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Abstract: Existing methods for building extraction from remotely sensed images strongly rely
on aerial or satellite-based images with very high resolution, which are usually limited by spa-
tiotemporally accessibility and cost. In contrast, relatively low-resolution images have better
spatial and temporal availability but cannot directly contribute to fine- and/or high-resolution
building extraction. In this paper, based on image super-resolution and segmentation techniques,
we propose a two-stage framework (SRBuildingSeg) for achieving super-resolution (SR) building
extraction using relatively low-resolution remotely sensed images. SRBuildingSeg can fully utilize
inherent information from the given low-resolution images to achieve high-resolution building
extraction. In contrast to the existing building extraction methods, we first utilize an internal pairs
generation module (IPG) to obtain SR training datasets from the given low-resolution images and
an edge-aware super-resolution module (EASR) to improve the perceptional features, following
the dual-encoder building segmentation module (DES). Both qualitative and quantitative experi-
mental results demonstrate that our proposed approach is capable of achieving high-resolution (e.g.
0.5 m) building extraction results at 2x, 4 x and 8 x SR. Our approach outperforms 8 other methods
with respect to the extraction result of mean Intersection over Union (mIoU) values by a ratio of
9.38%, 8.20% and 7.89% with SR ratio factors of 2, 4, and 8, respectively. The results indicate that
the edges and borders reconstructed in super-resolved images serve a pivotal role in subsequent
building extraction and reveal the potential of the proposed approach to achieve super-resolution
building extraction. Our code is available at https://github.com/xian1234 /SRBuildSeg.

Keywords: remote sensing imagery; building extraction; super-resolution; deep learning.

1. Introduction

With rapid urbanization in recent years, high-resolution building extraction plays
an increasingly essential role in urban planning, change monitoring, and population
estimation [1-4]. With a rich set of remotely sensed images, it is possible to infer and
distinguish buildings from background objects at pixel level [5]. Such a process is defined
as building segmentation or building extraction [6].

In terms of data source, very high resolution (VHR) remotely sensed images were
viewed as an essential data source for producing high-resolution building extraction
in previous studies, such as 0.1 m airborne images [7,8] and 0.5 m space-borne images
[9]. Nevertheless, those VHR images are restricted to a limited spatial extent and
temporal availability, thus making the methods which demand VHR images as data
source difficult to apply in large area. In contrast, relatively low-resolution images
such as satellite-based images of WorldView series (1.2 m-2.4 m) and Planet series (3
m)[10] have better spatiotemporal availability. Notwithstanding, it has been proven
by Mariana Belgiu and Lucian Dragut [11] along with Huiping Huang et al. [12], that
remotely sensed images with relatively lower resolution could generally lead to lower
accuracy and coarser boundaries in segmentation results. The resolution inconsistency

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://www.mdpi.com
https://orcid.org/0000-0002-5285-1945
https://doi.org/10.3390/rs1010000
https://doi.org/10.3390/rs1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://doi.org/10.20944/preprints202104.0209.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202104.0209.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 d0i:10.20944/preprints202104.0209.v1

between the remotely sensed images and the building extraction target greatly impacts
the segmentation results. Ryuhei Hamaguchi and Shuhei Hikosaka [13] pointed out that
deep learning models that were trained using low-resolution images could hardly extract
buildings with significantly different high-resolution. Juan M Haut et al. [14] pointed
out that the resolution of remotely sensed images significantly affects the distribution of
the spatial features, which is important in distinguishing the pixels of buildings from
those of the background. Therefore, it remains challenging to develop an automated
framework for achieving super-resolution building extraction results using relatively
low-resolution remotely sensed images [15-17].

Despite the difficulties, achieving super-resolution building extraction results from
relatively low-resolution remotely sensed images can be of great value. First, for long-
term building change detection research, relatively low-resolution remotely sensed
images are irreplaceable and exclusive, especially for the late 20th century and early
21th century [18-20]. In these cases, relatively low-resolution remotely sensed images
are the only choice for building extraction. In addition, with the rich diversity of
satellites and remote sensor technologies, it is common to observe inconsistent spatial
resolutions in source datasets and target results for a certain task. For example, B Chen
et al. [21] transferred collected low-resolution training material into remotely sensed
image pixel classification of another resolution version, making it possible to generate
building segmentation results over large areas [11,22,23] or long time periods [24-26]
via spatiotemporally available low-resolution remotely sensed images.

To conduct such a task, the simplest and most widely used solution is to interpolate
all the resolution-inconsistent images into one desired resolution in the preprocess, for
example, by bilinear interpolation and bicubic interpolation [27]. However, interpolation-
based methods, for which the generated pixels are calculated by adjacent pixels, suffer
the loss of spatial information, especially in the edges and high-frequency regions where
interpolation will generate insufficient gradients [27,28].

Alternatively, super-resolution (SR) methods aim at reconstructing low-resolution
images into high-resolution versions with finer spatial details [29]. SR provides a promis-
ing alternative to map remotely sensed images with inconsistent resolution into a version
with uniform resolution for high-resolution building extraction. However, existing SR
approaches in remote sensing require a number of external high-resolution images to ob-
tain training datasets. Juan Mario Haut et al. [26] retrieved 2,100 external high-resolution
images for training, while Zhenfeng Shao et al. [25] collected more than 100,000 image
patches for training. Developing a novel SR approach with no need for external high-
resolution images remains challenging but valuable. Moreover, previous studies mainly
focus on the perceptual improvements of super-resolved images, with no evaluation
regarding how much the improvement of image perceptual quality can be transferred
into the improvement of subsequent building extraction.

Hereby, we propose the edge-aware super-resolved building segmentation network
(SRBuildingSeg) as a novel framework to achieve super-resolution building extraction.
The major contributions in this paper are as follows:

*  We propose a two-stage framework for attaining super-resolution building extrac-
tion, named SRBuildingSeg, which can make use of the extracted features of the
given low-resolution images to improve the performance of building extraction in
high-resolution representation.

*  Considering the self-similarity between each building in remotely sensed images,
we develop an internal pairs generation module (IPG) and an edge-aware super-
resolution module (EASR). Using the two proposed modules, we can fully utilize
the internal information of the given images to improve the perceptional features
for subsequent building segmentation without any external high-resolution images.

*  We propose a dual-encoder integration module (DES) for building segmentation
tasks which enables our approach to attain super-resolution building extraction by
fully utilizing the texture features and enhanced perceptional features.
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*  We demonstrate that the reconstructed high frequency information of the super-
resolved image can be transferred into the improvement of the super-resolution
building extraction task. The assessment results reveal that our proposed approach
ranks the best among all 8 compared methods.

The rest of the paper is organized as follows. In Section 2, we introduce the related
work, including the existing deep learning-based building extraction methods and single
image super-resolution techniques. In Section 3, we provide a detailed description of the
proposed approach. Experimental results and discussion are given in Sections 4 and 5.
We present our conclusions in Section 6.

2. Related Work
2.1. Building Extraction Using Deep Learning Approaches

Since Sakrapee Paisitkriangkrai et al. [30] first proposed a CNN based framework
to extract buildings in multispectral images, deep learning based building extraction
approaches were proposed and have proven to be effective using VHR images [31-33].
Despite the great success of deep learning approaches in building semantic segmentation,
only a few discussions focus on building extraction in which the given images and the
target results differ in spatial resolution. Mariana Belgiu and Lucian Dragut [11], Ryuhei
Hamaguchi and Shuhei Hikosaka [13] compared the building segmentation results
of several different approaches using multi-resolution remotely sensed images. They
found that the accuracy of extraction results differs with respect to each building size
and each specific resolution. Philipp Schuegraf and Ksenia Bittner [34] proposed a
hybrid deep learning network for obtaining high-resolution (0.5 m) building extraction
results using low-resolution (2 m) multi-spectral and panchromatic images, but their
experimental results only show slight improvement in extracting buildings of small
size. Zhiling Guo et al. [35] proposed a framework to extract buildings from relatively
low-resolution remotely sensed images while using relatively high-resolution images
as training material. Nevertheless, their proposed framework could only generate low-
resolution segmentation results from the given high-resolution training material. In
addition, they used 0.5 m remotely sensed images as “low-resolution images”, and
their extraction accuracy rapidly declines as the ratio of unaligned resolutions enlarges.
Thus, it remains a challenge to obtain fine and high-resolution building extraction from
low-resolution remotely sensed images.

2.2. Single Image Super-Resolution

Single image super-resolution (SISR), which aims at reconstructing the image into a
high-resolution version while providing finer spatial details than those of the original
version [29], has emerged as a promising alternative in mapping low-resolution remotely
sensed images into versions of higher resolution [36-38]. Although super-resolution
(SR) can reconstruct essential details of land features from the original datasets into
a specific desired spatial resolution, it also generally requirsd tremendous external
paired high-resolution images for training [25,39]. Moreover, the reconstructed images
generated by those SR models strongly relied on the external information provided
by training material, which made the collection of training samples more difficult
[40]. At the same time, the SR based models trained in an unsupervised way, e.g.,
the unsupervised Generative Adversarial Networks (GAN) model for SR [41], have
emerged as practical alternatives. However, the performances of those unsupervised
algorithms usually are unsatisfactory in the high-frequency region as compared with
the supervised approaches [42,43]. Another unsupervised SR model, zero-shot super-
resolution (ZSSR) [40], requires thousands of gradient updates in image reconstruction.
In addition, remotely sensed images are usually large in size, but the ZSSR model is
designed for natural images of small size. Thus, it is still challenging to generate fine
super-resolved images without using external high-resolution images. Furthermore, the
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contributions of the SR methods for the subsequent building extraction lack qualitative
evaluation and discussion.

3. Methodology
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Figure 1. The overall workflow of proposed building extraction using the LR images approach.

In this paper, we aim to utilize the given low-resolution remotely sensed images
to achieve building extraction in high-resolution representation. As illustrated in Fig.
1, the overall framework SRBuildingSeg is a two-stage architecture. Stage one focuses
on reconstructing a high-resolution version from the given low-resolution images. We
first propose an internal pairs generation module (IPG) to construct LR-HR training
pairs, which can improve the model trained in an unsupervised way. Hereafter, we
reconstruct the super-resolved images using an edge-aware super-resolution module
(EASR) which is trained on the constructed training dataset. Stage two exploits the
dual-encoder building segmentation module (DES) to achieve building extraction in
high-resolution representation, which takes both super-resolved images and enhanced
perceptional features as input in order to improve the segmentation performance.

We will elaborate on the details of SRBuildingSeg in the following sections. In
Section 3.1 and 3.2, we respectively introduce the IPG module and EASR module. The
description of DES is presented in Section 3.3, the assessment criteria are presented in
Section 3.4, and the loss fuction is presented in Section 3.5.

3.1. Internal Pairs Generation Module

Existing supervised SR methods in the remote sensing domain require a large num-
ber of LR-HR pairs as training material. In addition, the performance of supervised
approaches strongly relies on the external information extracted from LR-HR pairs, e.g.,
the representativeness of the training dataset. Considering the limitations of supervised
SR approaches, we propose an internal pairs generation module (IPG) to obtain LR-HR
training pairs without any external high-resolution images. Different from existing su-
pervised approaches, the IPG can fully exploit the self-similarity of the remotely sensed
image, which generally covers a large area and thus contains buildings of nearly all
various colors, shapes, surroundings, materials, heights, and forms. The internal infor-
mation of the remotely sensed images is a generalized and representative information
source, which proved its effectiveness in the training of the SR model [24,44].

The proposed IPG consists of four steps to generate the HR and its corresponding
LR (LR-HR) training pairs from the given low-resolution image I;,,,. First, we obtain the
“HR training pairs” by simply splitting and cropping the given low-resolution image
Ijow- In other words, the “HR training pairs” I g is actually presented in relatively low
resolution, which is considered as a high-resolution information source in the process
of training dataset generation. The corresponding LR training pairs I;g,| are then
obtained by downscaling each image in I} g, where the s represents the desired SR
scale factor. The “LR training pairs” I gs| is actually a lower-resolution version of the
given I;,,. The generated I g and Ig,| consist of many LR-HR image pairs, which
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Figure 2. An example workflow of the proposed LR-HR training pairs generation with a scaling
factor of 4.

can be used as input and target in the training process of the subsequent SR module.
Furthermore, for the sake of robustness, as well as to enrich the diversity of building
sizes, we generate many versions of the LR-HR image pairs using a random upscale
factor. Finally, the training material is enriched by randomly transforming each image in
LR-HR pairs using 4 rotations (0°, 90°, 180°, 270°), mirror reflecting in the vertical and
horizontal directions, flipping, resampling and adding Gaussian noise.

Taking the training pairs generated with a scale factor of 4 as an example, as
illustrated in Fig. 2, we first generate HR training pairs Irg (2 m) via cropping and
splitting the given images Ij,,, (2 m). We then downscale each image in I; g and generate
the corresponding LR training pairs I7 1 gs| (8 m). After dataset enrichment, the generated
LR-HR pairs are used as training material for SR model. Finally, we use the properly
trained the SR model and the given images Ij,,, (2 m) as input to generate super-resolved
images Iysy (0.5 m).

3.2. Edge-Aware Super-Resolution Module for Reconstructing High-Resolution Images

Considering that our LR-HR training pairs are generated using only the given low-
resolution images and contain no external information, the high-frequency information
of reconstructed images, which plays a vital role in subsequent building extraction [45],
remains to be improved. We employ an edge-aware super-resolution module (EASR)
to better reconstruct the high frequency of any given low-resolution remotely sensed
images. EASR integrates the initial generative adversarial subnetwork and gradient-
based enhancement subnetwork. In the training phase, the EASR utilizes the constructed
Irr and I1 1R as training material. In the test phase, the EASR takes the given LR image
I1ow as input and outputs super-resolved images Ips+ with given scale factor s as follows:

Ist = EASR(Ligw) )

The proposed EASR network is illustrated in Fig. 3. EASR is a GAN-based architec-
ture consisting of a generator and a discriminator.

The generator, which aims to reconstruct HR image Iy, from given LR image I},
with given scale factor s, consists of an initial reconstruction subnetwork and gradient-
based enhancement subnetwork. The reconstruction process contains the following
three steps:

The first step reconstructs an initial SR image I;;;;; using the initial generative
adversarial subnetwork composed of several residual blocks and a reconstruction layer
as decoder for generating the intermediate HR result I;,,;; , which thus helps to achieve
overall performance for the reconstruction of Iy

The second step focuses on the reconstruction of high-frequency information I,

edge’
which plays an important role in distinguishing the borders and edges of buildings in
remotely sensed images. In this step, we first utilize gradient guidance operation to
detect and extracts gradient information from I;;;;, which is intuitively useful for better

inferring the local intensity of sharpness. In addition, a frame branch and mask branch
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Figure 3. The architectures of the proposed EASR module.

is utilized to extract fine edge maps from the gradient information. These two branches
are utilized to learn the noise mask through the attention mechanism so that the network
can focus on the real edge information to achieve the purpose of removing noises and
artifacts. Specifically, the mask branch consists of three convolutional layers, which
aims to adaptively learn specific weight matrices with soft attention to the relevant
information. The frame branch contains several residual blocks to infer and extract
the sharp edge information. Therefore, the gradient-based enhancement subnetwork
reconstructs I ; e A5 follows:

where GE(-) denotes the mapping function of the gradient-based enhancement
subnetwork, which consists of gradient calculator, frame branch and masks branch.
The enhancement subnetwork can reconstruct the edge while reducing the noises and
maintaining sharpness.

The third step concatenates the initial SR image I;;,;; and enhanced I;ri ger and pro-
duces the final enhanced SR images Isg as follows:

I-‘r

Isr = linit = leage + Lzqe (3)

While the generator module is dedicated to reconstructing an SR image which is
similar to the ground truth HR image, and the discriminator module aims to distinguish
the reconstructed SR images from ground truth HR images. For the discriminator, we
take the architectural design in [45] as a reference but use the maximum pooling to
replace the strided convolution.

3.3. Segmentation Network for Building Extraction

Using the reconstructed HR image Iy and corresponding building footprint label
as training material, we train a dual-encoder segmentation module (DES) for building
extraction in stage two. The proposed DES is a modified version of DlinkNet, which was
firstly proposed by Lichen Zhou et al. [47] and proved to be effective in several recent
studies [48-50]. The proposed DES contains two encoder submodules and one decoder
submodule. As discussed above, the high-frequency information of reconstructed images
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can help define the building boundaries. Hence, we append an extra encoder module
which takes the reconstructed high-frequency information I} e A5 input to assist the
segmentation module in distinguishing building area from background. The final
building segmentation Seg is produced as follows:

Seg = DES(Iust, Ie,) ()

Each encoder of the proposed DES uses a ResNet-34 pre-trained weight on the Ima-
geNet dataset as an initial parameter. In addition, we employ dilated convolution layers
with dilation rates of 1, 2, 4, and 8 to improve the global and local representativeness of
the buildings. The other submodule is the decoder of the segmentation network, which
is in accordance with the decoder in U-net. The decoder uses transposed convolution
layers to upscale the feature map to the same size as the size of input images.

3.4. Loss Function

In stage one, we utilize commonly used loss functions for SR methods, including
reconstruction loss L., adversarial loss L.z, [45], content loss L.y, [46], and a total
variation (TV) regularization L, [51] to constrain the smoothness of Igg. The overall loss
is defined as:

Liotar = Lrec + @Lagy + BLeont + YLto ()

Where «, B and < denote the weights of each loss.
The reconstruction loss L, is utilized to preserve the consistency of image content
between the super-resolved image Isg and HR image I} g, which is defined as:

Lrec = 1/ (Isg — ILR)? (6)

The content loss enforces the generator to generate an intermediate Isg image
similar to I;;,;;, which is defined as:

Leont = \/ (Iinit — ILR)? )

The adversarial loss helps the network to improve the perceptual quality of gener-
ated images. The discriminator and the generator are optimized as follows:

Lago = —log(D(G(ILR))) (8)

Lago—p = —log(D(Irr)) — log(1 — D(ILr)) )

The total variation (TV) loss aims to constrain the smoothness of Isg, which is
defined as:

Lo = [|V(Isr)||2 (10)

Where V() denotes the gradient operator among the horizontal and vertical direc-
tions.

In stage two, we utilize commonly used binary cross entropy loss for the segmenta-
tion task.

4. Experiments
4.1. Study Area and Data

The study area contains the main city zone of three megacities in China, including
Beijing, Shanghai and Xi’an. The study area cover a total of approximately 1860 km? and
contains multiple building types. As shown in Fig. 4, the study areas cover variable types,
forms, and shapes of buildings, including the most modern buildings in developed areas
and factories under development, all of which make the selected areas representative
and remarkable for this study.
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Figure 4. Examples of buildings with various shapes, types, and forms in study area.

As for datasets, versions of remotely sensed images of several resolutions are
retrieved from Google Earth for the year 2018, including resolutiosn of 0.5 m, 1.0 m, 2.0
m, and 4.0 m, which are used as given material with scale ratio of 1, 2, 4, and 8 for each
experimental case. For the training period in stage one, training and evaluation material
were generated via segmenting the input images into patches of size 128 x128 pixels.
For the training period in the segmentation stage, images were cropped into 1024 x1024
pixel patches. We extract a total of 36, 000 group images with size of 1024 x1024 as our
datasets. The datasets were further divided into training set, test dataset, and validation
set according to 7:2:1 proportions.

With regard to the annotated dataset, the building footprint was annotated manu-
ally with the referenced remotely sensed images retrieved in 2018. The annotated dataset
contains spatial coordinates of all annotated building polygons, and a further raster-
ization process was conducted in the QGIS platform to generate ground truth labels
with the corresponding resolution for each baseline case. Note that a few mismatch
cases are inevitable between annotation results and the actual ‘ground truth’ as a result
of limitations in human-based interpretation and minor time inconsistency between
retrieved images and referenced images for annotating buildings.

4.2. Implementation Details

Two experiments are conducted for verifying the effectiveness of our proposed
two-stage SRBuildingSeg. In the first experiment, we compare the building footprint
segmentation results of varied unsupervised SR approaches and the same segmentation
approach. The other experiment compares the building extraction performance using
the proposed SR methods and varied segmentation approach.

In the training phase, our method is implemented in PyTorch. All the networks in
this paper are trained by mini-batch stochastic gradient descent (SGD) with momentum
of 0.9 and the weight decay of 0.0005. The learning rate of the super-resolution stage
is initialized as 0.001 and the learning rate of the segmentation stage is initialized as
0.0001. We utilize a reduced rate of 0.9 after every 5 epochs for both stages. Our network
converges in 100 epochs in both stages, and the batch size is set to 5. An NVIDIA 2080Ti
GPU is used for training.

4.3. The Effect of Super-Resolution in Building Extraction

In this section, we focus on comparing the effects contributed by the super-resolution
stage in achieving super-resolution building extraction. Therefore, we train each DlinkNet
[47] for the segmentation stage under the same conditions while using different SR meth-
ods in the super-resolution stage. Considering that the IPG module can help train the
SR techniques in an unsupervised way, we select 2 unsupervised SR approaches (i.e.,
TSE [52], ZZSR [40]) as well as 2 supervised SR methods (i.e., SRGAN [45], EEGAN [46])
which are trained on the dataset generated by our proposed IPG module. All segmenta-
tion networks are trained under the same conditions using 0.5 m super-resolved images.
According to the scale ratios in generating those SR images, our building segmentation
experiment consists of 3 cases, including ratio x2 (the resolution of LR images is 1 m),
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Figure 5. Qualitative examples of segmentation results of each method with ratio factors of 2, 4
and 8.

ratio x4 (the resolution of LR images is 2 m), and ratio x8 (the resolution of LR images
is 4 m). Note that the case of using the bicubic interpolated remotely sensed images to
train the segmentation model (BCI) is viewed as baseline in this experiment.

Table 1. Quantitative evaluation results on the super-resolution stage.

Stage one  Stagetwo Scale IoU  Precision Recall Flscore Kappa

BCI 0.6206 0.7420 0.7914 0.7659  0.6684
TSE 0.6403 0.7720 0.7896  0.7807  0.7157
Z7ZSR DlinkNet ’ 0.6492 0.7760 0.7989  0.7873  0.7066
SRGAN* 0.6538 0.7638 0.8195 0.7907  0.7537
EEGAN* 0.6633 0.7805 0.7986  0.7976  0.7438
EASR(ours) 0.6721 0.7965 0.8288  0.8039  0.7771
BCI 0.6069 0.7499 0.7221  0.7554  0.6069
TSE 0.6184 0.7693 07592  0.7642  0.6969
Z7Z5R DlinkNet 4 0.6224 0.7786 0.7563  0.7673  0.6972
SRGAN* 0.6263 07787  0.7842 0.7702  0.7160
EEGAN* 0.6336 0.7875 0.7643  0.7757  0.6940
EASR(ours) 0.6413 0.7919 0.7916 0.7814  0.7361
BCI 0.5616 0.7206 0.7180 0.7193  0.6152
TSE 0.5822 0.6978 0.7785 0.7359  0.6866
Z7ZSR DlinkNet 8 0.5925 0.7366 0.7518  0.7441  0.6906
SRGAN* 0.5863 0.7225 0.7568  0.7392  0.6589
EEGAN* 0.6060 0.7547  0.7547 0.7547  0.7041
EASR(ours) 0.6237  0.7818 0.7551 0.7682  0.7214

* indicates that this supervised SR method is trained on datasets generated by our
proposed IPG module.
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Table 1 presents the quantitative evaluation of the super-resolved building extrac-
tion with the scale factors of 2, 4, and 8 by using those methods. Note that it presents the
average results of all images collected for testing to provide a global view. All original
high-resolution images in the test area are used for testing. According to the quantitative
assessment reported in Table 1, the proposed EASR achieves better performance over
other methods, which reveals that the EASR module helps to improve the representa-
tiveness of reconstructed images distinguishing from background. In comparison with
unsupervised methods, the building extraction achieved via integration of the super-
vised SR method and proposed IPG module achieve better performance, indicating that
our proposed IPG module offers an advantage in helping supervised SR methods to fully
utilize the internal information of low resolution remotely sensed images, which can
also be proven through qualitative evaluation of Fig. 5. As shown in Fig. 5, the proposed
approach exhibits a great advantage in extracting borders and primary structures of
buildings in remotely sensed images.

As the SR scale ratio enlarges, the IPG module contributes less improvement and
even regresses in achieving super-resolution building extraction. The reason for this
phenomenon is that the IPG module takes LR images as input to extract useful informa-
tion for reconstructing edges and borders of super-resolved images. Meanwhile, as the
SR scale ratio enlarges, the LR images tend to contain more noise and blurring, which
makes it difficult to extract useful information.

4.4. The Effect of the Segmentation Module in Building Extraction

In this section, we compare our proposed DES module with four other state-of-the-
art segmentation methods (i.e., Unet [53], DeepLabv3p [54], PSPNet [55], and DlinkNet
[47]). For a fair comparison, we train each segmentation network using the same
super-resolved images reconstructed via our proposed EASR. For a fair comparison, all
segmentation networks are trained under the same conditions using 0.5 m super-resolved
image.

Table 2. Quantitative evaluation result on the segmentation stage.

Stage One  Stage Two Scale IoU Precision Recall Flscore Kappa

Unet 0.6081 0.7546 0.7580 0.7563 0.6654
DeepLabv3p 0.6536  0.8162 0.7664 0.7905 0.7160
EASR(ours) PSPNet 2 0.6522 0.7991 0.7801 0.7895 0.7125
DlinkNet 0.6721  0.7805 0.8288 0.8039 0.6684
DES(ours) 0.7070  0.8265 0.8305 0.8278 0.7761
Unet 0.5889 0.7037 0.7830 0.7413 0.6585
DeepLabv3p 0.6336 0.7716 0.7643 0.7757 0.6940
EASR(ours) PSPNet 4 0.6385 0.7646 0.7947 0.7794 0.6296
DlinkNet 0.6413 0.7787 0.7842 0.7814 0.7206
DES(ours) 0.6595 0.7875 0.8195 0.7948 0.7361
Unet 0.5414 0.7404 0.6683 0.7025 0.6045
DeepLabv3p 0.6155 0.7849 0.7313 0.7620 0.6786
EASR(ours) PSPNet 8 0.6317 0.7854 0.7634 0.7743 0.6974
DlinkNet 0.6237 0.7818 0.7551 0.7682 0.7214
DES(ours) 0.6346 0.7955 0.7682 0.7765 0.7310

We demonstrate the qualitative evaluation via visualizing the results between
predicted results and ground-truth labels. As demonstrated in Fig. 6, the segmentation
results of the proposed DES can maintain the main structures and borders of buildings,
while others fail to extract buildings, especially in large scale factor of building extraction
tasks (the ratio x8 cases in Fig. 6), which reveals that our approach can significantly
improve feature representativeness in the process of building extraction, especially in
the region of borders of buildings. Furthermore, our proposed approach shows its
robustness in extracting buildings of variable density, height, textures, and forms, while
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Figure 6. Qualitative examples of segmentation results of each method with ratio factors of 2, 4

and 8.
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Figure 7. The visualizations of the penultimate CNN layer (better visualized in color) in (a)
DlinkNet and (b) DES. (c) is the variance between (a) and (b), which denotes the enhanced
information in the segmentation task.

the others result in the unclear contour of buildings (the ratio x4 cases in Fig. 6). The
quantitative evaluation, as shown in Table 2, indicates that the proposed approach could
achieve better performance over other methods with regard to IoU, recall, F1 score,
overall accuracy, and kappa coefficient. This signifies that our proposed approach can
enhance the comprehensive features and information of super-resolved remotely sensed
images with an appropriate SR scale factor. It could be inferred from the segmentation
details, as shown in Fig. 6, that the extracted results outperform other methods with
fewer false positive cases, especially in the vicinity of building boundaries.

5. Discussion

Since the above experimental results show the potential of the proposed approach
in achieving high-resolution building extraction using low-resolution images, the mech-
anism and limits of the proposed approach necessitate further discussion. In this section,
we primarily discuss 2 topics: 1) how enhanced high frequency information influences
the super-resolution building extraction and 2) what the limits of the proposed approach
are in conducting super-resolution building extraction tasks.

5.1. The Effectiveness of High Frequency Information in Building Extraction

As demonstrated in Table 1 and Table 2, it seems feasible to achieve high-resolution
building extraction via integrating super-resolution and building segmentation methods.
In comparison to the building extraction results using bicubic interpolated images, all
SR-integrated methods achieve better performance with the scaling ratios of 2, 4 and 8.
In addition, the details of reconstructed images using our approach are well-maintained
in comparison to those of other integrated methods. A simple but vital question is:
how does enhanced high frequency information influence the super-resolution building
extraction?

As demonstrated in Fig. 7, we visualized the penultimate CNN layer of DlinkNet (
Fig. 7 (a)) and our proposed DES ( Fig. 7 (b)). Specifically, we visualized the variance
between the penultimate CNN layer of DlinkNet and DES ( Fig. 7 (c)) , which highlights
the enhanced high frequency information in the segmentation task. Owing to the fusion
of enhanced details and input images, it is clear that the features in edges and borders of
buildings are well represented, resulting in better building extraction results. Meanwhile,
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Figure 8. Qualitative assessment of the improvements contributed by the enhancement module
with scale ratios of 2 (column I), 4 (column II), 8(column III), and 12(column IV).

the super-resolved images generated via other SR methods maintain better edges and
borders in comparison with that of bicubic interpolated images, thus resulting in better
performance. This reveals that edges and borders of buildings serve pivotal roles in
building segmentation from remotely sensed images.

5.2. The Limitations of the Proposed Approach

Since we can generate high-resolution building extraction results with acceptable ac-
curacy using training material with resolution around 4 m, it seems theoretically possible
that we can use even lower resolution material, such as 6 m, to achieve high-resolution
building extraction results following the same approach. As shown in the experimental
results of remotely sensed image SR and building extraction, the improvements con-
tributed by SR methods rapidly decline as the ratio factor enlarges, especially in the cases
with ratio factor of 8. This is primarily attributed to the unsatisfactory reconstruction
results obtained for the edges and borders. Nevertheless, whether there is a limit scaling
ratio in conducting high-resolution building extraction using low-resolution material
remains to be determined.

Table 3. Quantitative evaluation of the results of building extraction.

Methods Scale IoU Precision Recall Flscore Kappa

BCI 5 0.6206  0.7420 0.7914 0.7659 0.6684
Ours 0.7070  0.8265 0.8305 0.8278 0.7761
BCI 4 0.6069 0.7499 0.7221 0.7554 0.6069
Ours 0.6595 0.7875 0.8195 0.7948 0.7361
BCI 8 0.5616 0.7206 0.7180 0.7193 0.6152
Ours 0.6346  0.7955 0.7682 0.7765 0.7310
BCI 12 0.5279  0.7270 0.6584 0.6910 0.5837
Ours 0.5414 0.7404 0.6683 0.7025 0.6045

Furthermore, we demonstrate the proposed approach in conducting high-resolution
building extraction with ratio factors of 2, 4, 8, and 12. Note that the training material
with ratio factor of 12 was generated from OHGT using bilinear interpolation. As shown
in Table 3 and Fig. 8, two shortages emerge as the ratio factor of super-resolution in
building extraction continually increases, which could lead to the theoretical ratio limits
of our proposed approach. On one hand, the higher the ratio is, the harder the training
process becomes. The training pairs generation module first downscales the given input
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images, after which much coarser images are generated for the input of the SR module,
resulting in a remotely sensed image without sufficient important details for subsequent
reconstruction. The strength in providing finer details regarding output images based on
the proposed SR module becomes weaker as the scale ratio of the building extraction task
enlarges. On the other hand, the improvement contributed by our enhancement module
leads to worse performance as the scale ratio of the building extraction task enlarges,
which results from the insufficiency of details retrieved from the given low-resolution
images. As demonstrated in Fig.8, the high frequency information reconstructed via the
proposed EASR becomes coarse, which may even lead to a few artifacts. This indicates
that the proposed approach is reaching its limits in conducting the building extraction
task at the scale ratio of 12.

6. Conclusion

In this study, we propose a novel two-stage framework (SRBuildingSeg) to achieve
super-resolution building extraction using relatively low-resolution remotely sensed
images. SRBuildingSeg can fully utilize inherent information of the given low-resolution
images to achieve relatively high-resolution building extraction. For generating LR-HR
training pairs, we propose an internal pairs generation module (IPG) with no need
for external high-resolution images, which can reconstruct super-resolved images with
only the given low-resolution images. The edge-aware super-resolution (EASR) module
then generates super-resolved images at the desired higher resolution, after which the
super-resolution building extraction result is obtained using the dual-encoder building
segmentation module (DES). The experimental results demonstrate the capability of
the proposed approach in achieving super-resolution building extraction, which out-
performs other methods in terms of both the perceptual quality of the super-resolved
remotely sensed image and the building extraction accuracy for all small (x2), middle
(x4), and large (x8) scale ratios. Furthermore, we demonstrate how the reconstructed
high frequency information affects the subsequent building extraction. The assessment
results reveal that our proposed approach ranks the best among all SR-integrated meth-
ods. In summary, we present the potential of the proposed straightforward approach
in demonstrating the use of widely available low-resolution resolution data to obtain
high-resolution building extraction results. This approach is practical and especially
useful when extra datasets of high-resolution remotely sensed images are unavailable.
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