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Abstract: With the advent of submesoscale O(1 km) permitting basin-scale ocean simulations,9

the seasonality of mesoscale O(50 km) eddies with kinetic energies peaking in summer has been10

commonly attributed to submesoscale eddies feeding back onto the mesoscale via an inverse energy11

cascade under the constraint of stratification and Earth’s rotation. In contrast, by running a 101-12

member, seasonally forced, three-layer quasi-geostrophic (QG) ensemble configured to represent an13

idealized double-gyre system of the subtropical and subpolar basin, we find that the mesoscale kinetic14

energy shows a seasonality consistent with the summer peak without resolving the submesoscales;15

by definition, a QG model only resolves small Rossby and Froude number dynamics (O(Ro) �16

1, O(Fr) � 1) while submesoscale dynamics are associated with O(Ro) ∼ 1, O(Fr) & 1. Here, by17

quantifying the Lorenz cycle of the mean and eddy energy, defined as the ensemble mean and18

fluctuations about the mean respectively, we propose a different mechanism from the inverse energy19

cascade: During summer, when the Western Boundary Current is stabilized and strengthened due to20

increased stratification, stronger mesoscale eddies are shed from the separated jet. Conversely, the21

opposite occurs during the winter; the separated jet destablizes and results in overall lower mean22

and eddy kinetic energies despite the domain being more susceptible to baroclinic instability from23

weaker stratification.24

Keywords: Ocean circulation; Lorenz energy cycle; Quasi-geostrophic flows25

1. Introduction26

The energy cycle of the atmospheric system, namely the energy exchange between27

the mean flow and fluctuations about the mean, have long been of interest due to the28

fluctuating flow being attributed to what is commonly known as the “weather” [1,2].29

Similarly, the oceanographic community has had a long-standing interest in eddies, the30

weather system of the oceans [3–5]. In a seminal paper, Lorenz [2] provided a framework31

in understanding the eddy-mean flow interaction, a framework often referred to as the32

Lorenz energy cycle [hereon LEC; 6].33

LEC generally decomposes the flow into four energy reservoirs: the mean and eddy34

available potential energy (APE) and kinetic energy (KE) respectively. The concept of35

APE is perhaps unique to the field of geophysical fluid dynamics where the gravitational36

force plays a dominant role in the governing equations. Although all geophysical fluids37

store gravitational potential energy, only a small fraction of it is available to generate38

fluid motion, hence the prefix “available”. The energy exchanges between each reservoir39

elucidate the balance of physical processes responsible for causing the eddy flow [5]; e.g.40

exchanges between the mean and eddy KE are associated with barotropic instability while41

exchanges between the eddy APE and eddy KE are associated with baroclinic instability.42

Barotropic instability is generated via horizontal shear in the mean flow while baroclinic43

instability occurs when the effect of gravity, due to weak vertical stratification, has a similar44

order of magnitude as the effects of Earth’s rotation [7]. The balance between the two45

instabilities results in the weather and eddies we commonly observe in the atmosphere46

and ocean. With the recent increase in computational power and advent of eddy resolving47
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simulations of the ocean, there has been a growing interest in the interlinkage between the48

energy exchanges and temporal variability, namely seasonality, in the eddy flow [8,9].49

In the context of Physical Oceanography, the eddies can be further separated into50

meso- and submeso-scale eddies. Mesoscale eddies are roughly on the spatial scales of the51

first baroclinic Rossby radius of deformation (NH/ f ∼ O(50 km) where N and H are the52

vertical stratification and ocean depth respectively, and f is the Coriolis parameter) while53

submesoscale eddies are on the scales of O(1 km) [10]. In terms of the Rossby number54

(Ro (= U/ f0L)) and Froude number (Fr (= U/NH)) where U and L are the characteristic55

scales of velocity and length, the spatial scales translate as mesoscale dynamics being56

on the order of O(Ro) � 1, O(Fr) � 1, and submesoscale flows being associated with57

O(Ro) ∼ 1, O(Fr) & 1 [11–16]. In other words, mesoscale dynamics are more constrained58

by Earth’s rotation and stratification, leading to the well-known phenomenon of inverse59

energy cascade where KE is transferred from scales about the Rossby radius to larger scales60

[17–19]. To what extent the framework of inverse energy cascade is applicable for scales61

smaller than the Rossby radius remains an open question [11,12,20].62

Although there being some geographical variability [21–25], many studies using63

meso- and submeso-scale permitting ocean simulations have attributed the seasonality in64

mesoscale KE to energy being transferred upscale from the submesoscales where the sea-65

sonal modulation of the mixed-layer depth leads to a strong signal [14,26–31]. Instabilities66

within the mixed layer are inherently submesoscale due to the reduced stratification and67

shallow depth scale, and are most active during late winter/early spring when the mixed-68

layer is the deepest [32–34]. The summertime peak in mesoscale KE has consequently been69

explained by the time required for the submesoscale energy to cascade upscale. Other70

mechanisms such as air-sea interaction has also been argued for the cause of mesoscale71

seasonality [35]. While we agree that submesoscale instabilities and air-sea interaction72

affect mesoscale variability, here, we examine another mechanism on the other end of the73

spectrum in modulating the mesoscale seasonality: the basin-scale (O(1000 km)) affecting74

the mesoscale.75

In order to quantify the exchanges between the energy reservoirs, we run a seasonally76

forced, three-layer quasi-geostrophic (QG) ensemble with a double-gyre configuration and77

examine the LEC. By definition, a QG model only resolves small Rossby number dynamics78

based on asymptotic expansion of the governing equations [36], i.e. the simulated eddy79

field only consists of mesoscale variability. The background state in quasi geostrophy can80

be considered as the basin-scale state. In particular, we define the mean via the ensemble81

mean and eddies as the fluctuations about the mean. The ensemble mean: i) negates82

the ergodic assumption where one treats the temporal mean equivalent to an ensemble83

mean, which is questionable for a temporally varying system; ii) removes the arbitrary84

temporal and/or spatial scale in defining the mean [37]; iii) is consistent with the Reynold’s85

definition of eddy-mean decomposition [38]; and iv) retains the temporal, namely seasonal,86

variability of the LEC.87

The paper is organized as follows: We describe the model configuration in Section 288

and re-derive the layered QG equations and LEC in Section 3, which will aid our discussion89

later on. We give our results in Section 4 and conclude in Section 5.90

2. Model description91

We use the quasi-geostrophic (QG) configuration of the Multiple Scale Ocean Model92

[MSOM; 39, hereon referred to as MSQG], based on the Basilisk language [40], to simulate93

a three-layer double-gyre flow with a rigid lid and flat bottom. No-flux conditions are94

applied at the lateral boundaries. The parameters used are similar to prior QG studies95

which examine the dynamics of a double-gyre system [3,41,42] and are summarized in96

Table 1. The characteristic length scale of the Rossby radius (viz. radii of mesoscale eddies)97

is prescribed as L (= 50 km) and horizontal resolution is ∼ 4 km (= δx̂L) and so we have98

roughly 12 grid points per radius; our simulation can be considered mesoscale resolving99

under the numerics of second-order Arakawa advection scheme [43–45]. (We note that our100
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kilometric resolution does not allow for the submesoscales to be permitted in our model101

due to the QG constraint: O(Ro)� 1, O(Fr)� 1.)102

MSQG solves prognostically for the non-dimensionalized QG potential vorticity (PV):103

Dq̂
Dt̂

= F̂ + D̂, (1)104

where q = ζg + βy− f0
H h is the QGPV [details are given in Appendix A; 7] and the β-plane105

approximation is applied ( f = f0 + βy). F and D are the forcing and dissipative terms,106

and (̂·) are non-dimensionalized variables. The forcing term is the wind stress curl without107

any buoyancy forcing at the surface, and is kept stationary with the formulation:108

F̂ =
∇̂h × τ̂(ŷ)

Ĥ1
= − τ̂0

RomĤ1
sin
(2π

N
ŷ
)

sin
( π

N
ŷ
)
, (2)109

where∇h is the horizontal gradient operator, and ŷ (∈ [0.5, N− 0.5]) is the non-dimensionalized110

meridional extent of the domain. Only the wind stress curl is prescribed in the model and111

not the wind stress itself (τ) but we denote it for clarity in notation. We have kept the wind112

stress curl axisymmetric as low-frequency variability is not the focus of this study [46–49].113

The dissipation term is implemented via a biharmonic viscosity:114

D̂ = −Re4
−1∇̂4

hq̂. (3)115

The background stratification is defined at each layer interface via the Froude number116

where we enforce the seasonality by varying it in time according to:117

Fri =
U√
g′i H

†
i

= Frm
i
[
1 + ÂFri sin (2π f̂Fri t̂)

]−1/2, (4)118

where H†
i = (Hi + Hi+1)/2, g′ is the reduced gravity, and subscript i is the layer index119

(Figure 1). We vary Fr1 in time but keep Fr2 stationary (ÂFr2 = 0), which is consistent with120

the seasonal variability of stratification being confined in the upper few hundred meters in121

the real ocean [50].122
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Parameter Notation Value Unit

Number of horizontal grids N 1024 -
Number of vertical layers nl 3 -
Non-dim. horizontal domain size L̂0 80 -
Non-dim. horizontal resolution δx̂ N−1 L̂0 -
Background Rossby number Rom 0.025 -
Non-dim. Coriolis parameter f̂0 Rom−1 -
Bottom Ekman number Ekb 0.004 -
Non-dim. surface Ekman pumping τ̂0 0.0001 -
Biharmonic Reynolds number Re4 4000 -
Non-dim. beta β̂ 0.5 -
Background Froude number Frm

1 ; Frm
2 0.00409959; 0.01319355 -

Amplitude of Fri ÂFr1 ; ÂFr2 0.1; 0 -
Non-dim. frequency of Fri f̂Fr1 ; f̂Fr2 62.2−1; 62.2−1 -
Non-dim. layer thickness Ĥ1; Ĥ2; Ĥ3 0.06; 0.14; 0.8 -
Non-dim. reduced gravity ĝ′i Fri

−2Ĥ†
i -

Non-dim. maximum time stepping δmax
t̂ 5× 10−2 -

CFL condition - 0.4 -
Horizontal velocity U 0.1 [m s−1]
Length scale L 50 [km]
Total layer thickness H 5000 [m]

Table 1. Parameters used to configure the three-layer QG simulation and dimensionalized charac-
teristic scales. The bottom Ekman number is the ratio between the bottom Ekman-layer thickness
and Ĥ3 and bottom friction is ε = Ekb/(2Rom Ĥ3). Beta is dimensionalized as β = β̂U/L2 and the
dimensionalized domain size is 4000 km (= L̂0L). The frequency of Fr translates approximately to a
360-day year (= f−1

Fr L/U). The prognostic time stepping is determined via the CFL condition within
values smaller than δmax

t̂ .

We spin up the model for 10 years from a spun-up run with lower resolution (N = 256,123

equivalently δx̂L ∼ 15 km) and then perturb the first-layer stream function at a single,124

random grid point with a perturbation on the order of (O(10−5)) to generate 100 slightly125

perturbed stream function fields. We use the perturbed fields as the initial conditions126

to generate 100 ensemble members. The surface wind stress and temporally varying127

background stratification are kept identical during the spin up and amongst ensemble128

members after the spin up. We run each ensemble member for another 10 years and129

for reference, we also have a control (CTRL) run without any perturbations to the initial130

condition; in total, we have 101 ensemble members and the CTRL run is there to show that131

the perturbations do not lead to a bifurcation in the dynamical regime within the 10 years132

of our simulation [51]. The model outputs were saved as instantaneous snapshots at every133

characteristic time scale (T = L/U = 5× 105 seconds ∼ 5.8 days).134

3. Derivation of the Lorenz energy cycle135

Although the layered QG equations have been derived countless times [1,3,7,36], here,136

we re-derive the energy equations for a rigid-lid and flat-bottom three-layer QG model with137

a seasonally varying background stratification, which the latter leads to some subtleties. In138

the remainder of the study, we only discuss dimensionalized variables. We start off with139

the order Rossby number relative vorticity equation for a given layer i (∈ [1, 3]; Figure 1)140

neglecting viscous and external forcing terms:141

∂tζg;i + ug;i∂xζg;i + vg;i∂yζg;i + βvg;i = − f0(∂xua;i + ∂yva;i) (5)142

= f0∂zwa;i, (6)143
144
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Figure 1. Vertical structure of the three-layer QG model with a rigid lid and flat bottom. The
layer interface displacement (ηi) is shown in the thin curvy lines and net layer thickness is hi =

Hi + ηi−1 − ηi. The stream functions (ψi) are defined within each layer.

which are derived by taking the cross product of the momentum equations (A8) and (A9).145

The subscripts g and a denote the geostrophic and ageostrophic components respectively146

(e.g. ζ = ζg + ζa). We denote the partial derivatives as ∂(·) with respect to (t, z, y, x). The147

stream function is defined as ψi = φg;i/ f0 where φg;i is the geostrophic pressure anomaly148

and relative vorticity can be written as ζg;i = ∇2
hψi. The layer-thickness equation on the149

other hand is [7]:150

∂thi + ug;i∂xhi + vg;i∂yhi = −Hi(∂xua;i + ∂yva;i) (7)151

= Hi∂zwa;i (8)152
153

We leave the derivation of the layered QGPV and its relation to the continuously stratified154

framework to Appendix A.155

The ageostrophic vertical velocity can be diagnosed via the QG omega equation156

[Appendix B; 52,53]:157

N2
i ∇2

hwa;i + f 2
0 ∂zzwa;i = β∂xbi − 2∇h ·Qi −∇2

hbi N2
i ∂t

1
N2

i
, (9)158

where N2
i = g′i/H†

i , and bi = f0
ψi−ψi+1

H†
i

is the buoyancy. The Q tensor is:159

Qi = Q1
i i + Q2

i j =
(
∂xu†

g;i ·∇hbi
)
i +

(
∂yu†

g;i ·∇hbi
)

j, (10)160

where u†
g;i = −∂yψ†

i i + ∂xψ†
i j is the geostrophic velocity derived from the inter-facial161

stream function [ψ†
i =

Hiψi+1+Hi+1ψi
Hi+Hi+1

; 3]. i and j are the horizontal Cartesian unit vectors.162

The last term on the right-hand side of (9) is due to the temporally varying background163

stratification (Appendix B). We solved equation (9) iteratively for wa via a two-dimensional164

geometric multigrid solver with the boundary conditions of Ekman pumping (wE):165

wE;0 = − 1
f0
∇h × τ = −UH

L
τ̂0 sin2

[2πy
L0

]
sin
[πy

L0

]
, (11)166

167

wE;3 =
δE
2

ζg;3, (12)168

where δE = Ekb H3 is the bottom Ekman-layer thickness.169
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Now, multiplying equation (6) by −ψi and integrating over the depth of each layer170

gives the kinetic energy (KE) budget:171

Hi

[Di
Dt
|∇hψi|2

2
−∇h · (ug;iψi∇2

hψi)−
β

2
∂xψ2

i

]
172

= − f0

∫
ψi∂zwa;idz173

= f0
[
− (wa;i−1ψ†

i−1 − wa;iψ
†
i ) +

∫
wa;i∂zψidz

]
174

= f0

[
− (wa;i−1ψ†

i−1 − wa;iψ
†
i ) + Hi

(
wa;i−1

ψi−1 − ψi
Hi + Hi−1

+ wa;i
ψi − ψi+1

Hi+1 + Hi

)]
.

(13)

175

176

Dropping the divergence terms as they vanish upon area integration, for each layer we get:177

H1

2
∂t|∇hψ1|2 = f0

[
wa;1ψ†

1 + wa;1H1
ψ1 − ψ2

H2 + H1

]
, (14)178

179

180

H2

2
∂t|∇hψ2|2 = f0

[
− (wa;1ψ†

1 − wa;2ψ†
2) + H2

(
wa;1

ψ1 − ψ2

H2 + H1
+ wa;2

ψ2 − ψ3

H3 + H2

)]
, (15)181

182

183

H3

2
∂t|∇hψ3|2 = f0

[
− wa;2ψ†

2 + wa;2H3
ψ2 − ψ3

H3 + H2

]
. (16)184

185

On the other hand, using relation (A3), the layer-thickness equations can be manipulated186

as H2
H1+H2

(8)|i=1 − H1
H1+H2

(8)|i=2:187

D†
1

Dt

[ f0

g′1
(ψ1 − ψ2)

]
= −wa;1 +

H1

H1 + H2

[
wa;2 −

D2

Dt
f0

g′2
(ψ3 − ψ2)

]
188

= −wa;1 +
f0H1

g′2(H1 + H2)
(u3 − u2) ·∇h(ψ3 − ψ2)189

= −wa;1, (17)190
191

where the second term on the right-hand side above (17) vanishes due to thermal wind.192

Similarly, H3
H2+H3

(8)|i=2 − H2
H2+H3

(8)|i=3:193

D†
2

Dt

[ f0

g′2
(ψ2 − ψ3)

]
= −wa;2 +

H3

H2 + H3

[
wa;1 −

D2

Dt
f0

g′1
(ψ2 − ψ1)

]
194

= −wa;2, (18)195
196

where D†
i

Dt = ∂t + u†
g;i ·∇h. The available potential energy (APE) equations can, therefore, be197

derived by multiplying equation (17) with f0(ψ1 − ψ2) and again dropping the divergence198

terms:199

∂t

[ f 2
0

2g′1
(ψ1 − ψ2)

2
]
= − f0(ψ1 − ψ2)wa;1 −

f 2
0 (ψ1 − ψ2)

2

2
∂tg′1

−1, (19)200

201

and equation (18) with f0(ψ2 − ψ3):202

∂t

[ f 2
0

2g′2
(ψ2 − ψ3)

2
]
= − f0(ψ2 − ψ3)wa;2. (20)203

204

We see from equation (19) that there is an additional source of APE due to the temporally205

varying background potential energy (BPE; B#), which then feeds back onto the KE via206
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equations (14) and (15) through baroclinic instability. BPE takes the same form as APE207

except that only g′ is inside the derivative.208

Now, the mean KE (MKE; K#), eddy KE (EKE; K), mean APE (MAPE; P#) and eddy209

APE (EAPE; P) can be defined as:210

K#
i =

Hi
2
|∇hψi|2, Ki =

Hi
2
|∇hψ′i |2, (21)211

212

P#
i =

f 2
0

2g′i
(ψi − ψi+1)

2, Pi =
f 2
0

2g′i
(ψ′i − ψ′i+1)

2, (22)213

where (·) is the ensemble mean and the eddy is defined as fluctuations about the ensemble214

mean, viz. (·)′ = (·)− (·). We note that the ensemble mean of the fluctuations vanish215

((·)′ = 0). The strength of defining the mean as such is that in addition to the ensemble-216

mean operator commuting with the derivatives with respect to (t, z, y, x) [38], it provides a217

unique decomposition between the mean and eddy. In other words, the mean does not218

depend on an arbitrary temporal or spatial scale, which is beneficial in our case as the219

separated jet is on QG scaling in the cross-jet direction while on planetary-geostrophic220

scaling in the along-jet direction [54,55]. The ensemble mean can be interpreted as the221

QG response to external forcing while the eddies as a result of intrinsic variability [56–222

58]. The ensemble mean of total KE and APE each satisfy Ki = Hi
2 |∇hψi|2 = K#

i + Ki,223

Pi =
f 2
0

2g′i
(ψi − ψi+1)2 = P#

i + Pi. Hence, the exchanges (Π) of KE and APE within and224

between layers are:225

ΠK#
1→K1

= −H1〈ψ1∇h · u′g;1∇
2
hψ′1〉, (23)226

227

ΠK#
1→K#

2
= − f0〈wa;1ψ†

1〉, ΠK1→K2 = − f0〈w′a;1ψ†
1
′〉, (24)228

229

ΠP#
1→K#

1
=

f0H1

H2 + H1
〈wa;1(ψ1 − ψ2)〉, ΠP1→K1 =

f0H1

H2 + H1
〈w′a;1(ψ

′
1 − ψ′2)〉, (25)230

231

ΠP#
1→P1

=
f 2
0

g′1
〈(ψ1 − ψ2)∇h · u†

g;1
′
(ψ′1 − ψ′2)〉, (26)232

233

ΠB#
1→P#

1
= −

f 2
0
2
〈(ψ1 − ψ2)

2∂tg′1
−1〉, ΠB#

1→P1
= −

f 2
0
2
〈(ψ′1 − ψ′2)

2∂tg′1
−1〉, (27)234

235

ΠK#
2→K2

= −H2〈ψ2∇h · u′g;2∇
2
hψ′2〉, (28)236

237

ΠK#
2→K#

3
= − f0〈wa;2ψ†

2〉, ΠK2→K3 = − f0〈w′a;2ψ†
2
′〉, (29)238

239

ΠP#
1→K#

2
=

f0H2

H2 + H1
〈wa;1(ψ1 − ψ2)〉, ΠP1→K2 =

f0H2

H2 + H1
〈w′a;1(ψ

′
1 − ψ′2)〉, (30)240

241

ΠP#
2→K#

2
=

f0H2

H3 + H2
〈wa;2(ψ2 − ψ3)〉, ΠP2→K2 =

f0H2

H3 + H2
〈w′a;2(ψ

′
2 − ψ′3)〉, (31)242

243

ΠP#
2→P2

=
f 2
0

g′2
〈(ψ2 − ψ3)∇h · u†

g;2
′
(ψ′2 − ψ′3)〉, (32)244

245

ΠK#
3→K3

= −H3〈ψ3∇h · u′g;3∇
2
hψ′3〉, (33)246

247

ΠP#
2→K#

3
=

f0H3

H2 + H3
〈wa;2(ψ2 − ψ3)〉, ΠP2→K3 =

f0H3

H3 + H2
〈w′a;2(ψ

′
2 − ψ′3)〉, (34)248

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 May 2021                   doi:10.20944/preprints202104.0283.v2

https://doi.org/10.20944/preprints202104.0283.v2


8 of 20

where 〈·〉 =
∫∫

(·)dxdy is the area integration. Further details regarding the sign convention249

and forcing/dissipation terms are given in Appendix C and D. Summing up each layer250

gives the volume integrated energy exchanges:251

ΠP#→K# =
2

∑
i=1

f0
〈
wa;i(ψi − ψi+1)

〉
, (35)252

253

ΠP→K =
2

∑
i=1

f0
〈
w′a;i(ψ

′
i − ψ′i+1)

〉
, (36)254

255

ΠP#→P =
2

∑
i=1

f 2
0

g′i

〈
(ψi − ψi+1)∇h · u†

g;i
′
(ψ′i − ψ′i+1)

〉
, (37)256

257

ΠK#→K = −
3

∑
i=1

Hi
〈
ψi∇h · u′g;i∇

2
hψ′i
〉
, (38)258

259

ΠB#→P# = −
f 2
0
2
〈
(ψ1 − ψ2)

2∂tg′1
−1〉, (39)260

261

ΠB#→P = −
f 2
0
2
〈
(ψ′1 − ψ′2)

2∂tg′1
−1〉. (40)262

4. Results263

We start by showing the total kinetic energy (TKE) during the spin-up phase and for264

the 10 years of output we have (viz. 20 years in total; Figure 2). The ensemble spread starts265

to grow after 1.5 years of integration from the perturbed initial conditions and plateaus266

roughly for the latter seven years. The area-integrated TKE in the first layer (〈K1〉), most267

relevant for studies interested in surface seasonal dynamics, is in sync with the background268

stratification (g′1), viz. higher 〈K1〉 during summer when stratification is stronger and visa269

versa (Figure 2b). For the lower layers, there is a temporal lag evident by the barotropic TKE270

(〈|∇hΨ|2〉 where Ψ = H−1 ∑i Hiψi is the barotropic stream function; Figure 2a). Although271

it is difficult to detect a clear seasonal signal for the barotropic TKE from an individual272

ensemble member such as in the CTRL run, their ensemble mean shows a robust seasonality.273

For the remainder of the study, we use the last five years of output in order to maximize274

the signal of intrinsic variability amongst members.275

In Figure 3, we show the mean and eddy KE respectively in the first layer (K#
1,K1)276

during summer and winter for the last year of output and their difference. The seasons277

were defined at the time step when the reduced gravity was at its maximum and minimum278

respectively. We see the characteristic feature of a robust separated Western Boundary279

Current in a double-gyre system with very little meandering while the EKE is more280

meridionally spread out. Consistent with Figure 2, summertime has a stronger mean jet281

and EKE than winter (Figure 3e,f). We also show snapshots of eddy PV (q′g;1) from the282

CTRL run from which we see coherent features of mesoscale eddies (Figure 3g,h).283

4.1. The domain integrated Lorenz energy cycle284

We now move on to quantifying the LEC in order to examine the processes responsible285

for generating higher KE during summertime. As we define the mean as the ensemble286

mean (as opposed to a temporal mean which has commonly been applied), we are able287

to examine the temporal variability of LEC. We compute the terms in equations (35)-(40)288

for the last five years of output and show them in Figure 4. The time series of MAPE is289

in sync with the background stratification dominated by g′ in its dominator while MKE290

lags g′1 by ∼ 11 days upon taking the lag correlation (P#, K#; Figure 4a). MAPE has the291

largest magnitude amongst the reservoirs by an order of magnitude and for KE, the eddies292

are more energetic than the mean. The energy flux from MAPE to MKE is negative year293

round (ΠP#→K# < 0; black solid line in Figure 4b) due to Ekman pumping steepening the294
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a)

b)

Figure 2. Time series of the horizontally averaged barotropic a and first-layer TKE b. Each ensemble
member is shown in the thin grey lines and standard deviation about the ensemble mean in black
shading. The CTRL run is shown in red-dashed and ensemble mean in cyan dot-dashed lines
respectively. The reduced gravity is shown in blue plotted against the right y axes.

isopycnals. The energy input due to wind stress (FK#
s ) is in sync with MKE with energetic295

surface currents resulting in a stronger surface stress. The eddy energy reservoirs (P ,K),296

on the other hand, lag the stratification by ∼ 17 days but their peaks precede winter when297

the domain is most susceptible to baroclinic instability and energy conversion from EAPE298

to EKE takes its yearly maximum (ΠP→K; Figure 4a). It is perhaps interesting to note299

that the sign of flux between EAPE and EKE occasionally reverses during summer with300

barotropic instability over compensating for baroclinic instability; the energy pathway301

becomes MKE→EKE→EAPE (ΠP→K < 0) whereas baroclinic instability would predict302

EAPE→EKE (ΠP→K > 0). Regarding the dissipation terms, only the bottom drag for EKE303

(DKb ) shows a notable seasonality and has a similar magnitude to the energy flux from304

MKE to EKE (ΠK#→K). The amplitude of bottom drag (|DKb |) lags EKE by ∼ 41 days and305

aligns well with the ensemble-mean barotropic TKE (Figure 2a).306

To provide a climatological view of the energy fluxes (Π), we take the yearly average307

of the last five years and show the LEC diagram for a climatological summer and winter308

(Figure 5). Each season per year is defined as four time steps; summer is when the reduced309

gravity takes its maxima and four time steps about it, and four time steps about the minima310

in reduced gravity for winter. The seasonal climatology is then taken as the average of the311

five years. Again, we see that all reservoirs are more energetic during the summer. Focusing312

on MKE, except for the surface wind stress, the reservoir only has loss terms year round313

and yet stores more energy during the summer. We attribute the summertime maxima in314

MKE to the separated jet stabilizing due to increased stratification, which results in the jet315

shedding stronger eddies. Indeed the energy flux from MKE to EKE (ΠK#→K) is highest316

during the summer (Figures 4b and 5a). We attribute the larger energy conversion from317

EAPE to EKE during the winter (ΠP→K) to the flow being more susceptible to baroclinic318

instability with reduced stratification.319
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a)

d)c)

b)

f)e)

g) h)

Figure 3. The summer and wintertime mean and eddy KE and their difference during the last year
of output a-f. Note the differences are plotted on a logarithmic scale. g,h Snapshot of eddy PV for
summer and winter during the last year of output from the CTRL run. All panels show the variable
in the first layer.
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a)

c)

b)

Figure 4. Time series of each term in the domain-integrated LEC. a The mean and eddy KE (black)
and APE (red) reservoirs in the units of ×1013 [(J/kg) m3] and stratification of the first layer interface
(blue; g′1). MAPE is multiplied by 0.1 to have it fit on the same y axis. b The energy fluxes between
each energy reservoir and forcing terms due to surface wind stress (FK#

s ) and temporally varying BPE.
c Dissipation terms due to horizontal viscosity (Dh) and bottom friction (Db). The mean and eddy
horizontal dissipation terms are lumped together and fluxes are in the units of ×106 [(W/kg) m3].
The forcing and dissipation terms are detailed in Appendix D.
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a)

b) c)

Figure 5. Time series of the seasonal climatology of energy fluxes between the energy reservoirs a.
b,c The LEC diagram for the climatological summer and winter averaged over the last five years of
output. The energies are in the units of ×1013 [(J/kg) m3] and fluxes are in ×106 [(W/kg) m3]. The
energy exchanges do not exactly cancel out due to each reservoir having temporal variability.

4.2. Time lag in lower-layer energetics320

In this section, we investigate the mechanism for the lag in KE in the lower layers321

(K2, K3) from KE in the first layer (K1) and stratification (g′1) implied from Figure 2. It is322

perhaps interesting to note that although the ensemble-mean barotropic TKE lags g′1 by323

∼ 41 days, neither the domain-integrated MKE nor EKE show such a long lag (Figure324

4a). This has to do with MKE and EKE being volume-weighted variables of quadratic325

terms while as the barotropic TKE being a quadratic term of a volume-weighted variable;326

MKE and EKE have a larger weighting on the surface stream function, which is in sync327

with g′1, than the barotropic TKE. The lag within lower layers becomes apparent for the328

time series of area integrated EKE within each layer (∼ 128 days for K2 and ∼ 68 days for329

K3; Figure 6a). We also focus on EKE for the remainder of this section as EKE is always330

larger than MKE by a factor of three (Figure 4). Examining the energy fluxes, Figure 6b331

shows that the contribution from barotropic instability becomes negligible within the lower332

two layers with the relative significance of the separated jet diminishing with depth, and333

shows no clear seasonality (ΠK#
2,3→K2,3

). The vertical transfer of EKE (ΠK1→K2 , ΠK2→K3)334

and conversion from EAPE (ΠP→K), on the other hand, show a coherent seasonal pattern335

with the maxima of K2 and K3 falling in between the maxima of the two fluxes. We,336

therefore, attribute the time lag in K2 and K3 to the balance between baroclinic instability337

and vertical transfers of EKE.338

5. Discussion and conclusions339

By running a seasonally forced 101-member ensemble of a three-layer quasi-geostrophic340

(QG) model in an idealized double-gyre configuration, we have shown that the kinetic341

energy (KE) peaks during summer when the (basin-scale) stratification is strongest during342

the year (Figure 2). Such seasonality in mesoscale eddy KE (EKE) has been observed in343

other studies using realistic simulations of the ocean [14,27–31]. Due to air-sea interaction,344

the seasonal modulation of the mixed-layer depth leads to a strong seasonal signal in sub-345

mesoscale instabilities. The submesoscale EKE takes its maximum during late winter/early346

spring and previous studies have commonly explained the summer peak in the mesoscale347

range as the time lag for the submesoscale EKE to cascade upscale. The mechanism of348
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a)

b)

Figure 6. Timeseries of volume-integrated EKE over each layer, and fluxes within and between layers
(ΠK1→K2 , ΠK2→K3 ) plotted along with the reduced gravity (g′1). a The EKEs have their temporal
mean removed so as to plot against the same y axis. b A rolling mean by five times steps (∼ 29 days)
is applied to the time series of the energy fluxes. The energy flux from MKE to EKE within the two
bottom layers is summed up (ΠK#

2,3→K2,3
) and conversion from APE is shown as the conversion rate

volume integrated over the three layers as the amount that goes into each layer is simply the total
conversion weighted by layer thickness (cf. equations (25), (30), (31) and (34)). The conversion from
P1 and P2 were in sync with each other (not shown). For further details regarding each term, see
Appendix D.
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inverse energy cascade fails, however, to explain the mesoscale seasonality in our model as349

a QG model by definition cannot resolve any submesoscale instabilities.350

Using the framework of the Lorenz energy cycle [LEC; 2], we have quantified the351

reservoirs of mean and eddy available potential energy (APE) and KE, and energy fluxes352

amongst them. We note that our ensemble framework has allowed us to examine the353

seasonal variability of LEC. Our results show that all four reservoirs store more energy354

during the summer than winter (Figure 4a). For the mean KE (MKE), we attribute the355

summertime maximum to increased stratification leading to a more baroclinically stable356

and stronger jet. Conceptually, this can be understood based on a mass-flux balance. Since357

the wind stress is kept stationary, the Sverdrup transport (β−1∇h × τ) remains constant358

throughout the simulation. Based on mass balance, the accumulating transport towards359

the north/south boundaries must be fluxed out via the Western Boundary Current. Figure360

3c shows an intensification of MKE during summer along the western boundary resulting361

from less energy lost to the eddies within the gyre interior. Hence, a more stable jet results362

in a stronger mean flow. Our results of jet stabilization and its zonal penetration into the363

gyre is complementary to earlier studies where they attributed the penetration scale to364

parameters of lateral friction, vertical resolution and topography [4,59]. Here, we have365

investigated the effect of a seasonally varying background stratification.366

Shifting our focus to EKE, based on baroclinic instability, one might expect the op-367

posite to be true, namely, wintertime having more EKE than summertime due to weaker368

stratification. The LEC shows that year round, energy fluxes from MKE to EKE associated369

with barotropic instability over compensate for the fluxes from eddy APE (EAPE) to EKE,370

a pathway associated with baroclinic instability. Since MKE is higher during summer, the371

larger flux of energy from MKE to EKE results in EKE peaking in summer (Figures 4b372

and 5). Although our simulation is highly idealized, we argue that barotropic processes373

dominating in the separated jet region is consistent with a recent study on energetics using374

a realistic simulation of the North Atlantic Ocean [55]. We note that the balance between375

barotropic and baroclinic instability in our LEC is in the domain integrated sense. In a376

domain without a jet, we would expect baroclinic instability to be the dominant mechanism377

in generating eddies so long as the background state is baroclinically unstable.378

To our knowledge, Qiu et al. [26] is the only study using a realistic ocean simulation379

showing how the seasonality in background state can modulate the mesoscale variability.380

Their results differ from ours, however, in that they attribute the mesoscale seasonality381

to the classical Phillips-like baroclinic instability arising from the interior background382

stratification and vertical shear in horizontal velocity [1]. In addition to the submesoscale383

variability modulating mesoscale seasonality, our results suggest that in reality it is possible384

that the basin-scale variability does so as well. We note that since our QG model does not385

permit submesoscales, the baroclinic energy flux from EAPE to EKE is likely underesti-386

mated compared to the real ocean. It would be interesting to revisit the LEC for realistic387

ocean ensembles [57,58] to see whether we would see a stabilization of the separated Gulf388

Stream during summer and consequently larger energy fluxes from MKE to EKE.389

Author Contributions: Conceptualization, T.U.; methodology, T.U. & B.D.; software, B.D.; validation,390

T.U., B.D.; formal analysis, T.U.; investigation, T.U. & B.D.; computational resources, T.P.; data391

curation, T.U.; writing, T.U.; visualization, T.U.; project administration, T.P.; funding acquisition, T.P.392

All authors have read and agreed to the published version of the manuscript.393

Funding: This research was funded by the French ‘Make Our Planet Great Again’ (MOPGA) initiative394

managed by the Agence Nationale de la Recherche under the Programme d’Investissement d’Avenir,395

with the reference ANR-18-MPGA-0002. We acknowledge high-performance computing resources396

for generating the ensemble and analyzing our model outputs on Occigen maintained by CINES397

with the reference A0090112020.398

Institutional Review Board Statement: Not applicable.399

Informed Consent Statement: Not applicable.400

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 May 2021                   doi:10.20944/preprints202104.0283.v2

https://doi.org/10.20944/preprints202104.0283.v2


15 of 20

Data Availability Statement: The last time step from the low-resolution ensemble stream function401

and example analysis code in Python is available on Github (doi:10.5281/zenodo.4667532). For402

more output files, please contact the corresponding author.403

Acknowledgments: We thank William K. Dewar for his always insightful and fruitful discussion.404

The authors would like to acknowledge the developers of the Basilisk language (http://basilisk.fr/)405

upon which MSOM is based on, and the developers of the xarray Python package [60], which we406

used to post process the model outputs.407

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design408

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or409

in the decision to publish the results.410

Appendix A. Derivation of the layered quasi-geostrophic potential vorticity411

As the relative vorticity equation (5) and layer-thickness equation (7) have a common412

term on the right-hand side, they can be combined as to:413

Di
Dt

ζg;i + βvg;i =
f0

Hi

Di
Dt

hi, (A1)414

and we get the governing equation for QGPV qi = ζg;i + βy − f0
Hi

hi [7]. It is perhaps415

interesting to note that the QGPV remains identical for a stationary and temporally varying416

background stratification (viz. g′1 = U2

H†
1

Fr−2
1 (t)) although we have shown that this is not417

the case for the energy budget. The stream function is related to the layer displacement via418

ηi =
f0
g′i
(ψi+1 − ψi). The layer thickness can, therefore, be written using the stream function419

as [7]:420

hi = Hi + ηi−1 − ηi (A2)421

= Hi +
f0

g′i−1
(ψi − ψi−1)−

f0

g′i
(ψi+1 − ψi), (A3)422

423

where D1
Dt η0 = D3

Dt η3 = 0 due to rigid-lid and flat-bottom boundary conditions.424

Now, suppose at any given time, we have total buoyancy (B) defined on a layer425

interface (Figure A1). Based on Taylor expansion, the layer interface displacement can be426

expanded as [7]:427

η =
∂z
∂B

∣∣∣
z=H

[B0(t, z = H)− B(t, z = H + η)] (A4)428

= − ∂z
∂B

∣∣∣
z=H

b, (A5)429
430

where b = B− B0 is the QG fluctuations about the background buoyancy (B0). Hence, we431

get:432

b
N2 = −η, (A6)433

and taking the material derivative gives the buoyancy equation in the continuously strati-434

fied framework:435

D
Dt

b
N2 = −w. (A7)436

Equation (A6) gives the physical intuition that the material derivative of b/N2 leads to437

vortex stretching.438
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η
B0(t, z = H )

B(t, z = H + η)

Figure A1. Schematic of a relation between buoyancy (B) and layer interface displacement (η). The
background buoyancy is B0 defined at z = H.

Appendix B. The omega equation with a temporally varying background stratification439

We derive the QG omega equation using the continuously stratified framework.440

Taking the vertical derivative of the order-Rossby number momentum equations with the441

viscous term:442

∂tug;i + ug;i∂xug;i + vg;i∂yug;i − f0va;i − βyvg;i = −∂xφa;i, (A8)443

444

∂tvg;i + ug;i∂xvg;i + vg;i∂yvg;i + f0ua;i + βyug;i = −∂yφa;i, (A9)445

and multiplying them by f0 gives:446

D
Dt

( f0∂zug) + ∂yug ·∇hb− f 2
0 ∂zva − βy f0∂zvg = − f0ν4∂z∇4

hug, (A10)447

448
D
Dt

( f0∂zvg)− ∂xug ·∇hb + f 2
0 ∂zua + βy f0∂zug = − f0ν4∂z∇4

hvg, (A11)449

and the horizontal gradients of the buoyancy equation (A7) with the diffusive term yields:450

1
N2

D
Dt

∂xb + ∂xb∂t
1

N2 +
∂xug

N2 ·∇hb + ∂xwa = −κ4∂x∇4
hb, (A12)451

452

1
N2

D
Dt

∂yb + ∂yb∂t
1

N2 +
∂yug

N2 ·∇hb + ∂ywa = −κ4∂y∇4
hb. (A13)453

Summing equation (A10) with (A13), and −(A11) with (A12), and using the thermal wind454

relation, we get:455

2∂yug ·∇hb + N2∂ywa − βy∂xb− f 2
0 ∂zva + ∂ybN2∂t

1
N2 = 0. (A14)456

457

2∂xug ·∇hb + N2∂xwa + βy∂yb− f 2
0 ∂zua + ∂xbN2∂t

1
N2 = 0. (A15)458

The viscous and diffusive terms do not appear as they cancel out due to the thermal-459

wind relation ( f0∂zζg = ∇2
hb) and their parameters being set identical (viz. ν4 = κ4 (=460

Re−1
4 L3U)). Taking ∂y(A14)+∂x(A15) gives the omega equation for a temporally varying461

background stratification:462

N2∇2
hwa + f 2

0 ∂zzwa = β∂xb− 2∇h ·Q−∇2
hbN2∂t

1
N2 . (A16)463

Although the last on the right-hand side involves a time derivative, there is no time464

dependency in our case as we know the analytical form of the background stratification465

(equation (4)). Its contribution to the omega equation turned out to be negligible (not466

shown).467

Appendix C. Decomposing the mean and eddy energetics468

In this section, we derive the mean and eddy KE equations. Equation (6) can be split469

into its mean and eddy component:470

D#

Dt
∇2

hψ +
D#

Dt
∇2

hψ′ + u′g ·∇h[∇2
h(ψ + ψ′)] + β∂x(ψ + ψ′) = f0∂z(w + w′), (A17)471
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where D#

Dt = ∂t + ug ·∇h. Multiplying this by −ψ gives:472

D#

Dt
|∇hψ|2

2
−∇h · ugψ∇2

hψ− ψ
D#

Dt
∇2

hψ′ − ψu′g ·∇h[∇2
h(ψ + ψ′)]473

− β∂x
ψ

2

2
− ψβ∂xψ′ = wb− ψ f0∂zw′, (A18)474

475

and taking its ensemble mean yields the mean KE equation:476

D#

Dt
|∇hψ|2

2
−∇h · ugψ∇2

hψ− β∂x
ψ

2

2
= wb + ψ∇h · u′g∇2

hψ′. (A19)477

On the other hand, the ensemble mean of total KE equation (13) is:478

D
Dt
|∇hψ|2

2
−∇h · ugψ∇2

hψ− β∂x
ψ2

2
= wb, (A20)479

which can be expanded as:480

D#

Dt
|∇hψ|2

2
+

D#

Dt
|∇hψ′|2

2
+∇h · u′g

|∇hψ′|2
2

+ u′g ·∇h(∂xψ∂xψ′ + ∂yψ∂yψ′)481

−∇h · ugψ∇2
hψ− β∂x

ψ2

2
= wb. (A21)482

483

Taking the difference between equations (A19) and (A21) gives the eddy KE equation:484

D#

Dt
|∇hψ′|2

2
+∇h · u′g

|∇hψ′|2
2

+∇h · u′g(∂xψ∂xψ′ + ∂yψ∂yψ′)485

−∇h ·
(
ugψ∇2

hψ− ugψ∇2
hψ
)
− β∂x

ψ′2

2
= w′b′ − ψ∇h · u′g∇2

hψ′. (A22)486
487

Since the divergence terms vanish upon area integration, we can see the mean and eddy KE488

exchanging the term −ψ∇h · u′g∇2
hψ′ (equations (A19) and (A22)). The same procedure489

can be done for equation (8) or the buoyancy equation to derive the mean and eddy APE490

equations.491

Appendix D. The three-layer QG Lorenz energy cycle492

The Lorenz energy cycle [2] for the first layer dropping the divergence terms in493

equations (A19) and (A22) while bringing back the viscous and diffusive terms becomes:494

∂tK#
1 = f0

[
wa;1ψ†

1 + H1wa;1
ψ1 − ψ2

H2 + H1

]
+ H1ψ1∇h · u′g;1∇2

hψ′1495

− ψ1∇h × τ + H1ψ1ν4∇4
h(∇2

hψ1), (A23)496
497

498

∂tK1 = f0

[
w′a;1ψ†

1
′
+ H1w′a;1

ψ′1 − ψ′2
H2 + H1

]
−H1ψ1∇h · u′g;1∇

2
hψ′1 + H1ψ′1ν4∇4

h(∇2
hψ′1), (A24)499

500

∂tP#
1 = − f0wa;1(ψ1 − ψ2)−

f 2
0

g′1
(ψ1 − ψ2)∇h · u†

g;1
′(ψ′1 − ψ′2)501

−
f 2
0

g′1
(ψ1 − ψ2)κ4∇4

h(ψ1 − ψ2)−
f 2
0 (ψ1 − ψ2)

2

2
∂tg′1

−1, (A25)502

503
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504

∂tP1 = − f0w′a;1(ψ
′
1 − ψ′2) +

f 2
0

g′1
(ψ1 − ψ2)∇h · u†

g;1
′(ψ′1 − ψ′2)505

−
f 2
0

g′1
(ψ′1 − ψ′2)κ4∇4

h(ψ
′
1 − ψ′2)−

f 2
0 (ψ

′
1 − ψ′2)

2

2
∂tg′1

−1. (A26)506

507

For the second layer:508

∂tK#
2 = f0

[
− (wa;1ψ†

1 − wa;2ψ†
2) + H2

(
wa;1

ψ1 − ψ2

H2 + H1
+ wa;2

ψ2 − ψ3

H3 + H2

)]
509

+ H2ψ2∇h · u′g;2∇
2
hψ′2 + H2ψ2ν4∇4

h(∇2
hψ2), (A27)510

511

512

∂tK2 = f0

[
− (w′a;1ψ†

1
′ − w′a;2ψ†

2
′
) + H2

(
w′a;1

ψ′1 − ψ′2
H2 + H1

+ w′a;2
ψ′2 − ψ′3
H3 + H2

)]
513

− H2ψ2∇h · u′g;2∇
2
hψ′2 + H2ψ′2ν4∇4

h(∇2
hψ′2), (A28)514

515

∂tP#
2 = − f0wa;2(ψ2−ψ3)−

f 2
0

g′2
(ψ2−ψ3)∇h · u†

g;2
′(ψ′2 − ψ′3)−

f 2
0

g′2
(ψ2−ψ3)κ4∇4

h(ψ2−ψ3),

(A29)

∂tP2 = − f0w′a;2(ψ
′
2 − ψ′3)+

f 2
0

g′2
(ψ2−ψ3)∇h ·u†

g;2
′(ψ′2 − ψ′3)−

f 2
0

g′2
(ψ′2 − ψ′3)κ4∇4

h(ψ
′
2 − ψ′3).

(A30)
For the third layer:516

∂tK#
3 = f0

[
− wa;2ψ†

2 + H3wa;2
ψ2 − ψ3

H3 + H2

]
+ H3ψ3∇h · u′g;3∇

2
hψ′3517

+ H3ψ3[ν4∇4
h(∇2

hψ3) + ε∇2
hψ3], (A31)518

519

520

∂tK3 = f0

[
− w′a;2ψ†

2
′
+ H3w′a;2

ψ′2 − ψ′3
H3 + H2

]
− H3ψ3∇h · u′g;3∇

2
hψ′3521

+ H3ψ′3[ν4∇4
h(∇2

hψ′3) + ε∇2
hψ′3]. (A32)522

523

Although the biharmonic diffusive terms in the APE equations (A25), (A26), (A29) and524

(A30), which originate from diffusive terms in the layer-thickness equation (7), are applied525

solely for numerical stability and their similarity with buoyancy in primitive equations,526

their formulation is conceptually similar to the Gent-McWilliams’ skew diffusivity [GM; 61].527

GM represents the process of baroclinic instability upon which isopycnal displacements528

are smoothed out adiabatically within the isopycnal layer. Considering the quasi two-529

dimensional and adiabatic nature of the QG system, the interpretation of layer-thickness530

diffusivity becomes similar to the GM skew diffusivity. A major difference here is that the531

diffusivity is set as the bihamonic diffusivity and as such, should be negligible in damping532

the resolved eddies [14,45].533
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