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Abstract

It is well established the complex exponential and logarithm are multivalued
functions, both failing to maintain most identities originally valid over the positive
integers domain. Moreover the general case of complex logarithm, with a complex
base, is hardly mentionned in mathematic litterature. We study the exponentiation
and logarithm as binary operations where all operands are complex. In a redefined
complex number system using an extension of the C field, hereafter named E, we
proove both operations always produce single value results and maintain the valid-
ity of identities such as logu(wv) = logu(w) + logu(v) where u, v, w ∈ E. There is a
cost as some algebraic properties of the addition and subtraction will be diminished,
though remaining valid to a certain extent. In order to handle formulas in a C and
E dual number system, we introduce the notion of set precision and set truncation.
We show complex numbers as defined in C are insufficiently precise to grasp all
subtleties of some complex operations, as a result multivaluation, identity failures
and, in specific cases, wrong results are obtained when computing exclusively in
C. A geometric representation of the new complex number system is proposed, in
which the complex plane appears as an orthogonal projection, and where the com-
plex logarithm an exponentiation can be simply represented. Finally we attempt
an algebraic formalization of E.

Keywords: Complex number field; Complex exponentiation; Complex logarithm; Expo-
nential and logarithm identities

1 Introduction

In 1749 L. Euler [1] solved a decades old controversy between G.W. Leibniz and J.
Bernoulli over the appropriate definition for logarithms of negative and imaginary val-
ues, by producing the formula ln(z) = ln(a + bi) = ln |z| + arg(z)i = ln |z| + θi + 2kπi,
where |z| =

√
a2 + b2, θ the principal value of arg(z), k ∈ Z.

The formula for complex exponentiation zw = (a+ bi)m+ni = x+yi, where both z, w ∈ C,
was also given the same year by L.Euler in another study [2].

zw = ew ln z = (eln|z|+θi+2kπi)
m+ni

= em ln |z|−nθ−n2kπe(n ln |z|+mθ+m2kπ)i (1.1)

x = |z|me−nθ−n2kπ cos(n ln |z|+mθ +m2kπ) (1.2)
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y = |z|me−nθ−n2kπ sin(n ln |z|+mθ +m2kπ) (1.3)

The formula 1.1 produces an infinite number of results, depending on the value of the k
integer. Due to the periodicity of the sine and cosine functions, the results reduce to a
finite number of results if the exponent w ∈ Q.

The first complex logarithm formula logz w = x+ yi, where both z, w ∈ C, was given by
M. Ohm in 1829 [3].

logz w =
lnw

ln z
=

ln |w|+ θwi+ 2kwπi

ln |z|+ θzi+ 2kzπi
(1.4)

x =
ln |w| ln |z|+ (θw + 2kwπ)(θz + 2kzπ)

(ln |z|)2 + (θz + 2kzπ)2
(1.5)

y =
ln |z|(θw + 2kwπ)− ln |w|(θz + 2kzπ)

(ln |z|)2 + (θz + 2kzπ)2
(1.6)

The formula 1.4 produces an infinite number of results, depending on both kz and kw
integers. The formula is hardly mentionned in mathematic literature. In 1921, F. Cajori
in his History of exponentials and logarithms [4] expressed it this way :

The general logarithm system failed of recognition as useful mathematical
inventions.

Both general complex exponentiation and logarithm formulas are nevertheless used by
complex number calculators, though usually only the principal value at k = kz = kw = 0
is returned. By combining formulas 1.1 and 1.4, it is easily verified the complex logarithm
is the reciprocal of the exponentiation within a particular branch.

logz (zw) =
ln (zw)

ln (z)
=

(m ln |z| − nθz − n2kπ) + (n ln |z|+mθz +m2kπ)i

ln |z|+ θzi+ 2kzπi

=
(m+ ni) ln |z|+ (m+ ni)θzi+ (m+ ni)2kπi

ln |z|+ θzi+ 2kzπi

= m+ ni = w (when k = kz)

In the same volume M. Ohm [3] studies the validity of the exponential and logarithm
identities in C. He concludes the set of values on both sides of the identity equation can
differ. As an example the left side of (zw)v = zwv will produce many more results than
the right side, since exponentiation is performed twice. Furthermore many identities such
as ln(wv) = ln(w) + ln(v) are not always valid when considering the principal value or
any other branch.

The formulas of Euler and Ohm show that all results of exponentiation and logarithm can
be expressed in the form x + yi. Thus both operations are algebraically closed in C and
can be defined either as multivalued functions or, when considering a particular branch,
as ordinary functions f : C×C→ C. However the closure has come at a cost, firstly most
identities equations valid in R+ fail in C, secondly the multivaluation forces an arbitrary
selection of a branch prior to any result evaluation.
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In tables 1 and 2 we summarize the validity in R+ and C of the exponentiation and
logarithm main properties and identities.

Table 1: Exponentiation and logarithm properties.

Property Validity in R+ Validity in C
Exponentiation zz21 closure yes yes

Logarithm logz1(z2) closure no yes

Exponentiation monovaluation yes no

Logarithm monovaluation yes no

Exponentiation inverse of logarithm
z1

logz1(z2) = z2 yes subset 1

Logarithm inverse of exponentiation
logz1(z1

z2) = z2 yes subset 1

1 The left side of the equation produces many more results, of which only a subset is equal to the right

side. The equation always holds at principal value

Table 2: Exponentiation and logarithm identities.

Identity Validity in R+ Validity in C
Exponent distributivity over multiplication
(z1z2)

z3 = z1
z3z2

z3 yes no 2

Exponent distributivity over division(
z1
z2

)z3
= z1z3

z2z3
yes no 2

Exponential product z1
z2z1

z3 = z1
z2+z3 yes subset 1

Exponential quotient z1z2
z1z3

= z1
z2−z3 yes subset 1

Exponential power (z1
z2)z3 = z1

z2z3 yes no 2

Logarithm product
logz1(z2z3) = logz1(z2) + logz1(z3) yes no 2

Logarithm quotient

logz1

(
z2
z3

)
= logz1(z2)− logz1(z3) yes no 2

Logarithm power logz1(z2
z3) = z3 logz1(z2) yes no 2

Logarithm base substitution

logz1(z2) =
logz3 (z1)

logz3 (z2)
yes yes, if z3 ∈ R+

1 The left side of the equation produces many more results, of which only a subset is equal to the right

side. The equation always holds at principal value
2 Both sides of identities equations produce a different set of results, which are not necessarily equal

at the principal value. In further sections we give the exact conditions for the identity validity at the

principal value or at any given branch
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Trivial examples of identity failures in C
For clarity only the principal value at k = 0 is considered, the same outcome occurs on
other branches.

(−1 · −1)
1
2 = (1)

1
2 = 1 6= (−1)

1
2 · (−1)

1
2 = i · i = −1

(i− 1)2i =
(√

2e
3π
4
i
)2i

= 2ie−
3π
2 6= ((i− 1)(i− 1))i = (−2i)i = (2e−

π
2
i)i = 2ie

π
2

ln ((−i)2) = ln(−1) = πi 6= 2 ln(−i) = 2(−π
2
i) = −πi

log−2((−2)5) = log−2(−32) = ln(−32)
ln(−2) = ln(32)+πi

ln(2)+πi
= (ln(32)+πi)(ln(2)−πi)

(ln(2)+πi)(ln(2)−πi)

= ln(32) ln(2)+(ln(32)– ln(2))πi+π2

(ln(2))2+π2 = 1.18568. . . + 0.84157. . . i

6= 5 log−2(−2) = 5

ln(−1 · i) = ln(−i) = −π
2
i 6= ln(−1) + ln(i) = πi+ π

2
i = 3π

2
i

The aim of this article is to propose a redefinition of the complex number set in which the
issues described above resolve. The idea is to introduce a new form of complex number
that extends the possibilities of the algebraic form, since the latter will prove insufficient
to grasp all the subtleties of the exponentiation and logarithm when all operands are
complex. The properties of the basic operations (+,−,×,÷) will be impacted by the
redefinition.

The sections 2 and 3 are dedicated to the definition of a new complex number set, hereafter
named E, the equivalences between C and E, and to the definition of complex operations
(+,−,×,÷, exp, log) in E. The exponentiation is no longer defined by the logarithm, in-
stead the complex logarithm formula can be deduced from the exponentiation. Moreover
all operations produce a single value result.

The section 4 includes all proofs and some examples over the validity of the exponen-
tial and logarithm identities in E. All the trivial identity failure cases given above resolve.

In the section 5 we show how to obtain explicit formulas linking the real and imagi-
nary parts of some transcendental equations solutions.

The section 6 proposes a geometric representation of E, of which the complex plane
appears as an orthogonal projection. The complex exponentiation z = z1

z2 and logarithm
z = logz1(z2), where z, z1, z2 ∈ E, can be simply represented as a mapping of the two
operands elements to the result element.

The section 7 lists all algebraic properties of E and compares them with the proper-
ties of the R and C fields.

In section 8 we argue why the exponentiation and logarithm multivalued results and
identity failures in C are not induced by the operations, but are induced by an intrinsic
limitation of the complex numbers algebraic form z = x+ yi.
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2 Complex numbers in complete form

Definition 1. Complex number in complete form

By taking a broad definition of the complex number as a number composed of a real part
and an imaginary part, the complete complex number set is defined as all numbers in the
form eaebi ,∪ {0} , where a, b ∈ R and i2 = −1

The number set is hereafter named E. The real part is defined as ea and the imagi-
nary part ebi, where a is the real argument and b the imaginary argument. The element
0 is included for compatibility with C and R.

Remark. Equivalence with the exponential form

The exponential form of complex numbers z = x + yi = |z|earg(z)i = |z|eθi+2kπi has a
similar but not identical definition. It remains explicitly linked to the algebraic form and
must have a principal value θ of the argument arg(z) within the interval ] − π; π]. The
purpose of the integer k is precisely to link all values of the exponential form to their
unique corresponding algebraic form. Geometrically, the 2π periodicity of the imaginary
argument is purposely maintaining the correlation with the complex plane.

In the complete form, the explicit link to the algebraic form and the constraint on the
argument principal value are abolished. For example in E the numbers e0e2πi and e0e4πi

are not equal, each having distinct properties as it will be demonstrated in further sec-
tions. Within C the symbolic and geometric representation of both numbers are equally
represented by 1 and by the coordinates (x, y) = (1, 0) on the complex plane.

Replacing |z| by ea allows the establishment of more elegant and symmetrical formu-
las. We use the new denomination complete form to avoid any ambiguity.

Definition 2. Set partitions of E

Let the set E of complex numbers in complete form eaebi be partitionned into C and
E\C by restricting C to a 2π interval of the imaginary argument b, by convention the
interval b ∈ ] − π; π]. Each number x + yi ∈ C converted into its unique corresponding
complete form eaebi forms then a distinct equivalence class together with numbers in the
form eae(b+2kπ)i ∈ E with k ∈ Z∗.

The definition is equivalent as restricting C to the principal value of the exponential
form of complex numbers. Even with this restriction, the algebraic definition of C and
the complex plane definition are not altered.

Definition 3. Set precision and truncation

Let A be a set partitionned by an equivalence relation into two subsets A1 and A2, and
let each element a1 ∈ A1 form a distinct equivalence class with an arbitrary number of
elements a2 ∈ A2 such as each element a is part of a unique given class. In such a set
configuration, elements a2 are defined as A precise, elements a1 are defined as A1 precise.
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Each element a2 ∈ A2 can be truncated to its unique corresponding a1 ∈ A1 element, thus
at a lower precision level. The truncation is noted a1 = | a2 |A1

.

Example 1. Z and N precision

Let the integer set Z be partitionned into N and Z<0, an integer is Z precise if negative,
and is N precise if positive or zero. The abs function is the truncation function from Z to
N precision level.

Example 2. E and C precision

The Euler formula ebi = cos b + sin b i is de facto the truncation function from E to C
precision. The truncation can be noted |z|C = |eaebi|C = ea cos b+ ea sin b i = eae|b|ci, with
the imaginary argument truncated such as :

|b|C =

{
b (mod 2π) if b (mod 2π) <= π

b (mod 2π)− 2π if b (mod 2π) > π

Equalities such as 1 = e4πi or 1 = e2kπi no longer hold whenever E precision is required,
the notation |e2kπi|C = e0i = 1 can be used to clearly indicate the truncation.

Remark.

The E set of complex numbers can be viewed as a ”natural” extension of C. Within the
set sequence N ⊂ Z ⊂ R ⊂ C ⊂ E each element in a given set is uniquely linked to a
predecessor set element through an equivalence relation, therefore an element can always
be truncated to the predecessor set precision level.

Lemma 1. Converting from complete form to algebraic form

z = eaebi =⇒ ea cos b+ ea sin b i = x+ yi (2.1)

x = ea cos b (2.2)

y = ea sin b (2.3)

The Euler formula used for the conversion is not to be considered as an equality. From a E
perspective an irreversible loss of information is induced when converting from complete
to algebraic form if the imaginary argument is outside the interval ]− π; π].

Lemma 2. Converting from algebraic form to complete form

Using the definition of complex number modulus and argument. By definition z = 0 is
equivalent in E and C.

z = x+ yi = |z|eArg(z)i = eln |z|eθzi =⇒ e
1
2
ln (x2+y2)eAtan ( yx)i = eaebi (2.4)

a =
1

2
ln (x2 + y2) (2.5)

b = Atan
(y
x

)
(2.6)
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Remark. Usage of ln, Arg and Atan functions

The natural logarithm function is applied to the domain R>0, hence is single valued. In
the formula 2.4 only the principal value of the arg function is considered to remain consis-
tent with definition 2. The limits of the traditional arctan function, with the result in the
interval ]− π

2
; π
2
], requires the use of the atan2 function with 2 arguments whose result is

included in the interval ]−π; π] without singularities. In this study the notation Atan
(
y
x

)
always refers to the atan2 function where both arguments remain as the fraction numera-
tor and denominator. This notation adjustment will ease the readibility and handling of
formulas, as obtained formulas always produce a fraction inside the Atan argument. The
fraction can be simplified providing the numerator and denominator signum are preserved.

3 Binary operations in complete form

Definition 4. Complex binary operations in E

The operations in E are defined as the 4 basic operations +,−,×,÷ together with expo-
nentiation and logarithm. All operands and results are expressed in complete form.

Lemma 3. Formulas for operations computation in E

Similarly as in C, the operations computation use a combination of real functions and
real operations (+,−,×,÷, exp, ln, sin, cos, atan2). Let z1 = ea1eb1i and z2 = ea2eb2i

z1 × z2 = ea1+a2 e(b1+b2)i (3.1)

z1 ÷ z2 = ea1−a2 e(b1−b2)i (3.2)

zz21 = e(e
a2 (a1 cos b2−b1 sin b2)) e(e

a2 (b1 cos b2+a1 sin b2))i (3.3)

logz1 z2 = e
1
2
ln

a2
2+b2

2

a1
2+b1

2 e
Atan

a1b2−a2b1
a1a2+b1b2

i
(3.4)

z1 + z2 = e
1
2
ln(e2a1+e2a2+2ea1+a2 cos (b1−b2)) e

Atan
ea1 sin b1+ea2 sin b2
ea1 cos b1+ea2 cos b2

i
(3.5)

z1 − z2 = e
1
2
ln(e2a1+e2a2−2ea1+a2 cos (b1−b2)) e

Atan
ea1 sin b1−e

a2 sin b2
ea1 cos b1−ea2 cos b2

i
(3.6)

Formulas are easier to handle when split between real and imaginary parts, in this study
we mostly use the split notation. Let z = eaebi :

z = z1 × z2 z = z1 ÷ z2
a = a1 + a2 a = a1 − b1
b = b1 + b2 b = b1 − b2

z = zz21 z = logz1 z2

a = ea2(a1 cos b2 − b1 sin b2) a =
1

2
ln

(
a2

2 + b2
2

a12 + b1
2

)
b = ea2(b1 cos b2 + a1 sin b2) b = Atan

(
a1b2 − a2b1
a1a2 + b1b2

)
7
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z = z1 + z2 z = z1 − z2

a =
1

2
ln(e2a1 + e2a2 + 2ea1+a2 cos (b1 − b2)) a =

1

2
ln(e2a1 + e2a2 − 2ea1+a2 cos (b1 − b2))

b = Atan

(
ea1 sin b1 + ea2 sin b2
ea1 cos b1 + ea2 cos b2

)
b = Atan

(
ea1 sin b1 − ea2 sin b2
ea1 cos b1 − ea2 cos b2

)

Proof. Multiplication formula

Using the identity ew1 · ew2 = ew1+w2 where w1, w2 ∈ C [7]

z = z1 × z2 = ea1eb1i · ea2eb2i = ea1ea2eb1ieb2i = ea1+a2e(b1+b2)i

a = a1 + a2
b = b1 + b2

Proof. Division formula

Using the identity ew1/ ew2 = ew1−w2 where w1, w2 ∈ C [7]

z = z1 ÷ z2 = ea1eb1i

ea2eb2i
= ea1

ea2
· eb1i
eb2i

= ea1−a2e(b1−b2)i

a = a1 − a2
b = b1 − b2

Proof. Exponentiation formula

The formula uw = ew lnu with w, u ∈ C defines the complex exponentiation in C, the
formula is necessary given the base cannot be exploited directly in algebraic form. The
formula is equivalent as converting the base into an infinity of bases in the form u =
eln |u|+θi+2kπi. The exponent is then applied to the bases such as uw = (eln |u|+θi+2kπi)

w
=

ew ln |u|+w(θ+2kπ)i. The result is then reconverted into algebraic form. When calculated
separately for each integer k, the exponentiation can be defined as (eaebi)w = eawebwi with
a single valued result, the base and result being in complete form and the exponent in
algebraic form. Let z1 = ea1eb1i and, using the conversion formula 2.1, let z2 = ea2eb2i =⇒
ea2 cos b2 + ea2 sin b2 i.

z = zz21 = (ea1eb1i)(e
a2 cos b2+ea2 sin b2 i)

= (ea1+b1i)(e
a2 cos b2+ea2 sin b2 i)

= e(a1+b1i)(e
a2 cos b2+ea2 sin b2 i)

= e(a1e
a2 cos b2+a1ea2 sin b2 i+b1ea2 cos b2 i−b1ea2 sin b2)

= ee
a2 (a1 cos b2−b1 sin b2)ee

a2 (b1 cos b2+a1 sin b2)i

a = ea2(a1 cos b2 − b1 sin b2)

b = ea2(b1 cos b2 + a1 sin b2)

Proof. Logarithm formula
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The logarithm formula can be directly reversed from the exponentiation formula 3.3.
Counter to the definition of the complex logarithm in C, both operands are here in E thus
can be exploited directly in the formula without requiring any conversion. Let z1 = ea1eb1i

and z2 = ea2eb2i.

z = logz1(z2)⇐⇒ (z1)
z = z2, thus a2 = ea(a1 cos b−b1 sin b) and b2 = ea(b1 cos b+a1 sin b)

a2
2 + b2

2 = e2a(a1 cos b− b1 sin b)2 + e2a(b1 cos b+ a1 sin b)2

= e2a(a1
2 cos2 b− a1b1 cos b sin b+ b1

2 sin2 b+ b1
2 cos2 b+ a1b1 cos b sin b+ a1

2 sin2 b)

= e2a(a1
2 cos2 b+ a1

2 sin2 b+ b1
2 cos2 b+ b1

2 sin2 b)

= e2a(a1
2 + b1

2)

a =
1

2
ln

(
a2

2 + b2
2

a12 + b1
2

)

a2
b2

=
ea(a1 cos b− b1 sin b)

ea(b1 cos b+ a1 sin b)

a2(b1 cos b+ a1 sin b) = b2(a1 cos b− b1 sin b)

cos b(a2b1 − a1b2) = − sin b(a1a2 + b1b2)

sin b

cos b
=
a1b2 − a2b1
a1a2 + b1b2

b = Atan

(
a1b2 − a2b1
a1a2 + b1b2

)
Proof. Alternate proof of logarithm formula

z = logz1(z2) =
ln z2
ln z1

=
a2 + b2i

a1 + b1i

=
(a2 + b2i)(a1 − b1i)
(a1 + b1i)(a1 − b1i)

=
a1a2 + b1b2 + a1b2i− a2b1i

a12 + b1
2

=
a1a2 + b1b2

a12 + b1
2 +

a1b2 − a2b1
a12 + b1

2 i

The result is in algebraic form and needs to be converted into complete form using con-
version formula 2.4.

a =
1

2
ln

(a1a2 + b1b2)
2 + (a1b2 − a2b1)2

(a12 + b1
2)2

=
1

2
ln
a1

2a2
2 + 2a1a2b1b2 + b1

2b2
2 + a1

2b2
2 − 2a1a2b1b2 + a2

2b1
2

(a12 + b1
2)2

=
1

2
ln
a1

2a2
2 + b1

2b2
2 + a1

2b2
2 + a2

2b1
2

(a12 + b1
2)2

9
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=
1

2
ln
a1

2(a2
2 + b2

2) + b1
2(a22 + b2

2)

(a12 + b1
2)2

=
1

2
ln

(a2
2 + b2

2)(a1
2 + b1

2)

(a12 + b1
2)2

=
1

2
ln

(
a2

2 + b2
2

a12 + b1
2

)

b = Atan

(
a1b2−a2b1
a12+b1

2

a1a2+b1b2
a12+b1

2

)
= Atan

(
a1b2 − a2b1
a1a2 + b1b2

)
Proof. Addition and subtraction formulas

Both operands need to be converted into algebraic form using the formula 2.1, since
no identity can be used directly in complete form. Let z1 = ea1 cos b1 + ea1 sin b1 i and
z2 = ea2 cos b2 + ea2 sin b2 i

z = z1 ± z2 = (ea1 cos b1 + ea1 sin b1 i)± (ea2 cos b2 + ea2 sin b2 i)

= (ea1 cos b1 ± ea2 cos b2) + (ea1 sin b1 ± ea2 sin b2)i

The result is in algebraic form and needs to be converted into complete form using con-
version formula 2.4.

a =
1

2
ln((ea1 cos b1 ± ea2 cos b2)

2 + (ea1 sin b1 ± ea2 sin b2)
2)

=
1

2
ln(e2a1 cos2 b1 ± 2ea1ea2 cos b1 cos b2 + e2a2 cos2 b2 + e2a1 sin2 b1 ± 2ea1ea2 sin b1 sin b2+

e2a2 sin2 b2)

=
1

2
ln(e2a1(cos2 b1 + sin2 b1) + e2a2(cos2 b2 + sin2 b2)± 2ea1ea2(cos b1 cos b2 + sin b1 sin b2))

=
1

2
ln(e2a1 + e2a2 ± 2ea1+a2 cos(b1 − b2))

b = Atan

(
ea1 sin b1 ± ea2 sin b2
ea1 cos b1 ± ea2 cos b2

)
Theorem 1. Within a number system composed of the sets C ⊂ E, E precision is the
highest possible precision level obtained as result of a multiplication, division or exponen-
tiation operation

From formulas 3.1, 3.2 and 3.3 we can easily deduce the result of the imaginary argument
is not bounded by any limit and will be situated anywhere in b ∈ R.

Remark.

The operations can be defined as functions f : E × E → E, giving exactly four single
variable continuous functions : z 7→ w · z ; z 7→ w/z ; power function z 7→ zw ; exponential
function z 7→ wz.

The complex exponentiation operation is more subtle since the exponent gets truncated
to C precision by the cosine and sine functions used in the formula 3.3. On the other
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hand, the base and result require E precision.

Multiplication and division operands and results are at maximum E precise, no trun-
cation is performed by the formulas 3.1 and 3.2. One can notice even with C precise
operands, the result may be E precise.

Theorem 2. Within a number system composed of the sets C ⊂ E, C precision is the
highest possible precision level obtained as result of a logarithm, addition or subtraction
operation

The formulas 3.4, 3.5 and 3.6 use the atan2 function in the imaginary part, thus the result
will always be situated inside the interval b ∈ ]− π; π], which is exactly the definition of
the C precision. The domain of the corresponding functions is therefore f : E× E→ C.

Remark.

Exactly four single variable continuous functions can be obtained: z 7→ w+z ; z 7→ w−z ;
logarithm function z 7→ logw z ; logarithm base function z 7→ logz w. The singularities
induced by the values 0 and e0e0i = 1 are studied in a further section.

The complex logarithm operation requires mixed precision, both operands require the
complete form which can therefore be at maximum E precise, but the result is always at
maximum C precise.

The addition and subtraction are the only operations not requiring the complete form
hence no E precision, operands exceeding the required precision are truncated to C pre-
cision by formulas 3.5 and 3.6.

Theorem 3. All binary complex operations defined in E are monovalued

From the formulas 3.1 to 3.6, we can deduce that both the real and imaginary part
will always give a single valued results, since no real multivalued function is used in the
formulas.

Remark.

The Atan function as defined in this study is monovalued. An alternate definition with a
multivalued result of periodicity 2π is possible and would imply the logarithm, addition
and subtraction are multivalued in E. Though a matter of definition, the single valuation
arctangent is far more consistent algebraically and also geometrically as it will be seen in
further sections. The logarithm, addition and subtraction results are intrinsically limited
to C precision, in the same way a function defined as f : Z×Z→ N returns one positive
integer, not all integers included in the same equivalence class.

4 Exponentials and logarithms identities in E
Theorem 4. All exponentiation identities valid in R∗+ are valid in E∗

11

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2021                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2021                   doi:10.20944/preprints202104.0207.v3

https://doi.org/10.20944/preprints202104.0207.v3


Exponentials and Logarithms Properties in an Extended Complex Number Field D.Tischhauser

The result is strictly identical on both sides of the identity when z1, z2, z3 ∈ E∗

(z1z2)
z3 = z1

z3z2
z3 (4.1)(

z1
z2

)z3
=
z1
z3

z2z3
(4.2)

z1
z2z1

z3 = z1
z2+z3 (4.3)

z1
z2

z1z3
= z1

z2−z3 (4.4)

(z1
z2)z3 = z1

z2z3 (4.5)

Theorem 5. The product and quotient logarithm identities valid in R∗+ are valid in E∗

The result is strictly identical on both sides of the identity when z1, z2, z3 ∈ E∗ and
z1 6= e0e0i

logz1(z2z3) = logz1(z2) + logz1(z3) (4.6)

logz1

(
z2
z3

)
= logz1(z2)− logz1(z3) (4.7)

Theorem 6. The power and base substitution logarithm identities valid in R∗+ are valid
in E∗ only at C precision level

The result truncated to C precision is strictly identical on both sides of the identity when
z1, z2, z3, z4 ∈ E∗ and z1, z4 6= e0e0i. The final operations on each side of the identity
return different levels of precision, the identity cannot be a strict equality.

logz1(z2
z3) =

∣∣z3 logz1(z2)
∣∣
C (4.8)

logz1(z2) =

∣∣∣∣ logz4(z1)

logz4(z2)

∣∣∣∣
C

(4.9)

As demonstrated within the following proofs, the trivial cases of exponential and loga-
rithm identity failures given in the introduction dissapear when both sides of the identity
equation are calculated in E, thus when the formulas 3.1 to 3.6 are used at every calcu-
lation step.

Proof. (z1z2)
z3 = zz31 z

z3
2 is valid for all z1, z2, z3 ∈ E∗

Combining the multiplication and exponentiation formulas 3.1 and 3.3, let z1 = ea1eb1i, z2 =
ea2eb2i and z3 = ea3eb3i

z = (z1z2)
z3

a = ea3((a1 + a2) cos b3 − (b1 + b2) sin b3)

b = ea3((b1 + b2) cos b3 + (a1 + a2) sin b3)

z = zz31 z
z3
2

a = ea3(a1 cos b3 − b1 sin b3) + ea3(a2 cos b3 − b2 sin b3)

= ea3((a1 + a2) cos b3 − (b1 + b2) sin b3)

b = ea3(b1 cos b3 + a1 sin b3) + ea3(b2 cos b3 + a2 sin b3)

= ea3((b1 + b2) cos b3 + (a1 + a2) sin b3)
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Example 3. (−1 · −1)
1
2 6= (−1)

1
2 · (−1)

1
2

(−1 · −1)
1
2 =⇒ (eπieπi)

1
2 = (e2πi)

1
2 = eπi = −1

(−1)
1
2 · (−1)

1
2 =⇒ (eπi)

1
2 (eπi)

1
2 = e

π
2
ie

π
2
i = eπi = −1

When the first expression is evaluated in algebraic form in C, the result is 1, the rea-
son of the dissimilarity is because the result of the multiplication −1 · −1 was implicitly
truncated to a C precision level. In E equating −1 · −1 = 1 is an over simplification :
eπieπi = e2πi 6= e0i, though in algebraic form the 2 values are indistinctive. This impreci-
sion, invisible at first glance, is revealed when the exponent ½ is applied on e2πi or e0i giving
different values, respectively -1 and 1. Similarly, −i · −i = e−

π
2
ie−

π
2
i = e−πi 6= eπi and

−1 · i = eπie
π
2
i = e

3π
2
i 6= e−

π
2
i. On the other hand, i · i = −1 and i ·−i = 1 are always valid.

Proof. (z1/z2)
z3 = zz31 /z

z3
2 is valid for all z1, z2, z3 ∈ E∗

Combining the division and exponentiation formulas 3.2 and 3.3

z =

(
z1
z2

)z3
a = ea3((a1 − a2) cos b3 − (b1 − b2) sin b3)

b = ea3((b1 − b2) cos b3 + (a1 − a2) sin b3)

z =
zz31
zz32

a = ea3(a1 cos b3 − b1 sin b3)− ea3(a2 cos b3 − b2 sin b3)

= ea3((a1 − a2) cos b3 − (b1 − b2) sin b3)

b = ea3(b1 cos b3 + a1 sin b3)− ea3(b2 cos b3 + a2 sin b3)

= ea3((b1 − b2) cos b3 + (a1 − a2) sin b3)

Example 4. (1 /− 1)
1
2 6= (1)

1
2/(−1)

1
2(

1
−1

) 1
2 =⇒

(
e0i

eπi

) 1
2

= (e−πi)
1
2 = e−

π
2
i = −i

(1)
1
2

(−1)
1
2

=⇒ (e0i)
1
2

(eπi)
1
2

= e0i

e
π
2 i

= e−
π
2
i = −i

When the first expression is evaluated in algebraic form, the result is i. The error
here is to consider 1/ − 1 = −1 which is an implicit truncation at C precision level.
In E e0i/eπi = e−πi 6= eπi. The exponent ½ applied on eπi or e−πi giving different

values in C, respectively -i and i. Similarly, −1/ − i = eπi/e−
π
2
i = e

3π
2
i 6= e−

π
2
i and

−i/i = e−
π
2
i/e

π
2
i = e−πi 6= eπi.

Proof. (zz21 )z3 = zz2z31 is valid for all z1, z2, z3 ∈ E∗

Combining the multiplication and exponentiation formulas 3.1 and 3.3

z = zz2z31

a = ea2+a3(a1 cos(b2 + b3)− b1 sin(b2 + b3))
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b = ea2+a3(b1 cos(b2 + b3) + a1 sin(b2 + b3))

z = (zz21 )z3

a = ea3(ea2(a1 cos b2 − b1 sin b2) cos b3 − ea2(b1 cos b2 + a1 sin b2) sin b3)

= ea2ea3(a1 cos b2 cos b3 − b1 sin b2 cos b3 − b1 cos b2 sin b3 − a1 sin b2 sin b3)

= ea2+a3(a1(cos b2 cos b3 − sin b2 sin b3)− b1(sin b2 cos b3 + cos b2 sin b3)

= ea2+a3(a1 cos(b2 + b3)− b1 sin(b2 + b3))

b = ea3(ea2(b1 cos b2 + a1 sin b2) cos b3 + ea2(a1 cos b2 − b1 sin b2) sin b3)

= ea2ea3(b1 cos b2 cos b3 + a1 sin b2 cos b3 + a1 cos b2 sin b3 − b1 sin b2 sin b3)

= ea2+a3(b1(cos b2 cos b3 − sin b2 sin b3) + a1(sin b2 cos b3 + cos b2 sin b3)

= ea2+a3(b1 cos(b2 + b3) + a1 sin(b2 + b3))

z = (zz31 )z2

a = ea2(ea3(a1 cos b3 − b1 sin b3) cos b2 − ea3(b1 cos b3 + a1 sin b3) sin b2)

= ea2+a3(a1 cos(b2 + b3)− b1 sin(b2 + b3))

b = ea2(ea3(b1 cos b3 + a1 sin b3) cos b2 + ea3(a1 cos b3 − b1 sin b3) sin b2)

= ea2+a3(b1 cos(b2 + b3) + a1 sin(b2 + b3))

Example 5. ((i− 1)2)i 6= (i− 1)2i

((i− 1)2)i =⇒ ((e
1
2
ln 2e

3π
4
i)2)i = (eln 2e

3π
2
i)i = ei ln 2e−

3π
2

(i− 1)2i =⇒ (e
1
2
ln 2e

3π
4 )2i = ei ln 2e−

3π
2

When (i − 1)2 is evaluated in algebraic form, the result obtained is (i − 1)(i − 1) = −2i
which is only true in C. Some relevant precision for E has been lost during the evaluation
: (i− 1)(i− 1) = −2i = eln 2e−

π
2
i 6= (i− 1)2 = (e

1
2
ln 2e

3π
4
i)2 = eln 2e

3π
2
i.

Example 6. Clausen paradox [5] [8]

(e1+2πki)1+2πki = e(1+2πki)2 = e1+4πki−4π2k2 = e1−4π
2k2e4πki

(e1+2πki)1+2πki = e1+2πki = e 6= e1−4π
2k2e4πki, the equality holds only when k = 0.

In the first expression the exponentiation base is taken as multivalued e1e2πki, the ex-
ponent in algebraic form 1 + 2πki is also multivalued, with both k synchronised. Nothing
wrong here. The result of the exponentiation will obviously be multivalued, the first for-
mula given is correct. In the second expression no exponentiation is performed, instead
a double truncation from E to C precision. Equating e1+2πki = e1e2πki = e · 1 = e is
imprecise, |e1+2πki|C = e is correct. After the truncation only the value within the interval
b ∈ ]− π; π] remains thus when k = 0.

Proof. z1
z2z1

z3 = z1
z2+z3 is valid for all z1, z2, z3 ∈ E∗
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The identity is similar to the identity ew1ew2 = ew1+w2 , with w1, w2 ∈ C

zz1+z2 = zz1zz2

(eaebi)z1+z2 = (eaebi)z1(eaebi)z2

(ea+bi)z1+z2 = (ea+bi)z1(ea+bi)z2

e(a+bi)(z1+z2) = e(a+bi)z1e(a+bi)z2 (all exponents can be reduced into the form z = x+ yi)

e(a+bi)(z1+z2) = e(a+bi)z1+(a+bi)z2

e(a+bi)(z1+z2) = e(a+bi)(z1+z2)

The identity can be verified using the multiplication 3.1 and exponentiation 3.3 formulas
and the conversion formulas 2.1 and 2.4. Let z1 = ea1eb1i,z2 = ea2eb2i and z3 = ea3eb3i

z = z1
z2z1

z3

a = ea2(a1 cos b2 − b1 sin b2) + ea3(a1 cos b3 − b1 sin b3)

b = ea2(b1 cos b2 + a1 sin b2) + ea3(b1 cos b3 + a1 sin b3)

z = z1
z2+z3

= z1
(ea2 cos b2+ea2 sin b2 i)+(ea3 cos b3+ea3 sin b3 i)

= z1
(ea2 cos b2+ea3 cos b3)+(ea2 sin b2+ea3 sin b3)i

= z1
c+di

a = e
1
2
ln(c2+d2)(a1 cos(arctan

(
d
c

)
)− b1 sin(arctan

(
d
c

)
))

=
√
c2 + d2

 a1√
1 + d2

c2

−
b1d
c√

1 + d2

c2


= a1c− b1d
= a1(e

a2 cos b2 + ea3 cos b3)− b1(ea2 sin b2 + ea3 sin b3)

= ea2(a1 cos b2 − b1 sin b2) + ea3(a1 cos b3 − b1 sin b3)

b = e
1
2
ln(c2+d2)(b1 cos(arctan

(
d
c

)
) + a1 sin(arctan

(
d
c

)
))

=
√
c2 + d2

 b1√
1 + d2

c2

+
a1d
c√

1 + d2

c2


= b1c+ a1d

= b1(e
a2 cos b2 + ea3 cos b3) + a1(e

a2 sin b2 + ea3 sin b3)

= ea2(b1 cos b2 + a1 sin b2) + ea3(b1 cos b3 + a1 sin b3)

Proof. z1
z2/z1

z3 = z1
z2−z3 is valid for all z1, z2, z3 ∈ E∗

The identity is similar to the identity ew1/ew2 = ew1−w2 , with w1, w2 ∈ C

zz1−z2 =
zz1

zz2

(eaebi)z1−z2 =
(eaebi)z1

(eaebi)z2
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(ea+bi)z1−z2 =
(ea+bi)z1

(ea+bi)z2

e(a+bi)(z1−z2) =
e(a+bi)z1

e(a+bi)z2
(all exponents can be reduced into the form z = x+ yi)

e(a+bi)(z1−z2) = e(a+bi)z1−(a+bi)z2

e(a+bi)(z1−z2) = e(a+bi)(z1−z2)

Proof. logz1(z2
z3) = z3 logz1(z2) is valid at C precision level for all z1, z2, z3 ∈ E∗

Combining the multiplication and logarithm formulas 3.1 and 3.4

z = z3 logz1(z2)

a = a3 +
1

2
ln

(
a2

2 + b2
2

a12 + b1
2

)
b = b3 + Atan

(
a1b2 − a2b1
a1a2 + b1b2

)
i

Combining the exponentiation and logarithm formulas 3.3 and 3.4

z = logz1(z2
z3)

a =
1

2
ln

(
e2a3(a2 cos b3 − b2 sin b3)

2 + e2a3(b2 cos b3 + a2 sin b3)
2

a12 + b1
2

)
=

1

2
ln

(
e2a3(a2

2 cos2 b3 + b2
2 sin2 b3 + b2

2 cos2 b3 + b2
2 sin2 b3 ± 2a2b2 cos b3 sin b3)

a12 + b1
2

)
=

1

2
ln

(
e2a3 · (a2

2 + b2
2)(cos2 b3 + sin2 b3)

a12 + b1
2

)
= a3 +

1

2
ln

(
a2

2 + b2
2

a12 + b1
2

)

b = Atan

(
a1e

a3(b2 cos b3 + a2 sin b3)− ea3(a2 cos b3 − b2 sin b3)b1
a1ea3(a2 cos b3 − b2 sin b3) + b1ea3(b2 cos b3 + a2 sin b3)

)
= Atan

(
a1b2 cos b3 + a1a2 sin b3 − a2b1 cos b3 + b1b2 sin b3
a1a2 cos b3 − a1b2 sin b3 + b1b2 cos b3 + a2b1 sin b3

)
= Atan

(
(a1b2 − a2b1) cos b3 + (a1a2 + b1b2) sin b3
(a1a2 + b1b2) cos b3 − (a1b2 − a2b1) sin b3

)
= Atan

(
a1b2−a2b1
a1a2+b1b2

+ sin b3
cos b3

1− a1b2−a2b1
a1a2+b1b2

· sin b3
cos b3

)

= Atan

(
sin b3
cos b3

)
+ Atan

(
a1b2 − a2b1
a1a2 + b1b2

)
= |b3|C + Atan

(
a1b2 − a2b1
a1a2 + b1b2

)
Example 7. ln((−i)2) 6= 2 ln(−i)

ln((−i)2) =⇒ ln

((
e−

πi
2

)2)
= ln (e−πi) = −πi
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2 ln(−i) =⇒ 2 ln
(
e−

πi
2

)
= 2 ·

(
−πi

2

)
= −πi

Since −i · −i = e−
π
2
ie−

π
2
i = e−πi 6= eπi

Example 8. log−2((−2)5) 6= 5 log−2(−2)

In the following calculation done in C the exponentiation is not applied to the imaginary
part, giving a wrong result. There is anyway no place in C to hold the exact result of (−2)5

log−2((−2)5) = log−2(−32) = ln(−32)
ln(−2) = ln(32)+πi

ln(2)+πi
= (ln(32)+πi)(ln(2)−πi)

(ln(2)+πi)(ln(2)−πi)

= ln(32) ln(2)+(ln(32)– ln(2))πi+π2

(ln(2))2+π2 = 1.18568. . . + 0.84157. . . i

The same calculation in E

z1 = −2 =⇒ eln 2eπi

z2 = (−2)5 =⇒ (eln 2eπi)5 = e5 ln 2e5πi

z = logz1 z2

a = 1
2

ln
(
a22+b2

2

a12+b1
2

)
= 1

2
ln
(

(5 ln 2)2+(5π)2

(ln 2)2+π2

)
= 1

2
ln(52) = ln 5

b = Atan
(
a1b2−b1a2
a1a2+b1b2

)
= Atan

(
5π ln 2−5π ln 2
2(ln 2)2+5π2

)
= Atan(0) = 0

z = eln 5e0i = 5

Example 9. Identity failure at E precision level

ln
(

(eπi)e
32πi
)

= ln (eπi) = πi = e
1
2
ln(π2)e

π
2
i

e32πi ln (eπi) = e32πie
1
2
ln(π2)e

π
2
i = e

1
2
ln(π2)e

65π
2
i

Proof. logz1(z2) = logz3(z2)/ logz3(z1) is valid at C precision for all z1, z2, z3 ∈ E∗

z = logz1(z2)

a =
1

2
ln

(
a2

2 + b2
2

a12 + b1
2

)
b = Atan

(
a1b2 − a2b1
a1a2 + b1b2

)
Combining the logarithm and division formulas 3.4 and 3.2

z =
logz3(z2)

logz3(z1)

a =
1

2
ln

(
a2

2 + b2
2

a32 + b3
2

)
− 1

2
ln

(
a1

2 + b1
2

a32 + b3
2

)
=

1

2
(ln(a2

2 + b2
2)− ln(a3

2 + b3
2)− ln(a1

2 + b1
2) + ln(a3

2 + b3
2))
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=
1

2
(ln(a2

2 + b2
2)− ln(a1

2 + b1
2))

=
1

2
ln

(
a2

2 + b2
2

a12 + b1
2

)
b = Atan

(
a3b2 − a2b3
a3a2 + b3b2

)
− Atan

(
a3b1 − a1b3
a3a1 + b3b1

)
= Atan

(
a3b2−a2b3
a3a2+b3b2

− a3b1−a1b3
a3a1+b3b1

1 + a3b2−a2b3
a3a2+b3b2

· a3b1−a1b3
a3a1+b3b1

)

= Atan

(
(a3b2 − a2b3)(a3a1 + b3b1)− (a3b1 − a1b3)(a3a2 + b3b2)

(a3a1 + b3b1)(a3a2 + b3b2) + (a3b2 − a2b3)(a3b1 − b3a1)

)
= Atan

(
a1a3

2b2 + a3b1b2b3 − a1a2a3b3 − a2b1b32 − a2a32b1 − a3b1b2b3 + a1a2a3b3 + a1b2b3
2

a1a2a32 + a1a3b2b3 + a2a3b1b3 + b1b2b3
2 + a32b1b2 − a1a3b2b3 − a2a3b1b3 + a1a2b3

2

)
= Atan

(
(a3

2 + b3
2)(a1b2 − a2b1)

(a32 + b3
2)(a1a2 + b1b2)

)
= Atan

(
a1b2 − a2b1
a1a2 + b1b2

)

Example 10. Identity failure at E precision level

log 1
4
(4) = −1 = eπi

log2(4)

log2

(
1
4

) =
2

−2
=
eln 2e0i

eln 2eπi
= e−πi

Proof. logz1(z2z3) = logz1 z2 + logz1 z3 is valid for all z1, z2, z3 ∈ E∗

Combining the multiplication and logarithm formulas 3.1 and 3.4

z = logz1(z2z3)

a =
1

2
ln

(
(a2 + a3)

2 + (b2 + b3)
2

a12 + b1
2

)

b = Atan

(
a1(b2 + b3)− b1(a2 + a3)

a1(a2 + a3) + b1(b2 + b3)

)
For simplicity, the algebraic form is used in the following equation, since neither the
logarithm nor the addition require the complete form for the result representation

z = logz1(z2) + logz1(z3)

=
a1a2 + b1b2

a12 + b1
2 +

a1b2 − a2b1
a12 + b1

2 i+
a1a3 + b1b3

a12 + b1
2 +

a1b3 − a3b1
a12 + b1

2 i

=
a1a2 + b1b2 + a1a3 + b1b3

a12 + b1
2 +

a1b2 − a2b1 + a1b3 − a3b1
a12 + b1

2 i

The result in algebraic form needs to be converted into complete form using conversion
formula 2.4

a =
1

2
ln

(
(a1a2 + b1b2 + a1a3 + b1b3)

2 + (a1b2 − a2b1 + a1b3 − a3b1)2

(a12 + b1
2)2

)
18
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=
1

2
ln

(
(a1(a2 + a3) + b1(b2 + b3))

2 + (a1(b2 + b3)− b1(a2 + a3))
2

(a12 + b1
2)2

)
=

1

2
ln

(
a1

2(a2 + a3)
2 + b1

2(b2 + b3)
2 + a1

2(b2 + b3)
2 + b1

2(a2 + a3)
2

(a12 + b1
2)2

)
=

1

2
ln

(
(a1

2 + b1
2)((a2 + a3)

2 + (b2 + b3)
2)

(a12 + b1
2)2

)
=

1

2
ln

(
(a2 + a3)

2 + (b2 + b3)
2)

a12 + b1
2

)

b = Atan

(
a1b2 − a2b1 + a1b3 − a3b1
a1a2 + b1b2 + a1a3 + b1b3

)
= Atan

(
a1(b2 + b3)− b1(a2 + a3)

a1(a2 + a3) + b1(b2 + b3)

)

Example 11. ln(−1 · −1) 6= ln(−1) + ln(−1)

ln(−1 · −1) = ln (eπieπi) = ln (e2πi) = 2πi
ln(−1) + ln(−1) = πi+ πi = 2πi

Proof. logz1(z2/z3) = logz1 z2 − logz1 z3 is valid for all z1, z2, z3 ∈ E∗

Combining the division and logarithm formulas 3.2 and 3.4

z = logz1

(
z2
z3

)
a =

1

2
ln

(
(a2 − a3)2 + (b2 − b3)2

a12 + b1
2

)

b = Atan

(
a1(b2 − b3)− b1(a2 − a3)
a1(a2 − a3) + b1(b2 − b3)

)

z = logz1(z2)− logz1(z3)

=
a1a2 + b1b2

a12 + b1
2 +

a1b2 − a2b1
a12 + b1

2 i− a1a3 + b1b3

a12 + b1
2 −

a1b3 − a3b1
a12 + b1

2 i

=
a1a2 + b1b2 − a1a3 − b1b3

a12 + b1
2 +

a1b2 − a2b1 − a1b3 + a3b1

a12 + b1
2 i

a =
1

2
ln

(
(a1a2 + b1b2 − a1a3 − b1b3)2 + (a1b2 − a2b1 − a1b3 + a3b1)

2

(a12 + b1
2)2

)
=

1

2
ln

(
(a1(a2 − a3) + b1(b2 − b3))2 + (a1(b2 − b3)− b1(a2 − a3))2

(a12 + b1
2)2

)
=

1

2
ln

(
a1

2(a2 − a3)2 + b1
2(b2 − b3)2 + a1

2(b2 − b3)2 + b1
2(a2 − a3)2

(a12 + b1
2)2

)
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=
1

2
ln

(
(a1

2 + b1
2)((a2 − a3)2 + (b2 − b3)2)

(a12 + b1
2)2

)
=

1

2
ln

(
(a2 − a3)2 + (b2 − b3)2)

a12 + b1
2

)

b = Atan

(
a1b2 − a2b1 − a1b3 + a3b1
a1a2 + b1b2 − a1a3 − b1b3

)
= Atan

(
a1(b2 − b3)− b1(a2 − a3)
a1(a2 − a3) + b1(b2 − b3)

)

5 Formulas for transcendental equations

The formulas 3.1 to 3.6 can be combined to obtain formulas linking the real and imaginary
arguments of expressions using the complex operations.

Example 12. z2 = z1
w · wα where w, z1, z2 ∈ E∗, z1 6= e0e0i, α ∈ R

Explicit formulas linking the real and imaginary arguments aw, bw of w can be obtained.

z2 = z1
w wα

a2 = eaw(a1 cos bw − b1 sin bw) + awα

b2 = eaw(b1 cos bw + a1 sin bw) + bwα

(a2 − awα)2 = e2aw(a1 cos bw − b1 sin bw)2

(b2 − bwα)2 = e2aw(b1 cos bw + a1 sin bw)2

(a2 − awα)2 + (b2 − bwα)2 = e2aw((a1 cos bw − b1 sin bw)2 + (b1 cos bw + a1 sin bw)2)

= e2aw(a21 cos2 bw + b21 sin2 bw + b21 cos2 bw + a21 sin2 bw ± 2a1b1 cos bw sin bw)

= e2aw(a1
2(cos2 bw + sin2 bw) + b1

2(cos2 bw + sin2 bw))

= e2aw(a1
2 + b1

2)

b2 − bwα
a2 − awα

=
a1 cos bw − b1 sin bw
b1 cos bw + a1 sin bw

From which the final formulas are obtained :

e2aw(a1
2 + b1

2) = (a2 − awα)2 + (b2 − bwα)2 (5.1)

bw =
b2 −

√
e2aw(a12 + b1

2)− (a2 − awα)2

α
(5.2)

aw =
a2 −

a1 cos bw − b1 sin bw

b1 cos bw + a1 sin bw
(b2 − bwα)

α
(5.3)
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aw = ln

(
b2 − bwα

b1 cos bw + a1 sin bw

)
(5.4)

Example 13. z2 = logz1(w) · wα where w, z1, z2 ∈ E∗, w, z1 6= e0e0i, α ∈ R

Explicit formulas linking the real and imaginary arguments aw, bw of w can be obtained.

z2 = logz1(w) wα

a2 =
1

2
ln

(
aw

2 + bw
2

a12 + b1
2

)
+ awα

b2 = Atan

(
a1bw − awb1
a1aw + b1bw

)
+ bwα = Atan

(
bw
aw

)
− Atan

(
b1
a1

)
+ bwα

From which the final formulas are obtained :

bw =

√
e2(a2−awα)(a12 + b1

2)− aw2 (5.5)

aw = bw cot

(
b2 − bwα + Atan

(
b1
a1

))
(5.6)
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6 Geometric representation of E

6.1 The complex helicoid

The complex plane is clearly insufficient to represent E precise numbers, one can notice
only eaebi with b ∈] − π; π] can be positioned in a unique way. The lack of ”space” is
solved by an additional axis, hereafter named the i axis, on which the imaginary argu-
ment b can translate rectilinearly without any boundaries. The rotation of the imaginary
argument b is maintained with a 2π period, giving a unique perpendicular half straight
line for each b argument on which the real part ea is positioned. Hereafter those half-lines
are named ”rays”. Viewed in a three dimension euclidian space, with the origin situated
at 0 on the i axis, every number w = eaebi can be given a unique orthogonal coordinate
(x, y, z) = (ea cos b, ea sin b, b). Thus the set E forms exactly an helicoid surface, herafter
named the complex helicoid.

Figure 1: Representation of eaebi and e0e0i on the complex helicoid

The i axis is a singularity itself, on which only the value 0 can be positioned. The value
0 was included into the E set only for algebraic purpose. Zero and infinity are equally
singularities without a unique positioning.

The complex helicoid is the counterpart of the complex plane for C and the real axis
for R.
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6.2 Constant functions representation on the complex helicoid

The constant function w = ea is the set of points situated at the position ea on each ray.
The function appears as an infinite helix surrounding the i axis. The multiplication and
division operations such as w = ea ± a

′
translate the position of the point on each ray,

thus bring closer or further the helix to the i axis.

The constant function w = ebi is the set of points on a ray pointing in the direction
given by b, excluding the 0 situated on the i axis. The multiplication and division opera-
tions such as w = e(b ± b

′)i operate a rotation and a translation around and along the i axis.

Figure 2: Constant functions w = ea and w = ebi representations on the complex helicoid
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6.3 Complex helicoid projections on the plane

The orthogonal projection of the complex helicoid (x, y, z) to (x, y, 0) represents the
complex plane, through a new perspective. The projection corresponds exactly to a
C truncation of E and can be noted as P (w) = P (eaebi) = P (ea cos b, ea sin b, b) =
(ea cos b, ea sin b, 0) or as a truncation |w|C = |eaebi|C = ea cos b + ea sin b i. The sin-
gularity 0 is given the appearance of a normal point. The exponentials and logarithms
identity failures in C represented on the complex plane are all due to a ”careless” crossing
of the Re- axis generating a C truncation. The projection should not be confused with the
logarithmic representation of E which will be seen further, though both representations
are graphicaly identical.

Figure 3: Projection of the complex helicoid (x, y, z) to (x, y, 0)

Similarly, the orthogonal projections of the complex helicoid (x, y, z) to (x, 0, z) and
(x, y, z) to (0, y, z), maps the constant helix into a cosine and sine curve.
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6.4 Representation of the complex logarithm operation

Let z1, z2 ∈ E∗ with z1, z2 6= e0e0i be 2 points on the complex helicoid. The representa-
tion of the point z = logz1(z2) reveals, under a new perspective, a similar formula as the
division on the complex plane.

c1 =
√
a12 + b1

2 c2 =
√
a22 + b2

2 α1 = Atan
b1
a1

α2 = Atan
b2
a2

Since z = logz1(z2) = e
1
2
ln

(
a2

2+b2
2

a1
2+b1

2

)
e
Atan

(
a1b2−a2b1
a1a2+b1b2

)
i

=

√
a22+b2

2√
a12+b1

2
e

(
Atan

b2
a2
−Atan

b1
a1

)
i

z = logz1(z2) =
c2
c1
e(α2−α1)i

Figure 4: Logarithm operation representation on the complex helicoid
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6.5 Representation of the complex exponentiation operation

Let z1, z2 ∈ E∗ with z1 6= e0e0i be 2 points on the complex helicoid. The representation
of the point z = z1

z2 is best visualised by 2 formulas. The exponent z2 only being used
at C precision, quite obviously the full b2 distance on the i axis is not used in the formulas.

x2 = ea2 cos b2 y2 = ea2 sin b2 c1 =
√
a12 + b1

2 α1 = Atan
b1
a1

β1 = Atan
a1
b1

Since z = z1
z2 = ee

a2 (a1 cos b2−b1 sin b2)ee
a2 (b1 cos b2+a1 sin b2)i

z = z1
z2 = ea1x2−b1y2e(b1x2+a1y2)i

or z = z1
z2 = e

ea2
√
a12+b1

2 cos(b2+Atan
b1
a1

)
e
ea2
√
a12+b1

2 cos(b2−Atan
a1
b1

)i

z = z1
z2 = ee

a2c1 cos(b2+α1)ee
a2c1 cos(b2−β1)i

Figure 5: Exponentiation operation representation on the complex helicoid
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6.6 Representation of the addition and subtraction operations

The addition and subtraction do not require any E precision, representing them on the
complex helicoid is basically useless, a projection on the complex plane is sufficient. Let
z1, z2 ∈ E∗ by 2 points on the complex helicoid, with their corresponding projections
|z1|C = x1 + y1i and |z2|C = x2 + y2i on the complex plane.

x1 = ea1 cos b1 y1 = ea1 sin b1 x2 = ea2 cos b2 y2 = ea2 sin b2

z = z1 ± z2 = e
1
2
ln(e2a1+e2a2±2ea1+a2 cos (b1−b2))e

Atan
(
ea1 sin b1±e

a2 sin b2
ea1 cos b1±e

a2 cos b2

)
i

c =
√
e2a1 + e2a2 − 2ea1+a2 cos (b1 − b2) d =

√
e2a1 + e2a2 + 2ea1+a2 cos (b1 − b2)

z = z1 − z2 = c · eAtan
(
y1−y2
x1−x2

)
i

z = z1 + z2 = d · eAtan
(
y1+y2
x1+x2

)
i

Figure 6: Addition and subtraction representation on the complex plane
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6.7 Logarithmic representation

The complex numbers in complete form are identified in a unique way by their real and
imaginary arguments. Positioning the arguments coordinates on a Argand-Gauss diagram
[6] is a possible representation. One can notice (a; bi) and (a+bi) are equivalent notations
for the coordinates, both are derived from the complete form eaebi or ea+bi. Expressions
at the exponent level only require C precision, thus all operations as defined in C can
be used in an exponent. For example −1 · i = −i or (−2)2 = 4, which both implicitly
perfom a C truncation, can be used, the loss of precision will be without consequence.
The number 0 is used in expressions as a normal number.

Figure 7: Logarithmic representation of z = eaebi on a Argand-Gauss diagram
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7 Algebraic properties of the E number set

From the properties of the real operations and functions composing a complex operation,
it is possible to deduce the algebraic properties of E. The properties of the value 0 are by
convention inherited from C since the formulas 3.1 to 3.6 do not apply to that value.

7.1 Commutativity

The addition and the multiplication are the only commutative operations.

z1 × z2 = z2 × z1 (7.1)

z1 + z2 = z2 + z1 (7.2)

7.2 Associativity

The addition and the multiplication are the only associative operations.

(z1 + z2) + z3 = z1 + (z2 + z3) (7.3)

(z1 × z2)× z3 = z1 × (z2 × z3) (7.4)

7.3 Distributivity

The multiplication is distributive at C precision level over the addition and subtraction,
the division is right distributive at C precision level over the addition and subtraction.

| z1 × (z2 + z3) |C = z1 × z2 + z1 × z3 (7.5)

| z1 × (z2 − z3) |C = z1 × z2 − z1 × z3 (7.6)∣∣∣∣z2 + z3
z1

∣∣∣∣
C

=
z2
z1

+
z3
z1

(7.7)∣∣∣∣z2 − z3z1

∣∣∣∣
C

=
z2
z1
− z3
z1

(7.8)

Proof. Distributivity of multiplication over addition is C precise

Combining the multiplication and addition formulas 3.1 and 3.5, let z1 = ea1eb1i, z2 =
ea2eb2i and z3 = ea3eb3i

z = z1 · (z2 + z3)

a = a1 +
1

2
ln(e2a2 + e2a3 + 2ea2+a3 cos(b2 − b3))

b = b1 + Atan

(
ea2 sin b2 + ea3 sin b3
ea2 cos b2 + ea3 cos b3

)
z = z1 · z2 + z1 · z3

a =
1

2
ln(e2(a1+a2) + e2(a1+a3) + 2e(a1+a2)+(a1+a3) cos((b1 + b2)− (b1 + b3)))

=
1

2
ln(e2a1(e2a2 + e2a3 + 2ea2+a3 cos(b2 − b3)))

= a1 +
1

2
ln(e2a2 + e2a3 + 2ea2+a3 cos(b2 − b3))
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b = Atan

(
ea1+a2 sin(b1 + b2) + ea1+a3 sin(b1 + b3)

ea1+a2 cos(b1 + b2) + ea1+a3 cos(b1 + b3)

)
= Atan

(
ea2(sin b1 cos b2 + cos b1 sin b2) + ea3(sin b1 cos b3 + cos b1 sin b3)

ea2(cos b1 cos b2 − sin b1 sin b2) + ea3(cos b1 cos b3 − sin b1 sin b3)

)
= Atan

(
cos b1(e

a2 sin b2 + ea3 sin b3) + sin b1(e
a2 cos b2 + ea3 cos b3)

cos b1(ea2 cos b2 + ea3 cos b3)− sin b1(ea2 sin b2 + ea3 sin b3)

)
= Atan

(
ea2 sin b2+ea3 sin b3
ea2 cos b2+ea3 cos b3

+ sin b1
cos b1

1− ea2 sin b2+ea3 sin b3
ea2 cos b2+ea3 cos b3

· sin b1
cos b1

)

= Atan

(
sin b1
cos b1

)
+ Atan

(
ea2 sin b2 + ea3 sin b3
ea2 cos b2 + ea3 cos b3

)
= |b1|C + Atan

(
ea2 sin b2 + ea3 sin b3
ea2 cos b2 + ea3 cos b3

)

Example 14. Distributivity failure at E precision level

−2 · (i+ 1) =⇒ eln 2eπi · (eπ2 i + e0i) = eln 2eπi · e 1
2
ln 2e

π
4
i = e

3
2
ln 2e

5π
4
i

(−2 · i) + (−2 · 1) =⇒ eln 2eπi · eπ2 i + eln 2eπi · e0i = eln 2e
3π
2
i + eln 2eπi = e

3
2
ln 2e−

3π
4
i

In the first line the E precision is preserved because the final operation is a multipli-
cation, in the second line the addition operates a C truncation, hence the results can be
different.

7.4 Identity element

The identity element of addition and multiplication :

z1 × e0e0i = z1 (7.9)

z1 + 0 = z1 (7.10)

The right identity element of division and subtraction, exponentiation having an infinite
set of right identities :

z1 / e
0e0i = z1 (7.11)

z1 − 0 = z1 (7.12)

z1
(e0e2kπi) = z1 (with k ∈ Z) (7.13)

7.5 Inverse

Multiplication, division and exponentiation are the exact reciprocal of their inverse oper-
ation :

z1 × z2
z1

= z2 (7.14)

z2
z1
× z1 = z2 (7.15)
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z1
logz1(z2) = z2 (7.16)

Logarithm, addition and subtraction are only the C precise reciprocal of their inverse
operation:

logz1(z1
z2) = |z2|C (7.17)

z2 + z1 − z1 = |z2|C (7.18)

z2 − z1 + z1 = |z2|C (7.19)

Proof. Exponentiation is the exact inverse of logarithm

Using the logarithm formula 3.4 converted into algebraic form, let z1 = ea1eb1i, z2 = ea2eb2i

and logz1(z2) = a1a2+b1b2
a12+b1

2 + a1b2−a2b1
a12+b1

2 i

z = z1
logz1 (z2) = z2

a =
a1(a1a2 + b1b2)− b1(a1b2 − b1a2)

a12 + b1
2

=
a1

2a2 + a1b1b2 − b1a1b2 + b1
2a2

a12 + b1
2

=
a2(a1

2 + b1
2)

a12 + b1
2 = a2

b =
b1(a1a2 + b1b2) + a1(a1b2 − b1a2)

a12 + b1
2

=
b1a1a2 + b1

2b2 + a1
2b2 − a1b1a2

a12 + b1
2

=
b2(a1

2 + b1
2)

a12 + b1
2 = b2

7.6 Symmetry

eaebi · e−ae−bi = e0e0i (7.20)

eaebi

eaebi
= e0e0i (7.21)

eaebi + eaebi+(2k+1)πi = 0 (with k ∈ Z) (7.22)

eaebi − eaebi+2kπi = 0 (7.23)

7.7 Singularities

At first we consider the singularities of operations where both operands are in E\{0}.

From the logarithm formula 3.4, one can easily deduce logarithms have a singularity
when z1 = e0e0i and/or z2 = e0e0i caused by the division by 0, the ln with operand 0 and
the Atan with 0/0 argument. Interestingly the singularities vanish if the operands are in
the form e0e2kπi with k 6= 0.

log(e0e0i)(z2) =∞ (7.24)
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logz1(e
0e0i) = 0 (7.25)

log(e0e0i)(e
0e0i) = undefined (7.26)

From the formulas 3.5 and 3.6, it is possible to deduce both addition and subtraction have
singularities caused by the ln with operand 0 and the Atan with 0/0 argument.

eaebi + eaebi+(2k+1)πi = 0 (with k ∈ Z) (7.27)

eaebi − eaebi+2kπi = 0 (7.28)

The introduction of the element 0 allows to reduce some of the above singularities, but
also adds new ones.

z1 · 0 = 0 (7.29)

z1 / 0 =∞ (7.30)

0 / z2 = 0 (7.31)

0 / 0 = undefined (7.32)

z1 + 0 = z1 (7.33)

z1 − 0 = z1 (7.34)

0− z2 =
∣∣z2 · eπi∣∣C (7.35)

0− 0 = 0 (7.36)

z1
0 = e0e0i (7.37)

0z2 = 0 (7.38)

00 = e0e0i (7.39)

logz1(0) =∞ (7.40)

log0(z2) = 0 (7.41)

log0(0) = undefined (7.42)

In order to reduce the singularities, it is possible to include the infinite element such as
E′ = E ∪ {∞}, and define the results of operations using ∞. However it would lead to
new singularities such as ∞−∞, whatever definition of E′ there will remain singularities
that can ony be treated analytically.

7.8 Algebraic structure of E
Conclusions can be made from formulas 3.1 to 3.6 and from the properties listed above :

� For each of the 6 complex operations, E has a closed algebraic structure, except for
the singularities all results can be represented

� The multiplication and division maintain all their intrinsic properties such as in C

� The addition and subtraction maintain all their intrinsic properties but only at C
precision, since both operations do not require nor can provide any E precision

� The distributivity property generally only holds when the left side is truncated to
C precision, thus distributivity is only C precise
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� The multiplication is clearly the defining operation and possess all the properties to
constitute a multiplicative group (E∗, ·)

� The field axioms are not all verified, since the addition/subtraction reciprocity and
the distributivity do not hold exactly in E

It would be a mistake to limit E to a multiplicative group, as many properties over the
exponentiation and logarithm operations are added. All properties and identities hold to
a certain extent, only limited by the operations maximum precision level. E is more to
be considered as a complete number system.

7.9 Properties comparison between R, C and E

Table 3: Basic operations properties.

Property R C E
Addition and subtraction closure yes yes yes

Multiplication and division closure yes yes yes

Addition and subtraction monovaluation yes yes yes

Multiplication and division monovaluation yes yes yes

Addition and multiplication commutativity yes yes yes

Addition and multiplication associativity yes yes yes

Multiplication distributivity over add/sub yes yes C precise

Division right distributivity over add/sub yes yes C precise

Identity element of add/sub 0 0 0

Identity element of mult/div 1 1 e0e0i = 1

Addition/subtraction inverse yes yes C precise

Multiplication/division inverse yes yes yes

Table 4: Exponentiation and logarithm properties.

Property R C E
Exponentiation zz21 closure if z1 ∈ R+ yes yes

Logarithm logz1(z2) closure if z1, z2 ∈ R+ yes yes

Exponentiation monovaluation no no yes

Logarithm monovaluation yes no yes

Exponentiation inverse of logarithm

z1
logz1(z2) = z2 if z1, z2 ∈ R+ subset 1 yes

Logarithm inverse of exponentiation

logz1(z1
z2) = z2 if z1 ∈ R+ subset 1 C precise
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1 The left side of the equation produces many more results, of which only a subset is equal to the right

side. The equation always holds at principal value

Table 5: Exponentiation and logarithm identities.

Property R C E

Exponent distributivity over multiplic.
(z1z2)

z3 = z1
z3z2

z3 if z1, z2 ∈ R+ no 2 yes

Exponent distributivity over division(
z1
z2

)z3
= z1z3

z2z3
if z1, z2 ∈ R+ no 2 yes

Exponential product z1
z2z1

z3 = z1
z2+z3 if z1 ∈ R+ subset 1 yes

Exponential quotient z1z2
z1z3

= z1
z2−z3 if z1 ∈ R+ subset 1 yes

Exponential power (z1
z2)z3 = z1

z2z3 if z1 ∈ R+ no 2 yes

Logarithm product
logz1(z2z3) = logz1(z2) + logz1(z3) if z1, z2, z3 ∈ R+ no 2 yes

Logarithm quotient

logz1

(
z2
z3

)
= logz1(z2)− logz1(z3) if z1, z2, z3 ∈ R+ no 2 yes

Logarithm power
logz1(z2

z3) = z3 logz1(z2) if z1, z2 ∈ R+ no 2 C precise

Logarithm base substitution

logz1(z2) =
logz3 (z1)

logz3 (z2)
if z1, z2, z3 ∈ R+ if z3 ∈ R+ C precise

1 The left side of the equation produces many more results, of which only a subset is equal to the right

side. The equation always holds at principal value
2 Both sides of identities equations produce a different set of results, which are not necessarily equal at

the principal value. Only when the imaginary argument remains within the ]− π;π] boundary (from a E
perspective) during each calculation step does the identity remain valid within a given branch

The exponential identities z1
z2z1

z3 = z1
z2+z3 and z1z2

z1z3
= z1

z2−z3 remain valid in C at the
principal or at any other branch. The reason is clear, both identities never alter the ex-
ponentiation base, only the exponents are altered, as they do not require E precision no
C truncation occurs. All other identities alter the exponentiation base or logarithm base
or operand, thus any value outside the ] − π; π] interval of the imaginary argument will
trigger an identity failure.
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8 Comments on the exponentiation and logarithm

definition in C
The complex exponentiation in C is defined by the formula 1.1, thus the primary multi-
valued result is in the form ea+αkπe(b+βkπ)i, where a, α, b, β ∈ R and k ∈ Z. To express
the result in algebraic form a conversion is necessary, using the Euler formula the sine
and cosine functions convert the result into algebraic form. However, during the con-
version, precision is lost and the result principal value may be shifted. For example
(−1)3 = (eln(−1))3 = (eπi+2kπi)3 = e3πi+6kπi. Converting those values into algebraic form
returns −1 = eπi+2kπi, thus the principal value is reset to eπi. Moreover there is no pos-
sibility to convert expressions such as e6kπi without loss of information. In the example
(i−5)

i
, when the result of i−5 is reconverted into algebraic form the principal value result

is shifted from e−
5πi
2 to e−

πi
2 , the result of (i−5)

i
becoming e

π
2 instead of e

5π
2 .

The multivaluation of the complex exponentiation is not induced by the logarithm, but
by the algebraic form of the base. Since no identity is available to exploit the base as
such, the formula 1.1 is equivalent as substituting the base by an infinity of bases, the
so-called exponential form, using the formula z = |z|earg(z)i = |z|eθi+2kπi. In general the
multivaluation is assumed, unless explicitly restricting the exponentiation to real positives
with notations such as |z|α or

√
a2 + b2 which both assume a single valued real positive

base. Expressions such as (eπi)
1
3 return a single valued result, unless eπi is converted into

algebraic form, in which case (eπi)
1
3 =⇒ (−1)

1
3 =

(
eπi+2kπi

) 1
3

The complex logarithm as defined by L. Euler [1] is restricted to the base e or at least
to real positive values. Euler himself does not mention a multivalued logarithm func-
tion, rather he speaks of each real or complex number having an infinite number of
logarithms. Indeed, as for the exponentiation base, the logarithm operand cannot be
exploited directly in algebraic form, thus has to be converted into exponential form,
ln(z) = ln(|z|earg(z)i) = ln(|z|eθi+2kπi) = ln |z| + θi + 2kπi. The primary result being in
algebraic form, no conversion is required nor any loss of precision is induced. The mul-
tivaluation is solely induced by the operand substitution, for example ln(1) = 2kπi and
ln(−1) = πi + 2kπi. On the other hand ln |z| is assumed single valued as the operand is
implicitly substituted by xe0i. Expressions such as ln (eπi) = πi are single valued, unless
eπi is converted to algebraic form, in which case ln (eπi) =⇒ ln(−1) = πi+ 2kπi.

Notations such as ln, log2 or log10 assume the logarithm base is in the form xe0i. For
bases the same logic applies as for the exponentiation, a base in algebraic form can be
substituted by the equivalent exponential form, or by any particular value in complete
form. As an example, for log−1 the base can be assumed as monovalued eπi or multivalued
eπi+2kπi.

It is clear there is only one unique exponentiation and one unique logarithm complex
operation. The different notations conventions and different assumptions regarding the
operands substitutions are creating some confusion, which can be blamed on the lack of
precision of the algebraic form. In complete form, real positive numbers are not funda-
mentally different, all operands are in the form eaebi, moreover the concepts of principal
value and branches are no longer necessary.
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When dealing with exponentiation and logarithm in C the equality eαi = eαi+2kπi is
automatically assumed, by an analogy with the trigonometric circle where an angle of α
is equal to α + 2kπ. However from a E perspective only |eαi|C = |eαi+2kπi|C is valid. The

formulas cos(α) + i sin(α) = cos(α+ 2kπ) + i sin(α+ 2kπ) =
∑∞

n=0
(αi)n

n!
=
∑∞

n=0
(αi+2kπi)n

n!

are strictly equal, but are also equal in deconstructing the complete form and reconstruct-
ing a result in algebraic form, as such they literally truncate the precision of the complete
form.

9 Conclusion

As demonstrated in this article, the complex exponentiation base and result, the complex
logarithm base and operand cannot be represented precisely in algebraic form. The same
observation holds for the multiplication and division results when used in combination
with an exponentiation or logarithm. For this reason alone, multivalued results, identity
failures and even wrong results are obtained when computing exclusively in C.

The establishment of the complete form is an attempt to restore the properties of exponen-
tiation and logarithm, and to ease the conceptualization and handling of both operations
when all operands are complex. Moreover the E set of complex numbers in complete form
can be viewed as a ”natural” extension of C. Within the sequence N ⊂ Z ⊂ R ⊂ C ⊂ E
each set extends the capacity of the predecessor set by providing new elements, thus new
symbolic representations of numbers. Each element in a given set is uniquely linked to a
predecessor set element through an equivalence relation, therefore an element can always
be truncated to the predecessor set precision level. Similarly the geometric representa-
tions are extended while preserving the predecessor sets representations.

Labelling expressions such as eaebi as numbers might seem strange, though we believe
it is totally justified by the extra precision and possibilities they introduce, as they over-
come some limitations encountered in C with the algebraic form. As we have frequently
illustrated with examples, it remains possible to combine the algebraic and complete form
inside expressions and formulas. Though outside the ]− π; π] boundary of the imaginary
argument, the elementary algebra rules and formulas cannot be applied as such, and
should be replaced by the formulas 3.1 to 3.6.

Author :

Daniel Tischhauser
Independent researcher, Geneva, Switzerland
Email : dtischhauser.math@gmail.com

References

[1] Euler, Leonhard; De la controverse entre Mrs. Leibnitz et Bernoulli sur les logarithmes
des nombres négatifs et imaginaires. 1749, 165–178 .

36

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2021                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2021                   doi:10.20944/preprints202104.0207.v3

https://doi.org/10.20944/preprints202104.0207.v3


Exponentials and Logarithms Properties in an Extended Complex Number Field D.Tischhauser

[2] Euler, Leonhard; Recherches sur les racines imaginaires des équations. 1749, 272–276.
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