
Article

Luminance Degradation Compensation Based on Multi-Stream
Self-Attention to Address Thin Film Transistor-Organic Light
Emitting Diode Burn-in

Seongchel Park , Kwan-Ho Park and Joon-Hyuk Chang *

����������
�������

Citation: Lastname, F.; Lastname, F.;

Lastname, F. Title. Journal Not

Specified 2021, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Korea;
psc0902@hanyang.ac.kr (S. P.); rhksgh7370@naver.com (K.-H. P.)
* Correspondence: jchang@hanyang.ac.kr; Tel.: +82-2-2220-0355

Abstract: We propose a deep learning algorithm that directly compensates for luminance degradation
owing to the deterioration of organic light emitting diode (OLED) devices to address the burn-in
phenomenon of OLED displays. Conventional compensation circuits are encumbered by a high cost
of development and manufacturing processes owing to their complexity. However, given that deep
learning algorithms are typically mounted on a system on chip (SoC), the complexity of the circuit
design is reduced, and the circuit can be reused by re-learning only the changed characteristics of the
new pixel device. The proposed approach comprises deep feature generation and multi-stream self-
attention, which decipher the importance of the variables, and the correlation between burn-in-related
variables. It also utilizes a deep neural network that identifies the nonlinear relationship between the
extracted features and luminance degradation. Thereafter, the luminance degradation is estimated
from the burn-in-related variables, and the burn-in phenomenon can be addressed by compensating
for the luminance degradation. The experimental results revealed that compensation was successfully
achieved within an error range of 4.56%, and demonstrate the potential of a new approach that can
mitigate the burn-in phenomenon by directly compensating for pixel-level luminance deviation.

Keywords: thin film transistor (TFT); organic light emitting diode (OLED); compensation circuit;
luminance degradation; artificial intelligence; deep neural network; convolutional neural networks

1. Introduction

Currently, two types of displays are widely used. The first is the liquid crystal display
(LCD), which generates images by controlling the amount of light emitted by the backlight
unit (BLU). The second is an organic light emitting diode (OLED), which generates an image
by controlling the amount of current supplied to the OLED device. OLED displays have
significant advantages such as high color reproduction ranges, low power consumption,
high brightness, high contrast ratio and wide viewing angle [1–3]. However, despite their
excellent performance, they are hindered by the burn-in phenomenon. This phenomenon
is caused by the operating mechanism of OLED displays. Its panels are composed of
thin film transistor (TFT)-OLED devices mounted on each pixel, and they function as
follows. First, a voltage is applied to the TFT device. Second, the TFT device controls
the amount of current supplied to the OLED element according to the applied voltage.
Finally, the OLED device controls the brightness of the display by adjusting the luminance
according to the supplied current. In this operation, the OLED device is exposed to high
temperatures owing to its luminescence characteristics. If this situation persists, it leads to
problems with the driving voltage deviation of the TFT device and luminance deviation
of the OLED device. Eventually, as the usage time increases, the deterioration of the
OLED device accelerates, and luminance degradation occurs [4,5]. Indeed, Xia et al. [6]
introduced that OLED luminance degradations is caused by intrinsic and/or extrinsic
factors. Intrinsic factors are generally related to moisture or oxygen. Those can be the
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cause of delamination or oxidation of the electrodes. Extrinsic factors are related to the
degradation of supply voltage-current and the change of ambient temperature during
the whole lifetime of OLED displays [7,8]. In addition, Kim et al. [9] showed that the
characteristic of color and luminance degradation. They used an electroluminescence (EL)
degradation model of R, G, and B pixel over stress time, and obtained that the blue pixel
degrades faster than other pixels. They also described that the luminance degradation
tends to decrease rapidly at the beginning of use, then become more gradual. Some several
studies showed the power consumption for R, G, and B components of an OLED pixel by
power models. The blue color consumes more power as compared to the red and green
color components [10–12]. Ultimately, the burn-in phenomenon is a major cause of the
deterioration of the image and video quality over time [13–16]. Therefore, research on pixel
compensation technology that effectively addresses the burn-in phenomenon of OLED
displays is important to continuously provide high-quality images and videos to users.

Traditionally, the compensation technology of OLED displays is typically based on
two types of compensation circuits. First, the internal compensation circuit controls the
driving voltage of the TFT device with pixel circuits such as 5T1C or 4T0.5C to compensate
for the luminance degradation. The internal circuit can compensate for the deviation in
the driving voltage of the TFT device. However, when an internal compensation circuit is
added, the structural design requirements of the TFT-OLED device become complex, and a
highly sophisticated process is required [17]. Moreover, when this internal compensation
circuit is utilized, it is difficult to miniaturize the pixels. Therefore, alternative circuit
compensation methods are needed for the ultra-minimization of pixels that is necessary
to develop high-resolution OLED displays. Second, the external compensation circuit
is a mechanism that senses the characteristics of TFT elements inside the panel using
sensing circuits from the outside. It then performs a compensation operation in the data
voltage application section [18,19]. That is, this circuit is composed of various types of
sensing devices. However, the compensation circuit requires additional external sensing
circuits, logic circuits, and external memory with a simple pixel structure. In particular,
an analog-to-digital converter (ADC) is required for sensing, in addition to memory for
the storage of the sensing data. Thus, the cost of development is higher than that of the
internal compensation circuit. Therefore, more effective technology is required to design
and build a low-cost and high-performance compensation circuit.

We propose a deep learning algorithm that directly compensates for luminance degra-
dation in real time by using a data-driven approach to address the disadvantages of internal
and external compensation circuits. Deep learning is a machine learning paradigm that
infers information and extracts features from the given data using multiple processing
layers. The results of several studies have shown that deep learning facilitates improved
performance compared to traditional approaches in a variety of applications that use sensor
data [3,20–23]. In this study, the usage time, temperature, average brightness, data voltage
deviation of the TFT device, and current supplied from TFT to OLED are used as input
data for the training of the proposed deep learning algorithm. In addition, the deviation
between the initial luminance of the OLED device and the luminance degradation due
to deterioration is used as the target data. As such, the target data is the luminance that
is compensated, and this value is obtained by subtracting the degraded luminance value
from the initial luminance. When a deep learning algorithm is trained using input data and
target data composed of these variables, it performs as a novel circuit that directly estimates
the luminance that requires compensation. Ultimately, it is possible to address the limita-
tions of the existing internal and external compensation circuits, such as the complexity of
circuit design, high cost, and difficulty of miniaturization. In addition, in the past, when
TFT-OLED devices were changed, the compensation circuit had to be redesigned according
to the new characteristics. However, the proposed deep learning algorithm can re-learn
and reuse the characteristics of the new TFT-OLED device. We evaluated the performance
of the model by calculating the deviation between the compensated luminance and the
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initial luminance in frames to evaluate the performance of the proposed method and to
address the phenomenon problem, which is spread within an error range of 4.56%.

2. DATA SIMULATOR

A data simulator is proposed to obtain the burn-in-related variables of TFT-OLED
devices as similar to a typical environment. First, the proposed data simulator uses the
specifications of LD420EUN-UHA1 as a Si:H transistor, which is a TFT model. Using the
data simulator, it is possible to generate pixel-by-pixel data from 0 to 10,000 h in 100-hour
increments from the input video. In addition, it is possible to generate pixel data from
OLED displays for low temperature, room temperature, and high temperature from 0◦C to
60◦C. The data simulator is developed to create data similar to a typical environment by
mixing white noise with the generated pixel data. The data generated in this study are used
to train the deep learning model in Section 4; the deep learning model is used to examine
the correlation between the variables related to the TFT-OLED device that fluctuates in real
time and the luminance of the deteriorated OLED device.

Figure 1 shows a block diagram of the data simulator. The input video comprised
of various content-specific videos has a total length of 120 min, 30 fps, and a pixel size of
400×300 pixels. The detailed configuration of the input videos of the data simulator is
presented in Table 1. Table 2 lists the parameters used in this section.

Table 1: Specifications of input videos.

Contents Specifications

Content 1 (40 mins) Documentary, Action, News, Sports

Content 2 (40 mins) Entertainment, Beauty, Animation, Car review

Content 3 (40 mins) Game, Cooking, Job introduction, Romance

The order of operation of the data simulator is as follows:

1. First, the data simulator outputs i) the average brightness per pixel (B̄p) and ii)
operation time (tp) from the input video. It also adds iii) a temperature condition (T)
between 0◦C and 60◦C, which affects the deterioration of the TFT and OLED devices.

2. The previously obtained B̄p, tp, T variables are used to output iv) the operation time
with weights per pixel (t′p) and v) the degraded TFT data voltage (Vd,t′p=γ) with the
change of time and temperature. White noise is also mixed to create conditions similar
to real-world environments.

3. Vd,t′p=γ is used for each time and temperature to output vi) the degraded OLED
current (Id,t′p=γ) of the TFT and to mix the white noise.

4. vii) Degraded OLED luminance (Lt′p=γ) is observed using Id,t′p=γ for each time and
temperature. viii) The initial OLED luminance (Ltp=0) is obtained directly from the
input video.
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OLED device's
deterioration model

Data Simulator
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iii) Temperature
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vi) Current applied from
TFT to OLED vii) ⑦ Degraded OLED luminance
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viii) Initial OLED luminance

v) Degraded TFT data voltage

Figure 1. A block diagram of proposed Data Simulator.

Table 2: Nomenclature of paper.

Symbol Parameter Symbol Parameter

FN Data of input video N Total frame of input video
f Frame P Total pixel
p Pixel t Time
tp Operating time per pixel t′p Weighted operating time
Bp Brightness of per pixel B̄p Average brightness per pixel
ε1 Noise of threshold voltage ε2 Noise of mobility
α1 Reduction factor of shifting value of threshold voltage α2 Reduction factor of threshold voltage
α3 Reduction factor of mobility Imax Maximum input current of TFT
L Length of TFT channel W Width of TFT channel
V′d Data voltage of TFT that consider noise Vd,tp=0 Initial data voltage of TFT
Cox Capacitor of TFT unit area µ Initial mobility of TFT
V′th Threshold voltage of TFT that consider noise VDD Drain voltage of TFT
Tlimit Maximum temperature of TFT performance guarantee 4Vshift Shifting value of threshold voltage
Vth,tp=0 Initial threshold voltage of TFT w Weight factor
n Gray level of TFT l Total gray level range
α Reduction rate of OLED voltage T Temperature
β Transistor Parameter Ci Gate capacitor
W Channel width

Algorithm 1 shows the calculation process for the operation time and average bright-
ness of the pixels for each frame from the video data input to the data simulator.

Algorithm 1 Calculation of the operating time per pixel.

Input
N : total number of frames

FN : frame number
h : height of pixels for frames (300 pixels)

w : width of pixels for frames (400 pixels)
Bp : brightness of pth pixel

Output
tp : operating time of pth pixel

B̄p : average brightness of pth pixel

initialization
p = 0; tp = 0; B̄p = 0;
while FN < N do

for p < (h× w) do
B̄p+ = Bp;
if Bp = 0 then

tp = tp; //time is not counted when the pixel does not operate
else

tp+ = 1; //time is counted when the pixel operates
end

end
end
B̄p = B̄p / N;
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In particular, the average brightness and operation time of the input video obtained
using this algorithm are used in equation (1) to obtain the weighted operation time (t′p)
required for the pixel to emit a specific brightness. Here, ω has a constant value of 0.8 and
adjusts the weight to represent the average pixel brightness (B̄p) during the operating time.

t′p , tp (1 + wB̄p) (1)

We also generate white noise to represent the environmental noise that can occur in the
OLED display using electronic circuits.

ε1 ∼ N(0,
(max(Vth) + min(Vth))/2

100
) (2)

ε2 ∼ N(0,
(max(µ) + min(µ))/2

100
) (3)

Next, the threshold voltage shift value (∆Vshi f t), threshold voltage (Vth), and electron
mobility (µ) are calculated using the previously determined t′p and T value as follows.

4Vshift , t′ α1
p (4)

Vth , eα2(T−Tlimit) + |4Vshift|+ ε1 (5)

µ , e−α3T + ε2 (6)

The data voltage (Vd,t′p=γ) of the TFT is then obtained using Vth and µ [24]. Here, VDD is
the drain voltage of 4.9V and additive noise, ε.

Vd,t′p=γ , VDD −

√(
100

100− α

)(n
l

)2Imax

µ

′
Cox

(
W
L

)
− |Vth,t′p=γ|+ ε (7)

Now, we use Vth and Vd,t′p=γ to determine the current applied from the TFT to the
OLED (It′p=γ) such that.

It′p=γ ,
β

2
(VDD −Vd,t′p=γ − |Vth|), β = µCi

W
L

(8)

where It′p=γ is used to obtain the luminance value (Lt′p=γ) at a specific time. The following
is a mathematical model of the deterioration characteristics of the OLED device, where mI
and ηI have constant values [25].

Lt′p=γ , L0exp{−(
t′p

ηI(
I0

It′p=γ
)β

)mI} (9)

When the video is served as the input to the data simulator, eight variables associated
with the deterioration of the TFT-OLED device are created. Four of the eight variables are
used as input data for the deep learning algorithm, and the luminance deviation obtained
by subtracting the degraded OLED luminance value from the initial OLED luminance
value is used as the target data. In addition, all pixels of the OLED are independently
driven; therefore, the correlation between each pixel data generated by the data simulator
is not considered. As such, 6,000 independent OLED burn-in data points are generated for
each pixel between 0 to 10,000 h in units of 100 h and temperatures between 0◦C to 60◦C in
units of 1◦C. The total burn-in datasets are generated 0.12 million (400×300) according to
the number of pixels, and 720 million datasets (100×60×400×300) are generated according
to time and temperatures for each color; R, G, and B.
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3. Data Augmentation

In general, increasing the amount of data improves the performance of deep learning
models [26]. We also generate additional data via data augmentation; subsequently, we
conduct training using these data together with the existing data. Furthermore, natural
data in the real world has noise due to various conditions such as temperature, humidity,
and initial tolerance. This means that it is necessary to reflect this noise and generate data
similar to natural data as much as possible. The bootstrap method is an approach for
increasing the training data using random sampling. Figure 2 shows a block diagram of the
proposed data augmentation algorithm based on the bootstrap method. First, 60 million
samples are drawn six times using random sampling from 720 million pixel data generated
through a data simulator. The sample extracted in this method is called a bootstrap sample,
and the mean and standard deviation of each bootstrap sample are calculated. Then, 60
million random number data are generated based on the calculated mean and standard
deviation in order to obtain noise that follows the Gaussian statistical distribution of the
bootstrap sample data. The generated random number data is multiplied by a constant
weight of 0.01 to reduce information loss of the original data that may occur when noise is
applied. Finally, 60 million bootstrap sample data is multiplied by each random number
data to generate new data. Since this method generates noise through the distribution of
each bootstrap sample, it can generate noise similar to the distribution of the original image.
Consequently, by applying the 720 million pixel data generated in the data simulator, 360
million training data with independent characteristics are additionally generated for each
R, G, and B color.

720 million pixel data

60 million pixel data

random sampling
(draw six times)

Original Sample

Bootstrap samples
(60 million each)

random number data 1 60 million
new pixel data× 0.01

Generate random number data
(60 million each)

Generate new data
(60 million each)

+

60 million pixel data random number data 2 60 million
new pixel data

+

Sample data 3 random number data 3 60 million
new pixel data

+

Sample data 4 random number data 4 60 million
new pixel data

+

Sample data 5 random number data 5 new pixel data 5
+

Sample data 6 random number data 6 new pixel data 6
+

Sample data 1

Sample data 2

new pixel data 1

new pixel data 2

new pixel data 3

new pixel data 4

Figure 2. A block diagram of the bootstrap method.

4. Deep Learning Model
4.1. Data Configuration

The data used in the deep learning model consists of four features (t′p, T, Vd,t′p=γ,
Id,t′p=γ), consisting of vector forms with (1, 4) dimensions. The target data is one of the
features, that is, the deviation luminance (Ltp=0 - Lt′p=γ) that requires compensation. The
total training data consists of 1.08 billion input data and target data pairs for each R, G, and
B color. Figure 3 shows the structure of the proposed entire deep learning model, which is
trained to estimate the deviation luminance (L̂t′p=γ), which requires compensation.
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Figure 3. Overview of the whole model: (a) deep feature generation; (b) multi-stream self-attention; (c) deep neural network.

4.2. Deep Feature Generation

Feature generation is also known as feature construction, feature extraction or feature
engineering. It is used to create new features from one or several features [27]. The
implementation of this approach as a deep learning technique is called deep feature
generation. Thus, in addition to the features generated using the data simulator, the
features associated with OLED deterioration are also generated during the training process
of the deep learning model to make them similar to the OLED burn-in data. In this study,
we propose a deep feature generation algorithm composed of a 1D convolutional neural
network (1D CNN), deep neural network (DNN), and rectified linear units (ReLU) [28],
which are nonlinear functions, as shown in Figure 4. Using this algorithm, new features
(embedding vectors) are also extracted using the existing input data with dimensions of
(1, 4). First, 1D CNNs are available for 1D signal variables that cannot use 2D CNNs; the
computational burden is lower than that of 2D CNNs, making them suitable for real-time
processing and low-cost hardware implementations [29]. In addition, the DNN extracts
information on the correlation between features by completely connecting the outputs of
the 1D CNN. This DNN facilitates a nonlinear combination of input features and feature
extraction is performed automatically. In the final output of this deep feature generation
algorithm, 10 new features are generated with dimensions (1, 10). White noise is mixed to
represent the noise in the OLED display circuit environment. Subsequently, one of the four
original features is selected and concatenated to the new features, resulting in a new form
of data with a higher dimension (1, 11) than the original dimension (1, 4).
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Input
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Output
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Figure 4. Overview of the proposed deep feature generation model.

4.3. Multi-stream Self-attention

Multi-stream self-attention [30] has already been applied to the field of speech recog-
nition to show state-of-the-art. Based on the idea of this algorithm, we propose a modified
multi-stream self-attention that is optimized for learning the outputs of deep feature gener-
ation. The proposed multi-stream self-attention consists of two multi-head self-attention
layers [31] each of which consists of four self-attention layers, as shown in Figure 5. The
operation process of this algorithm proceeds in the following order. First, the multi-stream
self-attention improves the performance of deep learning algorithms with ensemble-like
effects. Second, the multi-head self-attention corresponding to each stream is trained by
increasing the weight of the most important feature to effectively compensate for the de-
graded luminance among the input features. Similarly, less important features are trained
such that the weight is reduced; that is, when four input data with dimensions (1, 11) are
input to each head, an extraction process is performed that represents the importance of
each feature by adjusting the weight value to focus on the most important of the 11 features.
Third, given that the output of the multi-head self-attention maintains the dimension of
the input data, the data with the (1, 44) dimension is output by concatenating four outputs
of each head. Finally, the multi-stream self-attention outputs data with dimensions (1, 88)
as two outputs.

Input
4×(1, 11)

K

Q

V

Matmul Softmax

Matmul

K

Q

V

Matmul Softmax

Matmul

+

white
noise

Output
(1, 88)+

+

1 stream consisting of 4 heads

2 stream consisting of 4 heads

(1, 44)

(1, 44)

Figure 5. Overview of the multi-head self-attention model.
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4.4. DNN

Recently, the DNN [32] has been successfully utilized in applications such as image
processing, automatic speech recording, and natural language processing. As shown in
Figure 6, the proposed algorithm consists of DenseBlock1, DenseBlock2, a single dense
layer, and a fully connected layer. DenseBlock1 comprises of a single dense layer, batch nor-
malization layer, ReLU, and dropout. DenseBlock2 is a nonlinear function of DenseBlock1,
ReLU, replaced by Leaky-ReLU, which is proposed to solve the dying ReLU phenomenon.
This DNN algorithm is trained to identify nonlinear relationships between input data and
target data by recognizing specific patterns when data with dimensions (1, 88) are inputted.
For the final output, we obtain the value of the dimension (1, 1) of luminance (L̂t′p=γ) that
requires compensation.

Estimation of
Degraded

Luminance
(1, 1)

Dense Block 1

Dense Block 2

Dense Block 3

Dense Block 4

Dense Block 5

Dense 6

Leaky ReLU

Batch Norm.

Fully Connected

1

1

2

2

2

Dense 1

Batch Norm.

ReLU

Drop-out

Dense Block 11

Dense 3

Batch Norm.

Leaky ReLU

Drop-out

Dense Block 32

Input

Output

Multi-stream
Self-attention

(1, 88)

Figure 6. Overview of the proposed deep neural network model.

5. Experimental Environment and Result
5.1. Datasets

In our experiments, we used the blue pixel data, which has the largest power con-
sumption and a much faster degradation rate compared to red and green pixel data [33].
Therefore, a deep learning based compensation algorithm was trained and evaluated using
1.08 billion datasets of blue pixel generated using data simulators and data augmentation.
The compositions of the datasets, divided into training data and test data, are shown in Ta-
ble 3. Figure 7 shows respectively the power consumption and the luminance degradation
rate for the blue, red and green pixel.

Table 3: The composition of the datasets.

Datasets Train / Test Total

OLED pixel (Blue) 9.72 billion / 1.08 billion 10.8 billion
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Figure 7. Luminance degradation rate for the normalized blue, red and green pixel data.

5.2. Experimental Setup

All experiments in this study were conducted using TensorFlow in Python library.
Batch normalization [34] was applied to the DNN, and the Adam optimizer [35] with a
learning rate of 0.001 was used for training a deep learning algorithm. In addition, the
batch size used in the training process was 6,000, and all parts of the algorithm were jointly
optimized with the mean absolute percentage error (MAPE) used as a loss function in the
following. The algorithm was trained for 50 epochs; if the validation loss did not improve
within three epochs, an early pause was applied. In addition, the accuracy of the algorithm
was calculated using MAPE, as shown below.

MAPE =
1

NP

N

∑
f=1

P

∑
p=1
|
Ltp=0 − L̂t′p=γ

Ltp=0
| (10)

Accuracy = 100(1− 1
NP

N

∑
f=1

P

∑
p=1
|
Ltp=0 − L̂t′p=γ

Ltp=0
|)(%) (11)

5.3. Results Analysis

As shown in Table 4, in the case of deep feature generation, experiments were con-
ducted with three models; experiment 2 demonstrated the best accuracy at 91.62%.
As depicted in Table 5, based on the testing of the 1-stream self-attention and 2-stream
self-attention algorithms. Experiment 2 showed an accuracy of 92.19%. When using three
or more streams, there was a tendency to overfit as the number of streams increased.

Table 5: Accuracy (in %) comparison of the proposed models with Multi-stream Self-
attention [30].

Experimental
Details

Experiment 1 Experiment 2

1-Stream Self-attention 2-Stream Self-attention

Accuracy 90.75% 92.19%

In Table 6, experiments were conducted by changing the number of DNN layers in deep

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2021                   



Journal Not Specified 2021, 1, 0 11 of 14

Table 4: Accuracy (in %) comparison of the proposed models composed of different hyper-parameters with Deep Feature
Generation (layers, kernel, filter size, and units).

Experimental
Details

Experiment 1 Experiment 2 Experiment 3

Layers
Kernel

Filter Size
Units

Layers
Kernel

Filter Size
Units

Layers
Kernel,

Filter Size
Units

1D Conv 1 1×4 @32 1D Conv 1 1×4 @32 1D Conv 1 1×4 @32
1D Conv 2 1×32 @16 1D Conv 2 1×32 @16 Dense 1 32

Dense 1 16 Dense 1 16 1D Conv 2 1×32 @16
1D Conv 3 1×16 @10 Dense 2 16

1D Conv 3 1×16 @10

Accuracy 90.28% 91.62% 91.45%

Table 6: Accuracy (in %) comparison of proposed models with different numbers of Deep Neural Network’s layers.

Experimental
Details

Experiment 1 Experiment 2 Experiment 3

Layer number Units Layer number Units Layer number Units

Dense layer 1 64 Dense layer 1 64 Dense layer 1 64
Dense layer 2 64 Dense layer 2 64 Dense layer 2 64
Dense layer 3 64 Dense layer 3 64 Dense layer 3 64
Dense layer 4 64 Dense layer 4 64 Dense layer 4 64

Dense layer 5 64 Dense layer 5 64
Dense layer 6 64

Accuracy 89.94% 91.22% 93.31%
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neural networks; experiment 3 demonstrated an accuracy of 93.31%, which indicates that
six layers are suitable.
Also, Table 7 shows the experimental results obtained by adjusting the number of units in
each layer of the DNN algorithm. The DNN algorithm used six layers, as obtained from
the experimental results in Table 6. As a result, experiment 4 with a bottleneck structure
demonstrated an accuracy of 95.44%.

Therefore, as shown in Tables 4, 5, 6, and 7, the final performance of the deep learning
based compensation algorithm is the best accuracy of 95.44%. Figure 8 compares the initial
display image, the image in which luminance degradation occurred, and the image in
which the degraded luminance was compensated.

(a) (b) (c)

Figure 8. The image of OLED Display (400×300) according to the number of pixels: (a)
The initial display image; (b) The image in which luminance degradation occurred; (c) the
image when degraded luminance was compensated.

6. Conclusion

In this study, we proposed the deep learning algorithm to address the burn-in phe-
nomenon of OLED displays by using deep learning technology. This algorithm can replace
physical circuit-based internal and external compensation circuits that compensate after
sensing the degraded TFT data voltage or TFT-OLED current and calculating the luminance
degradation value of OLED display due to the deterioration of OLED devices. This means
that the proposed compensation method based on deep learning algorithm doesn’t need to
add internal and external compensation circuits for calculating the luminance degradation.
In particular, even if a new TFT-OLED device is developed, the significant advantage is
that only the deep learning algorithm can be re-learned according to the parameters of the
device and reused without the need to change the physical circuit. Furthermore, if OLED
display is combined with cloud service, deep learning algorithm can be easily improved
remotely. In the future, we will supplement the data simulator based on real data and
augment the burn-in data to strengthen the deep learning based compensation algorithm.
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