ) ( )
1 2 1 21 2

min , , , ,min , , , ,max , , ,
n nn  

     −

       
 =  

and                ( ) ( ) ( )( ) ( ) ( )
1 2 1 21 2

max , , , ,max , , , ,min , , ,
n nn  

     +

       
 = , then   

                                                                ( )1 2FFLOWA , , , .n

− +                                                         (42) 

P4 (Commutativity): Let ( )1 2, ,, , n
     be any permutation of ( )1 2, , , n   , then  

                                                   ( ) ( )1 2 1 2FFLOWA , , , FFLOWA , ,, , .n n
     =                                          (43) 

Further, motivated by the idea of geometric mean and ordered weighted geometric operator[65], we develop 

the FFLWG operator and the FFLOWG operator. 
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3.4 FFL- weighted geometric (FFLWG) operator 

This subsection extends the notion of weighted geometric mean to the FFL information environment and defines 

the FFL weighted geometric operator as follows: 

Definition 12: Let
( ) ( ), , ,  1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs. The FFL-weighted geometric 

(FFLWG) operator is a mapping FFLWG : n → , such that  

                                                           ( ) ( )1 2
1

FFLWG , , , ^ ,
n

n i i
i

w
=

   =                                                           (44) 

where ( )1 2, , ,
T

nw w w w= denotes the weight vector of 
i  with  0,1iw  ,

1

1.
n

i

i

w
=

=  Especially, in the case of 

1 1 1
, , ,

T

w
n n n

 
=  
 

, the FFLWG operator is reduced into FFLG operator expressed as  

                                                                  ( )1 2
1

1
FFLG , , , ^ .

n

n i
i

a a a
n=

 
=   

 
                                                      (45) 

Theorem 6: Let 
( ) ( ), , ,  1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs, then the aggregated value by using 

the FFLWG operator is also a FFLN and  

               ( )
( )( )( ) ( ) ( )( )

( )

* 1 * 3 3 3
3

1 1 1

1 2

3
3

1

, 1 1 ,

FFLWG , , , .

                                                                       1 1

i ii

i i ii

i

i

n n nw ww

i i i

n
n

w

i


    



−

  
= = =



=

 
− − − + 

 
   =

− −

  



                (46) 

Proof: Based on improved operational laws on FFLNs mentioned in Definition 9, Theorem 6 is evident from 

Theorems 4. 

Theorem 7: The FFLWG operator satisfies the following properties: 

 (P1) (Idempotency): If 
( )

, ,   i i


  
 ==  , then 

                                                                     ( )1 2FFLWG , , , .n   =                                                           (47) 

(P2) (Monotonicity): Let
( )

, ,
i ii

i 
  

 = and 
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be two collections of FFLNs 

such that ( ) ( )
, ,  

i i i ii i
i

 
       

    , then 

                                                             ( ) ( )1 2 1 2FFLWG , , , FFLWG , , , .n n                                          

(48) 

(P3) (Boundedness): Let ( ) ( ) ( )( ) ( ) ( )
1 2 1 21 2

min , , , ,min , , , ,max , , ,
n nn  

     −

       
 = and 

( ) ( ) ( )( ) ( ) ( )
1 2 1 21 2

max , , , ,max , , , ,min , , ,
n nn  

     +

       
 = , then   

                                                                        ( )1 2FFLWG , , , .n

− +                                                    (49) 

(P4): If 
( )

, ,


  
= is another FFLN, then  

                                                ( ) ( )1 2 1 2FFLWG , , , =FFLWG , , , .n n                                   (50) 

(P5): If 0  is a real number, then  

                                             ( ) ( )( )1 2 1 2FFLWG ^ , ^ , , ^ = FFLWFG , , , ^ .n n                                        (51) 

(P6): Let 
( )

, ,


  
= be another FFLN and 0  be a real number, then  

                                 ( ) ( ) ( )( ) ( )( )( )1 2 1 2FFLWG ^ , ^ , , ^ = FFLWG , , , ^ .n n                          (52) 
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(P7): Let
( )

, ,
i ii

i 
  

 = and 
( ) ( ), , ,  1,2, ,

i ii
i i n


  

 = = be two collections of FFLNs, then  

                                ( ) ( ) ( )1 1 2 2 1 2 1 2FFLWG , , , =FFLWG , , , FFLWG , , , .n n n n                   (53) 

Proof: Here, we prove the properties 4 and 5 only, and others can proceed likewise.  

(P 4) From Definition 9, we have     

                       
( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )

( )( )

* 1 * * 3 3 3 3 3 33

3 33

, 1 1 1 1 ,

                                                                                         1 1 1

i i ii

i

i

 
        

 

−

      

 

− − − − + − +
=

− − −

.              (54) 

Therefore 

( )1 2FFLWG , , , n     

                    
( )( ) ( )( )( )

( )( )( )

( )( ) ( )( )( )

( )( )( )

1

3 3

1* 1 * *
3

1 3 3 3 3

1

3 3
3

1

1 1

, ,

    1 1

                                                                               1 1 1

i

i
i

i
i

i

i

n w

n w
i

n w
i

i

n w

i

 

 

  

   

 

 

=−

 
=

   

=

 

=

− −
 
 
 

− − + − +=

− − −








  

                   
( )( )( ) ( )( )

( ) ( )

( )( ) ( )( )

( )

1

3 3

1* 1 * *

3

1 3 3 3 3

1

3

1

1 1

, ,

    1 1

                                                                                     1 1

i

i i
i

i
i

i i i

i

i

n
w

n w
i

n wi

i

n
w

i

 

 

  

   



 

=−

 
=

   

=



=

 
− − 

   
 

  
− − + − +=  
 


− −







 ( )3
3 1

i



−



  

                    
( )( )( ) ( ) ( )( )

( )
( )

* 1 * 3 3 3
3

1 1 1

3
3

1

, 1 1 ,

, ,

                                                                        1 1

i ii

i i ii

i

i

n n nw ww

i i i

n
w

i





    

 



−

  
= = =

 



=

 
− − − + 

 
= 

− −

  



 

                    ( )1 2=FFLWG , , , n            ∎ 

(P 5) Using Definition 9, we get    

                               ( )( )( ) ( ) ( )( ) ( )* 1 * 3 3 3 333^ , 1 1 , 1 1
i i i ii

i

  


      −

   

 
 = − − − + − − 

 
                          (55) 

Therefore 

( )1 2FFLWG ^ , ^ , , ^n      

                        
( )( )( ) ( )( ) ( )( )

( )( )

* 1 * 3 3 3
3

1 1 1

3
3

1

, 1 1 ,

                                                                                1 1

i ii

i i ii

i

i

w wwn n n

i i i

wn

i

 





    



−

  
= = =



=

    − − − +         =

− −

  



 

                        
( )( )( ) ( )( ) ( )( )

( )( )

* 1 * 3 3 3
3

1 1 1

3
3

1

, 1 1 ,

                                                                                1 1

i ii

i i ii

i

i

n n nw ww

i i i

n
w

i

 





    



−

  
= = =



=

    − − − +   
   

=

− −

  



 

                        ( )( )1 2FFLWFG , , , ^ .n =                               ∎ 
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3.5 FFL- ordered weighted geometric (FFLOWG) operator 

The ordered weighted geometric (OWG) operator [65] is a common aggregation operator in the field of 

information fusion. But the existing OWG operator cannot aggregate FFLNs. Now, we define the FFLOWG 

operator based on the notion of the OWG operator to aggregate FFLNs. 

Definition 13: Let 
( ) ( ), , ,  1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs, the FFLOWG operator of 

dimension n is a mapping FFLOWG: n → , that has an associated weight vector ( )1 2, , ,
T

n   = such that 

 0,1i   and 
1

1,
n

i

i


=

= then 

                                                         ( ) ( )( )1 2
1

FFLOWG , , , ^
n

n ii
i




=
   =   ,                                                    (56) 

 where ( )i
 is the thi largest value of ( )1,2, ,i i n = .  

Theorem 7: Let 
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs, then the aggregated value by the 

FFLOWG operator is also a FFLN and 

  ( )1 2FFLOWG , , , n    

                                
( )( ) ( )( ) ( ) ( )( )( )

( )( )

* 1 * 3 3 3
3

1 1 1

3
3

1

, 1 1

                                                                            1 1  

i
ii

i i i
i

i

i

n n n

i i i

n

i

  




 





    



−

  
= = =



=

   
− − − +       =

− −

  



.                         (57) 

Proof: We can derive the proof similar to Theorem 4, so we omit it here.                                                        ∎ 

Moreover, the FFLOWG operator also satisfies properties such as idempotency, monotonicity, boundedness, 

and commutativity. 

3.6 FFL- hybrid average (FFLHA) operator and FFL- hybrid geometric (FFLHG) operator 

From Definitions 10 to 13, we know that the FFLWA and FFLWG AOs only weight the FFLNs, while the 

FFLOWA and FFLOWG AOs weight the ordered position of the FFLNs instead of weighting the FFLNs itself. 

In both cases, the weights address different aspects during the aggregation process of FFLNs. However, the 

developed aggregation operators for FFLNs consider only one of them. The hybrid averaging (HA) operator 

[66] is an aggregation operator that uses the weighted average (WA) and the ordered weighted averaging 

(OWA) operator in the same formulation. In the following, we propose the FFL-hybrid average (FFLHA) 

operator and the FFL-hybrid geometric (FFLHG) operator. 

Definition 14: Let 
( ) ( ), , 1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs, the FFL-hybrid average (FFLHA) 

operator of dimension n  is a mapping FFLHA: n → , that has an associated weight vector ( )1 2, , ,
T

n   =

such that  0,1i   and 
1

1,
n

i

i


=

= then 

                                                       ( ) ( )( )1 2
1

FFLHA , , ,
n

n i i
i




=
   =   ,                                                          (58) 

 where ( )i
 is the thi largest number of the weighted FFLNs ( )( ),  1,2, ,i i i inw i n  =  = , ( )1 2, , ,

T

nw w w w=  is 

the weight vector of ( ) 1,2, ,i i n = such that  0,1iw  , 
1

1
n

i

i

w
=

= and n  is the balancing coefficient.  

Theorem 8: Let 
( ) ( ), , ,  1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs, then the aggregated value by using 

the FFLHA operator is also a FFLN and 
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                      ( )
( )( ) ( )( )

( )( ) ( ) ( )( )( )

* 1 * 3
3

1 1

1 2

3 3 3
3

1 1

1 1 , 1 1 ,  

FFLHA , , ,

                             1 1

i
i

i
i

ii

i i i

wn n w

i i

n
n n ww

i i




  


  

  

−


= =

  

= =

   
− − − −          =

− − − +

 

 

 .              (59) 

Proof: The proof of this theorem is similar to Theorem 4. 

Definition 15: Let 
( ) ( ), , ,  1,2, ,

i ii
i i n


  

 = = be a collection of n  FFLNs, the FFL-hybrid geometric 

(FFLHG) operator of dimension n  is a mapping FFLHG: n → , that has an associated weight vector 

( )1 2, , ,
T

n   = such that  0,1i   and 
1

1,
n

i

i


=

= then 

                                                         ( ) ( )( )1 2
1

FFLHG , , , ^
n

n i
i




=
   =   ,                                                        (60) 

 where ( )i
 is the thi largest number of the weighted FFLNs ( )^ ,  1,2, ,i i i inw i n  = = , ( )1 2, , ,

T

nw w w w=  is 

the weight vector of ( ) 1,2, ,i i n = such that  0,1iw  , 
1

1
n

i

i

w
=

= and n  is the balancing coefficient.  

Theorem 9: Let 
( ) ( ), , ,  1,2, ,

i ii
i i n


  

 = = be a collection of FFLNs, then the aggregated value by using 

the FFLHG operator is also a FFLN and 

      ( )
( )( ) ( )( ) ( ) ( )( )( )

( )( )

* 1 * 3 3 3
3

1 1 1

1 2

3

1 1 , 1 1 ,  

FFLHG , , ,

                                                                                        1 1

i
ii

i i i
i

i

wn n n ww

i i i

n

w

  





    



−

  
= = =



   
− − − − − +          =

− −

  

3

1

.

 
i

n

i=



      (61) 

Proof: The proof of this theorem is similar to Theorem 4. 

Note that similar to the FFLOWA and the FFLOWG operators, the FFLHA and FFLHG operators follow the 

idempotent, bounded, monotonic and commutative properties.  

Remark 1:  If 
1 1 1

, , , ,

T

n n n


 
=  
 

then FFLHA and FFLHG operators become the FFLWA operator and FFLWG 

operator, respectively; 

Remark 2:   If 
1 1 1

, , , ,

T

w
n n n

 
=  
 

 then the FFLHA and FFLHG operators are reduced into FFLOWA operator 

and FFLOWG operator, respectively. 

In the next section, we formulate a new decision-making method to solve MAGDM problems under the FFL 

environment. Then, we consider a real-life supplier selection problem to demonstrate the decision-making steps.  

4. An Approach to MAGDM Making with FFL Information 

4.1: MAGDM Problem Description 

For a MAGDM problem, let  1 2, ,..., mF F F F=  be a set of alternatives,  1 2, ,... nA A A A= be an attribute set with 

the associated weighting vector ( )1 2, , ,
T

nw w w , satisfying  0,1jw  and 
1

1.
n

j

j

w
=

=  Assume  1 2, ,..., tE E E E= is 

a collection of t experts whose weight vector is ( )1 2, , ,
T

t   , satisfying  0,1q  and 
1

1.
t

q

q


=

=  Further, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2021                   doi:10.20944/preprints202104.0316.v1

https://doi.org/10.20944/preprints202104.0316.v1


21 
 

suppose that ( ) ( )( )q q

ij
m n

= B  is a decision matrix, where ( )

( )
( ) ( ) ( )

, ,
ij ijij

q q q q

ij 
  

 =  represents an attribute 

evaluation value, given by the expert qE , for the alternative 
iF F concerning the attribute jA A such that 

( )( ) ( )( )
3 3

0 1
ij ij

q q
   +   and 

( )
( )

 0,2
ij

q

t
L

 
 , 1,2, ,i m= ; 1,2, ,j n= .Then, the ranking of the alternatives is 

required to obtain the best alternative(s). 

4.2: Decision Method 

The decision method comprises the following steps. 

Step 1: To nullify the effect of the different attributes, transform the decision matrices ( ) ( )( )q q

ij
m n

= B  into the 

normalized form ( ) ( )( ) ( )
( ) ( ) ( )( )ˆ ˆˆ

ˆ ˆ , ,
ij ijij

q q q q q

ij
m n m n


 
  

=  =B . The elements of the normalized decision matrices ( )ˆ q
B  

can be obtained as follows:  

                                                ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
2

, , ,     if  is benefit type attribute
ˆ .

, , ,    if  is cost type attribute

ij ijij

ij ijij

q q q

j
q

ij
q q q

jt

A

A





 

 

 

 − 




 = 



                                 (62) 

Step 2: Aggregate all the ( ) ( )( )ˆ ˆq q

ij
m n

= B  into a collective normalized decision matrix

( ) ( ) ˆ ˆˆ

ˆ ˆ , ,
ij ijij

ij
m n 
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or FFLOWG operator         

( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )* 1 * 3 3 3

3
ˆ ˆ ˆˆ

1 1 11 2
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(64) 

where ( )

( )
( ) ( ) ( )

ˆ ˆˆ
ˆ , ,

ij ijij

q q q q

ij

   


 
 

 = is the thq largest value of ( )ˆ q

ij and ( )1 2, , ,
T

t   represents the associated 

ordered position weight vector with  0,1q  and 
1

1.
t

q

q


=

=  

Step 3: Aggregate all the collective preference values ( )ˆ 1,2,...,ij j n =  for obtaining the overall assessment 

values 
i  ( )1,2,...,i m= corresponding to the alternatives

iF ( )1,2,...,i n= , based on either the FFLWA operator  
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( ) ( )( )

* 1 * 3
3

ˆˆ
1 1

1 2

3 3 3
3

ˆ ˆ ˆ
1 1

1 1 , 1 1 ,  

ˆ ˆ ˆ=FFLWA , , , ,

                                        1 1

j
j

ijij

jj

ij ij ij

wn n w

j j

i i i in
wn nw

i j


  

  

−


= =

  
= =

   
− − − −       

    =

− − − +

 

 

     (65) 
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or FFLWG operator 

                 ( )
( ) ( ) ( )( )
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 (66) 

Step 4. According to Definition 8, we get the order of the overall aggregated values ( ) 1,2, ,i i n = . 

Step 5. Rank all the alternatives ( ) 1,2, ,iF i n=  and hence select the most desirable one (s). 

4.3 Numerical Example 

In order to illustrate the application of the developed approach in practice, we consider a real-life decision 

problem about searching the global supplier with FFL information.  

Example 5: Supplier selection is one of the most important processes to accomplish an effective supply chain 

because a supplier comprehensively contributes to the overall supply chain performance. Due to the 

involvement of a group of persons and many factors, supplier selection is typically considered a MAGDM 

problem. In the last few years, the supplier selection problem has been received a considerable amount of 

attention by research from academics and industries.  

A Chilean company specializing in commercialized computer and office materials wants to select a suitable 

material supplier to assign the raw materials' optimum order. After preliminary screening, five potential global 

suppliers  1 2 3 4 5, , , .F F F F F were shortlisted for further evaluation. The company invites four experts 

 1 2 3 4, , ,E E E E  to evaluate the shortlisted suppliers concerning five attributes (i) overall cost of the product
1A  

(ii) service performance of the supplier
2A  (iii) reputation of the supplier 

3A (iv) quality of the product
4A  (v) 

delivery time of the product
5A . The attribute weight vector is given as ( )0.20,0.15,0.25,0.25,0.15

T
w = . The 

experts provide their evaluation information corresponding to each attribute in terms of FFLNs based on the 

following LTS: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 2 3 4

5 6 7 8

EP(extremly poor), VP very poor , P  poor , SP slightly poor , F fair ,
.

                        SG slightly good , G good , VG very good , G extremly good
L

E

 = = = = = 
=  

= = = =  

 

The experts provide the following FFL decision matrices ( ) ( )( ) ( )
5 5

1,2,3,4
q q

ij q


=  =B , as listed in Tables 3-6, 

respectively. 

Table 3: Decision matrix ( )1
B   

 1A  
2A  

3A  
4A  

5A  

1F  3,0.8,0.3  1,0.5,0.5  4 ,0.6,0.1  1,0.2,0.3  5 ,0.4,0.6  

2F  5 ,0.7,0.2  4 ,0.6,0.4  7 ,0.7,0.3  6 ,0.8,0.1  4 ,0.5,0.7  

3F  4 ,0.4,0.7  2 ,0.2,0.8  3,0.4,0.6  2 ,0.6,0.6  5 ,0.5,0.1  

4F  1,0.7,0.5  3,0.4,0.5  4 ,0.3,0.4  4 ,0.2,0.1  2 ,0.6,0.2  

4F  3,0.3,0.1  4 ,0.7,0.1  1,0.8,0.5  5 ,0.5,0.8  4 ,0.9,0.1  
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Table 4: Decision matrix ( )2
B   

 1A  
2A  

3A  
4A  

5A  

1F  
2 ,0.5,0.2  3,0.7,0.6  5 ,0.2,0.4  5 ,0.3,0.9  7 ,0.4,0.3  

2F  
4 ,0.6,0.1  7 ,0.9,0.5  6 ,0.8,0.4  8 ,0.9,0.3  3,0.8,0.3  

3F  
5 ,0.9,0.3  4 ,0.5,0.2  3,0.4,0.2  2 ,0.4,0.5  1,0.7,0.1  

4F  
7 ,0.5,0.4  2 ,0.5,0.1  4 ,0.6,0.7  5 ,0.2,0.8  5 ,0.5,0.3  

4F  
5 ,0.2,0.5  1,0.6,0.8  1,0.9,0.6  7 ,0.1,0.7  2 ,0.2,0.2  

 

Table 5: Decision matrix ( )3
B   

 1A  
2A  

3A  
4A  

5A  

1F  
1,0.7,0.2  4 ,0.6,0.1  3,0.8,0.3  1,0.6,0.5  2 ,0.8,0.0  

2F  
2 ,0.6,0.4  8 ,0.9,0.2  6 ,0.6,0.1  7 ,0.9,0.6  3,0.7,0.0  

3F  
4 ,0.9,0.6  4 ,0.6,0.7  2 ,0.4,0.4  4 ,0.1,0.8  5 ,0.6,0.2  

4F  
3,0.4,0.4  5 ,0.7,0.0  6 ,0.2,0.5  5 ,0.6,0.8  7 ,0.1,0.4  

4F  
7 ,0.3,0.9  3,0.8,0.3  1,0.7,0.6  6 ,0.3,0.5  1,0.8,0.6  

 

 

Table 6: Decision matrix ( )4
B   

 1A  
2A  

3A  
4A  

5A  

1F  
2 ,0.7,0.1  4 ,0.7,0.0  3,0.6,0.6  4 ,0.8,0.2  5 ,0.2,0.9  

2F  
3,0.6,0.9  6 ,0.5,0.3  7 ,0.9,0.2  8 ,0.9,0.4  5 ,0.7,0.1  

3F  
4 ,0.3,0.4  3,0.6,0.9  4 ,0.2,0.5  5 ,0.4,0.7  4 ,0.2,0.6  

4F  3,0.3,0.5  1,0.3,0.4  3,0.7,0.4  3,0.8,0.3  2 ,0.6,0.7  

4F  5 ,0.6,0.4  4 ,0.4,0.8  1,0.5,0.5  2 ,0.4,0.7  4 ,0.5,0.6  

 

Step 1: Since
1A is a cost-type attribute while

2 3 4, ,A A A and
5A are benefit-type attributes, so the normalized 

decision matrices ( ) ( )ˆ 1,2,3,4
q

q =B are obtained using Eq. (62) as follows (see Tables 7-10) 

Table 7: Normalized decision matrix ( )1
B̂   

 1A  
2A  

3A  
4A  

5A  

1F  5 ,0.3,0.8  1,0.5,0.5  4 ,0.6,0.1  1,0.2,0.3  5 ,0.4,0.6  

2F  3,0.2,0.7  4 ,0.6,0.4  7 ,0.7,0.3  6 ,0.8,0.1  4 ,0.5,0.7  

3F  4 ,0.7,0.4  2 ,0.2,0.8  3,0.4,0.6  2 ,0.6,0.6  5 ,0.5,0.1  

4F  7 ,0.5,0.7  3,0.4,0.5  4 ,0.3,0.4  4 ,0.2,0.1  2 ,0.6,0.2  

5F  5 ,0.1,0.3  4 ,0.7,0.1  1,0.8,0.5  5 ,0.5,0.8  4 ,0.9,0.1  
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Table 8: Normalized decision matrix ( )2
B̂   

 1A  
2A  

3A  
4A  

5A  

1F  
6 ,0.2,0.5  3,0.7,0.6  5 ,0.2,0.4  5 ,0.3,0.9  7 ,0.4,0.3  

2F  
4 ,0.1,0.6  7 ,0.9,0.5  6 ,0.8,0.4  8 ,0.9,0.3  3,0.8,0.3  

3F  
3,0.3,0.9  4 ,0.5,0.2  3,0.4,0.2  2 ,0.4,0.4  1,0.7,0.1  

4F  
1,0.4,0.5  2 ,0.5,0.1  4 ,0.6,0.7  5 ,0.2,0.8  5 ,0.5,0.3  

5F  
3,0.5,0.2  1,0.6,0.8  1,0.9,0.6  7 ,0.1,0.7  2 ,0.2,0.2  

 

Table 9: Normalized decision matrix ( )3
B̂   

 1A  
2A  

3A  
4A  

5A  

1F  
7 ,0.2,0.7  4 ,0.6,0.1  3,0.8,0.3  1,0.6,0.5  2 ,0.8,0.0  

5F  
6 ,0.4,0.6  8 ,0.9,0.2  6 ,0.6,0.1  7 ,0.9,0.6  3,0.7,0.0  

3F  
4 ,0.6,0.9  4 ,0.6,0.7  2 ,0.4,0.4  4 ,0.1,0.8  5 ,0.6,0.2  

4F  
5 ,0.4,0.4  5 ,0.7,0.0  6 ,0.2,0.5  5 ,0.6,0.8  7 ,0.1,0.4  

4F  
1,0.9,0.3  3,0.8,0.3  1,0.7,0.6  6 ,0.3,0.5  1,0.8,0.6  

 

Table 10: Normalized decision matrix ( )4
B̂   

 1A  
2A  

3A  
4A  

5A  

1F  6 ,0.1,0.7  4 ,0.7,0.0  3,0.6,0.6  4 ,0.8,0.2  5 ,0.2,0.9  

2F  5 ,0.9,0.6  6 ,0.5,0.3  7 ,0.9,0.2  8 ,0.9,0.4  5 ,0.7,0.1  

3F  4 ,0.4,0.3  3,0.6,0.9  4 ,0.2,0.5  5 ,0.4,0.7  4 ,0.2,0.6  

4F  
5 ,0.5,0.5  1,0.3,0.4  3,0.7,0.4  3,0.8,0.3  2 ,0.6,0.7  

5F  3,0.4,0.6  4 ,0.4,0.8  1,0.5,0.5  2 ,0.4,0.7  4 ,0.5,0.6  

Step 2: First, we calculate the experts’ weighting vector ( )0.1550,0.3450,0.3450,0.1550
T

 = based on the normal 

distribution method [67]. Then, utilizing the FFLOWA operator mentioned in Eq. (63)) (without loss of 

generality, we have taken the linguistic scaling function *

2 = , 1.4 = ) to obtain the collective normalized 

decision matrix ( )
5 5

ˆ ˆ .ij


= B The collective normalized decision matrix is summarized in Table 11. 

Table 11: Collective normalized decision matrix B̂  based on FFLOWA operator 

 
1A  

2A  
3A  

4A  
5A  

1F  6.3636 ,0.2046,0.7016  
3.0842 ,0.6463,0.4778  

4.0947 ,0.5943,0.3966  
1.9102 ,0.6272,0.5882  

4.8442 ,0.6262,0.5809  

2F  4.9662 ,0.5876,0.6750  
8.0000 ,0.8048,0.4686  

6.6072 ,0.3266,0.3266  
8.000 ,0.8892,0.5234  

3.4637 ,0.7244,0.3855  

3F  3.8309 ,0.4735,0.8315  
3.2911,0.5571,0.8364  

3.1444 ,0.2951,0.5097  
2.6951,0.3791,0.6367  

4.0135 ,0.4683,0.4152  

4F  5.1312 ,0.3942,0.5286  
2.5714 ,0.5054,0.3709  

4.1499 ,0.5602,0.5041  
4.4243 ,0.5652,0.6810  

4.4155 ,0.5367,0.4497  

5F  2.9330 ,0.6195,0.4349  
3.0842 ,0.6778,0.6322  

0.9998 ,0.7717,0.6001  
5.9625 ,0.3895,0.7325  

2.7125 ,0.6724,0.4952  

Step 3: Utilize the FFLWA operator (Eq. (65)) with ( )0.20,0.15,0.25,0.25,0.15
T

w =  to derive the overall FFL 

preference values ( ) 1,2,3,4,5i i =  corresponding to each alternative
iF ( )1,2,3,4,5i = . Table 12 presents the 

results. 
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Table 12: The overall FFL preference values 

i  based on the FFLWA operator 

1F  
2F  

3F  
4F  

5F  

4.3017 ,0.5831,0.5647  
8.0000 ,0.7473,0.5436  

3.2991,0.4379,0.7336  
4.2602 ,0.5254,0.5559  

3.2791,0.6571,0.6108  

Step 4: According to Definition 8, we have 

( ) ( ) ( ) ( ) ( )1 2 3 4 5=0.2641, =0.6284, =0.1562, =0.2511, =0.2385    S S S S S . 

Step 5. The final ranking order of the suppliers following the score values ( )iS is 
2 1 4 5 3F F F F F , thus, 

the most desirable supplier is 
2F . 

Additional, if we use the FFLOWG operator in Step 2 and the FFLWG operator in Step 3 instead of FFLOWA 

and FFLWA operators, respectively, in the developed method, then the procedure steps are as follows: 

Step 1: Same as above. 

Step 2: Utilizing the FFLOWG operator to aggregate all the normalized decision matrices ( ) ( )ˆ 1,2,3,4
q

q =B , the 

obtained results corresponding to each alternative is shown in Table 13. 

Table 13: Aggregated normalized decision matrix B̂  based on FFLOWG operator 

 
1A  

2A  
3A  

4A  
5A  

1F  6.2263 ,0.2137,0.7007  2.7656 ,0.6538,0.4637  3.9865 ,0.5937,0.3980  1.4768 ,0.5857,0.6112  3.9815 ,0.5743,0.6318  

2F  4.7577 ,0.6489,0.6190  6.4552 ,0.8239,0.4017  6.5188 ,0.3211,0.3211  7.3788 ,0.9050,0.4721  3.3857 ,0.7149,0.4160  

3F  3.8103 ,0.6273,0.7881  3.1929 ,0.6306,0.7975  3.0632 ,0.3571,0.5091  2.4951,0.4715,0.6414  3.4022 ,0.5068,0.4347  

4F  4.1466 ,0.4034,0.5233  2.2839 ,0.5001,0.3805  3.9398 ,0.5654,0.5041  4.3441,0.5767,0.6729  3.3720 ,0.5447,0.4377  

5F  2.6262 ,0.6119,0.4495  2.7656 ,0.6350,0.6754  0.9998 ,0.7958,0.5559  5.3982 ,0.4159,0.7244  2.3979 ,0.6756,0.4893  

 

Step 3: The overall FFL preference values ( ) 1,2,3,4,5i i =  of each alternative
iF ( )1,2,3,4,5i =  using the 

FFLWG operator are summarized in Table 14. 

Table 14: The overall FFL preference values 
i  based on the FFLWG operator 

1F  
2F  

3F  
4F  

5F  

3.1520 ,0.5552,0.5861  6.0409 ,0.7785,0.4727  3.0867 ,0.5716,0.6739  3.6215 ,0.5375,0.5460  2.3249 ,0.6565,0.6115  

Step 4: The score values ( )iS of the overall FFL preference values obtained during Step 3 are calculated as    

( ) ( ) ( ) ( ) ( )1 2 3 4 5=0.2143, =0.4602, =0.1923, =0.2363, =0.1934    S S S S S . 

Step 5. Since ( ) ( ) ( ) ( ) ( )2 4 1 5 3    S S S S S , therefore we obtain the final ranking order of the 

suppliers as
2 4 1 5 3F F F F F . Hence, 

2F is the most desirable supplier. 

It is worth noting that a decision-maker can choose the appropriate aggregation operator based on 

his/her behavior towards the aggregation procedure. If a decision-maker has optimistic behavior 

towards the aggregation of experts' preference information and the pessimistic behavior towards the 

final decision, then he/she use FFLOWA and FFLWG operator in Step 2 and Step 3, respectively, of 

the developed approach. A complete analysis has been conducted to analyze the effect of the decision-

makers behavioral attitude on final ranking, and obtained results are summarized in Table 15 along 

with the suppliers' ranking order.  The results shown in Table 15 indicate that when we use the 

FFLOWA (or the FFLOWG) operator in Step 2 and the FFLWA (or FFLHA) operator in Step 3 then 

the ranking order of the alternatives is always
2 1 4 5 3F F F F F . On the other hand, if we use the 

FFLOWH (or the FFLOWG) operator in Step 2 and the FFLWG (or FFLHG) operator in Step 3 then 

the ranking order of the alternatives is obtained as
2 4 1 5 3F F F F F , which is slightly different from 
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previous ones.  It shows the effect of the nature of varying aggregation operators on the final ranking 

order of the alternatives.  

Table 15: The score values ( )iS and ranking order of the suppliers 

The operator 

used in Step 2 

The operator 

used in Step 3 

Score values 
Ranking of the suppliers ( )1S  ( )2S  ( )3S  ( )4S  ( )5S  

FFLOWA 

FFLWA 0.2641 0.6284 0.1562 0.2511 0.2385 2 1 4 5 3F F F F F  

FFLWG 0.2407 0.4832 0.1679 0.2501 0.2030 2 4 1 5 3F F F F F  

FFLHA 0.2618 0.6245 0.1568 0.2513 0.2235 2 1 4 5 3F F F F F  

FFLHG 0.2427 0.5334 0.1704 0.2484 0.2165 2 4 1 5 3F F F F F  

FFLOWG 

FFLWA 0.2408 0.4812 0.1765 0.2369 0.2228 2 1 4 5 3F F F F F  

FFLWG 0.2143 0.4602 0.1923 0.2363 0.1934 2 4 1 5 3F F F F F  

FFLHA 0.2385 0.4665 0.1804 0.2366 0.2151 2 1 4 5 3F F F F F  

FFLHG 0.2125 0.4236 0.1873 0.2282 0.1899 2 4 1 5 3F F F F F  

Apart from the above analysis, to examine the influence of the different LSFs on the alternatives' ranking order, 

we have been employed different LSFs in the calculation process of the developed decision-making approach. 

Then, after applying the steps, the corresponding results are summarized in Table 16.  

Table 16: The score values and ranking order of the suppliers based on different LSFs 

LSF The 

operator 

used in 
Step 2 

The 

operator 

used in 
Step 3 

Score values 

Ranking of the suppliers  
 
 

 
*

1 =  

( )1S  ( )2S  ( )3S  ( )4S  ( )5S  

FFLOWA 

FFLWA 0.2813 0.6283 0.1610 0.2616 0.2414 2 1 4 5 3F F F F F  

FFLWG 0.2531 0.4785 0.1702 0.2564 0.1797 2 4 1 5 3F F F F F  

FFLHA 0.2905 0.6120 0.1602 0.3027 0.2336 2 4 1 5 3F F F F F  

FFLHG 0.2523 0.4719 0.1686 0.2516 0.1813 2 1 4 5 3F F F F F  

FFLOWG 

FFLWA 0.2368 0.5157 0.1629 0.2309 0.2074 2 1 4 5 3F F F F F  

FFLWG 0.2002 0.4793 0.1752 0.2265 0.1629 2 4 1 3 5F F F F F  

FFLHA 0.2373 0.5013 0.1638 0.2500 0.1929 2 4 1 5 3F F F F F  

FFLHG 0.2000 0.4386 0.1722 0.2373 0.1560 2 4 1 3 5F F F F F  

 
 

 
*

3 =  

( )0.8 = =  
 

FFLOWA 

FFLWA 0.2913 0.6283 0.1591 0.3061 0.2448 2 4 1 5 3F F F F F  

FFLWG 0.2554 0.5060 0.1669 0.2891 0.1695 2 4 1 5 3F F F F F  

FFLHA 0.2905 0.6120 0.1602 0.3027 0.2336 2 4 1 5 3F F F F F  

FFLHG 0.2569 0.4772 0.1661 0.2779 0.1718 2 4 1 5 3F F F F F  

FFLOWG 

FFLWA 0.2398 0.5270 0.1537 0.2319 0.2009 2 1 4 5 3F F F F F  

FFLWG 0.1931 0.4864 0.1650 0.2274 0.1901 2 4 1 5 3F F F F F  

FFLHA 0.2412 0.5124 0.1554 0.2337 0.1907 2 1 4 5 3F F F F F  

FFLHG 0.1942 0.4455 0.1640 0.2232 0.1481 2 4 1 3 5F F F F F  

From Table 16, it has been observed that although the score values of the alternatives are entirely different when 

we use different LSFs, the best alternative is always
2F for the considered problem. Note that the use of different 

LSFs shows an influence on the final ranking order of the alternatives. It is also worth noting that, in other real-

life decision problems, the best alternative may be different depending on the use of different aggregation 

operators. Our developed method provides an ability to the DMs for choosing the appropriate LSF according 

to his/her personal choice and the actual semantic environment.   
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5. Conclusions 

In this paper, we have studied the MAGDM problems in which the attributes evaluation values are given in 

FFLNs. First, the paper has defined some new algebraic operational laws for FFLNs based on LSF to overcome 

the shortcomings of the existing operational laws for FFLNs. Besides, a number of mathematical properties 

have been studied on them. Based on the proposed operational laws, we have defined several AOs, including 

the FFLWA operator, the FFLWG operator, the FFLOWA operator, the FFLOWG operator, the FFLHA 

operator, and the FFLHG operator to aggregate different FFLNs. 

Furthermore, the work has been studied many important properties of the proposed AOs, such as idempotency, 

monotonicity, commutativity, and boundedness. Using these AOs, we have developed a new decision-making 

approach to solve MAGDM problems with FFL information. Finally, a real-life supplier selection problem has 

been considered to illustrate the steps of the proposed method.  

We shall develop some new aggregation operators such as Bonferroni mean operator, Heronian mean operator, 

Hamy mean operator to aggregate the correlative FFL information in future work. We shall also explore the 

application of the proposed AOs in other fields such as image processing, medical diagnosis, and personnel 

selection.  

Acknowledgment 

This work is fully supported by the Chilean Government (Conicyt) through the Fondecyt Postdoctoral Program 

(Project Number 3170556).  

Compliance with Ethical Standards 

Conflict of interest: The author declares that he has no conflict of interest. 

Ethical Approval: This article does not contain any studies with human participants or animals performed by 

any of the authors 

 

References 
 

1.  Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 20, 87–96 (1986). 

doi:10.1016/S0165-0114(86)80034-3 

2.  Zadeh, L.A.: Fuzzy sets. Information and Control. 8, 338–353 (1965). doi:10.1016/S0019-

9958(65)90241-X 

3.  Xu, Z., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. 

International Journal of General Systems. 35, 417–433 (2006). doi:10.1080/03081070600574353 

4.  Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems. 15, 1179–

1187 (2007). doi:10.1109/tfuzz.2006.890678 

5.  Verma, R.: Generalized Bonferroni mean operator for fuzzy number intuitionistic fuzzy sets and its 

application to multiattribute decision making. International Journal of Intelligent Systems. 30, 499–519 

(2015). doi:10.1002/int.21705 

6.  Yu, D.: Intuitionistic fuzzy geometric Heronian mean aggregation operators. Applied Soft Computing 

Journal. 13, 1235–1246 (2013). doi:10.1016/j.asoc.2012.09.021 

7.  He, Y., Chen, H., Zhou, L., Liu, J., Tao, Z.: Intuitionistic fuzzy geometric interaction averaging 

operators and their application to multi-criteria decision making. Information Sciences. 259, 142–159 

(2014). doi:10.1016/j.ins.2013.08.018 

8.  He, Y., He, Z., Chen, H.: Intuitionistic fuzzy interaction Bonferroni means and its application to 

multiple attribute decision making. IEEE Transactions on Cybernetics. 45, 116–128 (2015). 

doi:10.1109/TCYB.2014.2320910 

9.  Verma, R., Sharma, B.D.: Intuitionistic fuzzy Einstein prioritized weighted average operators and their 

application to multiple attribute group decision making. Applied Mathematics and Information 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2021                   doi:10.20944/preprints202104.0316.v1

https://doi.org/10.20944/preprints202104.0316.v1


28 
 

Sciences. 9, 3095–3107 (2015). doi:10.12785/amis/090639 

10.  Xu, Z., Yager, R.R.: Intuitionistic fuzzy Bonferroni means. IEEE Transactions on Systems, Man, and 

Cybernetics, Part B: Cybernetics. 41, 568–578 (2011). doi:10.1109/TSMCB.2010.2072918 

11.  Ai, Z., Xu, Z.: Multiple definite integrals of intuitionistic fuzzy calculus and isomorphic mappings. 

IEEE Transactions on Fuzzy Systems. 26, 670–680 (2018). doi:10.1109/TFUZZ.2017.2687885 

12.  Ai, Z., Xu, Z.: Line integrals of intuitionistic fuzzy calculus and their properties. IEEE Transactions on 

Fuzzy Systems. 26, 1435–1446 (2018). doi:10.1109/TFUZZ.2017.2724502 

13.  Ai, Z., Xu, Z.: Intuitionistic fuzzy double integrals and their fundamental properties. IEEE Transactions 

on Fuzzy Systems. 26, 3782–3792 (2018). doi:10.1109/TFUZZ.2018.2848948 

14.  Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems. 114, 

505–518 (2000). doi:10.1016/S0165-0114(98)00244-9 

15.  Zeng, S., Su, W.: Intuitionistic fuzzy ordered weighted distance operator. Knowledge-Based Systems. 

24, 1224–1232 (2011). doi:10.1016/j.knosys.2011.05.013 

16.  Hatzimichailidis, A.G., Papakostas, G.A., Kaburlasos, V.G.: A novel distance measure of intuitionistic 

fuzzy sets and its application to pattern recognition problems. International Journal of Intelligent 

Systems. 27, 396–409 (2012). doi:10.1002/int.21529 

17.  Yang, Y., Chiclana, F.: Consistency of 2D and 3D distances of intuitionistic fuzzy sets. Expert Systems 

with Applications. 39, 8665–8670 (2012). doi:10.1016/j.eswa.2012.01.199 

18.  Zhang, H., Yu, L.: New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy 

sets. Information Sciences. 245, 181–196 (2013). doi:10.1016/j.ins.2013.04.040 

19.  Papakostas, G.A., Hatzimichailidis, A.G., Kaburlasos, V.G.: Distance and similarity measures between 

intuitionistic fuzzy sets: A comparative analysis from a pattern recognition point of view. Pattern 

Recognition Letters. 34, 1609–1622 (2013). doi:10.1016/j.patrec.2013.05.015 

20.  Ngan, R.T., Son, L.H., Cuong, B.C., Ali, M.: H-max distance measure of intuitionistic fuzzy sets in 

decision making. Applied Soft Computing Journal. 69, 393–425 (2018). 

doi:10.1016/j.asoc.2018.04.036 

21.  Dengfeng, L., Chuntian, C.: New similarity measures of intuitionistic fuzzy sets and application to 

pattern recognitions. Pattern Recognition Letters. 23, 221–225 (2002). doi:10.1016/S0167-

8655(01)00110-6 

22.  Mitchell, H.B.: On the Dengfeng–Chuntian similarity measure and its application to pattern recognition. 

Pattern Recognition Letters. 24, 3101–3104 (2003). doi:https://doi.org/10.1016/S0167-8655(03)00169-

7 

23.  Hung, W.L., Yang, M.S.: Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. 

Pattern Recognition Letters. 25, 1603–1611 (2004). doi:10.1016/j.patrec.2004.06.006 

24.  Xu, Z.: Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute 

decision making. Fuzzy Optimization and Decision Making. 6, 109–121 (2007). doi:10.1007/s10700-

007-9004-z 

25.  Ye, J.: Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and 

Computer Modelling. 53, 91–97 (2011). doi:10.1016/j.mcm.2010.07.022 

26.  Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems. 118, 467–477 

(2001). doi:10.1016/S0165-0114(98)00402-3 

27.  Vlachos, I.K., Sergiadis, G.D.: Intuitionistic fuzzy information- applications to pattern recognition. 

Pattern Recognition Letters. 28, 197–206 (2007). doi:10.1016/j.patrec.2006.07.004 

28.  Xia, M., Xu, Z.: Entropy/cross entropy-based group decision making under intuitionistic fuzzy 

environment. Information Fusion. 13, 31–47 (2012). doi:10.1016/j.inffus.2010.12.001 

29.  Verma, R., Sharma, B.D.: Exponential entropy on intuitionistic fuzzy sets. Kybernetika. 49, 114–127 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2021                   doi:10.20944/preprints202104.0316.v1

https://doi.org/10.20944/preprints202104.0316.v1


29 
 

(2013) 

30.  Verma, R., Sharma, B.D.: On intuitionistic fuzzy entropy of order-α. Advances in Fuzzy Systems. 1–8 

(2014). doi:10.1155/2014/789890 

31.  Verma, R., Sharma, B.D.: R-norm entropy on intuitionistic fuzzy sets. Journal of Intelligent and Fuzzy 

Systems. 28, 327–335 (2015). doi:10.3233/IFS-141306 

32.  Verma, R., Sharma, B.D.: Intuitionistic fuzzy Jensen-Rényi divergence: applications to multiple-

attribute decision making. Informatica. 37, 399–409 (2013) 

33.  Verma, R., Sharma, B.D.: On generalized intuitionistic fuzzy divergence (relative information) and 

their properties. Journal of Uncertain Systems. 6, 308–320 (2012) 

34.  Verma, R., Sharma, B.D.: A new measure of inaccuracy with its application to multi-criteria decision 

making under intuitionistic fuzzy environment. Journal of Intelligent and Fuzzy Systems. 27, 1811–

1824 (2014). doi:10.3233/IFS-141148 

35.  Yager, R.R.: Pythagorean fuzzy subsets. In: Proceedings of Joint IFSA World Congress and NAFIPS 

Annual Meeting, June 24–28; pp. 57–61. , Edmonton, Canada (2013) 

36.  Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers, and decision 

making. International Journal of Intelligent Systems. 28, 436–452 (2013). doi:10.1002/int.21584 

37.  Garg, H.: A novel correlation coefficients between Pythagorean fuzzy sets and its applications to 

decision-making processes. International Journal of Intelligent Systems. 31, 1234–1252 (2016). 

doi:10.1002/int.21827 

38.  Peng, X., Yang, Y.: Pythagorean fuzzy Choquet integral based MABAC method for multiple attribute 

group decision making. International Journal of Intelligent Systems. 31, 989–1020 (2016). 

doi:10.1002/int.21814 

39.  Zhang, X.: A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group 

decision making. International Journal of Intelligent Systems. 31, 593–611 (2016). 

doi:10.1002/int.21796 

40.  Liang, D., Xu, Z., Darko, A.P.: Projection model for fusing the information of Pythagorean fuzzy 

multicriteria group decision making based on geometric Bonferroni mean. International Journal of 

Intelligent Systems. 32, 966–987 (2017). doi:10.1002/int.21879 

41.  Peng, X., Yuan, H., Yang, Y.: Pythagorean fuzzy information measures and their applications. 

International Journal of Intelligent Systems. 32, 991–1029 (2017). doi:10.1002/int.21880 

42.  Li, D., Zeng, W.: Distance measure of Pythagorean fuzzy sets. International Journal of Intelligent 

Systems. 33, 348–361 (2018). doi:10.1002/int.21934 

43.  Hussian, Z., Yang, M.: Distance and similarity measures of Pythagorean fuzzy sets based on the 

Hausdorff metric with application to fuzzy TOPSIS. International Journal of Intelligent Systems. 34, 

2633–2654 (2019). doi:10.1002/int.22169 

44.  Zhang, Z.X., Hao, W.N., Yu, X.H., Chen, G., Zhang, S.J., Chen, J.Y.: Pythagorean fuzzy preference 

ranking organization method of enrichment evaluations. International Journal of Intelligent Systems. 

34, 1416–1439 (2019). doi:10.1002/int.22101 

45.  Yang, Y., Chin, K.S., Ding, H., Lv, H.X., Li, Y.L.: Pythagorean fuzzy Bonferroni means based on T-

norm and its dual T-conorm. International Journal of Intelligent Systems. 34, 1303–1336 (2019). 

doi:10.1002/int.22097 

46.  Verma, R., Merigó, J.M.: On generalized similarity measures for Pythagorean fuzzy sets and their 

applications to multiple attribute decision‐making. International Journal of Intelligent Systems. 34, 

2556–2583 (2019). doi:10.1002/int.22160 

47.  Senapati, T., Yager, R.R.: Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized 

Computing. (2019). doi:10.1007/s12652-019-01377-0 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2021                   doi:10.20944/preprints202104.0316.v1

https://doi.org/10.20944/preprints202104.0316.v1


30 
 

48.  Senapati, T., Yager, R.R.: Some new operations over Fermatean fuzzy numbers and application of 

Fermatean fuzzy WPM in multiple criteria decision making. Informatica. 30, 391–412 (2019) 

49.  Senapati, T., Yager, R.R.: Fermatean fuzzy weighted averaging/geometric operators and its application 

in multi-criteria decision-making methods. Engineering Applications of Artificial Intelligence. 85, 112–

121 (2019). doi:10.1016/j.engappai.2019.05.012 

50.  Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. 

Information Sciences. 8, 43–80 (1975). doi:10.1016/0020-0255(75)90036-5 

51.  Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—II. 

Information Sciences. 8, 301–357 (1975). doi:10.1016/0020-0255(75)90046-8 

52.  Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-III. 

Information Sciences. 9, 43–80 (1975). doi:10.1016/0020-0255(75)90017-1 

53.  Wang, J.B., Li, H.B.: Multi-criteria decision-making method based on aggregation operators for 

intuitionistic linguistic fuzzy numbers. Control and Decision. 25, 1571–1574 (2010) 

54.  Liu, P.: Some generalized dependent aggregation operators with intuitionistic linguistic numbers and 

their application to group decision making. Journal of Computer and System Sciences. 79, 131–143 

(2013). doi:10.1016/j.jcss.2012.07.001 

55.  Liu, P., Wang, Y.: Multiple attribute group decision making methods based on intuitionistic linguistic 

power generalized aggregation operators. Applied Soft Computing Journal. 17, 90–104 (2014). 

doi:10.1016/j.asoc.2013.12.010 

56.  Su, W., Li, W., Zeng, S., Zhang, C.: Atanassov’s intuitionistic linguistic ordered weighted averaging 

distance operator and its application to decision making. Journal of Intelligent and Fuzzy Systems. 26, 

1491–1502 (2014). doi:10.3233/IFS-130833 

57.  Yu, S., Wang, J., Wang, J.: An extended TODIM approach with intuitionistic linguistic numbers. 

International Transactions in Operational Research. 25, 781–805 (2018). doi:10.1111/itor.12363 

58.  Liu, D., Liu, Y., Chen, X.: Fermatean fuzzy linguistic set and its application in multicriteria decision 

making. International Journal of Intelligent Systems. 34, 878–894 (2019). doi:10.1002/int.22079 

59.  Liu, D., Liu, Y., Wang, L.: Distance measure for Fermatean fuzzy linguistic term sets based on linguistic 

scale function: An illustration of the TODIM and TOPSIS methods. International Journal of Intelligent 

Systems. 34, 2807–2834 (2019). doi:10.1002/int.22162 

60.  Herrera, F., Martínez, L.: A model based on linguistic 2-tuples for dealing with multigranular 

hierarchical linguistic contexts in multi-expert decision-making. IEEE Transactions on Systems, Man, 

and Cybernetics, Part B: Cybernetics. 31, 227–234 (2001). doi:10.1109/3477.915345 

61.  Xu, Z.: Intuitionistic preference relations and their application in group decision making. Information 

Sciences. 177, 2363–2379 (2007). doi:10.1016/j.ins.2006.12.019 

62.  Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y., Chen, X.H.: Interval-valued hesitant fuzzy linguistic sets 

and their applications in multi-criteria decision-making problems. Information Sciences. 288, 55–72 

(2014). doi:10.1016/j.ins.2014.07.034 

63.  Liao, H., Qin, R., Gao, C., Wu, X., Hafezalkotob, A., Herrera, F.: Score-HeDLiSF: a score function of 

hesitant fuzzy linguistic term set based on hesitant degrees and linguistic scale functions: An application 

to unbalanced hesitant fuzzy linguistic MULTIMOORA. Information Fusion. 48, 39–54 (2019). 

doi:10.1016/j.inffus.2018.08.006 

64.  Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. 

IEEE Transactions on Systems, Man and Cybernetics. 18, 183–190 (1988). doi:10.1109/21.87068 

65.  Chiclana, F., Herrera, F., Herrera-Viedma, E.: The ordered weighted geometric operator: properties and 

application in MCDM problems. In: In Proc. 8th Conf. Inform. Processing and Management of 

Uncertainty in Knowledgebased Systems (IPMU). pp. 985–991. , Madrid, Spain (2002) 

66.  Xu, Z., Da, Q.L.: An overview of operators for aggregating information, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2021                   doi:10.20944/preprints202104.0316.v1

https://doi.org/10.20944/preprints202104.0316.v1


31 
 

https://onlinelibrary.wiley.com/doi/full/10.1002/int.10127, (2003) 

67.  Xu, Z.: An overview of methods for determining OWA weights. International Journal of Intelligent 

Systems. 20, 843–865 (2005). doi:10.1002/int.20097 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 April 2021                   doi:10.20944/preprints202104.0316.v1

https://doi.org/10.20944/preprints202104.0316.v1

