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ABSTRACT

Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide.
Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and
prominent modern pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and
antistaphylococcal therapies. Recent advances in whole-genome sequencing and high-throughput techniques facilitate the gen-
eration of genome-scale metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens.
Hence, comprehensive and predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets
for antimicrobial therapies. This review aims at giving an overview of all available GEMs of multiple S. aureus strains. We
downloaded all 114 available GEMs of S. aureus for further analysis. The scope of each model was evaluated, including the
number of reactions, metabolites, and genes. Furthermore, all models were quality-controlled using MEMOTE, an open-source
application with standardized metabolic tests. Growth capabilities and model similarities were examined. This review should
lead as a guide for choosing the appropriate GEM for a given research question. With the information about the availability, the
format, and the strengths and potentials of each model, one can either choose an existing model or combine several models to
create models with even higher predictive values. This facilitates model-driven discoveries of novel antimicrobial targets to fight
multi-drug resistant S. aureus strains.
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1 Introduction ciated infections, e.g., nosocomial; (2) Community onset of
health-care associated infections, and (3) community acquired
infections®. Besides SAB, S. aureus, and especially MRSA,
is the leading cause of endocarditis, bone and joint infections,
skin and soft tissue infections, and further hospital-acquired
infections®. A study from 2013 revealed over 80,000 invasive
infections and 11,000 deaths per year due to MRSA in the
United States. Compared to the previous years, the number of
invasive MRSA infections declined slightly’. Unfortunately,
the rate decline of MRSA infections has recently slowed down
according to the ‘Morbidity and Mortality Weekly Report’ of

Staphylococcus aureus is an opportunistic pathogen that asymp-
tomatically and permanently colonizes the nose of up to one
third of the human population'. It is a commensal of the
mucosae and the human skin, but can also cause severe infec-
tions with high morbidity, mortality, and healthcare-associated
costs?. Methicillin-resistant S. aureus (MRSA) is one of the
most successful modern pathogens®. In 2017, the WHO pub-
lished a priority pathogens list for the research and develop-
ment of new antibiotics. Among the clarithromycin-resistant

Helicobater pylori and the vancomycin-resistant Enterococcus . SR )
. . s . the Centers for Disease Control and Prevention ", while the
faecium, S. aureus, especially the methicillin-resistant S. au-

reus (MRSA), vancomycin intermediate (VISA), and van- number of methicillin-susceptible S. aureus (MSSA) blood-

. istant strains (VRSA), are high priority path 4 stream infections even slightly increased. In 2017, nearly
comycin resistant strains ( ), are high priority pathogens 120,000 S. aureus bloodstream infections and 20,000 associ-

Staphylococcus aureus bacteremia (SAB) is a common . . .
P sy ( ) ated deaths occurred in the United States'’. Hence, strategies
for preventing infections inside and outside acute care settings

infection’. The incidence rate ranges from approximately
20 cases per 100,000 persons per year in Canada® to approxi- : . .

are required to further reduce the amount of invasive MRSA
infections.

mately 50 cases per 100,000 persons, inferred from the United
The transmission of S. aureus in general, and MRSA in

States surveillance data’. The higher incidence rate might be
due to the greater burden of MRSA’. SAB can be classified . . . . ’
particular, is facilitate by the long persistence time of S. aureus

into three categories: (1) Hospital onset of health-care asso-
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colonization. Nearly any item with skin contact can serve as
fomes. In a hospital setting, this can include coats and clothes
from doctors and nursing staff, pens, and mobile devices, such
as cell phones®. Studies also suggest that infecting S. aureus
isolates also persist in households three months after skin
infections''. Even across and within athletic fitness facilities,
S. aureus is found on different surfaces, including weight
plates and treadmill handles'?.

Besides the challenge of controlling S. aureus coloniza-
tion in multiple environments, S. aureus strains evolve and
adapt to different environments due to variability in diversity,
mobile genetic elements (MGEs), and accumulation of mu-
tations' 3!, Mediators of virulence, immune evasion, and
antibiotic resistance are commonly found within the acces-
sory components of the S. aureus genomes, consisting of
MGEs with pathogenicity islands, chromosomal cassettes,
transposons, plasmids, and bacteriophages. Compared to the
core genome, the accessory genome is more variable and also
often more strain-specific>. MGEs in S. aureus can carry
antibiotic resistance genes for resistances against penicillin,
trimethoprim, erythromycin, clindamycin, and tetracyclines'>.
However, strains not only evolve and develop antibiotic resis-
tances, they even replace each other within the same host'*.

To fight S. aureus infections, several new antimicrobial
and antistaphylococcal drugs have been developed recently™ '3,
including oritavancin and ceftaroline'®!”. Despite the devel-
opment of new antibiotics, S. aureus in general, and MRSA
in particular, remains a prominent pathogen with persisting
high mortality>. Since S. aureus will continue to evolve and
develop new resistances '3, the research on S. aureus and the
development of new antimicrobials is of urgency to fight S. au-
reus infections.

One possibility for the identification of novel targets for
antimicrobial therapies is the use of genome-scale metabolic
models (GEMs). Advances in high-throughput techniques
and whole-genome sequencing facilitate the construction of
GEMs'® 19, They are reconstructed based on information
from genome sequences and experimentally obtained bio-
chemistry'®2%, With this information, stoichiometry-based
and mass-balanced metabolic reactions can be formulated
using gene-protein-reaction associations (GPRs). These stoi-
chiometry-based GEMs can predict metabolic flux values
within the constructed network”! and optimization techniques.
Optimization techniques, such as flux balance analysis (FBA),
use linear programming”’. Recent advances in the reconstruc-
tion of GEMs and the fast analysis and integration of omics
data enabled metabolic studies with model-driven hypotheses
and context-specific simulations’>??. Among the multiple
applications of GEMs is the drug targeting in pathogens and
the modeling of interactions among multiple cells or organ-
isms’’. These approaches could be used to investigate and
develop novel antimicrobials or antistaphylococcals. How-
ever, depending on the pathogen and strain, various models
of S. aureus strains might be required to investigate the best
antistaphylococcal target for a certain S. aureus strain.
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In this review, we present all currently available GEMs of
S. aureus from various databases. The available models were
compared regarding their scope, their availability, their format,
and their immediate usability. For various reasons, some of
the models required revisions, such as converting spreadsheet
file formats to SBML?* or ensuring the syntactic validity of
SBML files. After having all models available as syntactically
valid SBML files, their growth-capabilities, their predictive
value, and the similarities between the various models were
investigated. This review gives an overview of the available
models and their properties to identify the appropriate model
for a specific research question.

2 Model Overview

Databases such as BIGG” or BioModels*® comprise a variety
of genome-scale metabolic models. Together with models
from other databases and supplementary information from sci-
entific publications, a large number of genome-scale metabo-
lic models of S. aureus is available: The BioModels database
contains two models of S. aureus by Becker et al.”’’ and Heine-
mann ef al.>%, both build in 2005. The BioModels database
also harbors the models created within the Path2Models project”
In this project, 33 whole genome metabolism models of S. au-
reus were automatically created and curated between 2012
and 2013%. The BiGG Models Database contains two GEMs
of S. aureus: the already mentioned model by Becker et al.”’
and a recently published model by Seif et al.** from 2019.
Lee et al. published thirteen genome-scale metabolic recon-
structions of multiple Staphylococcus aureus strains in 2009°".
In 2016, Bosi et al.** curated and published 64 genome-scale
metabolic models of various S. aureus strains. Together with
the S. aureus model published within the gut microbiota re-
source of the Virtual Metabolic Human (VMH) Database’>-34,
a total number of 114 genome-scale metabolic models of
Staphylococcus aureus exists today.

All models were downloaded, tested, and evaluated us-
ing COBRApy*® and MEMOTE?. MEMOTE is an open-
source software that contains a standardized and community-
maintained set of metabolic model tests®>. The overall ME-
MOTE score comprises information about annotations of me-
tabolites, reactions, and genes, the inclusion of Systems Bi-
ology Ontology (SBO) terms, and the model’s consistency.
Within the annotations sections, the presence and conformity
of different database identifiers is evaluated. In the SBO term
section, the annotation of model instances with appropriate
SBO terms is assessed. The model consistency check com-
prises tests to evaluate the stoichiometric consistency, mass
and charge balances, metabolite connectivity, and unbounded
fluxes in default medium?>. However, the MEMOTE score
currently does not consider information about e.g., realistic
growth rates, orphan or dead-end metabolites, stoichiomet-
rically balanced cycles, or duplicated reactions. MEMOTE
includes this information in its report but does not incorporate
it into the calculated score.
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Table 1. Overview over the available S. aureus models. All GEMs were downloaded from the respective database or from
the supplements of the publication. Their format and SBML version were determined. The initial growth was tested (indicated
with the symbol ¢ in case of success) and the MEMOTE> score was calculated for each model. The information for the models
by Bosi et al. was determined after the debugging steps (see figure 3 on page 7 steps 1-7). These debugging steps only served
the purpose of generating valid SBML files. No additional improvements, which could increase the MEMOTE score, were
performed at this point. The curation column indicates, whether the model was curated manually (m), automatically (a), or

semi-automatically (s).

Model Year Model Availability Format MEMOTE Initial  Curation
Count Score  Growth
iSB619%/ 2005 1 BiGG & BioModels Database SBML L3V1 with fbc 67 % v m
iMH551%% 2005 1 BioModels Database SBML L3V1 withfbc 36 % v m
Lee’! 2009 13 Supplements Excel spreadsheet file 65 % s
Path2Models®® 2013 33 BioModels Database SBML L2V4 48 % a
Bosi*’ 2016 64  Supplements SBML L3V1 with fbc 36 % v s
Magnisdéttir’® 2017 1 VMH Database SBML L3V1 with fbc ~ 45% v s
iYS854%Y 2019 1 BiGG Models Database SBML L3V1 with fbc 81 % v m

iSB619— GEM by Becker et al.

The first, initial draft of an S. aureus genome-scale recon-
struction was curated by Becker and Palsson in 2005. They
reconstructed the S. aureus strain N315 with 619 genes, 743
reactions, and 655 metabolites. The GEM was curated based
on the key metabolic pathways in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database’’. Subsequently,
The Institute for Genomic Research (TIGR) website®® was
browsed for additional reactions. 91 % of all reactions are
linked with genes or open reading frames in so-called gene-
protein-reaction associations (GPRs). This first-draft GEM is
almost completely elementally and charge balanced. The bio-
mass objective function was formulated based on the biomass
data from Bacillus subtilis’® and substituted where neces-
sary. It contains metabolites, such as amino acids, nucleotides,
lipids, and cell wall constituents>’. The first S. aureus GEM
reached a MEMOTE score of 67 % and is available as a file
in SBML Level 3 Version 1%’ format with flux balance con-
straints (fbc) extension®! and BiGG identifiers.

iMH551—- GEM by Heinemann et al.

In the same year, the second genome-scale reconstruction
of S. aureus was published by Heinemann er al. Both re-
search groups curated the S. aureus strain N315 and used the
KEGG?’ and TIGR database’®, together with literature for
genome regions with limited sequence homology for gene
function assignments. A new biomass objective function was
specifically defined for S. aureus based on integration of lit-
erature data from a variety of different S. aureus strains. The
biomass objective function was build upon the five polymer
categories DNA, RNA, proteins, lipids, and cell wall com-
ponents, and extended by pool solutes. The reconstruction
includes 801 metabolites and 860 reactions that are based on
551 genes and simulates aerobic and anaerobic growth”®. This
S. aureus GEM reached a MEMOTE score of 35 % and is also
available as SBML Level 3 file with fbc extension. The genes
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are not included in the SBML file.

GEMs by Lee et al.

Lee et al. utilized the ERGO™ bioinformatics suite*> and the
KEGG ligand/reaction database®’ to curate metabolic recon-
structions of multiple S. aureus genomes. The DNA sequence
and associated open reading frames (ORFs) or protein se-
quences were integrated into the ERGO genome database.
ORFs were called via a combination of programs and anno-
tated automatically or manually. BLAST was used to compute
the protein similarities. Functional assignments, relationship
computation, and pathway analyses based on existence of or-
tholog and protein family clusters led to automated metabolic
reconstructions. Manual steps included the review of every
gene in the genome, pathway curations, and the considera-
tion and reconciliation of motif/domain database results for
functional assignments. For identified missing steps within a
certain pathway, Lee et al. searched for orthologs or published
biochemical activities. For all complete, incomplete, or partial
EC number annotations, associated reactions were identified
via the ERGO pathway collections and KEGG database. Lee
et al. used both biomass compositions from Becker et al.”’
and Heinemann ef al.”® for their analyses. On average, the
thirteen S. aureus reconstructions included 1,476 4+ 14 reac-
tions and 1,406 &= 11 metabolites. All models are available as
Excel spreadsheet files with KEGG identifiers.

GEMs from Path2Models

More than 140,000 freely available and automatically gen-
erated mathematical models from pathway representations
are available through the Path2Models project. KEGG®/,
BioCharta**, MetaCyc**, and SABIO-RK*’ served as databa-
ses to generate three types of models, including genome-scale
metabolic reconstructions. The pipeline for generating GEMs
starts with the extraction of pathway data from KEGG®” and
MetaCyc**. To reconcile the different metabolite and reaction
identifiers, MNXref was used*®. MNXref was further used
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Figure 1. Properties of all available S. aureus models and
their scopes. For all models, the number of reactions,
metabolites, and genes in the model is illustrated. MEMOTE
conducts standardized and community-maintained metabolic
tests for quality control and quality assurance of
genome-scale metabolic models (GEMs) and assigns the
tested model a score ranging from 0 % to 100 %. Lee et al.’',
Bosi et al.’?, and the Path2Models Project” published a
collection of different S. aureus models. For the collections,
the mean number of model instances is shown and the error
bar indicates the standard deviation.

to define default metabolite formulas and charge states. It
allowed the mapping to different databases for a semantical
annotation in accordance with the Minimal Information Re-
quired In the Annotation of Models (MIRIAM) guidelines*’.
To all GEMs, a default biomass objective function contain-
ing all 20 amino acids, RNA and DNA nucleotide precursors,
glycogen, and ATP was added. Between 2012 and 2013, 33
S. aureus GEMs were curated with the help of this pipeline,
including one bovine strain. This strain had 6,110 reactions,
4,416 metabolites, and 1,198 genes. The other S. aureus
GEMs have on average 3,064 & 103 reactions, 2,186 &= 75 me-
tabolites, and 519 &+ 12 genes. All models have a MEMOTE
score of 48 % and are available at the BioModels database as
SBML Level 2 files*® with mixed nomenclature.
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GEMs by Bosi et al.

In 2016, Bosi et al. constructed 64 GEMs of different S. au-
reus strains. They started by extending and adding content
from KEGG?7, Model SEED*’, and MetaCyc44 to the S. au-
reus N315 model iSB619 by Becker et al. This manually
curated model was used as reference for other S. aureus
strains. Shared genes and reactions were identified and sub-
sequently, strain-specific metabolic content available from
KEGG?7, Model SEED*, and BioCyc50 was manually added
to the strain-specific GEMs. Since an S. aureus biomass com-
position was not available, the biomass objective functions
from Becker et al.”” and Heinemann et al.”® were combined
and S. aureus-specific data regarding the fatty acid composi-
tion in the biomass were used to adjust the biomass objective
function. A gap-filling step further refined the models. On
average, the models have 1,460+ 94 reactions, 1,446 +-47
metabolites, and 788 + 116 genes with an average MEMOTE
score of 36 =1 %. All models are available as SBML Level 3
files’! with fbc extension and BiGG nomenclature.

GEM by Magnusdottir et al.

To elucidate the role of microbial communities in human
metabolism and health, Magnusdéttir ez al. semi-automatically
generated genome-scale metabolic reconstructions of 773 hu-
man gut bacteria, including S. aureus USA300-FPR375733,
By using a comparative metabolic reconstruction method that
propagates refinements from one metabolic reconstruction to
others, the model quality of all 773 models was improved. The
basis for each reconstruction were draft GEMs from Model
SEED* and KBase’? including gap-filling, refinement via
rBioNet>?, and quality control and quality assurance testing.
Further refinement steps included the verification of reaction
directionalities as well as mass and charge imbalances. The
reconstructions were extend by gut-microbiota specific subsys-
tems and central metabolic subsystems, and anaerobic growth
was enabled. Leak tests and the removal of infeasible flux
loops further refined the model. The S. aureus model con-
tains 1,403 reactions, 1,193 metabolites, and 859 genes, and
reached a MEMOTE score of 45 %. It is available as SBML
Level 3 file with fbc extension and VMH nomenclature.

iYS854— GEM by Seif et al.

Seif et al. manually reconstructed a comprehensive genome-
scale metabolic model of S. aureus USA300 str. JE2 contain-
ing 886 genes, 1,455 reactions, 1,335 metabolites, and 673
three-dimensional protein structures. The GEM was build
upon one of the reconstructions of Bosi et al.*”. Extensive and
detailed manual curation was supported by literature reviews
and network evaluations. The initial model was extended
by an updated biomass objective function. Model instances,
such as genes, reactions, and metabolites, were enriched with
cross-references and metadata. More than 50 metabolic sub-
modules were examined, curated, and added to the GEM,
together with over 200 confidence scores and 300 references.
By this manual curation, 569 new metabolic processes, 214
new ORF assignments and 207 new metabolites were added.
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Experimental validation of the model revealed an 85 % agree-
ment with gene essentiality data and 68 % agreement with
experimental physiological data’’. A model evaluation with
MEMOTE revealed with 81 % the highest MEMOTE score of
all tested models. The model is available as SBML Level 3
file with fbc extension and BiGG identifiers.

Presence of strains

The 114 currently available GEMs divide into 65 different
S. aureus strains. In figure 2 on the following page, the di-
verse S. aureus strains and their occurrence in the different
publications is illustrated. Some strains, such as USA300-
FPR3757 or N315 occur several times in different databases.
Others, like the GEM for S. aureus strain JE2 occur only once
in literature so far. The colors indicate the metabolite and reac-
tion identifier in the respective model. Among the five models
of the strain N315, two models exist that both carry BiGG
identifiers. Models with same identifiers can be compared
more easily than models with discriminating identifiers. Thir-
teen S. aureus strains occur at least in three different databases
or publications with varying identifiers.

Due to the vast amount of different S. aureus strains, we
elucidate only the strains that are shared over multiple da-
tabases. As already mentioned, the GEMs of the S. aureus
strain N315 are the most prevalent. This strain was isolated
from the pharyngeal smear of a Japanese patient in 19827%.
It is a methicillin-resistant S. aureus (MRSA). The only ef-
fective antibiotic against it was vancomycin. However, in
1997, a vancomycin-resistant MRSA strain, Mu50, was dis-
covered in a Japanese infant with a surgical wound infec-
tion>*. The closely related strain Mu3 is a hetero vancomycin-
intermediate MRSA strain. Strains with heterogeneous van-
comycin resistance can spontaneously produce cells with in-
creasing resistance against vancomycin®>°,

The isolates JH1 and JH9 stem from a series of MRSA
isolates obtained from a patient receiving extensive therapy.
These strains are also vancomycin-intermediate S. aureus.
The first isolate, JH1, was taken before the chemotherapy and
was fully susceptible to vancomycin. The last isolate, JH9,
from the end of the therapy showed decreased susceptibility
to vancomycin®’.

The S. aureus strains of type USA300 are clones of the
community-acquired MRSA%°?, Tt causes invasive infec-
tions in children and adults in the USA>3, but also in Canada
and Europe™ . It is suggested that USA300 is more virulent
than other community-acquired MRSA strains’®. FPR3757
is a multidrug-resistant USA300 strain with acquired mobile
genetic elements (MGEs) encoding resistance and virulence
determinant that probably lead to enhanced pathogenicity””.
The other USA300 isolate, TCH1516, also named USA300-
HOU-MR, was isolated at the Texas Children’s Hospital in
2007. Significant differences to other MRSA strains lie within
the plasmid content and the antibiotic susceptibility profiles>®.

MW?2 is another community-acquired MRSA isolate. It
carries a wide range of virulence and resistance genes®’. At
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the moment, more than fifteen different pathogenicity islands
are identified in S. aureus. Interestingly, MW2 contains almost
the same complement of pathogenicity islands as USA300-
TCH1516%8. In contrast, the S. aureus strain COL contains six
pathogenicity islands, such as Mu50, but in different combina-
tions>®. COL is one of the first MRSA isolates from the early
1960s. It is a penicillinase-negative strain®"->. In contrast to
the highly virulent MW?2 strain, where virulence factors are
found outside of prophages, fewer virulence factors are found
outside of prophages in S. aureus strain Newman. This strain
carries four integrated prophages and two large pathogenic-
ity islands with important contributions for the pathogenesis.
This S. aureus strain is susceptible to methicillin®’.

As the Newman strain, the S. aureus isolate MSSA476 is
a methicillin-susceptible clone. It is a community-acquired
strain, such as MW?2. It was isolated in 1998 and susceptible
to most commonly used antibiotics, excluding penicillin and
fusidic acid®*. In contrast MRSA252 is a clinically important
hospital-acquired MRSA lineage. It is genetically diverse to
other S. aureus strains®.

S. aureus does not only infect humans, it is also the cause
of a mastitis in cattle. Strain RF122 contains genomic features
that distinguish the human and the bovine pathogens®”.

Eight different S. aureus isolates belong to the South Ger-
man clone lineage ST228. This clone spread over ten years in
a hospital in Switzerland. The isolates were collected between
2001 and 2008. The eight isolates represent the evolutionary
history of the clone. As many others, it is an MRSA%®.

3 Model improvements

A variety of different S. aureus models from various strains is
available. However, not all 114 downloaded S. aureus models
were of the same quality: Some SBML files were syntactically
invalid, others utilized an older SBML format, or were not
available as SBML file at all. To provide a collection of
usable and updated SBML models, we performed debugging
and/or improvement steps on some of the models. Models
with valid SBML files of the latest level were not improved.
All debugging and improvement steps served the purpose of
standardizing and annotating the models. No content changes
were performed that affect model calculations.

GEMs by Bosi et al.

The 64 S. aureus models by Bosi et al.” were downloaded
and evaluated using COBRApy>°. The built-in validity check
for SBML files returned a number of errors. In a first step,
a pipeline for debugging the errors was created. All files
lacked the XML declarations, which was added together with
the XML version number and the encoding attribute. Ac-
cording to the SBML language specifications, metabolite,
reaction, and model identifier need to fulfill certain proper-
ties®’, e.g., model identifiers cannot start with a number. The
identifiers were adapted according to the guidelines. The
downloaded SBML file contained an empty compartment list,
which was filled with the compartments during the debugging.

1.32
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Figure 2. Occurrence of models for S. aureus strains. 65 different strains of S. aureus are available over the seven
publications. Some S. aureus strains, such as the S. aureus strain USA300-FPR3757, occur in several publications, for other
strains, only one publication is available. The colors indicate the utilized metabolite and reaction identifiers in the respective
models. Models with similar or same identifiers can be compared more easily.

As the compartment list comprises all cellular compartments
in which metabolites and reactions occur, the different com-
partments were extracted from the metabolites’ information
and subsequently incorporated into the compartment list. The
charges, chemical formulas, and compartments of the models’
metabolites were adapted or added, where necessary. After
these debugging steps, the models were exported as valid
SBML files and evaluated with MEMOTE. The MEMOTE
score of 36 % in table 1 on page 3 is the score after these
debugging steps, since MEMOTE requires a syntactically valid
SBML file as input.

Since a pipeline for altering all 64 S. aureus GEMs al-
ready existed, we added further steps to the pipeline to extend
the models with respect to their annotations. With the use of
the Systems Biology Ontology (SBO), semantic information
about model components can be provided. This information
allows an explicit and unambiguous understanding of the com-
ponents’ meaning®®. For the model genes and metabolites,
appropriate SBO terms were defined. Reactions were divided
into metabolic and transport reactions, each receiving different
SBO terms. Transport reactions were even further refined to
active, passive, or co-transport with antiporters or symporters.
After the assignment of appropriate SBO terms, further an-
notations were added using ModelPolisher®”. ModelPolisher
accesses the BiGG Models Database for the annotation and
autocompletion of SBML models®”. With the help of the
ModelPolisher, additional metadata was incorporated for the
different model instances. After those extensions, the ME-
MOTE score of the 64 GEMs increased on average to 83 + 1 %,
which is an average improvement of 47 %. The complete
pipeline for debugging and extending all 64 models and sav-
ing them as valid SBML files is summarized in figure 3 on the
following page.

All debugging and extension steps served the purpose of
making the models simulatable. Since reaction-, metabolite-,
or gene sets were not altered, the models’ simulation behavior
is not affected. However, the models can now directly be used,
as they are now all available as valid SBML files.
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GEMs by Lee et al.

The thirteen GEMs by Lee er al. were available as Excel
spreadsheet. For all reactions and metabolites in the list,
the respective information, such as reaction or metabolite
name, or chemical formula was extracted from the KEGG
database®’, where available. Based on the information from
the KEGG database and the Excel spreadsheet, a consensus
model including all reactions was created. Both biomass
objective functions from Becker et al.”’ and Heinemann et
al.®® were added to the consensus model, as well as exchange
reactions for all extracellular metabolites. ModelPolisher®’
was used for annotating the model. Based on this consen-
sus model, the individual models of the thirteen S. aureus
strains were curated: The strain-specific reactions listed in
the Excel spreadsheet were added to the respective models,
and the biomass objective function from Becker ef al. was
adapted strain-specifically. The KEGG database was browsed
for the strain-specific gene identifiers. The models now in-
clude on average 491 £ 8 genes, except for S. aureus strain
RF122, where no strain-specific KEGG gene identifier was
available. Further annotations, such as KEGG annotations
and EC-codes were added to the models. Despite manual
effort, all thirteen models do not show growth for neither of
of the biomass objective functions. The MEMOTE score for
all models excluding the model for the S. aureus strain RF122
reached 66 %. Since the GEM for the RF122 strain does not
contain any genes, its MEMOTE score only adds up to 57 %.
Comparing the originally published models concerning model
simulations and growth predictions is not possible because
only Excel spreadsheets with reactions and metabolites were
available.

GEMs from Path2Models

The 33 models from the Path2Models project are the only
models of S. aureus that are still SBML Level 2 Version 4.
Since the fbc package is officially only available from Level 3,
it is not yet integrated in the files. We updated all models
to SBML Level 3 Version 1*° with the fbc package enabled
using libSBML’!. However, the original chemical formulas
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Dashes in IDs

Change dashes to underscores in IDs
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Add compartments to theinitially empty compartment list

Change charges from floats to integers

Model-IDs

Add prefixes to model-IDs starting with a number

o0

Debugging

Metabolite compartments

Add compartments to metabolites that lack acompartment

Remove parentheses from chemical formulas

SBO terms

*Genes

*Species

*Metabolic reactions
*Transport reactions

ModelPolisher

Use ModelPolisher to annotate the models

6 Chemical formulas

Figure 3. Debugging and extension steps in GEMs by
Bosi et al. Not all the 64 SBML files downloaded from the
supplement of Bosi et al. did directly pass the syntactic
validation. In 7 steps, the errors reported in the validity check
were solved to receive valid SBML files. The valid files were
then further extended with appropriate SBO terms for genes,
species, and reactions. In a final step, annotations were added
to the model using ModelPolisher®”.

did not match the scheme that the official fbc package’” re-
quires. In order to avoid creating syntactically invalid SBML
files, all chemical formulas needed to be adapted according to
the fbc specification’”. The original chemical formulas can
still be found in the notes field. This notes field further
contained a variety of annotations from different databases,
including BRENDA”?, KEGG®/, MetaCyc**, MetaNetX*,
Rhea’*, BiGG™, Reactome’>, Model SEED*’, Unipathway’®,
the Human Metabolome Database (HMDB)77, ChEBI’®, and
InChI’®. All database annotations that can be found in the
identifiers.org® registry were transferred to the anno-
tations, using identifiers.org Uniform Resource Iden-
tifiers (URIs). The service identifiers.org provides
directly resolvable identifiers from a multitude of different
databases. The final and valid SBML files were evaluated
using MEMOTE. The total score for the GEMs from the
Path2Models project increased from 48 % to 59 % and all
models are now available as SBML Level 3 files. Again, no
changes on the reaction, metabolite, or gene content were
performed, which would affect the model simulations.

4 Model Analysis

In the following section, we examined the available models
for their predictive value and their similarity. As the growth
behavior of S. aureus is reported in various defined media, the
models’ capability of reflecting growth under these conditions
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indicates the predictive value of the model. Subsequently, the
publications were checked for the inclusion of experimental
data in the models or the verification of model-driven hypoth-
esis. Additionally, the predictions of gene essentialities using
different models are compared. In the last step, the models’
similarities were examined concerning their reaction and gene
content.

4.1 Growth capabilities

The growth of genome-scale metabolic models on different
media is an important characteristic of a model’s capabilities
and flexibility to reflect the organisms behavior in different
environments. Since S. aureus is known to grow in a vari-
ety of different environments, its growth was simulated in
chemically defined environments to investigate the model’s
capabilities.

CDM. The chemically defined medium (CDM) is a complete
defined medium with 18 amino acids, two purines, and six
vitamins and initially developed to study the slime production
by coagulase-negative staphylococci®. It was used by Halsey
et al. to study the amino acid catabolism in S. aureus®' . Either
no carbon source was added (CDM)), or glucose (CDM_glc) or
galactose (CDM_gal) was added to the medium. The growth
of S. aureus strain JE2 is already computationally and experi-
mentally validated and verified on CDM and its variants™’.

SNM. The primary ecological niche of S. aureus is the hu-
man nose®>%3. Krismer et al. developed a defined synthetic
nasal medium (SNM) based on the composition of nasal fluid
components determined by metabolomics®*®. This medium
was initially developed to monitor the growth of S. aureus un-
der similar physiological conditions as in the nose. Growth in
this medium is experimentally verified for the S. aureus strains
USA300 LAC and Newman. Since the medium is chemically
defined, it can also be established in growth simulations in
systems biology.

Gut medium. Already in the 1950s and 1960s, the intestinal
colonization of S. aureus was reported®”. Recent interest in
the gut microbiome revealed and enlightened the relevant role
and influence of S. aureus on the intestinal microbial ecol-
ogy and diversity®*56-%° Intestinal colonization by S. aureus
is, e.g., assumed to induce pseudo-membranous colitis and
to change the gut microbial ecology®. Alterations in the
composition of the gut microbiota can result in the develop-
ment of chronic diseases, such as type 2 diabetes, colorectal
cancer, and obesity”’. Hence, studying the role of S. aureus
in the context of the gut microbiome is of high relevance.
Magnusdéttir ef al. generated 773 genome-scale metabolic
reconstructions for 773 members of the human gut micro-
biome, including S. aureus. To simulate the growth in the gut,
they chemically defined a medium according to experimental
data. The medium definition was extracted from the S. aureus
model created by Magntisdéttir et al.>*. Magniisdéttir et al.
validated two of the 773 genome-scale reconstructions experi-
mentally, where S. aureus was not included. However, as their
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Figure 4. Growth rate of S. aureus GEMs in different media. All models with initial growth (see table 1 on page 3 were
tested on the different media. For the GEMs by Bosi et al.’?, the prefix ‘Bosi’ was added to the model strain name. The other
models are named according to their published model ID or, in case of the model from the VMH database, by the author.
Media types are the synthetic nasal medium (SNM), synthetic cystic fibrosis medium (SCFM), gut medium, chemically defined
medium (CDM), CDM with glucose (CDM_glc), and CDM with galactose (CDM_gal). Models that did not show growth in
any of the tested media were excluded. The color-bar indicates the growth rate: the darker the color, the higher the growth rate

of the model organism on the given medium.

model grew in the defined medium, and S. aureus is reported
to colonize the intestine, we inferred that growth should be
possible.

SCFM. S. aureus does not only occur on the human skin, in
the human nose®>%, or the nasopharyngeal tract’’-°%. It is
furthermore observed in patients, especially in children, with
cystic fibrosis (CF)%3, an autosomal recessive disease. As one
of the earliest and also most prevalent pathogens, S. aureus
causes chronic airway infections in patients with CF**. To in-
vestigate the role of S. aureus and other associated pathogens,
such as Pseudomonas aeruginosa’®, Palmer et al. developed
a synthetic cystic fibrosis medium (SCFM), mimicking the
nutritional composition of the sputum of patients with CF by
chromatographic and enzymatic analyses of the CF sputum.
This medium was initially created to analyze the nutritional be-
havior of Pseudomonas aeruginosa in CF sputum”. Clinical
isolates of S. aureus are reported to grow in SCFM”.

Since the thirteen models by Lee ef al. and the 33 mod-
els from the Path2Models project did not exhibit any growth
in full medium, these models were not included in the anal-
ysis of growth capabilities. During the analysis, three of
the models by Bosi et al. reported a low growth rate of
0.00186 mmol/(gDW - h) without any active exchange reac-
tions (models SA_118, SA_GR1, and SA_LCT). A positive
growth rate without active exchange reactions can be an indi-
cator for futile cycles and a necessity for manual verification
and refinements.

Not all models by Bosi et al. were capable of growing on
any of the tested media. In total, 33 out of the 61 remaining

Renz and Dréger

Collection of 114 Genome-Scale Metabolic Models of S. aureus

models were not able to grow on any of the tested media. This
might be explained by the auxotrophies for amino acids and
vitamins in several S. aureus strains observed by Bosi et al.*”.
None of the models by Bosi et al. grew on the SCFM or the
gut medium. For SNM and the CDM compositions, different
patterns emerged: ten strains, including N315, only grew on
SNM, while six strains only grew on the CDM with galactose.
Seven strains grew on all three variants of the CDM and the
remaining five strain models grew on both the SNM and all
CDM. The model iSB619 by Becker ef al. only grew on the
gut medium, while the model iIMHS551 by Heinemann et al.
returned a positive growth rate for all tested media types. The
model /YS854 exhibits growth on almost all tested media,
except for the SCFM and the gut medium. It is comparable
to the models by Bosi et al., with the difference of an higher
growth rate. The model by Magnusdéttir only grew on its own
gut medium. In figure 4, the growth capabilities of the various
S. aureus GEMs under different environmental conditions is
illustrated.

4.2 Presence of experimental data

Besides the correct prediction of growth in a defined environ-
ment, a model’s predictive value also increases when labora-
tory data is included or in silico observations are verified in
laboratory experiments.

Automatically curated GEMs

The models from the Path2Models project were automatically
constructed. Within automated reconstruction processes, the
inclusion of experimental data for individual models is com-
plicated. For this reason, the GEMs from the Path2Models
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project do not contain experimental data’’. Moreover, the
models are not simulatable and, thus, can also not predict
any growth. Verification of model predictions is hence not
possible.

Semi-automatically curated GEMs

Curating a collection of multiple GEMs is time- and labor in-
tense. Manual reconstruction would take a significant amount
of time. Thus, the models from Lee et al., Bosi et al., and
Magnusdéttir et al. were constructed semi-automatically.

Lee et al. verified their models using gene essentially
analysis and growth experiments of two models. They found
literature evidence and experimental verification for six of the
44 identified genes that were essential in all strains in silico.
The growth experiments supported their minimal-medium
predictions®!.

The models from Bosi et al. were examined for the cor-
rect simulation of already known auxotrophies. Furthermore,
the predictions of the growth capability in the presence of
spermidine and the growth on chemically defined media were
verified in laboratory experiments for several strains’”.

The model from Magnusdéttir et al. was curated based
on literature-derived experimental data. However, it is not
specified which experimental data is used exactly. Metabolic
predictions of two of the 773 reconstructions were validated
against experimental data’>.

Manually curated GEMs

Becker et al., Heinemann et al., and Seif et al. manually
curated their strain-specific GEMs. The in silico growth pre-
dictions of the model iSB619 in a minimal medium were
compared to laboratory experiments. Becker et al. addition-
ally predicted essential genes. As this was the first available
GEM of S. aureus, no experimental data was available to com-
pare the predicted essential genes with?’. The model iIMH551
was compared to available knowledge about auxotrophies in
S. aureus. The model’s growth predictions under aerobic and
anaerobic conditions were validated against available experi-
mental evidence”®.

The model /YS854 underwent the most experimental veri-
fications compared to all other models. Its predictions are in
85 % agreement with gene essentiality experiments. The in sil-
ico predictions of the catabolism of carbon sources are in 68 %
agreement with experimental physiological data. They com-
pared the models’ growth predictions on various media with
laboratory experiments and performed extensive condition-
specific GEM validation and evaluation in the presence and
absence of glucose.

4.3 Prediction of gene essentialities

Another indicator for the predictive value of a model is the
correctness of predicted gene essentialities. The essentiality
of a gene depends on the environment and the availability of
nutrients. To identify essential genes in silico, each gene is
individually knocked out in a so-called single gene deletion
analysis and its effect on the growth rate is evaluated. This
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analysis, however, requires a model’s capacity to simulate
growth in the investigated environment. As the models from
the Path2Models project and Lee et al. did not show any initial
growth (see table 1 on page 3), these models were excluded
from the single gene deletion analysis. Additionally, this re-
view aims to compare models from different sources. Since
the models from the Path2Models project and Lee et al. were
already excluded from this analysis, only two strains remain
with more than one model: S. aureus USA300-FPR3757 and
S. aureus N315. Two models from Bosi et al. and Magnus-
déttir et al. are available for the strain USA300-FPR3757,
which can simulate growth. The model from Magnuisdoéttir
et al. contains gene identifiers that cannot be resolved within
the PATRIC database’’, leading to its exclusion from this
analysis. With only one remaining model from Bosi et al.,
a comparison of predicted gene essentialities for the strain
USA300-FPR3757 is not possible anymore.

Becker et al., Heinemann et al., and Bosi et al. curated
models for the strain N315 simulating growth. The model
from Heinemann et al., however, had to be excluded from
the single-gene-deletion analysis as the model did not contain
any GPRs and, thus, no genes. We downloaded the list of
302 essential genes for N315 from the Database of Essential
Genes (DEG)”® and mapped all genes to the respective KEGG
gene identifier. The medium is indicated as a rich medium in
the DEG, but no further description of the chemical definition
is given. Therefore, all exchange reactions were opened for
the single gene deletion analysis.

The model from Bosi et al. predicted 117 essential genes,
while the model from Becker et al. predicted 80. Of the
302 essential genes from the DEG, only 176 and 107 genes
were present in the models from Bosi ef al. and Becker et
al., respectively. From the 117 predicted essential genes by
Bosi et al., 27 (23.1 %) were predicted correctly, while 90
(76.9 %) of the predicted essential genes are not in accordance
with the experimentally derived essential genes. Similarly,
from the 80 predicted essential genes by Becker et al., 18
(22.5 %) were predicted correctly, while 62 (77.5 %) of the
predicted essential genes are not listed in the DEG. One
possible explanation for the similar predictions of essential
genes is that the models from Bosi ef al. are based on the
model from Becker et al. The low number of true positive
predicted essential genes could indicate further refinement
potential of the two models.

4.4 Similarities between models

The analysis of the growth capabilities implied a clustering
of models with similar growth behavior, especially for the
models by Bosi et al. To identify further similarities between
the models, the reaction sets were compared. Mapping iden-
tifiers between different databases induces a bias, since a
complete mapping is currently not feasible. Tools, such as
ModelPolisher®, can be helpful for annotating and compar-
ing models. However, these tools rely on cross-references in
various databases, which holds some challenges: The tools
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can only search with the correct identifier; if a model, how-
ever, has identifiers not included in the database, the tools will
not find any annotations for that model instance. One other
challenge lies within the administration and topicality of the
databases. Changes in one database might not be reported
or updated in the cross-references of other databases, lead-
ing to erroneous allocations that would bias the result of the
comparison.

Heat maps of reaction similarity

Since the models have diverging identifiers, we divided them
into three different groups. The first group comprises the 33
models from the Path2Models project with consistently mixed
identifiers The second group includes all thirteen models by
Lee et al. with KEGG IDs. The third group includes all mod-
els with BiGG identifiers, namely all models by Bosi et al.,
as well as the models iISB619 and iYS854. Furthermore, this
third group contains the model created by Magnisdéttir et al.
This model possesses VMH identifiers, however, those iden-
tifiers can easily be converted to BiGG identifiers since they
bear a resemblance to the BiGG IDs. Within these groups, all
reactions were listed and checked for their occurrence in the
models. With this table of reaction occurrences, the Jaccard
distance was calculated between all pairwise combinations of
the models.

With this distance matrix, the heat-map in figure 5 on the
next page was created. The models iSB619, Magnusdottir,
and /YS854 vary widely between each other and the models
by Bosi et al. Within the Bosi models, clusters of more and
less similar models can be identified (figure Sc on the follow-
ing page). Such clusters are expected, as we assumed that
genetically similar strains also lead to more similar GEMs,
due to the gene-protein-reaction associations (GPRs). For ex-
ample, the two closely related USA300 strains TCH1516 and
FPR3757 have a distance value of 0.015, while the distance
to one of the isolates of the ST228 lineage (ST228-16035) is
0.160. Strain MRSA252 is reported to be genetically diverse
compared to other S. aureus strains. Its distance, however, to
the USA300-TCH1516 strain is smaller (0.06) than the dis-
tance to the isolates of the ST228 lineage. Hence, the genetic
differences between the different strains are not necessarily
reflected in their respective GEMs so far.

The distances between the models with BiGG IDs (group
three) ranged from O to 0.8, with the maximal distances be-
tween the models iSB619, Magnusdéttir, and iYS854. The
models by Lee et al., however, are more similar, indicated
by the scaling of the color-bar that ranges from 0 to 0.05.
The model of the S. aureus strain TCH1516 differs the most
from all other models (figure 5b on the next page). Unlike the
models from Bosi et al., the two USA300 strains (TCH1516
and USA300) do not cluster. They have a distance of 0.037.
In contrast to the models of Lee et al., the strain TCH1516
does not stand out in the groups with BiGG IDs and the
Path2Models models.

Most distances between the models from the Path2Models
project (group one), ranged from 0.25 to 0.35. However, the
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model of strain RF122 protrudes with a mean distance of
0.62. This trend can also be observed in the heat-map of the
models by Lee et al., but not as prominent as in figure 5a on
the following page. One possible explanation is given in the
taxonomy for the S. aureus strain RF122, which is an bovine
mastitis-associated isolate with notable differences to human
clones of S. aureus”®. This difference is, however, not as
obvious in the Models of Bosi et al. compared to the models
of Lee et al. and the Path2Models project.

Venn diagrams of gene similarity

Despite significant effort to standardize and consistently an-
notate all models using different annotating tools, such as
the ModelPolisher, or database requests for aliases from da-
tabases like BiGG or ModelSEED, a satisfying comparison
of the reaction sets between different identifiers is still not
possible. For example, for the models with KEGG identifiers
from Lee et al., we could not use the ModelPolisher, as this
annotation tool currently requires BiGG identifiers. For that
reason, we browsed the BiGG Models Database locally for
cross-references to KEGG identifiers. Unfortunately, 842 out
of 1,486 KEGG reaction identifier were not referenced at all
in BiGG, 359 KEGG identifiers were not uniquely mapped
to a BiGG identifier, and only 285 identifiers were uniquely
mapped. We checked some of the non-referenced KEGG
identifiers in the ModelSEED database for aliases but could
not determine the respective identifiers.

For that reason, we looked at the gene content of the
models. Most models used KEGG gene identifiers, regardless
of the identifier database of the reactions and metabolites.
As the different strains have strain-specific gene identifiers,
the following analysis was conducted strain-wise. Strains
with at least three models from various resources were taken
into account (see also figure 2 on page 6): For eleven strains,
three models are available, for the strain USA300-FPR3757,
four models are present in this collection, and for the strain
N315, five models are available. However, the SBML file of
the N315 model by Heinemann er al. does not include any
genes. Thus, the model was excluded from the comparison.
Same accounts for the RF122 strain-specific model by Lee et
al., which also does not contain any genes. For this reason,
the model was also excluded from the analysis. By that, the
strain RF122 did no longer fulfill the criterion of at least three
available models.

The gene sets from the remaining models were compared.
As indicated, most models used KEGG gene identifiers, but
not all. The model by Magnusdéttir et al. included strain-
specific and unspecific PATRIC identifiers’’. With the help of
the PATRIC ID mapping service, the respective KEGG gene
identifiers were extracted. However, this was only feasible for
the strain-specific identifiers. Despite significant effort, the
unspecific identifiers could not be resolved, as no mapping
scheme could be identified. Thus, from the 859 genes included
in the Magnusdéttir model, only 192 could be resolved to
KEGG identifiers.

Model iSB619 contained new locus tags, whereas the
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Figure 5. Model comparison based on Jaccard distance between reaction sets. The models were divided into three groups
based on their metabolite and reaction identifiers: (a) has all models of the Path2Models project with consistently mixed
identifiers, (b) has all models with KEGG identifiers (hence, all GEMs by Lee ef al.), and (c) contains all models with BiGG
identifiers. Within the three groups, all pairwise Jaccard distances were calculated based on the models’ reaction sets. The
distances are displayed in the heat map. The color bar range is equal for (a) and (c) for better comparison. As the distances in

(b) are much smaller, the color bar’s range was adapted.
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Figure 6. Strain-specific model comparison based on gene sets. For all models occurring in at least three different

resources, the gene content was compared strain-specifically. After unifying the gene identifiers to KEGG IDs, Venn diagrams
were created comparing the gene content. The models from Bosi et al. have, on average, the highest gene content, explaining
the large fraction of genes occurring only in these models. The models by Lee et al. and the Path2Models project seem more
similar, which could be explained by the fact that both are curated based on the KEGG database. Although all models in one
Venn diagram (and thus, one comparison) represent the same strain, the models have differences, indicating the influence of the

reconstruction method on the final model content.
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KEGG identifiers correspond to the old locus tags. With the
GenBank flat file (gbff)!*" of S. aureus strain N315, the locus
tags were mapped. For the 619 new locus tags 611 respective
old locus tags, and thus KEGG identifiers, were extracted.

The models by Bosi et al. included mostly KEGG gene
identifiers. Within the strains JH1 and JH9, the gene identifiers
were truncated by the included word ‘DRAFT’ to make them
consistent with the actual KEGG identifiers. For example,
the initial identifier SaurJH1DRAFT 0595 was truncated
to the correct KEGG identifier SaurJH1_0595.

After these mapping and adapting steps, the gene sets
within the different strains from the different resources were
compared, and Venn diagrams were created. Across all twelve
comparisons, the models by Bosi et al. have the largest portion
of genes that are solely reflected in these models. This number
varies between 20.1 % in the N315 strain and 59 % in the New-
man strain. As these models have the highest gene content on
average with approximately 788 £ 116 genes per model, this
seems apparent. The models from the Path2Models project
have an average gene content of 519 £ 12 genes per model,
and the models by Lee et al. contain 488 + 149 genes on aver-
age. It was already mentioned that the gene identifiers from
the JH1 and JH9 models by Bosi needed to be adapted. De-
spite this adaption, only half of the gene content is present
in the other models as well. For the Newman, MW2, and
Mu3 strains, we further analyzed the gene identifiers after
these observed discrepancies between the gene contents with
the models from the other two databases. These three strain-
specific models from Bosi include non-strain-specific gene
identifiers, which could not be mapped to the corresponding
strain-specific gene identifier.

The models from Lee ef al. and the Path2Models project
are relatively similar concerning their gene content. Since
both models are curated based on the KEGG database, this
similarity is evident. The four models of the S. aureus USA300-
FPR3757 strain have a gene content overlap of 15.7 %. The
model by Magntisdoéttir et al. has only 0.3 % gene content
that is not reflected in the other three models. However, one
needs to keep in mind that many genes in the model are not
strain-specific and could not be mapped and compared.

With these twelve gene content comparisons, we again
calculated the Jaccard distance between the models from Bosi
et al., Lee et al., and the Path2Models project. As already
visible from the Venn diagrams, the models from Lee and
the Path2Models project are most similar with respect to
their gene content. They have a mean Jaccard distance of
0.288 £ 0.004. However, one might have speculated that the
models are more similar based on the Venn diagrams. It needs
to be highlighted that the Venn diagrams are calculated based
on the gene content of all compared models. In contrast, the
Jaccard distance calculates pairwise distances and, thus, only
considers two models at once. For that reason, the models
from Lee et al. and the Path2Models project are still the most
similar ones, but their identity might not be as large as first
expected when looking at the Venn diagrams. The Bosi mod-
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els have a mean distance to the Lee models of 0.666 +0.179
and to the Path2Models project models a mean distance of
0.616+0.203.

Although the different models from the various databases
reflect the same strain, the models have distinct diversities.
This can be explained by the differences in the reconstruction
process. How the model is curated seems to play a pivotal
role for the final model and its model instances. Thus, the re-
construction method needs to be chosen carefully, and manual
or semi-automated additions might be required.

4.5 Decision guidance

With the vast amount of different strain-specific S. aureus
models, the identification of the suitable GEM for a specific
research question or purpose might become difficult. Table 2
on the following page gives an overview about the main fea-
tures of the S. aureus GEMs. The features were assigned
based on the strengths of the different models or model collec-
tions after the model improvement steps. If one is interested
in simulatable models, the table guides the reader to the corre-
sponding models. By combining different required features,
the selection can be tailored. If one needs, e.g., a model
with BiGG IDs that grows on different media, the models by
Bosi et al. or the model iYS854 are suggested, depending
on the desired strain. High MEMOTE scores indicate a high
degree of annotations, which facilitates the re-usability and
comparability of a model.

A predictive value score was calculated based on the
model analysis regarding their growth capabilities and the
presence of experimental data. If a model was not simulatable,
it received a predictive value score of 0. Otherwise, a score
of 1 was added. For growth capabilities in one environment,
a score of 1 was added; for growth in multiple environments,
2 was added. For every experimental verification procedure,
such as growth verifications, auxotrophies, compliance with
physiological data, or other experiments, a score of 1 was
added. The prediction of essential genes was not included in
this score, as this analysis was only conducted for two models.
By this scheme, the model iYS854 had the highest predictive
value score of 7, followed by iMH551 and some models by
Bosi et al. The models by Bosi et al. received a score between
3 and 5, as some models do not predict growth in any tested en-
vironment, while others do. As the models from Lee ef al. and
the Path2Models project are not simulatable, they received a
predictive value score of 0. Models with high predictive value
score and high MEMOTE score are recommended for further
use, while models with low predictive value score might need
further refinement and experimental verification before usage.

This table does not contain strain-specific information.
Including the information from figure 2 on page 6 and figure 4
on page 8 will further guide the decision for a suitable model.

5 Discussion

The analyses show that despite genomic and genetic similar-
ities, GEMs of related strains are not necessarily similar to
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Table 2. Feature-based decision guidance. The main features of the S. aureus GEMs are listed and indicated with the
symbol ¥ when present. The models are assigned to the features based on their strengths after the model improvement steps. A
predictive value score was calculated as described in section 4.5 on the previous page. With the help of the features and the
predictive value score, one can identify the best suited model for the research question of interest.

Feature iSB619 iMHS551 Lee Path2Models Bosi Magnusdéttir iYS854
Database v

Simulatable models v v v v v
BiGG IDs v v v
KEGG IDs

Growth on different media v v v
High MEMOTE score v v 4
Predictive value score 3 5 0 3-5 2 7

each other. This accounts for both models of the same strain
curated by different research groups and to related strains cu-
rated by the same group. One example is the model from Mag-
nusdoéttir et al. with the S. aureus strain USA300-FPR3757
and the corresponding model from Bosi et al. Despite it is the
same strain, the GEMs are quite different in their reaction con-
tent. In contrast, the two strain-specific models of the strains
MRSA252 and USA300-TCH1516 by Bosi et al. are quite
similar despite the genetic diversity of the strain MRSA252.
This observation might have several reasons. The first, and
probably most striking, reason is the incompleteness of the
models. As high-quality genome-scale metabolic reconstruc-
tions require manual curation and evaluation'’!, and many
models introduced in this review were created automatically
or semi-automatically, some models might lack general or
strain-specific reactions. This lack of required reactions is
also visible when optimizing the flux distributions of the mod-
els. For multiple models, no growth could be simulated in
FBA, not even in full medium. This was especially the case
for the automatically curated models from the Path2Models
project and the semi-automatically curated models from Lee
et al. But also some of the automatically curated models
from Bosi et al. did not show any growth. Thus, a connection
between automated or semi-automated curation and the func-
tionality of the models seems to exist. However, automated or
semi-automated curation does not necessarily result in poor
growth prediction, especially when the basis for the (semi-)
automated processes underwent significant manual curation.
The other models from Bosi e al. showed growth on up to
four different media. The automatically constructed model by
Magnusdéttir et al. could be simulated on one medium, which
is also the case for the manually curated model iSB619.
Furthermore, some of the S. aureus strains have plasmids
carrying additional genes. For a strain-specific model, these
additional genes need to be incorporated into the GEM as well.
Especially the metabolic and transporter genes are relevant
for the strain-specific model. The plasmid of the S. aureus
strain N315, e.g., carries a gene for the cadmium resistance
transporter CadD, which facilitates the export of cadmium
ions and other cationic compounds'?. Besides further pro-
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teinogenic genes, the plasmid of strain N315 also carries a
gene for the penicillin-hydrolyzing class A (3-lactamase en-
zyme. These two genes are, e.g., also present on the plasmid
of the S. aureus strain USA300-TCH1516.

As explained previously, the challenge lies within the dif-
ferent reaction and metabolite identifiers. In this review, we
additionally tried to annotate the GEMs further to simplify
the comparison of models with differing identifiers. However,
only approximately one third of all reactions and metabolites
are annotated with identifiers of external databases. It is still
challenging to find all cross-references for a particular meta-
bolite or reaction in a specific database. For that reason, we
additionally evaluated the gene content of the strain-specific
models, as most models contained identifiers from the KEGG
database. The gene identifiers from other databases were
mapped to the KEGG identifiers. Again, a bias is introduced
when identifiers are mapped between databases: On the one
hand, not all identifiers can be resolved in the other database.
On the other hand, some identifiers do not comply with the
databases’ identifiers scheme and do not have annotations.
This makes an automated mapping of several hundred identi-
fiers infeasible. Extensive manual labor would be necessary to
map these identifiers. The usage of consistent identifiers that
comply with the database scheme and additional annotations
is highly recommended and would simplify the re-usability,
translatability, and comparability of models'’*. The compar-
ison of the strain-specific models’ gene content confirmed
that GEMs from different resources could vary, despite their
genetic equality, highlighting the relevance of the curation
process on the resulting GEM. This observation is even more
explicit when comparing the models by Lee et al. and from
the Path2Models project: both rely on the KEGG database.
However, the models are not equal, as the two groups used
different approaches for the curation of the models.

Missing reactions and strain-specific genes might also
affect the growth behavior of a strain-specific model on a
given medium. Only the model iMHS551 showed growth on
all tested media. Additional growth experiments for specific
S. aureus strains can help to identify the missing growth capa-
bilities of the model. The model’s ability to adapt to different
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environmental conditions is crucial to simulate an organism
in silico. This is also reflected in the predictive value score,
which was assigned to the models. Especially for models with
a low predictive value score, additional experiments would
help determine and also increase the predictive value of the
model.

The models from Lee et al., the Path2Models project, Bosi
et al., and Magnusdottir et al. are curated automatically or
semi-automatically. Except for the models from Bosi ef al.,
all models have a comparatively low predictive value score
than the manually curated models. The models from the
Path2Models project and Lee et al. have a score of 0. The low
score from the Path2Models projects’ models might go back
to the lack of experimental data in both the curation and verifi-
cation process, thus highlighting its importance for predictive
genome-scale metabolic reconstructions. The low score for
the models from Lee et al. accentuates the importance of
standardized GEMs, which allow re-usability. Although the
models from Bosi et al. are curated semi-automatically, their
predictive value scores are comparable high. They based
their pipeline on a manually refined model and verified their
predictions with experimental data. More experimental data
accompany more knowledge. The latest model, iYS854 has
the highest predictive value score, was manually curated, and
extensively experimentally validated. The result of such a
time- and labor-intensive work is a GEM with a high predic-
tive value and a strong recommendation for future usage.

6 Conclusion and Outlook

In this review, all 114 currently available genome-scale me-
tabolic models (GEMs) of Staphylococcus aureus were pre-
sented and evaluated. It serves as guide for the different
available reconstructions in various databases, using differing
metabolite and reaction identifiers. Some models originally
comprise a large number of reactions, metabolites, and genes,
after undergoing several manual curation steps and extensive
annotating. Such models have a high MEMOTE score. The
model with the highest MEMOTE score is the iYS854 model
by Seif et al. Other models have a vast amount of reactions and
metabolites, such as the reconstructions of the Path2Models
project. Such models could, e.g., serve as information sources
for the reconstruction or refinement of already existing strain-
specific models. Based on the information regarding avail-
ability, model format, MEMOTE score, growth behavior, used
database identifiers, predictive value, and similarities between
models, together with a previously defined research question,
the appropriate genome-scale reconstruction can be chosen
from the vast amount of available GEMs. Another approach
would be to use the strengths of every reconstruction and in-
corporate it into merged or combined models, which increase
the correctness and the predictive value of a strain-specific
model. Despite the vast amount of presented models in this
review, there is no suitable model for every S. aureus strain
available. Furthermore, missing annotations or identifiers that
do not comply with the database identifier scheme impede
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the models’ re-usability and comparability. Standardization
of all models would be desirable but is currently not feasible
with the available tools without extensive manual labor for
hundreds of identifiers. No omics data was incorporated into
many of the published GEMs so far. Information about tran-
scription profiles, for example, can help to refine metabolic
reconstructions to better reflect the metabolic state of an or-
ganism in a defined environment. The incorporation of omics
data can thus increase the predictive value of genome-based
metabolic reconstructions'**.

However, with the help of the already available reconstruc-
tions and further information, stain-specific models could be
created or extended. Information from literature, merging of
strain-specific models, and manual curation steps could fur-
ther improve the predictive value of simulations and analyses
of metabolic features of S. aureus. Having predictive GEMs
can eventually lead to the identification of novel targets for
antimicrobial therapies in the fight against antibiotic resistant
strains of S. aureus.

7 Data availability

The availability of all models, including the improved models,
is listed in the supplementary table S1 on page 20. The model
collection was deposited in BioModels'?> within COMBINE
archive files (in OMEX format)'’ and assigned the iden-
tifiers (1) MODEL2007110001, (2) MODEL2007150001,
and (3) MODEL2007150002.

8 Code availability

All the necessary scripts and resources for model modifica-
tions and improvements are available in a git repository at
github.com/draeger—-lab/S_aureus_GEMs_Col-
lection.
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Table S1. Availability of all models in the S. aureus collection, including a direct link to their publication, and the
model file(s). The link to the models refers to the most recent models. In the case of Lee et al., the Path2Model project, and
Bosi et al., the models were extensively curated for this study and uploaded to the BioModels Database. The link between these
three collections refers to the new version of the files. For all other models, the link points to the resource where the model was
initially made available.

Model Author Year Link to publication Link(s) to model
Count

1 Becker et al. 2005 identifiers.org/pubmed: 15752426 identifiers.org/bigg.model:iSB619
identifiers.org/biomodels.db:MODEL 1507180070
1 Heinemann 2005 identifiers.org/pubmed: 16155945 identifiers.org/biomodels.db:MODEL1507180072

etal.
13 Leeetal. 2009 identifiers.org/pubmed:17038190 identifiers.org/biomodels.db/MODEL2007150001
33 Path2Models 2013 identifiers.org/pubmed:24180668 identifiers.org/biomodels.db/MODEL2007150002
project
64 Bosi et al. 2016  doi.org/10.1073/pnas.1523199113 identifiers.org/biomodels.db/MODEL2007110001
1 Magnusdottir 2017 doi.org/10.1038/nbt.3703 www.vmh.life/#microbe/Staphylococcus_aureus_
etal. subsp_aureus_USA300_FPR3757
1 Seifetal. 2019 identifiers.org/pubmed:30625152 identifiers.org/bigg.model:1Y S854
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