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ABSTRACT

Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide.
Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and
prominent modern pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and
antistaphylococcal therapies. Recent advances in whole-genome sequencing and high-throughput techniques facilitate the gen-
eration of genome-scale metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens.
Hence, comprehensive and predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets
for antimicrobial therapies. This review aims at giving an overview of all available GEMs of multiple S. aureus strains. We
downloaded all 114 available GEMs of S. aureus for further analysis. The scope of each model was evaluated, including the
number of reactions, metabolites, and genes. Furthermore, all models were quality-controlled using MEMOTE, an open-source
application with standardized metabolic tests. Growth capabilities and model similarities were examined. This review should
lead as a guide for choosing the appropriate GEM for a given research question. With the information about the availability, the
format, and the strengths and potentials of each model, one can either choose an existing model or combine several models to
create models with even higher predictive values. This facilitates model-driven discoveries of novel antimicrobial targets to fight
multi-drug resistant S. aureus strains.
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1 Introduction1

Staphylococcus aureus is an opportunistic pathogen that asymp-2

tomatically and permanently colonizes the nose of up to one3

third of the human population1. It is a commensal of the4

mucosae and the human skin, but can also cause severe infec-5

tions with high morbidity, mortality, and healthcare-associated6

costs2. Methicillin-resistant S. aureus (MRSA) is one of the7

most successful modern pathogens3. In 2017, the WHO pub-8

lished a priority pathogens list for the research and develop-9

ment of new antibiotics. Among the clarithromycin-resistant10

Helicobater pylori and the vancomycin-resistant Enterococcus11

faecium, S. aureus, especially the methicillin-resistant S. au-12

reus (MRSA), vancomycin intermediate (VISA), and van-13

comycin resistant strains (VRSA), are high priority pathogens4.14

Staphylococcus aureus bacteremia (SAB) is a common15

infection5. The incidence rate ranges from approximately16

20 cases per 100,000 persons per year in Canada6 to approxi-17

mately 50 cases per 100,000 persons, inferred from the United18

States surveillance data7. The higher incidence rate might be19

due to the greater burden of MRSA5. SAB can be classified20

into three categories: (1) Hospital onset of health-care asso-21

ciated infections, e.g., nosocomial; (2) Community onset of 22

health-care associated infections, and (3) community acquired 23

infections8. Besides SAB, S. aureus, and especially MRSA, 24

is the leading cause of endocarditis, bone and joint infections, 25

skin and soft tissue infections, and further hospital-acquired 26

infections3. A study from 2013 revealed over 80,000 invasive 27

infections and 11,000 deaths per year due to MRSA in the 28

United States. Compared to the previous years, the number of 29

invasive MRSA infections declined slightly9. Unfortunately, 30

the rate decline of MRSA infections has recently slowed down 31

according to the ‘Morbidity and Mortality Weekly Report’ of 32

the Centers for Disease Control and Prevention10, while the 33

number of methicillin-susceptible S. aureus (MSSA) blood- 34

stream infections even slightly increased. In 2017, nearly 35

120,000 S. aureus bloodstream infections and 20,000 associ- 36

ated deaths occurred in the United States10. Hence, strategies 37

for preventing infections inside and outside acute care settings 38

are required to further reduce the amount of invasive MRSA 39

infections. 40

The transmission of S. aureus in general, and MRSA in 41

particular, is facilitate by the long persistence time of S. aureus 42
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colonization. Nearly any item with skin contact can serve as43

fomes. In a hospital setting, this can include coats and clothes44

from doctors and nursing staff, pens, and mobile devices, such45

as cell phones3. Studies also suggest that infecting S. aureus46

isolates also persist in households three months after skin47

infections11. Even across and within athletic fitness facilities,48

S. aureus is found on different surfaces, including weight49

plates and treadmill handles12.50

Besides the challenge of controlling S. aureus coloniza-51

tion in multiple environments, S. aureus strains evolve and52

adapt to different environments due to variability in diversity,53

mobile genetic elements (MGEs), and accumulation of mu-54

tations13–15. Mediators of virulence, immune evasion, and55

antibiotic resistance are commonly found within the acces-56

sory components of the S. aureus genomes, consisting of57

MGEs with pathogenicity islands, chromosomal cassettes,58

transposons, plasmids, and bacteriophages. Compared to the59

core genome, the accessory genome is more variable and also60

often more strain-specific3. MGEs in S. aureus can carry61

antibiotic resistance genes for resistances against penicillin,62

trimethoprim, erythromycin, clindamycin, and tetracyclines15.63

However, strains not only evolve and develop antibiotic resis-64

tances, they even replace each other within the same host14.65

To fight S. aureus infections, several new antimicrobial66

and antistaphylococcal drugs have been developed recently3, 13,67

including oritavancin and ceftaroline16, 17. Despite the devel-68

opment of new antibiotics, S. aureus in general, and MRSA69

in particular, remains a prominent pathogen with persisting70

high mortality3. Since S. aureus will continue to evolve and71

develop new resistances13, the research on S. aureus and the72

development of new antimicrobials is of urgency to fight S. au-73

reus infections.74

One possibility for the identification of novel targets for75

antimicrobial therapies is the use of genome-scale metabolic76

models (GEMs). Advances in high-throughput techniques77

and whole-genome sequencing facilitate the construction of78

GEMs18, 19. They are reconstructed based on information79

from genome sequences and experimentally obtained bio-80

chemistry19, 20. With this information, stoichiometry-based81

and mass-balanced metabolic reactions can be formulated82

using gene-protein-reaction associations (GPRs). These stoi-83

chiometry-based GEMs can predict metabolic flux values84

within the constructed network21 and optimization techniques.85

Optimization techniques, such as flux balance analysis (FBA),86

use linear programming20. Recent advances in the reconstruc-87

tion of GEMs and the fast analysis and integration of omics88

data enabled metabolic studies with model-driven hypotheses89

and context-specific simulations22, 23. Among the multiple90

applications of GEMs is the drug targeting in pathogens and91

the modeling of interactions among multiple cells or organ-92

isms20. These approaches could be used to investigate and93

develop novel antimicrobials or antistaphylococcals. How-94

ever, depending on the pathogen and strain, various models95

of S. aureus strains might be required to investigate the best96

antistaphylococcal target for a certain S. aureus strain.97

In this review, we present all currently available GEMs of 98

S. aureus from various databases. The available models were 99

compared regarding their scope, their availability, their format, 100

and their immediate usability. For various reasons, some of 101

the models required revisions, such as converting spreadsheet 102

file formats to SBML24 or ensuring the syntactic validity of 103

SBML files. After having all models available as syntactically 104

valid SBML files, their growth-capabilities, their predictive 105

value, and the similarities between the various models were 106

investigated. This review gives an overview of the available 107

models and their properties to identify the appropriate model 108

for a specific research question. 109

2 Model Overview 110

Databases such as BiGG25 or BioModels26 comprise a variety 111

of genome-scale metabolic models. Together with models 112

from other databases and supplementary information from sci- 113

entific publications, a large number of genome-scale metabo- 114

lic models of S. aureus is available: The BioModels database 115

contains two models of S. aureus by Becker et al.27 and Heine- 116

mann et al.28, both build in 2005. The BioModels database 117

also harbors the models created within the Path2Models project29.118

In this project, 33 whole genome metabolism models of S. au- 119

reus were automatically created and curated between 2012 120

and 201329. The BiGG Models Database contains two GEMs 121

of S. aureus: the already mentioned model by Becker et al.27
122

and a recently published model by Seif et al.30 from 2019. 123

Lee et al. published thirteen genome-scale metabolic recon- 124

structions of multiple Staphylococcus aureus strains in 200931. 125

In 2016, Bosi et al.32 curated and published 64 genome-scale 126

metabolic models of various S. aureus strains. Together with 127

the S. aureus model published within the gut microbiota re- 128

source of the Virtual Metabolic Human (VMH) Database33, 34, 129

a total number of 114 genome-scale metabolic models of 130

Staphylococcus aureus exists today. 131

All models were downloaded, tested, and evaluated us- 132

ing COBRApy36 and MEMOTE35. MEMOTE is an open- 133

source software that contains a standardized and community- 134

maintained set of metabolic model tests35. The overall ME- 135

MOTE score comprises information about annotations of me- 136

tabolites, reactions, and genes, the inclusion of Systems Bi- 137

ology Ontology (SBO) terms, and the model’s consistency. 138

Within the annotations sections, the presence and conformity 139

of different database identifiers is evaluated. In the SBO term 140

section, the annotation of model instances with appropriate 141

SBO terms is assessed. The model consistency check com- 142

prises tests to evaluate the stoichiometric consistency, mass 143

and charge balances, metabolite connectivity, and unbounded 144

fluxes in default medium35. However, the MEMOTE score 145

currently does not consider information about e.g., realistic 146

growth rates, orphan or dead-end metabolites, stoichiomet- 147

rically balanced cycles, or duplicated reactions. MEMOTE 148

includes this information in its report but does not incorporate 149

it into the calculated score. 150

Renz and Dräger Collection of 114 Genome-Scale Metabolic Models of S. aureus 2/20

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2021                   doi:10.20944/preprints202104.0244.v1

https://doi.org/10.20944/preprints202104.0244.v1


Table 1. Overview over the available S. aureus models. All GEMs were downloaded from the respective database or from
the supplements of the publication. Their format and SBML version were determined. The initial growth was tested (indicated
with the symbol 4 in case of success) and the MEMOTE35 score was calculated for each model. The information for the models
by Bosi et al. was determined after the debugging steps (see figure 3 on page 7 steps 1-7). These debugging steps only served
the purpose of generating valid SBML files. No additional improvements, which could increase the MEMOTE score, were
performed at this point. The curation column indicates, whether the model was curated manually (m), automatically (a), or
semi-automatically (s).

Model Year Model
Count

Availability Format MEMOTE
Score

Initial
Growth

Curation

iSB61927 2005 1 BiGG & BioModels Database SBML L3V1 with fbc 67 % 4 m
iMH55128 2005 1 BioModels Database SBML L3V1 with fbc 36 % 4 m
Lee31 2009 13 Supplements Excel spreadsheet file 65 % s
Path2Models29 2013 33 BioModels Database SBML L2V4 48 % a
Bosi32 2016 64 Supplements SBML L3V1 with fbc 36 % 4 s
Magnúsdóttir33 2017 1 VMH Database SBML L3V1 with fbc 45 % 4 s
iYS85430 2019 1 BiGG Models Database SBML L3V1 with fbc 81 % 4 m

iSB619– GEM by Becker et al.151

The first, initial draft of an S. aureus genome-scale recon-152

struction was curated by Becker and Palsson in 2005. They153

reconstructed the S. aureus strain N315 with 619 genes, 743154

reactions, and 655 metabolites. The GEM was curated based155

on the key metabolic pathways in the Kyoto Encyclopedia156

of Genes and Genomes (KEGG) database37. Subsequently,157

The Institute for Genomic Research (TIGR) website38 was158

browsed for additional reactions. 91 % of all reactions are159

linked with genes or open reading frames in so-called gene-160

protein-reaction associations (GPRs). This first-draft GEM is161

almost completely elementally and charge balanced. The bio-162

mass objective function was formulated based on the biomass163

data from Bacillus subtilis39 and substituted where neces-164

sary. It contains metabolites, such as amino acids, nucleotides,165

lipids, and cell wall constituents27. The first S. aureus GEM166

reached a MEMOTE score of 67 % and is available as a file167

in SBML Level 3 Version 140 format with flux balance con-168

straints (fbc) extension41 and BiGG identifiers.169

iMH551– GEM by Heinemann et al.170

In the same year, the second genome-scale reconstruction171

of S. aureus was published by Heinemann et al. Both re-172

search groups curated the S. aureus strain N315 and used the173

KEGG37 and TIGR database38, together with literature for174

genome regions with limited sequence homology for gene175

function assignments. A new biomass objective function was176

specifically defined for S. aureus based on integration of lit-177

erature data from a variety of different S. aureus strains. The178

biomass objective function was build upon the five polymer179

categories DNA, RNA, proteins, lipids, and cell wall com-180

ponents, and extended by pool solutes. The reconstruction181

includes 801 metabolites and 860 reactions that are based on182

551 genes and simulates aerobic and anaerobic growth28. This183

S. aureus GEM reached a MEMOTE score of 35 % and is also184

available as SBML Level 3 file with fbc extension. The genes185

are not included in the SBML file. 186

GEMs by Lee et al. 187

Lee et al. utilized the ERGO™ bioinformatics suite42 and the 188

KEGG ligand/reaction database37 to curate metabolic recon- 189

structions of multiple S. aureus genomes. The DNA sequence 190

and associated open reading frames (ORFs) or protein se- 191

quences were integrated into the ERGO genome database. 192

ORFs were called via a combination of programs and anno- 193

tated automatically or manually. BLAST was used to compute 194

the protein similarities. Functional assignments, relationship 195

computation, and pathway analyses based on existence of or- 196

tholog and protein family clusters led to automated metabolic 197

reconstructions. Manual steps included the review of every 198

gene in the genome, pathway curations, and the considera- 199

tion and reconciliation of motif/domain database results for 200

functional assignments. For identified missing steps within a 201

certain pathway, Lee et al. searched for orthologs or published 202

biochemical activities. For all complete, incomplete, or partial 203

EC number annotations, associated reactions were identified 204

via the ERGO pathway collections and KEGG database. Lee 205

et al. used both biomass compositions from Becker et al.27
206

and Heinemann et al.28 for their analyses. On average, the 207

thirteen S. aureus reconstructions included 1,476±14 reac- 208

tions and 1,406±11 metabolites. All models are available as 209

Excel spreadsheet files with KEGG identifiers. 210

GEMs from Path2Models 211

More than 140,000 freely available and automatically gen- 212

erated mathematical models from pathway representations 213

are available through the Path2Models project. KEGG37, 214

BioCharta43, MetaCyc44, and SABIO-RK45 served as databa- 215

ses to generate three types of models, including genome-scale 216

metabolic reconstructions. The pipeline for generating GEMs 217

starts with the extraction of pathway data from KEGG37 and 218

MetaCyc44. To reconcile the different metabolite and reaction 219

identifiers, MNXref was used46. MNXref was further used 220
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Figure 1. Properties of all available S. aureus models and
their scopes. For all models, the number of reactions,
metabolites, and genes in the model is illustrated. MEMOTE
conducts standardized and community-maintained metabolic
tests for quality control and quality assurance of
genome-scale metabolic models (GEMs) and assigns the
tested model a score ranging from 0 % to 100 %. Lee et al.31,
Bosi et al.32, and the Path2Models Project29 published a
collection of different S. aureus models. For the collections,
the mean number of model instances is shown and the error
bar indicates the standard deviation.

to define default metabolite formulas and charge states. It221

allowed the mapping to different databases for a semantical222

annotation in accordance with the Minimal Information Re-223

quired In the Annotation of Models (MIRIAM) guidelines47.224

To all GEMs, a default biomass objective function contain-225

ing all 20 amino acids, RNA and DNA nucleotide precursors,226

glycogen, and ATP was added. Between 2012 and 2013, 33227

S. aureus GEMs were curated with the help of this pipeline,228

including one bovine strain. This strain had 6,110 reactions,229

4,416 metabolites, and 1,198 genes. The other S. aureus230

GEMs have on average 3,064±103 reactions, 2,186±75 me-231

tabolites, and 519±12 genes. All models have a MEMOTE232

score of 48 % and are available at the BioModels database as233

SBML Level 2 files48 with mixed nomenclature.234

GEMs by Bosi et al. 235

In 2016, Bosi et al. constructed 64 GEMs of different S. au- 236

reus strains. They started by extending and adding content 237

from KEGG37, Model SEED49, and MetaCyc44 to the S. au- 238

reus N315 model iSB619 by Becker et al. This manually 239

curated model was used as reference for other S. aureus 240

strains. Shared genes and reactions were identified and sub- 241

sequently, strain-specific metabolic content available from 242

KEGG37, Model SEED49, and BioCyc50 was manually added 243

to the strain-specific GEMs. Since an S. aureus biomass com- 244

position was not available, the biomass objective functions 245

from Becker et al.27 and Heinemann et al.28 were combined 246

and S. aureus-specific data regarding the fatty acid composi- 247

tion in the biomass were used to adjust the biomass objective 248

function. A gap-filling step further refined the models. On 249

average, the models have 1,460±94 reactions, 1,446±47 250

metabolites, and 788±116 genes with an average MEMOTE 251

score of 36±1 %. All models are available as SBML Level 3 252

files51 with fbc extension and BiGG nomenclature. 253

GEM by Magnúsdóttir et al. 254

To elucidate the role of microbial communities in human 255

metabolism and health, Magnúsdóttir et al. semi-automatically 256

generated genome-scale metabolic reconstructions of 773 hu- 257

man gut bacteria, including S. aureus USA300-FPR375733. 258

By using a comparative metabolic reconstruction method that 259

propagates refinements from one metabolic reconstruction to 260

others, the model quality of all 773 models was improved. The 261

basis for each reconstruction were draft GEMs from Model 262

SEED49 and KBase52 including gap-filling, refinement via 263

rBioNet53, and quality control and quality assurance testing. 264

Further refinement steps included the verification of reaction 265

directionalities as well as mass and charge imbalances. The 266

reconstructions were extend by gut-microbiota specific subsys- 267

tems and central metabolic subsystems, and anaerobic growth 268

was enabled. Leak tests and the removal of infeasible flux 269

loops further refined the model. The S. aureus model con- 270

tains 1,403 reactions, 1,193 metabolites, and 859 genes, and 271

reached a MEMOTE score of 45 %. It is available as SBML 272

Level 3 file with fbc extension and VMH nomenclature. 273

iYS854– GEM by Seif et al. 274

Seif et al. manually reconstructed a comprehensive genome- 275

scale metabolic model of S. aureus USA300 str. JE2 contain- 276

ing 886 genes, 1,455 reactions, 1,335 metabolites, and 673 277

three-dimensional protein structures. The GEM was build 278

upon one of the reconstructions of Bosi et al.32. Extensive and 279

detailed manual curation was supported by literature reviews 280

and network evaluations. The initial model was extended 281

by an updated biomass objective function. Model instances, 282

such as genes, reactions, and metabolites, were enriched with 283

cross-references and metadata. More than 50 metabolic sub- 284

modules were examined, curated, and added to the GEM, 285

together with over 200 confidence scores and 300 references. 286

By this manual curation, 569 new metabolic processes, 214 287

new ORF assignments and 207 new metabolites were added. 288

Renz and Dräger Collection of 114 Genome-Scale Metabolic Models of S. aureus 4/20

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2021                   doi:10.20944/preprints202104.0244.v1

https://doi.org/10.20944/preprints202104.0244.v1


Experimental validation of the model revealed an 85 % agree-289

ment with gene essentiality data and 68 % agreement with290

experimental physiological data30. A model evaluation with291

MEMOTE revealed with 81 % the highest MEMOTE score of292

all tested models. The model is available as SBML Level 3293

file with fbc extension and BiGG identifiers.294

Presence of strains295

The 114 currently available GEMs divide into 65 different296

S. aureus strains. In figure 2 on the following page, the di-297

verse S. aureus strains and their occurrence in the different298

publications is illustrated. Some strains, such as USA300-299

FPR3757 or N315 occur several times in different databases.300

Others, like the GEM for S. aureus strain JE2 occur only once301

in literature so far. The colors indicate the metabolite and reac-302

tion identifier in the respective model. Among the five models303

of the strain N315, two models exist that both carry BiGG304

identifiers. Models with same identifiers can be compared305

more easily than models with discriminating identifiers. Thir-306

teen S. aureus strains occur at least in three different databases307

or publications with varying identifiers.308

Due to the vast amount of different S. aureus strains, we309

elucidate only the strains that are shared over multiple da-310

tabases. As already mentioned, the GEMs of the S. aureus311

strain N315 are the most prevalent. This strain was isolated312

from the pharyngeal smear of a Japanese patient in 198254.313

It is a methicillin-resistant S. aureus (MRSA). The only ef-314

fective antibiotic against it was vancomycin. However, in315

1997, a vancomycin-resistant MRSA strain, Mu50, was dis-316

covered in a Japanese infant with a surgical wound infec-317

tion54. The closely related strain Mu3 is a hetero vancomycin-318

intermediate MRSA strain. Strains with heterogeneous van-319

comycin resistance can spontaneously produce cells with in-320

creasing resistance against vancomycin55, 56.321

The isolates JH1 and JH9 stem from a series of MRSA322

isolates obtained from a patient receiving extensive therapy.323

These strains are also vancomycin-intermediate S. aureus.324

The first isolate, JH1, was taken before the chemotherapy and325

was fully susceptible to vancomycin. The last isolate, JH9,326

from the end of the therapy showed decreased susceptibility327

to vancomycin57.328

The S. aureus strains of type USA300 are clones of the329

community-acquired MRSA58, 59. It causes invasive infec-330

tions in children and adults in the USA58, but also in Canada331

and Europe59. It is suggested that USA300 is more virulent332

than other community-acquired MRSA strains58. FPR3757333

is a multidrug-resistant USA300 strain with acquired mobile334

genetic elements (MGEs) encoding resistance and virulence335

determinant that probably lead to enhanced pathogenicity59.336

The other USA300 isolate, TCH1516, also named USA300-337

HOU-MR, was isolated at the Texas Children’s Hospital in338

2007. Significant differences to other MRSA strains lie within339

the plasmid content and the antibiotic susceptibility profiles58.340

MW2 is another community-acquired MRSA isolate. It341

carries a wide range of virulence and resistance genes60. At342

the moment, more than fifteen different pathogenicity islands 343

are identified in S. aureus. Interestingly, MW2 contains almost 344

the same complement of pathogenicity islands as USA300- 345

TCH151658. In contrast, the S. aureus strain COL contains six 346

pathogenicity islands, such as Mu50, but in different combina- 347

tions58. COL is one of the first MRSA isolates from the early 348

1960s. It is a penicillinase-negative strain61, 62. In contrast to 349

the highly virulent MW2 strain, where virulence factors are 350

found outside of prophages, fewer virulence factors are found 351

outside of prophages in S. aureus strain Newman. This strain 352

carries four integrated prophages and two large pathogenic- 353

ity islands with important contributions for the pathogenesis. 354

This S. aureus strain is susceptible to methicillin63. 355

As the Newman strain, the S. aureus isolate MSSA476 is 356

a methicillin-susceptible clone. It is a community-acquired 357

strain, such as MW2. It was isolated in 1998 and susceptible 358

to most commonly used antibiotics, excluding penicillin and 359

fusidic acid64. In contrast MRSA252 is a clinically important 360

hospital-acquired MRSA lineage. It is genetically diverse to 361

other S. aureus strains64. 362

S. aureus does not only infect humans, it is also the cause 363

of a mastitis in cattle. Strain RF122 contains genomic features 364

that distinguish the human and the bovine pathogens65. 365

Eight different S. aureus isolates belong to the South Ger- 366

man clone lineage ST228. This clone spread over ten years in 367

a hospital in Switzerland. The isolates were collected between 368

2001 and 2008. The eight isolates represent the evolutionary 369

history of the clone. As many others, it is an MRSA66. 370

3 Model improvements 371

A variety of different S. aureus models from various strains is 372

available. However, not all 114 downloaded S. aureus models 373

were of the same quality: Some SBML files were syntactically 374

invalid, others utilized an older SBML format, or were not 375

available as SBML file at all. To provide a collection of 376

usable and updated SBML models, we performed debugging 377

and/or improvement steps on some of the models. Models 378

with valid SBML files of the latest level were not improved. 379

All debugging and improvement steps served the purpose of 380

standardizing and annotating the models. No content changes 381

were performed that affect model calculations. 382

GEMs by Bosi et al. 383

The 64 S. aureus models by Bosi et al.32 were downloaded 384

and evaluated using COBRApy36. The built-in validity check 385

for SBML files returned a number of errors. In a first step, 386

a pipeline for debugging the errors was created. All files 387

lacked the XML declarations, which was added together with 388

the XML version number and the encoding attribute. Ac- 389

cording to the SBML language specifications, metabolite, 390

reaction, and model identifier need to fulfill certain proper- 391

ties67, e.g., model identifiers cannot start with a number. The 392

identifiers were adapted according to the guidelines. The 393

downloaded SBML file contained an empty compartment list, 394

which was filled with the compartments during the debugging. 395
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Figure 2. Occurrence of models for S. aureus strains. 65 different strains of S. aureus are available over the seven
publications. Some S. aureus strains, such as the S. aureus strain USA300-FPR3757, occur in several publications, for other
strains, only one publication is available. The colors indicate the utilized metabolite and reaction identifiers in the respective
models. Models with similar or same identifiers can be compared more easily.

As the compartment list comprises all cellular compartments396

in which metabolites and reactions occur, the different com-397

partments were extracted from the metabolites’ information398

and subsequently incorporated into the compartment list. The399

charges, chemical formulas, and compartments of the models’400

metabolites were adapted or added, where necessary. After401

these debugging steps, the models were exported as valid402

SBML files and evaluated with MEMOTE. The MEMOTE403

score of 36 % in table 1 on page 3 is the score after these404

debugging steps, since MEMOTE requires a syntactically valid405

SBML file as input.406

Since a pipeline for altering all 64 S. aureus GEMs al-407

ready existed, we added further steps to the pipeline to extend408

the models with respect to their annotations. With the use of409

the Systems Biology Ontology (SBO), semantic information410

about model components can be provided. This information411

allows an explicit and unambiguous understanding of the com-412

ponents’ meaning68. For the model genes and metabolites,413

appropriate SBO terms were defined. Reactions were divided414

into metabolic and transport reactions, each receiving different415

SBO terms. Transport reactions were even further refined to416

active, passive, or co-transport with antiporters or symporters.417

After the assignment of appropriate SBO terms, further an-418

notations were added using ModelPolisher69. ModelPolisher419

accesses the BiGG Models Database for the annotation and420

autocompletion of SBML models69. With the help of the421

ModelPolisher, additional metadata was incorporated for the422

different model instances. After those extensions, the ME-423

MOTE score of the 64 GEMs increased on average to 83±1 %,424

which is an average improvement of 47 %. The complete425

pipeline for debugging and extending all 64 models and sav-426

ing them as valid SBML files is summarized in figure 3 on the427

following page.428

All debugging and extension steps served the purpose of429

making the models simulatable. Since reaction-, metabolite-,430

or gene sets were not altered, the models’ simulation behavior431

is not affected. However, the models can now directly be used,432

as they are now all available as valid SBML files.433

GEMs by Lee et al. 434

The thirteen GEMs by Lee et al. were available as Excel 435

spreadsheet. For all reactions and metabolites in the list, 436

the respective information, such as reaction or metabolite 437

name, or chemical formula was extracted from the KEGG 438

database37, where available. Based on the information from 439

the KEGG database and the Excel spreadsheet, a consensus 440

model including all reactions was created. Both biomass 441

objective functions from Becker et al.27 and Heinemann et 442

al.28 were added to the consensus model, as well as exchange 443

reactions for all extracellular metabolites. ModelPolisher69
444

was used for annotating the model. Based on this consen- 445

sus model, the individual models of the thirteen S. aureus 446

strains were curated: The strain-specific reactions listed in 447

the Excel spreadsheet were added to the respective models, 448

and the biomass objective function from Becker et al. was 449

adapted strain-specifically. The KEGG database was browsed 450

for the strain-specific gene identifiers. The models now in- 451

clude on average 491±8 genes, except for S. aureus strain 452

RF122, where no strain-specific KEGG gene identifier was 453

available. Further annotations, such as KEGG annotations 454

and EC-codes were added to the models. Despite manual 455

effort, all thirteen models do not show growth for neither of 456

of the biomass objective functions. The MEMOTE score for 457

all models excluding the model for the S. aureus strain RF122 458

reached 66 %. Since the GEM for the RF122 strain does not 459

contain any genes, its MEMOTE score only adds up to 57 %. 460

Comparing the originally published models concerning model 461

simulations and growth predictions is not possible because 462

only Excel spreadsheets with reactions and metabolites were 463

available. 464

GEMs from Path2Models 465

The 33 models from the Path2Models project are the only 466

models of S. aureus that are still SBML Level 2 Version 470. 467

Since the fbc package is officially only available from Level 3, 468

it is not yet integrated in the files. We updated all models 469

to SBML Level 3 Version 140 with the fbc package enabled 470

using libSBML71. However, the original chemical formulas 471
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Add XML declaration including version number and encoding attribute

XML declaration

Change dashes to underscores in IDs

Dashes in IDs

Add compartments to the initially empty compartment list

Compartment list

Change charges from floats to integers

Charges

Add prefixes to model-IDs starting with a number

Model-IDs

Add compartments to metabolites that lack a compartment

Metabolite compartments

Remove parentheses from chemical formulas

Chemical formulas

•Genes
•Species
•Metabolic reactions
•Transport reactions
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Use ModelPolisher to annotate the models
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Figure 3. Debugging and extension steps in GEMs by
Bosi et al. Not all the 64 SBML files downloaded from the
supplement of Bosi et al. did directly pass the syntactic
validation. In 7 steps, the errors reported in the validity check
were solved to receive valid SBML files. The valid files were
then further extended with appropriate SBO terms for genes,
species, and reactions. In a final step, annotations were added
to the model using ModelPolisher69.

did not match the scheme that the official fbc package72 re-472

quires. In order to avoid creating syntactically invalid SBML473

files, all chemical formulas needed to be adapted according to474

the fbc specification72. The original chemical formulas can475

still be found in the notes field. This notes field further476

contained a variety of annotations from different databases,477

including BRENDA73, KEGG37, MetaCyc44, MetaNetX46,478

Rhea74, BiGG25, Reactome75, Model SEED49, Unipathway76,479

the Human Metabolome Database (HMDB)77, ChEBI78, and480

InChI79. All database annotations that can be found in the481

identifiers.org47 registry were transferred to the anno-482

tations, using identifiers.org Uniform Resource Iden-483

tifiers (URIs). The service identifiers.org provides484

directly resolvable identifiers from a multitude of different485

databases. The final and valid SBML files were evaluated486

using MEMOTE. The total score for the GEMs from the487

Path2Models project increased from 48 % to 59 % and all488

models are now available as SBML Level 3 files. Again, no489

changes on the reaction, metabolite, or gene content were490

performed, which would affect the model simulations.491

4 Model Analysis492

In the following section, we examined the available models493

for their predictive value and their similarity. As the growth494

behavior of S. aureus is reported in various defined media, the495

models’ capability of reflecting growth under these conditions496

indicates the predictive value of the model. Subsequently, the 497

publications were checked for the inclusion of experimental 498

data in the models or the verification of model-driven hypoth- 499

esis. Additionally, the predictions of gene essentialities using 500

different models are compared. In the last step, the models’ 501

similarities were examined concerning their reaction and gene 502

content. 503

4.1 Growth capabilities 504

The growth of genome-scale metabolic models on different 505

media is an important characteristic of a model’s capabilities 506

and flexibility to reflect the organisms behavior in different 507

environments. Since S. aureus is known to grow in a vari- 508

ety of different environments, its growth was simulated in 509

chemically defined environments to investigate the model’s 510

capabilities. 511

CDM. The chemically defined medium (CDM) is a complete 512

defined medium with 18 amino acids, two purines, and six 513

vitamins and initially developed to study the slime production 514

by coagulase-negative staphylococci80. It was used by Halsey 515

et al. to study the amino acid catabolism in S. aureus81. Either 516

no carbon source was added (CDM), or glucose (CDM_glc) or 517

galactose (CDM_gal) was added to the medium. The growth 518

of S. aureus strain JE2 is already computationally and experi- 519

mentally validated and verified on CDM and its variants30. 520

SNM. The primary ecological niche of S. aureus is the hu- 521

man nose82, 83. Krismer et al. developed a defined synthetic 522

nasal medium (SNM) based on the composition of nasal fluid 523

components determined by metabolomics84, 85. This medium 524

was initially developed to monitor the growth of S. aureus un- 525

der similar physiological conditions as in the nose. Growth in 526

this medium is experimentally verified for the S. aureus strains 527

USA300 LAC and Newman. Since the medium is chemically 528

defined, it can also be established in growth simulations in 529

systems biology. 530

Gut medium. Already in the 1950s and 1960s, the intestinal 531

colonization of S. aureus was reported82. Recent interest in 532

the gut microbiome revealed and enlightened the relevant role 533

and influence of S. aureus on the intestinal microbial ecol- 534

ogy and diversity83, 86–89. Intestinal colonization by S. aureus 535

is, e.g., assumed to induce pseudo-membranous colitis and 536

to change the gut microbial ecology89. Alterations in the 537

composition of the gut microbiota can result in the develop- 538

ment of chronic diseases, such as type 2 diabetes, colorectal 539

cancer, and obesity90. Hence, studying the role of S. aureus 540

in the context of the gut microbiome is of high relevance. 541

Magnúsdóttir et al. generated 773 genome-scale metabolic 542

reconstructions for 773 members of the human gut micro- 543

biome, including S. aureus. To simulate the growth in the gut, 544

they chemically defined a medium according to experimental 545

data. The medium definition was extracted from the S. aureus 546

model created by Magnúsdóttir et al.33. Magnúsdóttir et al. 547

validated two of the 773 genome-scale reconstructions experi- 548

mentally, where S. aureus was not included. However, as their 549
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Figure 4. Growth rate of S. aureus GEMs in different media. All models with initial growth (see table 1 on page 3 were
tested on the different media. For the GEMs by Bosi et al.32, the prefix ‘Bosi’ was added to the model strain name. The other
models are named according to their published model ID or, in case of the model from the VMH database, by the author.
Media types are the synthetic nasal medium (SNM), synthetic cystic fibrosis medium (SCFM), gut medium, chemically defined
medium (CDM), CDM with glucose (CDM_glc), and CDM with galactose (CDM_gal). Models that did not show growth in
any of the tested media were excluded. The color-bar indicates the growth rate: the darker the color, the higher the growth rate
of the model organism on the given medium.

model grew in the defined medium, and S. aureus is reported550

to colonize the intestine, we inferred that growth should be551

possible.552

SCFM. S. aureus does not only occur on the human skin, in553

the human nose82, 83, or the nasopharyngeal tract91, 92. It is554

furthermore observed in patients, especially in children, with555

cystic fibrosis (CF)93, an autosomal recessive disease. As one556

of the earliest and also most prevalent pathogens, S. aureus557

causes chronic airway infections in patients with CF94. To in-558

vestigate the role of S. aureus and other associated pathogens,559

such as Pseudomonas aeruginosa93, Palmer et al. developed560

a synthetic cystic fibrosis medium (SCFM), mimicking the561

nutritional composition of the sputum of patients with CF by562

chromatographic and enzymatic analyses of the CF sputum.563

This medium was initially created to analyze the nutritional be-564

havior of Pseudomonas aeruginosa in CF sputum95. Clinical565

isolates of S. aureus are reported to grow in SCFM96.566

Since the thirteen models by Lee et al. and the 33 mod-567

els from the Path2Models project did not exhibit any growth568

in full medium, these models were not included in the anal-569

ysis of growth capabilities. During the analysis, three of570

the models by Bosi et al. reported a low growth rate of571

0.00186 mmol/(gDW ·h) without any active exchange reac-572

tions (models SA_118, SA_GR1, and SA_LCT). A positive573

growth rate without active exchange reactions can be an indi-574

cator for futile cycles and a necessity for manual verification575

and refinements.576

Not all models by Bosi et al. were capable of growing on577

any of the tested media. In total, 33 out of the 61 remaining578

models were not able to grow on any of the tested media. This 579

might be explained by the auxotrophies for amino acids and 580

vitamins in several S. aureus strains observed by Bosi et al.32. 581

None of the models by Bosi et al. grew on the SCFM or the 582

gut medium. For SNM and the CDM compositions, different 583

patterns emerged: ten strains, including N315, only grew on 584

SNM, while six strains only grew on the CDM with galactose. 585

Seven strains grew on all three variants of the CDM and the 586

remaining five strain models grew on both the SNM and all 587

CDM. The model iSB619 by Becker et al. only grew on the 588

gut medium, while the model iMH551 by Heinemann et al. 589

returned a positive growth rate for all tested media types. The 590

model iYS854 exhibits growth on almost all tested media, 591

except for the SCFM and the gut medium. It is comparable 592

to the models by Bosi et al., with the difference of an higher 593

growth rate. The model by Magnúsdóttir only grew on its own 594

gut medium. In figure 4, the growth capabilities of the various 595

S. aureus GEMs under different environmental conditions is 596

illustrated. 597

4.2 Presence of experimental data 598

Besides the correct prediction of growth in a defined environ- 599

ment, a model’s predictive value also increases when labora- 600

tory data is included or in silico observations are verified in 601

laboratory experiments. 602

Automatically curated GEMs 603

The models from the Path2Models project were automatically 604

constructed. Within automated reconstruction processes, the 605

inclusion of experimental data for individual models is com- 606

plicated. For this reason, the GEMs from the Path2Models 607
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project do not contain experimental data29. Moreover, the608

models are not simulatable and, thus, can also not predict609

any growth. Verification of model predictions is hence not610

possible.611

Semi-automatically curated GEMs612

Curating a collection of multiple GEMs is time- and labor in-613

tense. Manual reconstruction would take a significant amount614

of time. Thus, the models from Lee et al., Bosi et al., and615

Magnúsdóttir et al. were constructed semi-automatically.616

Lee et al. verified their models using gene essentially617

analysis and growth experiments of two models. They found618

literature evidence and experimental verification for six of the619

44 identified genes that were essential in all strains in silico.620

The growth experiments supported their minimal-medium621

predictions31.622

The models from Bosi et al. were examined for the cor-623

rect simulation of already known auxotrophies. Furthermore,624

the predictions of the growth capability in the presence of625

spermidine and the growth on chemically defined media were626

verified in laboratory experiments for several strains32.627

The model from Magnúsdóttir et al. was curated based628

on literature-derived experimental data. However, it is not629

specified which experimental data is used exactly. Metabolic630

predictions of two of the 773 reconstructions were validated631

against experimental data33.632

Manually curated GEMs633

Becker et al., Heinemann et al., and Seif et al. manually634

curated their strain-specific GEMs. The in silico growth pre-635

dictions of the model iSB619 in a minimal medium were636

compared to laboratory experiments. Becker et al. addition-637

ally predicted essential genes. As this was the first available638

GEM of S. aureus, no experimental data was available to com-639

pare the predicted essential genes with27. The model iMH551640

was compared to available knowledge about auxotrophies in641

S. aureus. The model’s growth predictions under aerobic and642

anaerobic conditions were validated against available experi-643

mental evidence28.644

The model iYS854 underwent the most experimental veri-645

fications compared to all other models. Its predictions are in646

85 % agreement with gene essentiality experiments. The in sil-647

ico predictions of the catabolism of carbon sources are in 68 %648

agreement with experimental physiological data. They com-649

pared the models’ growth predictions on various media with650

laboratory experiments and performed extensive condition-651

specific GEM validation and evaluation in the presence and652

absence of glucose.653

4.3 Prediction of gene essentialities654

Another indicator for the predictive value of a model is the655

correctness of predicted gene essentialities. The essentiality656

of a gene depends on the environment and the availability of657

nutrients. To identify essential genes in silico, each gene is658

individually knocked out in a so-called single gene deletion659

analysis and its effect on the growth rate is evaluated. This660

analysis, however, requires a model’s capacity to simulate 661

growth in the investigated environment. As the models from 662

the Path2Models project and Lee et al. did not show any initial 663

growth (see table 1 on page 3), these models were excluded 664

from the single gene deletion analysis. Additionally, this re- 665

view aims to compare models from different sources. Since 666

the models from the Path2Models project and Lee et al. were 667

already excluded from this analysis, only two strains remain 668

with more than one model: S. aureus USA300-FPR3757 and 669

S. aureus N315. Two models from Bosi et al. and Magnús- 670

dóttir et al. are available for the strain USA300-FPR3757, 671

which can simulate growth. The model from Magnúsdóttir 672

et al. contains gene identifiers that cannot be resolved within 673

the PATRIC database97, leading to its exclusion from this 674

analysis. With only one remaining model from Bosi et al., 675

a comparison of predicted gene essentialities for the strain 676

USA300-FPR3757 is not possible anymore. 677

Becker et al., Heinemann et al., and Bosi et al. curated 678

models for the strain N315 simulating growth. The model 679

from Heinemann et al., however, had to be excluded from 680

the single-gene-deletion analysis as the model did not contain 681

any GPRs and, thus, no genes. We downloaded the list of 682

302 essential genes for N315 from the Database of Essential 683

Genes (DEG)98 and mapped all genes to the respective KEGG 684

gene identifier. The medium is indicated as a rich medium in 685

the DEG, but no further description of the chemical definition 686

is given. Therefore, all exchange reactions were opened for 687

the single gene deletion analysis. 688

The model from Bosi et al. predicted 117 essential genes, 689

while the model from Becker et al. predicted 80. Of the 690

302 essential genes from the DEG, only 176 and 107 genes 691

were present in the models from Bosi et al. and Becker et 692

al., respectively. From the 117 predicted essential genes by 693

Bosi et al., 27 (23.1 %) were predicted correctly, while 90 694

(76.9 %) of the predicted essential genes are not in accordance 695

with the experimentally derived essential genes. Similarly, 696

from the 80 predicted essential genes by Becker et al., 18 697

(22.5 %) were predicted correctly, while 62 (77.5 %) of the 698

predicted essential genes are not listed in the DEG. One 699

possible explanation for the similar predictions of essential 700

genes is that the models from Bosi et al. are based on the 701

model from Becker et al. The low number of true positive 702

predicted essential genes could indicate further refinement 703

potential of the two models. 704

4.4 Similarities between models 705

The analysis of the growth capabilities implied a clustering 706

of models with similar growth behavior, especially for the 707

models by Bosi et al. To identify further similarities between 708

the models, the reaction sets were compared. Mapping iden- 709

tifiers between different databases induces a bias, since a 710

complete mapping is currently not feasible. Tools, such as 711

ModelPolisher69, can be helpful for annotating and compar- 712

ing models. However, these tools rely on cross-references in 713

various databases, which holds some challenges: The tools 714
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can only search with the correct identifier; if a model, how-715

ever, has identifiers not included in the database, the tools will716

not find any annotations for that model instance. One other717

challenge lies within the administration and topicality of the718

databases. Changes in one database might not be reported719

or updated in the cross-references of other databases, lead-720

ing to erroneous allocations that would bias the result of the721

comparison.722

Heat maps of reaction similarity723

Since the models have diverging identifiers, we divided them724

into three different groups. The first group comprises the 33725

models from the Path2Models project with consistently mixed726

identifiers The second group includes all thirteen models by727

Lee et al. with KEGG IDs. The third group includes all mod-728

els with BiGG identifiers, namely all models by Bosi et al.,729

as well as the models iSB619 and iYS854. Furthermore, this730

third group contains the model created by Magnúsdóttir et al.731

This model possesses VMH identifiers, however, those iden-732

tifiers can easily be converted to BiGG identifiers since they733

bear a resemblance to the BiGG IDs. Within these groups, all734

reactions were listed and checked for their occurrence in the735

models. With this table of reaction occurrences, the Jaccard736

distance was calculated between all pairwise combinations of737

the models.738

With this distance matrix, the heat-map in figure 5 on the739

next page was created. The models iSB619, Magnúsdóttir,740

and iYS854 vary widely between each other and the models741

by Bosi et al. Within the Bosi models, clusters of more and742

less similar models can be identified (figure 5c on the follow-743

ing page). Such clusters are expected, as we assumed that744

genetically similar strains also lead to more similar GEMs,745

due to the gene-protein-reaction associations (GPRs). For ex-746

ample, the two closely related USA300 strains TCH1516 and747

FPR3757 have a distance value of 0.015, while the distance748

to one of the isolates of the ST228 lineage (ST228-16035) is749

0.160. Strain MRSA252 is reported to be genetically diverse750

compared to other S. aureus strains. Its distance, however, to751

the USA300-TCH1516 strain is smaller (0.06) than the dis-752

tance to the isolates of the ST228 lineage. Hence, the genetic753

differences between the different strains are not necessarily754

reflected in their respective GEMs so far.755

The distances between the models with BiGG IDs (group756

three) ranged from 0 to 0.8, with the maximal distances be-757

tween the models iSB619, Magnúsdóttir, and iYS854. The758

models by Lee et al., however, are more similar, indicated759

by the scaling of the color-bar that ranges from 0 to 0.05.760

The model of the S. aureus strain TCH1516 differs the most761

from all other models (figure 5b on the next page). Unlike the762

models from Bosi et al., the two USA300 strains (TCH1516763

and USA300) do not cluster. They have a distance of 0.037.764

In contrast to the models of Lee et al., the strain TCH1516765

does not stand out in the groups with BiGG IDs and the766

Path2Models models.767

Most distances between the models from the Path2Models768

project (group one), ranged from 0.25 to 0.35. However, the769

model of strain RF122 protrudes with a mean distance of 770

0.62. This trend can also be observed in the heat-map of the 771

models by Lee et al., but not as prominent as in figure 5a on 772

the following page. One possible explanation is given in the 773

taxonomy for the S. aureus strain RF122, which is an bovine 774

mastitis-associated isolate with notable differences to human 775

clones of S. aureus99. This difference is, however, not as 776

obvious in the Models of Bosi et al. compared to the models 777

of Lee et al. and the Path2Models project. 778

Venn diagrams of gene similarity 779

Despite significant effort to standardize and consistently an- 780

notate all models using different annotating tools, such as 781

the ModelPolisher, or database requests for aliases from da- 782

tabases like BiGG or ModelSEED, a satisfying comparison 783

of the reaction sets between different identifiers is still not 784

possible. For example, for the models with KEGG identifiers 785

from Lee et al., we could not use the ModelPolisher, as this 786

annotation tool currently requires BiGG identifiers. For that 787

reason, we browsed the BiGG Models Database locally for 788

cross-references to KEGG identifiers. Unfortunately, 842 out 789

of 1,486 KEGG reaction identifier were not referenced at all 790

in BiGG, 359 KEGG identifiers were not uniquely mapped 791

to a BiGG identifier, and only 285 identifiers were uniquely 792

mapped. We checked some of the non-referenced KEGG 793

identifiers in the ModelSEED database for aliases but could 794

not determine the respective identifiers. 795

For that reason, we looked at the gene content of the 796

models. Most models used KEGG gene identifiers, regardless 797

of the identifier database of the reactions and metabolites. 798

As the different strains have strain-specific gene identifiers, 799

the following analysis was conducted strain-wise. Strains 800

with at least three models from various resources were taken 801

into account (see also figure 2 on page 6): For eleven strains, 802

three models are available, for the strain USA300-FPR3757, 803

four models are present in this collection, and for the strain 804

N315, five models are available. However, the SBML file of 805

the N315 model by Heinemann et al. does not include any 806

genes. Thus, the model was excluded from the comparison. 807

Same accounts for the RF122 strain-specific model by Lee et 808

al., which also does not contain any genes. For this reason, 809

the model was also excluded from the analysis. By that, the 810

strain RF122 did no longer fulfill the criterion of at least three 811

available models. 812

The gene sets from the remaining models were compared. 813

As indicated, most models used KEGG gene identifiers, but 814

not all. The model by Magnúsdóttir et al. included strain- 815

specific and unspecific PATRIC identifiers97. With the help of 816

the PATRIC ID mapping service, the respective KEGG gene 817

identifiers were extracted. However, this was only feasible for 818

the strain-specific identifiers. Despite significant effort, the 819

unspecific identifiers could not be resolved, as no mapping 820

scheme could be identified. Thus, from the 859 genes included 821

in the Magnúsdóttir model, only 192 could be resolved to 822

KEGG identifiers. 823

Model iSB619 contained new locus tags, whereas the 824
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(a) Similarity of models from the Path2Models project.
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(b) Similarity of models with KEGG identifiers.
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(c) Similarity of models with BiGG identifiers.

Figure 5. Model comparison based on Jaccard distance between reaction sets. The models were divided into three groups
based on their metabolite and reaction identifiers: (a) has all models of the Path2Models project with consistently mixed
identifiers, (b) has all models with KEGG identifiers (hence, all GEMs by Lee et al.), and (c) contains all models with BiGG
identifiers. Within the three groups, all pairwise Jaccard distances were calculated based on the models’ reaction sets. The
distances are displayed in the heat map. The color bar range is equal for (a) and (c) for better comparison. As the distances in
(b) are much smaller, the color bar’s range was adapted.
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Figure 6. Strain-specific model comparison based on gene sets. For all models occurring in at least three different
resources, the gene content was compared strain-specifically. After unifying the gene identifiers to KEGG IDs, Venn diagrams
were created comparing the gene content. The models from Bosi et al. have, on average, the highest gene content, explaining
the large fraction of genes occurring only in these models. The models by Lee et al. and the Path2Models project seem more
similar, which could be explained by the fact that both are curated based on the KEGG database. Although all models in one
Venn diagram (and thus, one comparison) represent the same strain, the models have differences, indicating the influence of the
reconstruction method on the final model content.
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KEGG identifiers correspond to the old locus tags. With the825

GenBank flat file (gbff)100 of S. aureus strain N315, the locus826

tags were mapped. For the 619 new locus tags 611 respective827

old locus tags, and thus KEGG identifiers, were extracted.828

The models by Bosi et al. included mostly KEGG gene829

identifiers. Within the strains JH1 and JH9, the gene identifiers830

were truncated by the included word ‘DRAFT’ to make them831

consistent with the actual KEGG identifiers. For example,832

the initial identifier SaurJH1DRAFT_0595 was truncated833

to the correct KEGG identifier SaurJH1_0595.834

After these mapping and adapting steps, the gene sets835

within the different strains from the different resources were836

compared, and Venn diagrams were created. Across all twelve837

comparisons, the models by Bosi et al. have the largest portion838

of genes that are solely reflected in these models. This number839

varies between 20.1 % in the N315 strain and 59 % in the New-840

man strain. As these models have the highest gene content on841

average with approximately 788±116 genes per model, this842

seems apparent. The models from the Path2Models project843

have an average gene content of 519±12 genes per model,844

and the models by Lee et al. contain 488±149 genes on aver-845

age. It was already mentioned that the gene identifiers from846

the JH1 and JH9 models by Bosi needed to be adapted. De-847

spite this adaption, only half of the gene content is present848

in the other models as well. For the Newman, MW2, and849

Mu3 strains, we further analyzed the gene identifiers after850

these observed discrepancies between the gene contents with851

the models from the other two databases. These three strain-852

specific models from Bosi include non-strain-specific gene853

identifiers, which could not be mapped to the corresponding854

strain-specific gene identifier.855

The models from Lee et al. and the Path2Models project856

are relatively similar concerning their gene content. Since857

both models are curated based on the KEGG database, this858

similarity is evident. The four models of the S. aureus USA300-859

FPR3757 strain have a gene content overlap of 15.7 %. The860

model by Magnúsdóttir et al. has only 0.3 % gene content861

that is not reflected in the other three models. However, one862

needs to keep in mind that many genes in the model are not863

strain-specific and could not be mapped and compared.864

With these twelve gene content comparisons, we again865

calculated the Jaccard distance between the models from Bosi866

et al., Lee et al., and the Path2Models project. As already867

visible from the Venn diagrams, the models from Lee and868

the Path2Models project are most similar with respect to869

their gene content. They have a mean Jaccard distance of870

0.288±0.004. However, one might have speculated that the871

models are more similar based on the Venn diagrams. It needs872

to be highlighted that the Venn diagrams are calculated based873

on the gene content of all compared models. In contrast, the874

Jaccard distance calculates pairwise distances and, thus, only875

considers two models at once. For that reason, the models876

from Lee et al. and the Path2Models project are still the most877

similar ones, but their identity might not be as large as first878

expected when looking at the Venn diagrams. The Bosi mod-879

els have a mean distance to the Lee models of 0.666±0.179 880

and to the Path2Models project models a mean distance of 881

0.616±0.203. 882

Although the different models from the various databases 883

reflect the same strain, the models have distinct diversities. 884

This can be explained by the differences in the reconstruction 885

process. How the model is curated seems to play a pivotal 886

role for the final model and its model instances. Thus, the re- 887

construction method needs to be chosen carefully, and manual 888

or semi-automated additions might be required. 889

4.5 Decision guidance 890

With the vast amount of different strain-specific S. aureus 891

models, the identification of the suitable GEM for a specific 892

research question or purpose might become difficult. Table 2 893

on the following page gives an overview about the main fea- 894

tures of the S. aureus GEMs. The features were assigned 895

based on the strengths of the different models or model collec- 896

tions after the model improvement steps. If one is interested 897

in simulatable models, the table guides the reader to the corre- 898

sponding models. By combining different required features, 899

the selection can be tailored. If one needs, e.g., a model 900

with BiGG IDs that grows on different media, the models by 901

Bosi et al. or the model iYS854 are suggested, depending 902

on the desired strain. High MEMOTE scores indicate a high 903

degree of annotations, which facilitates the re-usability and 904

comparability of a model. 905

A predictive value score was calculated based on the 906

model analysis regarding their growth capabilities and the 907

presence of experimental data. If a model was not simulatable, 908

it received a predictive value score of 0. Otherwise, a score 909

of 1 was added. For growth capabilities in one environment, 910

a score of 1 was added; for growth in multiple environments, 911

2 was added. For every experimental verification procedure, 912

such as growth verifications, auxotrophies, compliance with 913

physiological data, or other experiments, a score of 1 was 914

added. The prediction of essential genes was not included in 915

this score, as this analysis was only conducted for two models. 916

By this scheme, the model iYS854 had the highest predictive 917

value score of 7, followed by iMH551 and some models by 918

Bosi et al. The models by Bosi et al. received a score between 919

3 and 5, as some models do not predict growth in any tested en- 920

vironment, while others do. As the models from Lee et al. and 921

the Path2Models project are not simulatable, they received a 922

predictive value score of 0. Models with high predictive value 923

score and high MEMOTE score are recommended for further 924

use, while models with low predictive value score might need 925

further refinement and experimental verification before usage. 926

This table does not contain strain-specific information. 927

Including the information from figure 2 on page 6 and figure 4 928

on page 8 will further guide the decision for a suitable model. 929

5 Discussion 930

The analyses show that despite genomic and genetic similar- 931

ities, GEMs of related strains are not necessarily similar to 932
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Table 2. Feature-based decision guidance. The main features of the S. aureus GEMs are listed and indicated with the
symbol 4 when present. The models are assigned to the features based on their strengths after the model improvement steps. A
predictive value score was calculated as described in section 4.5 on the previous page. With the help of the features and the
predictive value score, one can identify the best suited model for the research question of interest.

Feature iSB619 iMH551 Lee Path2Models Bosi Magnusdóttir iYS854

Database 4
Simulatable models 4 4 4 4 4
BiGG IDs 4 4 4
KEGG IDs 4
Growth on different media 4 4 4
High MEMOTE score 4 4 4 4
Predictive value score 3 5 0 0 3-5 2 7

each other. This accounts for both models of the same strain933

curated by different research groups and to related strains cu-934

rated by the same group. One example is the model from Mag-935

nusdóttir et al. with the S. aureus strain USA300-FPR3757936

and the corresponding model from Bosi et al. Despite it is the937

same strain, the GEMs are quite different in their reaction con-938

tent. In contrast, the two strain-specific models of the strains939

MRSA252 and USA300-TCH1516 by Bosi et al. are quite940

similar despite the genetic diversity of the strain MRSA252.941

This observation might have several reasons. The first, and942

probably most striking, reason is the incompleteness of the943

models. As high-quality genome-scale metabolic reconstruc-944

tions require manual curation and evaluation101, and many945

models introduced in this review were created automatically946

or semi-automatically, some models might lack general or947

strain-specific reactions. This lack of required reactions is948

also visible when optimizing the flux distributions of the mod-949

els. For multiple models, no growth could be simulated in950

FBA, not even in full medium. This was especially the case951

for the automatically curated models from the Path2Models952

project and the semi-automatically curated models from Lee953

et al. But also some of the automatically curated models954

from Bosi et al. did not show any growth. Thus, a connection955

between automated or semi-automated curation and the func-956

tionality of the models seems to exist. However, automated or957

semi-automated curation does not necessarily result in poor958

growth prediction, especially when the basis for the (semi-)959

automated processes underwent significant manual curation.960

The other models from Bosi et al. showed growth on up to961

four different media. The automatically constructed model by962

Magnusdóttir et al. could be simulated on one medium, which963

is also the case for the manually curated model iSB619.964

Furthermore, some of the S. aureus strains have plasmids965

carrying additional genes. For a strain-specific model, these966

additional genes need to be incorporated into the GEM as well.967

Especially the metabolic and transporter genes are relevant968

for the strain-specific model. The plasmid of the S. aureus969

strain N315, e.g., carries a gene for the cadmium resistance970

transporter CadD, which facilitates the export of cadmium971

ions and other cationic compounds102. Besides further pro-972

teinogenic genes, the plasmid of strain N315 also carries a 973

gene for the penicillin-hydrolyzing class A β-lactamase en- 974

zyme. These two genes are, e.g., also present on the plasmid 975

of the S. aureus strain USA300-TCH1516. 976

As explained previously, the challenge lies within the dif- 977

ferent reaction and metabolite identifiers. In this review, we 978

additionally tried to annotate the GEMs further to simplify 979

the comparison of models with differing identifiers. However, 980

only approximately one third of all reactions and metabolites 981

are annotated with identifiers of external databases. It is still 982

challenging to find all cross-references for a particular meta- 983

bolite or reaction in a specific database. For that reason, we 984

additionally evaluated the gene content of the strain-specific 985

models, as most models contained identifiers from the KEGG 986

database. The gene identifiers from other databases were 987

mapped to the KEGG identifiers. Again, a bias is introduced 988

when identifiers are mapped between databases: On the one 989

hand, not all identifiers can be resolved in the other database. 990

On the other hand, some identifiers do not comply with the 991

databases’ identifiers scheme and do not have annotations. 992

This makes an automated mapping of several hundred identi- 993

fiers infeasible. Extensive manual labor would be necessary to 994

map these identifiers. The usage of consistent identifiers that 995

comply with the database scheme and additional annotations 996

is highly recommended and would simplify the re-usability, 997

translatability, and comparability of models103. The compar- 998

ison of the strain-specific models’ gene content confirmed 999

that GEMs from different resources could vary, despite their 1000

genetic equality, highlighting the relevance of the curation 1001

process on the resulting GEM. This observation is even more 1002

explicit when comparing the models by Lee et al. and from 1003

the Path2Models project: both rely on the KEGG database. 1004

However, the models are not equal, as the two groups used 1005

different approaches for the curation of the models. 1006

Missing reactions and strain-specific genes might also 1007

affect the growth behavior of a strain-specific model on a 1008

given medium. Only the model iMH551 showed growth on 1009

all tested media. Additional growth experiments for specific 1010

S. aureus strains can help to identify the missing growth capa- 1011

bilities of the model. The model’s ability to adapt to different 1012
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environmental conditions is crucial to simulate an organism1013

in silico. This is also reflected in the predictive value score,1014

which was assigned to the models. Especially for models with1015

a low predictive value score, additional experiments would1016

help determine and also increase the predictive value of the1017

model.1018

The models from Lee et al., the Path2Models project, Bosi1019

et al., and Magnúsdóttir et al. are curated automatically or1020

semi-automatically. Except for the models from Bosi et al.,1021

all models have a comparatively low predictive value score1022

than the manually curated models. The models from the1023

Path2Models project and Lee et al. have a score of 0. The low1024

score from the Path2Models projects’ models might go back1025

to the lack of experimental data in both the curation and verifi-1026

cation process, thus highlighting its importance for predictive1027

genome-scale metabolic reconstructions. The low score for1028

the models from Lee et al. accentuates the importance of1029

standardized GEMs, which allow re-usability. Although the1030

models from Bosi et al. are curated semi-automatically, their1031

predictive value scores are comparable high. They based1032

their pipeline on a manually refined model and verified their1033

predictions with experimental data. More experimental data1034

accompany more knowledge. The latest model, iYS854 has1035

the highest predictive value score, was manually curated, and1036

extensively experimentally validated. The result of such a1037

time- and labor-intensive work is a GEM with a high predic-1038

tive value and a strong recommendation for future usage.1039

6 Conclusion and Outlook1040

In this review, all 114 currently available genome-scale me-1041

tabolic models (GEMs) of Staphylococcus aureus were pre-1042

sented and evaluated. It serves as guide for the different1043

available reconstructions in various databases, using differing1044

metabolite and reaction identifiers. Some models originally1045

comprise a large number of reactions, metabolites, and genes,1046

after undergoing several manual curation steps and extensive1047

annotating. Such models have a high MEMOTE score. The1048

model with the highest MEMOTE score is the iYS854 model1049

by Seif et al. Other models have a vast amount of reactions and1050

metabolites, such as the reconstructions of the Path2Models1051

project. Such models could, e.g., serve as information sources1052

for the reconstruction or refinement of already existing strain-1053

specific models. Based on the information regarding avail-1054

ability, model format, MEMOTE score, growth behavior, used1055

database identifiers, predictive value, and similarities between1056

models, together with a previously defined research question,1057

the appropriate genome-scale reconstruction can be chosen1058

from the vast amount of available GEMs. Another approach1059

would be to use the strengths of every reconstruction and in-1060

corporate it into merged or combined models, which increase1061

the correctness and the predictive value of a strain-specific1062

model. Despite the vast amount of presented models in this1063

review, there is no suitable model for every S. aureus strain1064

available. Furthermore, missing annotations or identifiers that1065

do not comply with the database identifier scheme impede1066

the models’ re-usability and comparability. Standardization 1067

of all models would be desirable but is currently not feasible 1068

with the available tools without extensive manual labor for 1069

hundreds of identifiers. No omics data was incorporated into 1070

many of the published GEMs so far. Information about tran- 1071

scription profiles, for example, can help to refine metabolic 1072

reconstructions to better reflect the metabolic state of an or- 1073

ganism in a defined environment. The incorporation of omics 1074

data can thus increase the predictive value of genome-based 1075

metabolic reconstructions104. 1076

However, with the help of the already available reconstruc- 1077

tions and further information, stain-specific models could be 1078

created or extended. Information from literature, merging of 1079

strain-specific models, and manual curation steps could fur- 1080

ther improve the predictive value of simulations and analyses 1081

of metabolic features of S. aureus. Having predictive GEMs 1082

can eventually lead to the identification of novel targets for 1083

antimicrobial therapies in the fight against antibiotic resistant 1084

strains of S. aureus. 1085

7 Data availability 1086

The availability of all models, including the improved models, 1087

is listed in the supplementary table S1 on page 20. The model 1088

collection was deposited in BioModels105 within COMBINE 1089

archive files (in OMEX format)106 and assigned the iden- 1090

tifiers (1) MODEL2007110001, (2) MODEL2007150001, 1091

and (3) MODEL2007150002. 1092

8 Code availability 1093

All the necessary scripts and resources for model modifica- 1094

tions and improvements are available in a git repository at 1095

github.com/draeger-lab/S_aureus_GEMs_Col- 1096

lection. 1097
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Table S1. Availability of all models in the S. aureus collection, including a direct link to their publication, and the
model file(s). The link to the models refers to the most recent models. In the case of Lee et al., the Path2Model project, and
Bosi et al., the models were extensively curated for this study and uploaded to the BioModels Database. The link between these
three collections refers to the new version of the files. For all other models, the link points to the resource where the model was
initially made available.

Model
Count

Author Year Link to publication Link(s) to model

1 Becker et al. 2005 identifiers.org/pubmed:15752426 identifiers.org/bigg.model:iSB619
identifiers.org/biomodels.db:MODEL1507180070

1 Heinemann
et al.

2005 identifiers.org/pubmed:16155945 identifiers.org/biomodels.db:MODEL1507180072

13 Lee et al. 2009 identifiers.org/pubmed:17038190 identifiers.org/biomodels.db/MODEL2007150001
33 Path2Models

project
2013 identifiers.org/pubmed:24180668 identifiers.org/biomodels.db/MODEL2007150002

64 Bosi et al. 2016 doi.org/10.1073/pnas.1523199113 identifiers.org/biomodels.db/MODEL2007110001
1 Magnusdóttir

et al.
2017 doi.org/10.1038/nbt.3703 www.vmh.life/#microbe/Staphylococcus_aureus_

subsp_aureus_USA300_FPR3757
1 Seif et al. 2019 identifiers.org/pubmed:30625152 identifiers.org/bigg.model:iYS854
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