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Abstract: Existing methods for building extraction from remotely sensed images strongly rely1

on aerial or satellite-based images with very high resolution, which are usually limited by spa-2

tiotemporally accessibility and cost. In contrast, relatively low-resolution images have better3

spatial and temporal availability but cannot directly contribute to fine- and/or high-resolution4

building extraction. In this paper, based on image super-resolution and segmentation techniques,5

we propose a two-stage framework (SRBuildingSeg) for achieving super-resolution (SR) building6

extraction using relatively low-resolution remotely sensed images. SRBuildingSeg can fully utilize7

inherent information from the given low-resolution images to achieve high-resolution building8

extraction. In contrast to the existing building extraction methods, we first utilize an internal pairs9

generation module (IPG) to obtain SR training datasets from the given low-resolution images and10

an edge-aware super-resolution module (EASR) to improve the perceptional features, following11

the dual-encoder building segmentation module (DES). Both qualitative and quantitative experi-12

mental results demonstrate that our proposed approach is capable of achieving high-resolution (e.g.13

0.5 m) building extraction results at 2×, 4× and 8× SR. Our approach outperforms 8 other methods14

with respect to the extraction result of mean Intersection over Union (mIoU) values by a ratio of15

9.38%, 8.20% and 7.89% with SR ratio factors of 2, 4, and 8, respectively. The results indicate that16

the edges and borders reconstructed in super-resolved images serve a pivotal role in subsequent17

building extraction and reveal the potential of the proposed approach to achieve super-resolution18

building extraction. Our code is available at https://github.com/xian1234/SRBuildSeg.19

Keywords: remote sensing imagery; building extraction; super-resolution; deep learning.20

1. Introduction21

With rapid urbanization in recent years, high-resolution building extraction plays22

an increasingly essential role in urban planning, change monitoring, and population23

estimation [1–4]. With a rich set of remotely sensed images, it is possible to infer and24

distinguish buildings from background objects at pixel level [5]. Such a process is defined25

as building segmentation or building extraction [6].26

In terms of data source, very high resolution (VHR) remotely sensed images were27

viewed as an essential data source for producing high-resolution building extraction28

in previous studies, such as 0.1 m airborne images [7,8] and 0.5 m space-borne images29

[9]. Nevertheless, those VHR images are restricted to a limited spatial extent and30

temporal availability, thus making the methods which demand VHR images as data31

source difficult to apply in large area. In contrast, relatively low-resolution images32

such as satellite-based images of WorldView series (1.2 m-2.4 m) and Planet series (333

m)[10] have better spatiotemporal availability. Notwithstanding, it has been proven34

by Mariana Belgiu and Lucian Drǎguţ [11] along with Huiping Huang et al. [12], that35

remotely sensed images with relatively lower resolution could generally lead to lower36

accuracy and coarser boundaries in segmentation results. The resolution inconsistency37
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between the remotely sensed images and the building extraction target greatly impacts38

the segmentation results. Ryuhei Hamaguchi and Shuhei Hikosaka [13] pointed out that39

deep learning models that were trained using low-resolution images could hardly extract40

buildings with significantly different high-resolution. Juan M Haut et al. [14] pointed41

out that the resolution of remotely sensed images significantly affects the distribution of42

the spatial features, which is important in distinguishing the pixels of buildings from43

those of the background. Therefore, it remains challenging to develop an automated44

framework for achieving super-resolution building extraction results using relatively45

low-resolution remotely sensed images [15–17].46

Despite the difficulties, achieving super-resolution building extraction results from47

relatively low-resolution remotely sensed images can be of great value. First, for long-48

term building change detection research, relatively low-resolution remotely sensed49

images are irreplaceable and exclusive, especially for the late 20th century and early50

21th century [18–20]. In these cases, relatively low-resolution remotely sensed images51

are the only choice for building extraction. In addition, with the rich diversity of52

satellites and remote sensor technologies, it is common to observe inconsistent spatial53

resolutions in source datasets and target results for a certain task. For example, B Chen54

et al. [21] transferred collected low-resolution training material into remotely sensed55

image pixel classification of another resolution version, making it possible to generate56

building segmentation results over large areas [11,22,23] or long time periods [24–26]57

via spatiotemporally available low-resolution remotely sensed images.58

To conduct such a task, the simplest and most widely used solution is to interpolate59

all the resolution-inconsistent images into one desired resolution in the preprocess, for60

example, by bilinear interpolation and bicubic interpolation [27]. However, interpolation-61

based methods, for which the generated pixels are calculated by adjacent pixels, suffer62

the loss of spatial information, especially in the edges and high-frequency regions where63

interpolation will generate insufficient gradients [27,28].64

Alternatively, super-resolution (SR) methods aim at reconstructing low-resolution65

images into high-resolution versions with finer spatial details [29]. SR provides a promis-66

ing alternative to map remotely sensed images with inconsistent resolution into a version67

with uniform resolution for high-resolution building extraction. However, existing SR68

approaches in remote sensing require a number of external high-resolution images to ob-69

tain training datasets. Juan Mario Haut et al. [26] retrieved 2,100 external high-resolution70

images for training, while Zhenfeng Shao et al. [25] collected more than 100,000 image71

patches for training. Developing a novel SR approach with no need for external high-72

resolution images remains challenging but valuable. Moreover, previous studies mainly73

focus on the perceptual improvements of super-resolved images, with no evaluation74

regarding how much the improvement of image perceptual quality can be transferred75

into the improvement of subsequent building extraction.76

Hereby, we propose the edge-aware super-resolved building segmentation network77

(SRBuildingSeg) as a novel framework to achieve super-resolution building extraction.78

The major contributions in this paper are as follows:79

• We propose a two-stage framework for attaining super-resolution building extrac-80

tion, named SRBuildingSeg, which can make use of the extracted features of the81

given low-resolution images to improve the performance of building extraction in82

high-resolution representation.83

• Considering the self-similarity between each building in remotely sensed images,84

we develop an internal pairs generation module (IPG) and an edge-aware super-85

resolution module (EASR). Using the two proposed modules, we can fully utilize86

the internal information of the given images to improve the perceptional features87

for subsequent building segmentation without any external high-resolution images.88

• We propose a dual-encoder integration module (DES) for building segmentation89

tasks which enables our approach to attain super-resolution building extraction by90

fully utilizing the texture features and enhanced perceptional features.91
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• We demonstrate that the reconstructed high frequency information of the super-92

resolved image can be transferred into the improvement of the super-resolution93

building extraction task. The assessment results reveal that our proposed approach94

ranks the best among all 8 compared methods.95

The rest of the paper is organized as follows. In Section 2, we introduce the related96

work, including the existing deep learning-based building extraction methods and single97

image super-resolution techniques. In Section 3, we provide a detailed description of the98

proposed approach. Experimental results and discussion are given in Sections 4 and 5.99

We present our conclusions in Section 6.100

2. Related Work101

2.1. Building Extraction Using Deep Learning Approaches102

Since Sakrapee Paisitkriangkrai et al. [30] first proposed a CNN based framework103

to extract buildings in multispectral images, deep learning based building extraction104

approaches were proposed and have proven to be effective using VHR images [31–33].105

Despite the great success of deep learning approaches in building semantic segmentation,106

only a few discussions focus on building extraction in which the given images and the107

target results differ in spatial resolution. Mariana Belgiu and Lucian Drǎguţ [11], Ryuhei108

Hamaguchi and Shuhei Hikosaka [13] compared the building segmentation results109

of several different approaches using multi-resolution remotely sensed images. They110

found that the accuracy of extraction results differs with respect to each building size111

and each specific resolution. Philipp Schuegraf and Ksenia Bittner [34] proposed a112

hybrid deep learning network for obtaining high-resolution (0.5 m) building extraction113

results using low-resolution (2 m) multi-spectral and panchromatic images, but their114

experimental results only show slight improvement in extracting buildings of small115

size. Zhiling Guo et al. [35] proposed a framework to extract buildings from relatively116

low-resolution remotely sensed images while using relatively high-resolution images117

as training material. Nevertheless, their proposed framework could only generate low-118

resolution segmentation results from the given high-resolution training material. In119

addition, they used 0.5 m remotely sensed images as “low-resolution images”, and120

their extraction accuracy rapidly declines as the ratio of unaligned resolutions enlarges.121

Thus, it remains a challenge to obtain fine and high-resolution building extraction from122

low-resolution remotely sensed images.123

2.2. Single Image Super-Resolution124

Single image super-resolution (SISR), which aims at reconstructing the image into a125

high-resolution version while providing finer spatial details than those of the original126

version [29], has emerged as a promising alternative in mapping low-resolution remotely127

sensed images into versions of higher resolution [36–38]. Although super-resolution128

(SR) can reconstruct essential details of land features from the original datasets into129

a specific desired spatial resolution, it also generally requirsd tremendous external130

paired high-resolution images for training [25,39]. Moreover, the reconstructed images131

generated by those SR models strongly relied on the external information provided132

by training material, which made the collection of training samples more difficult133

[40]. At the same time, the SR based models trained in an unsupervised way, e.g.,134

the unsupervised Generative Adversarial Networks (GAN) model for SR [41], have135

emerged as practical alternatives. However, the performances of those unsupervised136

algorithms usually are unsatisfactory in the high-frequency region as compared with137

the supervised approaches [42,43]. Another unsupervised SR model, zero-shot super-138

resolution (ZSSR) [40], requires thousands of gradient updates in image reconstruction.139

In addition, remotely sensed images are usually large in size, but the ZSSR model is140

designed for natural images of small size. Thus, it is still challenging to generate fine141

super-resolved images without using external high-resolution images. Furthermore, the142
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contributions of the SR methods for the subsequent building extraction lack qualitative143

evaluation and discussion.144

3. Methodology145

Figure 1. The overall workflow of proposed building extraction using the LR images approach.

In this paper, we aim to utilize the given low-resolution remotely sensed images146

to achieve building extraction in high-resolution representation. As illustrated in Fig.147

1, the overall framework SRBuildingSeg is a two-stage architecture. Stage one focuses148

on reconstructing a high-resolution version from the given low-resolution images. We149

first propose an internal pairs generation module (IPG) to construct LR-HR training150

pairs, which can improve the model trained in an unsupervised way. Hereafter, we151

reconstruct the super-resolved images using an edge-aware super-resolution module152

(EASR) which is trained on the constructed training dataset. Stage two exploits the153

dual-encoder building segmentation module (DES) to achieve building extraction in154

high-resolution representation, which takes both super-resolved images and enhanced155

perceptional features as input in order to improve the segmentation performance.156

We will elaborate on the details of SRBuildingSeg in the following sections. In157

Section 3.1 and 3.2, we respectively introduce the IPG module and EASR module. The158

description of DES is presented in Section 3.3, the assessment criteria are presented in159

Section 3.4, and the loss fuction is presented in Section 3.5.160

3.1. Internal Pairs Generation Module161

Existing supervised SR methods in the remote sensing domain require a large num-162

ber of LR-HR pairs as training material. In addition, the performance of supervised163

approaches strongly relies on the external information extracted from LR-HR pairs, e.g.,164

the representativeness of the training dataset. Considering the limitations of supervised165

SR approaches, we propose an internal pairs generation module (IPG) to obtain LR-HR166

training pairs without any external high-resolution images. Different from existing su-167

pervised approaches, the IPG can fully exploit the self-similarity of the remotely sensed168

image, which generally covers a large area and thus contains buildings of nearly all169

various colors, shapes, surroundings, materials, heights, and forms. The internal infor-170

mation of the remotely sensed images is a generalized and representative information171

source, which proved its effectiveness in the training of the SR model [24,44].172

The proposed IPG consists of four steps to generate the HR and its corresponding173

LR (LR-HR) training pairs from the given low-resolution image Ilow. First, we obtain the174

“HR training pairs” by simply splitting and cropping the given low-resolution image175

Ilow. In other words, the “HR training pairs” ILR is actually presented in relatively low176

resolution, which is considered as a high-resolution information source in the process177

of training dataset generation. The corresponding LR training pairs ILLRs↓ are then178

obtained by downscaling each image in ILR, where the s represents the desired SR179

scale factor. The “LR training pairs” ILLRs↓ is actually a lower-resolution version of the180

given Ilow. The generated ILR and ILLRs↓ consist of many LR-HR image pairs, which181
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Figure 2. An example workflow of the proposed LR-HR training pairs generation with a scaling
factor of 4.

can be used as input and target in the training process of the subsequent SR module.182

Furthermore, for the sake of robustness, as well as to enrich the diversity of building183

sizes, we generate many versions of the LR-HR image pairs using a random upscale184

factor. Finally, the training material is enriched by randomly transforming each image in185

LR-HR pairs using 4 rotations (0°, 90°, 180°, 270°), mirror reflecting in the vertical and186

horizontal directions, flipping, resampling and adding Gaussian noise.187

Taking the training pairs generated with a scale factor of 4 as an example, as188

illustrated in Fig. 2, we first generate HR training pairs ILR (2 m) via cropping and189

splitting the given images Ilow (2 m). We then downscale each image in ILR and generate190

the corresponding LR training pairs ILLRs↓ (8 m). After dataset enrichment, the generated191

LR-HR pairs are used as training material for SR model. Finally, we use the properly192

trained the SR model and the given images Ilow (2 m) as input to generate super-resolved193

images IHs↑ (0.5 m).194

3.2. Edge-Aware Super-Resolution Module for Reconstructing High-Resolution Images195

Considering that our LR-HR training pairs are generated using only the given low-196

resolution images and contain no external information, the high-frequency information197

of reconstructed images, which plays a vital role in subsequent building extraction [45],198

remains to be improved. We employ an edge-aware super-resolution module (EASR)199

to better reconstruct the high frequency of any given low-resolution remotely sensed200

images. EASR integrates the initial generative adversarial subnetwork and gradient-201

based enhancement subnetwork. In the training phase, the EASR utilizes the constructed202

ILR and ILLRs↓ as training material. In the test phase, the EASR takes the given LR image203

Ilow as input and outputs super-resolved images IHs↑ with given scale factor s as follows:204

IHs↑ = EASR(Ilow) (1)

The proposed EASR network is illustrated in Fig. 3. EASR is a GAN-based architec-205

ture consisting of a generator and a discriminator.206

The generator, which aims to reconstruct HR image IHs↑ from given LR image Ilow207

with given scale factor s, consists of an initial reconstruction subnetwork and gradient-208

based enhancement subnetwork. The reconstruction process contains the following209

three steps:210

The first step reconstructs an initial SR image Iinit using the initial generative211

adversarial subnetwork composed of several residual blocks and a reconstruction layer212

as decoder for generating the intermediate HR result Iinit , which thus helps to achieve213

overall performance for the reconstruction of IHs↑.214

The second step focuses on the reconstruction of high-frequency information I+edge,215

which plays an important role in distinguishing the borders and edges of buildings in216

remotely sensed images. In this step, we first utilize gradient guidance operation to217

detect and extracts gradient information from Iinit, which is intuitively useful for better218

inferring the local intensity of sharpness. In addition, a frame branch and mask branch219
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Figure 3. The architectures of the proposed EASR module.

is utilized to extract fine edge maps from the gradient information. These two branches220

are utilized to learn the noise mask through the attention mechanism so that the network221

can focus on the real edge information to achieve the purpose of removing noises and222

artifacts. Specifically, the mask branch consists of three convolutional layers, which223

aims to adaptively learn specific weight matrices with soft attention to the relevant224

information. The frame branch contains several residual blocks to infer and extract225

the sharp edge information. Therefore, the gradient-based enhancement subnetwork226

reconstructs I+edge as follows:227

I+edge = GE(Iinit) (2)

where GE(·) denotes the mapping function of the gradient-based enhancement228

subnetwork, which consists of gradient calculator, frame branch and masks branch.229

The enhancement subnetwork can reconstruct the edge while reducing the noises and230

maintaining sharpness.231

The third step concatenates the initial SR image Iinit and enhanced I+edge, and pro-
duces the final enhanced SR images ISR as follows:

ISR = Iinit − Iedge + I+edge (3)

While the generator module is dedicated to reconstructing an SR image which is232

similar to the ground truth HR image, and the discriminator module aims to distinguish233

the reconstructed SR images from ground truth HR images. For the discriminator, we234

take the architectural design in [45] as a reference but use the maximum pooling to235

replace the strided convolution.236

3.3. Segmentation Network for Building Extraction237

Using the reconstructed HR image IHs↑ and corresponding building footprint label
as training material, we train a dual-encoder segmentation module (DES) for building
extraction in stage two. The proposed DES is a modified version of DlinkNet, which was
firstly proposed by Lichen Zhou et al. [47] and proved to be effective in several recent
studies [48–50]. The proposed DES contains two encoder submodules and one decoder
submodule. As discussed above, the high-frequency information of reconstructed images
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can help define the building boundaries. Hence, we append an extra encoder module
which takes the reconstructed high-frequency information I+edge as input to assist the
segmentation module in distinguishing building area from background. The final
building segmentation Seg is produced as follows:

Seg = DES(IHs↑, I+edge) (4)

Each encoder of the proposed DES uses a ResNet-34 pre-trained weight on the Ima-238

geNet dataset as an initial parameter. In addition, we employ dilated convolution layers239

with dilation rates of 1, 2, 4, and 8 to improve the global and local representativeness of240

the buildings. The other submodule is the decoder of the segmentation network, which241

is in accordance with the decoder in U-net. The decoder uses transposed convolution242

layers to upscale the feature map to the same size as the size of input images.243

3.4. Loss Function244

In stage one, we utilize commonly used loss functions for SR methods, including
reconstruction loss Lrec, adversarial loss Ladv [45], content loss Lcont [46], and a total
variation (TV) regularization Ltv [51] to constrain the smoothness of ISR. The overall loss
is defined as:

Ltotal = Lrec + αLadv + βLcont + γLtv (5)

Where α, β and γ denote the weights of each loss.245

The reconstruction loss Lrec is utilized to preserve the consistency of image content
between the super-resolved image ISR and HR image ILR, which is defined as:

Lrec =
√
(ISR − ILR)2 (6)

The content loss enforces the generator to generate an intermediate ISR image
similar to Iinit, which is defined as:

Lcont =
√
(Iinit − ILR)2 (7)

The adversarial loss helps the network to improve the perceptual quality of gener-
ated images. The discriminator and the generator are optimized as follows:

Ladv = −log(D(G(ILR))) (8)

Ladv−D = −log(D(ILR))− log(1− D(ILR)) (9)

The total variation (TV) loss aims to constrain the smoothness of ISR, which is
defined as:

Ltv = ||∇(ISR)||2 (10)

Where ∇(·) denotes the gradient operator among the horizontal and vertical direc-246

tions.247

In stage two, we utilize commonly used binary cross entropy loss for the segmenta-248

tion task.249

4. Experiments250

4.1. Study Area and Data251

The study area contains the main city zone of three megacities in China, including252

Beijing, Shanghai and Xi’an. The study area cover a total of approximately 1860 km2 and253

contains multiple building types. As shown in Fig. 4, the study areas cover variable types,254

forms, and shapes of buildings, including the most modern buildings in developed areas255

and factories under development, all of which make the selected areas representative256

and remarkable for this study.257
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Figure 4. Examples of buildings with various shapes, types, and forms in study area.

As for datasets, versions of remotely sensed images of several resolutions are258

retrieved from Google Earth for the year 2018, including resolutiosn of 0.5 m, 1.0 m, 2.0259

m, and 4.0 m, which are used as given material with scale ratio of 1, 2, 4, and 8 for each260

experimental case. For the training period in stage one, training and evaluation material261

were generated via segmenting the input images into patches of size 128×128 pixels.262

For the training period in the segmentation stage, images were cropped into 1024×1024263

pixel patches. We extract a total of 36, 000 group images with size of 1024×1024 as our264

datasets. The datasets were further divided into training set, test dataset, and validation265

set according to 7:2:1 proportions.266

With regard to the annotated dataset, the building footprint was annotated manu-267

ally with the referenced remotely sensed images retrieved in 2018. The annotated dataset268

contains spatial coordinates of all annotated building polygons, and a further raster-269

ization process was conducted in the QGIS platform to generate ground truth labels270

with the corresponding resolution for each baseline case. Note that a few mismatch271

cases are inevitable between annotation results and the actual ‘ground truth’ as a result272

of limitations in human-based interpretation and minor time inconsistency between273

retrieved images and referenced images for annotating buildings.274

4.2. Implementation Details275

Two experiments are conducted for verifying the effectiveness of our proposed276

two-stage SRBuildingSeg. In the first experiment, we compare the building footprint277

segmentation results of varied unsupervised SR approaches and the same segmentation278

approach. The other experiment compares the building extraction performance using279

the proposed SR methods and varied segmentation approach.280

In the training phase, our method is implemented in PyTorch. All the networks in281

this paper are trained by mini-batch stochastic gradient descent (SGD) with momentum282

of 0.9 and the weight decay of 0.0005. The learning rate of the super-resolution stage283

is initialized as 0.001 and the learning rate of the segmentation stage is initialized as284

0.0001. We utilize a reduced rate of 0.9 after every 5 epochs for both stages. Our network285

converges in 100 epochs in both stages, and the batch size is set to 5. An NVIDIA 2080Ti286

GPU is used for training.287

4.3. The Effect of Super-Resolution in Building Extraction288

In this section, we focus on comparing the effects contributed by the super-resolution289

stage in achieving super-resolution building extraction. Therefore, we train each DlinkNet290

[47] for the segmentation stage under the same conditions while using different SR meth-291

ods in the super-resolution stage. Considering that the IPG module can help train the292

SR techniques in an unsupervised way, we select 2 unsupervised SR approaches (i.e.,293

TSE [52], ZZSR [40]) as well as 2 supervised SR methods (i.e., SRGAN [45], EEGAN [46])294

which are trained on the dataset generated by our proposed IPG module. All segmenta-295

tion networks are trained under the same conditions using 0.5 m super-resolved images.296

According to the scale ratios in generating those SR images, our building segmentation297

experiment consists of 3 cases, including ratio x2 (the resolution of LR images is 1 m),298
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Figure 5. Qualitative examples of segmentation results of each method with ratio factors of 2, 4
and 8.

ratio x4 (the resolution of LR images is 2 m), and ratio x8 (the resolution of LR images299

is 4 m). Note that the case of using the bicubic interpolated remotely sensed images to300

train the segmentation model (BCI) is viewed as baseline in this experiment.301

Table 1. Quantitative evaluation results on the super-resolution stage.

Stage one Stage two Scale IoU Precision Recall F1 score Kappa
BCI

DlinkNet 2

0.6206 0.7420 0.7914 0.7659 0.6684
TSE 0.6403 0.7720 0.7896 0.7807 0.7157

ZZSR 0.6492 0.7760 0.7989 0.7873 0.7066
SRGAN* 0.6538 0.7638 0.8195 0.7907 0.7537
EEGAN* 0.6633 0.7805 0.7986 0.7976 0.7438

EASR(ours) 0.6721 0.7965 0.8288 0.8039 0.7771
BCI

DlinkNet 4

0.6069 0.7499 0.7221 0.7554 0.6069
TSE 0.6184 0.7693 0.7592 0.7642 0.6969

ZZSR 0.6224 0.7786 0.7563 0.7673 0.6972
SRGAN* 0.6263 0.7787 0.7842 0.7702 0.7160
EEGAN* 0.6336 0.7875 0.7643 0.7757 0.6940

EASR(ours) 0.6413 0.7919 0.7916 0.7814 0.7361
BCI

DlinkNet 8

0.5616 0.7206 0.7180 0.7193 0.6152
TSE 0.5822 0.6978 0.7785 0.7359 0.6866

ZZSR 0.5925 0.7366 0.7518 0.7441 0.6906
SRGAN* 0.5863 0.7225 0.7568 0.7392 0.6589
EEGAN* 0.6060 0.7547 0.7547 0.7547 0.7041

EASR(ours) 0.6237 0.7818 0.7551 0.7682 0.7214

* indicates that this supervised SR method is trained on datasets generated by our
proposed IPG module.
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Table 1 presents the quantitative evaluation of the super-resolved building extrac-302

tion with the scale factors of 2, 4, and 8 by using those methods. Note that it presents the303

average results of all images collected for testing to provide a global view. All original304

high-resolution images in the test area are used for testing. According to the quantitative305

assessment reported in Table 1, the proposed EASR achieves better performance over306

other methods, which reveals that the EASR module helps to improve the representa-307

tiveness of reconstructed images distinguishing from background. In comparison with308

unsupervised methods, the building extraction achieved via integration of the super-309

vised SR method and proposed IPG module achieve better performance, indicating that310

our proposed IPG module offers an advantage in helping supervised SR methods to fully311

utilize the internal information of low resolution remotely sensed images, which can312

also be proven through qualitative evaluation of Fig. 5. As shown in Fig. 5, the proposed313

approach exhibits a great advantage in extracting borders and primary structures of314

buildings in remotely sensed images.315

As the SR scale ratio enlarges, the IPG module contributes less improvement and316

even regresses in achieving super-resolution building extraction. The reason for this317

phenomenon is that the IPG module takes LR images as input to extract useful informa-318

tion for reconstructing edges and borders of super-resolved images. Meanwhile, as the319

SR scale ratio enlarges, the LR images tend to contain more noise and blurring, which320

makes it difficult to extract useful information.321

4.4. The Effect of the Segmentation Module in Building Extraction322

In this section, we compare our proposed DES module with four other state-of-the-323

art segmentation methods (i.e., Unet [53], DeepLabv3p [54], PSPNet [55], and DlinkNet324

[47]). For a fair comparison, we train each segmentation network using the same325

super-resolved images reconstructed via our proposed EASR. For a fair comparison, all326

segmentation networks are trained under the same conditions using 0.5 m super-resolved327

image.328

Table 2. Quantitative evaluation result on the segmentation stage.

Stage One Stage Two Scale IoU Precision Recall F1 score Kappa

EASR(ours)

Unet

2

0.6081 0.7546 0.7580 0.7563 0.6654
DeepLabv3p 0.6536 0.8162 0.7664 0.7905 0.7160
PSPNet 0.6522 0.7991 0.7801 0.7895 0.7125
DlinkNet 0.6721 0.7805 0.8288 0.8039 0.6684
DES(ours) 0.7070 0.8265 0.8305 0.8278 0.7761

EASR(ours)

Unet

4

0.5889 0.7037 0.7830 0.7413 0.6585
DeepLabv3p 0.6336 0.7716 0.7643 0.7757 0.6940
PSPNet 0.6385 0.7646 0.7947 0.7794 0.6296
DlinkNet 0.6413 0.7787 0.7842 0.7814 0.7206
DES(ours) 0.6595 0.7875 0.8195 0.7948 0.7361

EASR(ours)

Unet

8

0.5414 0.7404 0.6683 0.7025 0.6045
DeepLabv3p 0.6155 0.7849 0.7313 0.7620 0.6786
PSPNet 0.6317 0.7854 0.7634 0.7743 0.6974
DlinkNet 0.6237 0.7818 0.7551 0.7682 0.7214
DES(ours) 0.6346 0.7955 0.7682 0.7765 0.7310

We demonstrate the qualitative evaluation via visualizing the results between329

predicted results and ground-truth labels. As demonstrated in Fig. 6, the segmentation330

results of the proposed DES can maintain the main structures and borders of buildings,331

while others fail to extract buildings, especially in large scale factor of building extraction332

tasks (the ratio x8 cases in Fig. 6), which reveals that our approach can significantly333

improve feature representativeness in the process of building extraction, especially in334

the region of borders of buildings. Furthermore, our proposed approach shows its335

robustness in extracting buildings of variable density, height, textures, and forms, while336
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Figure 6. Qualitative examples of segmentation results of each method with ratio factors of 2, 4
and 8.
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Figure 7. The visualizations of the penultimate CNN layer (better visualized in color) in (a)
DlinkNet and (b) DES. (c) is the variance between (a) and (b), which denotes the enhanced
information in the segmentation task.

the others result in the unclear contour of buildings (the ratio x4 cases in Fig. 6). The337

quantitative evaluation, as shown in Table 2, indicates that the proposed approach could338

achieve better performance over other methods with regard to IoU, recall, F1 score,339

overall accuracy, and kappa coefficient. This signifies that our proposed approach can340

enhance the comprehensive features and information of super-resolved remotely sensed341

images with an appropriate SR scale factor. It could be inferred from the segmentation342

details, as shown in Fig. 6, that the extracted results outperform other methods with343

fewer false positive cases, especially in the vicinity of building boundaries.344

5. Discussion345

Since the above experimental results show the potential of the proposed approach346

in achieving high-resolution building extraction using low-resolution images, the mech-347

anism and limits of the proposed approach necessitate further discussion. In this section,348

we primarily discuss 2 topics: 1) how enhanced high frequency information influences349

the super-resolution building extraction and 2) what the limits of the proposed approach350

are in conducting super-resolution building extraction tasks.351

5.1. The Effectiveness of High Frequency Information in Building Extraction352

As demonstrated in Table 1 and Table 2, it seems feasible to achieve high-resolution353

building extraction via integrating super-resolution and building segmentation methods.354

In comparison to the building extraction results using bicubic interpolated images, all355

SR-integrated methods achieve better performance with the scaling ratios of 2, 4 and 8.356

In addition, the details of reconstructed images using our approach are well-maintained357

in comparison to those of other integrated methods. A simple but vital question is:358

how does enhanced high frequency information influence the super-resolution building359

extraction?360

As demonstrated in Fig. 7, we visualized the penultimate CNN layer of DlinkNet (361

Fig. 7 (a)) and our proposed DES ( Fig. 7 (b)). Specifically, we visualized the variance362

between the penultimate CNN layer of DlinkNet and DES ( Fig. 7 (c)) , which highlights363

the enhanced high frequency information in the segmentation task. Owing to the fusion364

of enhanced details and input images, it is clear that the features in edges and borders of365

buildings are well represented, resulting in better building extraction results. Meanwhile,366
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Figure 8. Qualitative assessment of the improvements contributed by the enhancement module
with scale ratios of 2 (column I), 4 (column II), 8(column III), and 12(column IV).

the super-resolved images generated via other SR methods maintain better edges and367

borders in comparison with that of bicubic interpolated images, thus resulting in better368

performance. This reveals that edges and borders of buildings serve pivotal roles in369

building segmentation from remotely sensed images.370

5.2. The Limitations of the Proposed Approach371

Since we can generate high-resolution building extraction results with acceptable ac-372

curacy using training material with resolution around 4 m, it seems theoretically possible373

that we can use even lower resolution material, such as 6 m, to achieve high-resolution374

building extraction results following the same approach. As shown in the experimental375

results of remotely sensed image SR and building extraction, the improvements con-376

tributed by SR methods rapidly decline as the ratio factor enlarges, especially in the cases377

with ratio factor of 8. This is primarily attributed to the unsatisfactory reconstruction378

results obtained for the edges and borders. Nevertheless, whether there is a limit scaling379

ratio in conducting high-resolution building extraction using low-resolution material380

remains to be determined.381

Table 3. Quantitative evaluation of the results of building extraction.

Methods Scale IoU Precision Recall F1 score Kappa
BCI 2 0.6206 0.7420 0.7914 0.7659 0.6684
Ours 0.7070 0.8265 0.8305 0.8278 0.7761
BCI 4 0.6069 0.7499 0.7221 0.7554 0.6069
Ours 0.6595 0.7875 0.8195 0.7948 0.7361
BCI 8 0.5616 0.7206 0.7180 0.7193 0.6152
Ours 0.6346 0.7955 0.7682 0.7765 0.7310
BCI 12 0.5279 0.7270 0.6584 0.6910 0.5837
Ours 0.5414 0.7404 0.6683 0.7025 0.6045

Furthermore, we demonstrate the proposed approach in conducting high-resolution382

building extraction with ratio factors of 2, 4, 8, and 12. Note that the training material383

with ratio factor of 12 was generated from OHGT using bilinear interpolation. As shown384

in Table 3 and Fig. 8, two shortages emerge as the ratio factor of super-resolution in385

building extraction continually increases, which could lead to the theoretical ratio limits386

of our proposed approach. On one hand, the higher the ratio is, the harder the training387

process becomes. The training pairs generation module first downscales the given input388
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images, after which much coarser images are generated for the input of the SR module,389

resulting in a remotely sensed image without sufficient important details for subsequent390

reconstruction. The strength in providing finer details regarding output images based on391

the proposed SR module becomes weaker as the scale ratio of the building extraction task392

enlarges. On the other hand, the improvement contributed by our enhancement module393

leads to worse performance as the scale ratio of the building extraction task enlarges,394

which results from the insufficiency of details retrieved from the given low-resolution395

images. As demonstrated in Fig.8, the high frequency information reconstructed via the396

proposed EASR becomes coarse, which may even lead to a few artifacts. This indicates397

that the proposed approach is reaching its limits in conducting the building extraction398

task at the scale ratio of 12.399

6. Conclusion400

In this study, we propose a novel two-stage framework (SRBuildingSeg) to achieve401

super-resolution building extraction using relatively low-resolution remotely sensed402

images. SRBuildingSeg can fully utilize inherent information of the given low-resolution403

images to achieve relatively high-resolution building extraction. For generating LR-HR404

training pairs, we propose an internal pairs generation module (IPG) with no need405

for external high-resolution images, which can reconstruct super-resolved images with406

only the given low-resolution images. The edge-aware super-resolution (EASR) module407

then generates super-resolved images at the desired higher resolution, after which the408

super-resolution building extraction result is obtained using the dual-encoder building409

segmentation module (DES). The experimental results demonstrate the capability of410

the proposed approach in achieving super-resolution building extraction, which out-411

performs other methods in terms of both the perceptual quality of the super-resolved412

remotely sensed image and the building extraction accuracy for all small (x2), middle413

(x4), and large (x8) scale ratios. Furthermore, we demonstrate how the reconstructed414

high frequency information affects the subsequent building extraction. The assessment415

results reveal that our proposed approach ranks the best among all SR-integrated meth-416

ods. In summary, we present the potential of the proposed straightforward approach417

in demonstrating the use of widely available low-resolution resolution data to obtain418

high-resolution building extraction results. This approach is practical and especially419

useful when extra datasets of high-resolution remotely sensed images are unavailable.420
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