
Noname manuscript No.
(will be inserted by the editor)

A Survey of RDF Stores & SPARQL Engines
for Querying Knowledge Graphs

Waqas Ali · Muhammad Saleem · Bin Yao ·
Aidan Hogan · Axel-Cyrille Ngonga Ngomo

Received: date / Accepted: date

Abstract Recent years have seen the growing adop-
tion of non-relational data models for representing di-
verse, incomplete data. Among these, the RDF graph-
based data model has seen ever-broadening adoption,
particularly on the Web. This adoption has prompted
the standardization of the SPARQL query language for
RDF, as well as the development of a variety of local
and distributed engines for processing queries over RDF
graphs. These engines implement a diverse range of spe-
cialized techniques for storage, indexing, and query pro-
cessing. A number of benchmarks, based on both syn-
thetic and real-world data, have also emerged to allow
for contrasting the performance of different query en-
gines, often at large scale. This survey paper draws to-
gether these developments, providing a comprehensive
review of the techniques, engines and benchmarks for
querying RDF knowledge graphs.

Keywords Knowledge Graph · Storage · Indexing ·
Query Processing · SPARQL · Benchmarks

W. Ali
SEIEE, Shanghai Jiao Tong University, Shanghai, China
E-mail: waqasali@sjtu.edu.cn

M. Saleem
AKSW, University of Leipzig, Leipzig, Germany
E-mail: saleem@informatik.uni-leipzig.de

B. Yao
SEIEE, Shanghai Jiao Tong University, Shanghai, China
E-mail: yaobin@cs.sjtu.edu.cn

A. Hogan
DCC, University of Chile & IMFD, Santiago, Chile
E-mail: ahogan@dcc.uchile.cl

A.-C. Ngonga Ngomo
University of Paderborn, Paderborn, Germany
E-mail: axel.ngonga@upb.de

1 Introduction

The Resource Description Framework (RDF) is a graph-
based data model where triples of the form (s, p, o) de-
note directed labeled edges s p−→ o in a graph. RDF has
gained significant adoption in the past years, particu-
larly on the Web. As of 2019, over 5 million websites
publish RDF data embedded in their webpages [27].
RDF has also become a popular format for publishing
knowledge graphs on the Web, the largest of which –
including Bio2RDF, DBpedia, PubChemRDF, UniProt
and Wikidata – contain billions of triples. These devel-
opments have brought about the need for optimized
techniques and engines for querying large RDF graphs.
We refer to engines that allow for storing, indexing and
processing joins over RDF as RDF stores.

A variety of query languages have been proposed
for RDF, but the SPARQL Protocol and RDF Query
Language (SPARQL) has become the standard [76].
The first version of SPARQL was standardized in 2008,
while SPARQL 1.1 was released in 2013 [76]. SPARQL
is an expressive language that supports not only joins,
but also variants of the broader relational algebra (pro-
jection, selection, union, difference, etc.). Various new
features were added in SPARQL 1.1, including property
paths for matching paths in the RDF graph matching a
given regular expression. Hundreds of SPARQL query
services – called endpoints – have emerged on the Web
since its standardization [35], with the most popular
endpoints receiving millions of queries per day [164,
125]. We refer to engines that support storing, index-
ing and processing SPARQL (1.1) queries over RDF as
SPARQL engines. Since SPARQL supports joins, we
consider any SPARQL engine to also be an RDF store.

Efficient data storage, indexing and join processing
are key to RDF stores (and thus, to SPARQL engines):

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202104.0199.v1
http://creativecommons.org/licenses/by/4.0/

2 Ali et al.

– Storage. Different engines may store RDF data us-
ing a variety of different structures (tables, graphs,
etc.), encodings (integer IDs, string compression,
etc.) and media (main memory, disk, etc.). Which
storage to use may depend on the scale of the data,
the types of query features supported, etc.

– Indexing. Various indexes are used in RDF stores
for fast data lookup and query execution. Different
types of indexes can support different operations
with differing time–space trade-offs. More indexes
generally lead to better query runtimes. However,
maintaining such indexes can be costly in terms of
space consumption and updates.

– Join Processing. At the core of evaluating queries
lies efficient methods for processing joins. While tra-
ditional pairwise join algorithms – as used in rela-
tional databases – are most often employed, recent
years have seen the emergence of novel techniques,
such as multiway and worst-case optimal joins. Op-
timizing the order of evaluation of joins can also be
important to ensure efficient processing.

Beyond processing joins, SPARQL engines must of-
fer efficient support for more expressive query features:

– Query Processing. SPARQL is an expressive lan-
guage containing a variety of query features beyond
joins that need to be supported efficiently, such as
filter expressions, optionals, path queries, etc.

RDF stores can further be divided into two cate-
gories: (1) local (single-node) stores that manage RDF
data on a single machine and (2) distributed stores that
partition RDF data among multiple machines. While
local stores are more lightweight, the resources available
on one machine limit scalability [211,146,86]. Various
kinds of distributed RDF stores have thus been pro-
posed [72,86,170,171] that typically run on networked
clusters of commodity, shared-nothing machines.

In this survey, we describe storage, indexing, join
processing and query processing techniques employed
by local RDF stores, as well as high-level strategies for
partitioning RDF graphs as needed for distributed stor-
age. An appendix attached to this extended version fur-
ther compares 116 local and distributed RDF engines
in terms of the techniques they use, as well as 12 bench-
marks in terms of the types of data and queries they
contain. The goal of this survey is to crisply introduce
the different techniques used by RDF query engines,
and also to help users to choose the appropriate engine
or benchmark for a given use-case.

The remainder of the paper is structured as follows.
Section 2 discusses and contrasts this survey with re-
lated studies. Section 3 provides preliminaries relating
to RDF and SPARQL. Sections 4, 5, 6 and 7 review

techniques for storage, indexing, join processing and
query processing, respectively. Section 8 explains differ-
ent graph partitioning techniques for distributing stor-
age over multiple machines. Section 9 concludes with
research problems and future directions. An appendix
attached to this extended version compares specific sys-
tems and benchmarks.

2 Literature Review

We first discuss related studies, including peer-reviewed
tertiary literature (surveys in journals, short surveys
in proceedings, book chapters, surveys with empirical
comparisons, etc.) from the last 10 years collating tech-
niques, engines and/or benchmarks for querying RDF.

We summarize the topics covered by these works in
Table 1. We use 3, ∼ and blank cells to denote detailed,
partial or little/no discussion, respectively, when com-
pared with the current survey (the bottom row). We
also include the number of engines and benchmarks in-
cluded in the work; in some cases the respective pub-
lication does not formally list all systems/benchmarks
(e.g., as a table), in which case we may write n+ as an
estimate for the number discussed in the text.

Earlier surveys by Sakr et al. [163], Faye et al. [55],
Luo et al. [119] focus on RDF storage for individual
machines, particularly using relational storage. Another
early survey, provided by Svoboda et al. [187], rather fo-
cuses on querying RDF data over the Web. More recent
surveys by Ma et al. [122], Öszu [145] and Alaoui [8],
Abdelaziz et al. [3], Elzein et al. [52], Yasin et al. [216],
Wylot et. al [211], Janke and Staab [93], Zambom San-
tana and dos Santos Mello [218], and Chawla et al. [40]
all focus on distributed, cloud and decentralized set-
tings, with only brief summaries of standard techniques
applicable on individual machines. With respect to more
general discussions, Pan et al. [146] provide a short sur-
vey that serves as a quick o/verview of the area.

In summary, recent surveys have focused primar-
ily on distributed (e.g., cloud) and decentralized (e.g.,
Web) environments. However, local RDF stores consti-
tute the bulk of those found in practice [35], where novel
storage, indexing and querying techniques continue to
emerge. This survey focuses on techniques applicable
for individual machines, rather summarizing partition-
ing schemes for RDF graphs in distributed environ-
ments. In the appendix, we present a comprehensive
comparison of both local and distributed RDF query
engines and benchmarks.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 3

Table 1: Prior tertiary literature on RDF query engines; the abbreviations are: Sto./Storage, Ind./Indexing,
J.Pr./Join Processing, Q.Pr./Query Processing, Dis./Distribution, Eng./Engines, Ben./Benchmarks

Study Year Type Techniques Eng. Bench.Sto. Ind. J.Pr. Q.Pr. Dis.

Chawla et al. [39] 2020 Survey 3 ∼ ∼ ∼ 46 9
Zambom & dos Santos [218] 2020 Short Survey ∼ ∼ 3 24
Alaoui [8] 2019 Short Survey 3 ∼ 30+
Janke et al. [91] 2018 Chapter ∼ ∼ ∼ ∼ 3 50+ 9
Wylot et. al [211] 2018 Survey 3 ∼ ∼ ∼ 3 24 8
Pan et al. [146] 2018 Short survey 3 ∼ ∼ ∼ 25+ 4
Yasin et al. [216] 2018 Short survey ∼ 3 ∼ 14
Elzein et al. [52] 2018 Survey 3 ∼ ∼ ∼ 15+
Abdelaziz et al. [3] 2017 Comparison 3 ∼ ∼ ∼ 3 21 4
Ma et al. [122] 2016 Survey 3 ∼ ∼ 17 6
Özsu [145] 2016 Survey 3 ∼ ∼ ∼ 35+
Kaoudi et al. [96] 2015 Survey 3 ∼ ∼ ∼ 3 17
Faye et al. [55] 2012 Survey 3 ∼ ∼ 13
Luo et al. [119] 2012 Chapter 3 3 20+
Svoboda et al. [187] 2011 Short Survey ∼ ∼ ∼ 14 6
Sakr et al. [163] 2010 Short Survey 3 ∼ 10+

Ali et al. Survey 3 3 3 3 3 116 12

3 Preliminaries

Before beginning the core of the survey, we first intro-
duce some preliminaries regarding RDF and SPARQL.

3.1 RDF

The RDF data model [175] is founded on three pairwise
disjoint (and countably infinite) sets of RDF terms: the
set I of International Resource Identifiers (IRIs) used
to identify resources; the set L of literals used for (pos-
sibly language-tagged) strings and datatype values; and
the set B of blank nodes, interpreted as local existen-
tial variables. An RDF triple (s, p, o) ∈ IB × I × IBL

contains a subject s, a predicate p and an object o.1

A set of RDF terms is called an RDF graph G, where
each triple (s, p, o) ∈ G represents a directed labeled
edge s p−→ o. We denote by s(G), p(G) and o(G) the
set of subjects, predicates and objects in G. We further
denote by so(G) := s(G) ∪ o(G) the set of nodes in G.

An example RDF graph, representing information
about two university students, is shown in Figure 1.
We include both a graphical representation and a triple-
based representation. RDF terms such as :DB, foaf:age,
etc., denote prefixed IRIs, where if we define the prefix
foaf as http://xmlns.com/foaf/0.1/, then the full
IRI for foaf:age is http://xmlns.com/foaf/0.1/age.2

Terms such as "Motor RDF"@es denote strings with (op-
tional) language tags, and terms such as "21"^^xsd:int

1 In this paper, we may abbreviate S ∪ T as ST .
2 We use the blank prefix (e.g., :DB) as an arbitrary exam-

ple. Other prefixes used can be found from http://prefix.cc/.

denote datatype values. Finally we denote blank nodes
with the underscore prefix, where _:p refers to the exis-
tence of a project shared by Alice and Bob. Terms used
in the predicate position (e.g., foaf:age, skos:broader)
are known as properties. The RDF standard defines the
special property rdf:type, which indicates the class
(e.g., foaf:Person, foaf:Project) of a resource.

3.2 SPARQL

Various query languages for RDF have been proposed
down through the years, such as RQL [98], SeRQL [184],
etc. Some of the techniques and systems discussed later
were developed for such languages. We focus our dis-
cussion on SPARQL [76], which would later become
the standard language for query RDF data, referring
to the discussion of Haase et al. [71] on its predeces-
sors. Herein we define the core of the SPARQL query
language in terms of basic graph patterns, navigational
graph patterns, and complex graph patterns [12].

Basic Graph Patterns (BGPs) At the core of SPARQL
lie triple patterns: RDF triples that also allow variables
from the set V (disjoint with IBL) in any position.
A set of triple patterns is called a basic graph pattern
(BGP). Since blank nodes in BGPs act as variables,
we assume they have been replaced with variables. We
denote by vars(B) the set of variables in the BGP B.

Given an RDF graph G, the evaluation of a BGP
B, denoted B(G), returns a set of solution mappings. A
solution mapping µ is a partial mapping from the set V
of variables to the set of RDF terms IBL. We denote by

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/age
http://prefix.cc/
https://doi.org/10.20944/preprints202104.0199.v1

4 Ali et al.

foaf:Person:Alice rdf:type

"26"^^xsd:int

foaf:age

:Bob

foaf:knows

foaf:knows

rdf:type

"21"^^xsd:int

foaf:age

_:p

foaf:pastProjectfoaf:currentProject

foaf:Project

rdf:type

"RDF Engine"@en

rdfs:label

"Motor RDF"@es

rdfs:label

:SW

foaf:topic_interest

:DB

foaf:topic_interest

skos:related

foaf:topic_interest

:Web

skos:broader

:CS

skos:broader

skos:broader

Subject Predicate Object

:Alice rdf:type foaf:Person
:Alice foaf:age "26"^^xsd:int
:Alice foaf:topic_interest :DB
:Alice foaf:topic_interest :SW
:Alice foaf:knows :Bob
:Alice foaf:currentProject _:p
:Bob rdf:type foaf:Person
:Bob foaf:age "21"^^xsd:int
:Bob foaf:topic_interest :DB
:Bob foaf:knows :Alice
:Bob foaf:pastProject _:p
_:p rdf:type foaf:Project
_:p rdfs:label "RDF Engine"@en
_:p rdfs:label "Motor RDF"@es
:SW skos:broader :Web
:SW skos:related :DB
:Web skos:broader :CS
:DB skos:broader :CS

Fig. 1: Graphical (left) and triple-based representation (right) of an example RDF graph

foaf:Person?a rdf:type ?b

foaf:knows

foaf:knows

rdf:type

?ia

foaf:topic_interest

?ib

foaf:topic_interest

?a ?b ?ia ?ib

:Alice :Bob :DB :DB
:Alice :Bob :SW :DB
:Bob :Alice :DB :DB
:Bob :Alice :DB :SW

Fig. 2: Example BGP (above) and its evaluation over
the graph of Figure 1 (below)

dm(µ) the set of variables for which µ is defined. Given
a triple pattern t, we denote by µ(t) the image of t under
µ; i.e., the result of replacing any variable v ∈ dm(µ)

appearing in t with µ(v). We denote by µ(B) the image
of the BGP B under µ; i.e., µ(B) := {µ(t) | t ∈ B}.
The evaluation of the BGP B on G is then given as
B(G) := {µ | µ(B) ⊆ G and dm(µ) = vars(B)}.

We provide an example of a BGP and its evaluation
in Figure 2. Each row of the results refers to a solu-
tion mapping. Some solutions map different variables
to the same term; each such solution is thus a homo-
morphism from the BGP to the RDF graph. BGPs,
when extended with projection, can further be seen as
conjunctive queries for RDF graphs [12].

Navigational Graph Patterns (NGPs) A key character-
istic of graph query languages is the ability to match

paths of arbitrary length [12]. In SPARQL (1.1), this
ability is captured by property paths [76], which are reg-
ular expressions that paths should match. The set E of
path expressions can be defined recursively as follows:

– if p is an IRI, then p is a path expression (property);
– if e is a path expression, then ^e (inverse), e* (zero-

or-more, aka. Kleene star), e+ (one-or-more), and
e? (zero-or-one) are path expressions.

– If e1, e2 are path expressions, then e1/e2 (concatena-
tion) and e1|e2 (disjunction) are path expressions.

– if P is a set of IRIs, then !P and !^P are path ex-
pressions (negated property set);3

Brackets can also be used to indicate precedence.
The evaluation of these path expressions on an RDF

graph G returns pairs of nodes in G connected by paths
that match the expression, as defined in Table 2. These
path expressions are akin to 2-way regular path queries
(2RPQs) extended with negated property sets [107,12].

We call a triple pattern (s, e, o) that further allows
a path expression as the predicate (i.e., e ∈ EV) a path
pattern. A navigational graph pattern (NGP) is then a
set of path patterns. Given a navigational graph pat-
tern N , let paths(N) := p(N) ∩ E denote the set of
path expressions used in N . Given an RDF graph G

and a set of path expressions E ⊆ E, we denote by
GE := G ∪ (

⋃
e∈E{(s, e, o) | (s, o) ∈ e(G)}) the result

of materializing all paths matching E in G. The eval-
uation of the navigational graph pattern N on G is then
N(G) :={µ | µ(N) ⊆ Gpaths(N) and dm(µ) = vars(N)}.

3 SPARQL uses the syntax !(p1|. . .|pk|pk+1|. . .|pn)
which can be written as !P |!^P ′, where P = {p1, . . . , pk}
and P ′ = {pk+1, . . . , pn} [76,107].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 5

Table 2: Evaluation of path expressions

p(G):={(s, o) | (s, p, o) ∈ G}

^e(G):={(s, o) | (o, s) ∈ e(G)}
e+(G):={(y1, yn) | for 1 ≤ i < n : ∃(yi, yi+1) ∈ e(G)}
e?(G):=e(G) ∪ {(x, x) | x ∈ so(G)}
e*(G):=(e+)?(G)

e1/e2(G):={(x, z) | ∃y : (x, y) ∈ e1(G) ∧ (y, z) ∈ e2(G)}
e1|e2(G):=e1(G) ∪ e2(G)

!P (G):={(s, o) | (s, p, o) ∈ G ∧ p /∈ P}
!^P (G):={(s, o) | (o, p, s) ∈ G ∧ p /∈ P}

foaf:Person?a rdf:type ?b

foaf:knows

foaf:knows

foaf:topic_interest/skos:related*/^foaf:topic_interest

rdf:type

?a ?b

:Alice :Alice
:Alice :Bob
:Bob :Alice
:Bob :Bob

Fig. 3: Example NGP (above) and its evaluation over
the graph of Figure 1 (below)

We provide an example of a navigational graph pat-
tern and its evaluation in Figure 3.

Complex Graph Patterns (CGPs) Evaluating BGPs and
NGPs returns sets of solution mappings. Per Figures 2
and 3, these results can be viewed as relations (i.e., ta-
bles) where variables are attributes (i.e., column names)
and tuples (i.e., rows) contain the RDF terms bound
by each solution mapping. We can then transform and
combine the results of BGPs/NGPs with the relational
algebra. Formally, let M , M1, M2 denote sets of solu-
tion mappings and let V denote a set of variables. Let
R denote a filter expression that maps a solution map-
ping µ to a true or false value [76]. In Table 3 we define
the core relational algebra of SPARQL, including, re-
spectively, selection (FILTER), projection (SELECT), nat-
ural (equi-)join (.), union (UNION), semi-join (FILTER
EXISTS), anti-join (FILTER NOT EXISTS) and left-outer-
join (OPTIONAL). By complex graph patterns (CGPs) [12]
we refer to the closure of BGPs and the relational al-
gebra (akin to first-order queries on graphs [12]). By
complex navigational graph patterns (CNGPs) [12] we
refer to the closure of NGPs and the relational algebra.

Named graphs SPARQL allows for querying multiple
RDF graphs through the notion of a SPARQL dataset

Table 3: Core relational algebra of SPARQL

σR(M) := { µ ∈M | R(µ)}
πV (M) := { µ′ | ∃µ ∈M :µ ∼ µ′ ∧dm(µ′)=V ∩dm(µ)}

M1 ./ M2 := { µ1 ∪ µ2 | µ1 ∈M1 ∧ µ2 ∈M2 ∧ µ1 ∼ µ2}
M1 ∪M2 := { µ | µ ∈M1 ∨ µ ∈M2}
M1 nM2 := {µ1 ∈M1 | ∃µ2 ∈M2 : µ1 ∼ µ2}
M1 BM2 := { µ1 ∈M1 | @µ2 ∈M2 : µ1 ∼ µ2}
M1 ./ M2 := (M1 ./ M2) ∪ (M1 BM2)

D := {G, (n1, G1), . . . , (nk, Gk))} where G,G1 . . . , Gn
are RDF graphs; n1, . . . , nk are pairwise distinct IRIs;
G is known as the default graph; and each pair of the
form (n1, G1) (for 1 ≤ i ≤ n) is known as a named
graph. Letting N ′, N ′′ denote sets of IRIs, n′, n′′ IRIs
and v a variable, SPARQL then provides a number of
features for querying different graphs:

– FROM N ′ FROM NAMED N ′′: activates a dataset with a
default graph composed of the merge of all graphs
G′ such that (n′, G′) ∈ D and n′ ∈ N ′, and the set of
all named graphs (n′′, G′′) ∈ D such that n′′ ∈ N ′′;

– GRAPH n′: evaluates a graph pattern on the graph G′

if the named graph (n′, G′) is active;
– GRAPH v: takes the union of the evaluation of a graph

pattern over each G′ such that (n′, G′) is active,
binding v to n′ for each solution generated from G′;

Without FROM or FROM NAMED, the active dataset is the
indexed dataset D. Without GRAPH, graph patterns are
evaluated on the active default graph.

SPARQL engines may disallow empty graphs from
named graphs, resulting in a quad store. In this case,
a dataset D := {G, (n1, G1), . . . , (nk, Gk))} is seen as a
set of quadsD = G×{?}∪(

⋃
(ni,Gi)∈D Gi×{ni}), where

we use ? 6∈ IBL as a special symbol to indicate the
default graph. In this case, a quad (s, p, o, n) denotes a
triple (s, p, o) in the default graph if n = ?, or a triple in
the named graph G′ such that (n,G′) ∈ D if n ∈ I. We
can define CNGPs involving quad patterns analogously.

Other SPARQL features SPARQL supports features be-
yond CNGPs such as aggregation, solution modifiers
(ordering and slicing solutions), bag semantics (preserv-
ing result multiplicity), federation (returning solutions
from remote services), entailment and more besides.
SPARQL further supports different query types, such
as SELECT, which returns a sequence of solution map-
pings; CONSTRUCT, which returns an RDF graph based
on the solution mappings; DESCRIBE, which returns an
RDF graph describing indicated RDF terms; and ASK,
which returns true if some solution mapping is found, or
false otherwise. In general, however, CNGPs form the
core of the SPARQL query language and have been the
focus of the majority of research on query processing

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

6 Ali et al.

and optimization. For this reason, and for reasons of
conciseness, our preliminaries have focused on CNGPs.

4 Storage

Data storage refers to how data are represented in mem-
ory. Different storage mechanisms store different ele-
ments of data contiguously in memory, leading to dif-
ferent trade-offs in terms of compression and efficient
data access. This section reviews six categories of stor-
age mechanisms used by RDF engines, where the first
four leverage relational storage while the latter two de-
pend on native storage and other non-relational stores.

4.1 Triple table

A triple table stores an RDF graph G as a single ternary
relation, often in a relational database. Figure 1 shows
an RDF graph with its triple table on the right-hand
side. One complication is that relational engines typi-
cally assume a column to be associated with a single
type, which may not be true for RDF objects in partic-
ular; a workaround is to store a string encoding of the
terms, though this may complicate their ordering.

Rather than storing full RDF terms in the triple ta-
ble, stores may apply dictionary encoding, where RDF
terms are mapped one-to-one with numeric object iden-
tifiers (OIDs), with OIDs being stored in the table and
decoded using the dictionary as needed. Since OIDs
consume less memory and are faster to process than
strings, such an approach works better for queries that
involve many intermediate results but generate few fi-
nal results; on the other hand, such an approach suffers
when queries are simple and return many results (de-
coding RDF terms will dominate performance), or when
selective filters are specified that require the data of the
term (e.g., finding names containing “z” may require
decoding all names before filtering). To find a better
trade-off, some RDF engines (e.g., Jena 2 [203]) only
use OIDs for strings with lengths above a threshold.

The most obvious physical storage is to store triples
contiguously (row-wise). This allows for quickly retriev-
ing the full triples that match (e.g.) a given triple pat-
tern. However, some RDF engines based on relational
storage (e.g., Virtuoso [54]) rather use (or provide an
option for) column-wise storage, where the values along
a column are stored contiguously, often following a par-
ticular order. Such column-wise storage allows for bet-
ter compression, and thus for caching more data in
memory; it offers performance benefits when queries
require reading many values from a particular column

rdf:type

Subject Object

:Alice foaf:Person
:Bob foaf:Person
_:p foaf:Project

foaf:age

Subject Object

:Alice 26
:Bob 21

Fig. 4: A sample of two tables for the vertical partition-
ing of the RDF graph of Figure 1

(e.g., for aggregations) but may be slower when queries
need to match and retrieve entire triples.

Triple tables can be straightforwardly extended to
quad tables in order to support SPARQL datasets, as
is done in a variety of engines [54,75].

4.2 Vertical partitioning

Instead of storing an RDF graph G as one ternary rela-
tion, the vertical partitioning approach [1] uses a binary
relation for each property p ∈ p(G) whose tuples encode
subject–object pairs for that property. In Figure 4 we
exemplify two such relations. Physical storage can again
use OIDs, row-based or column-based storage, etc.

Some benefits of this approach versus triple tables
include relations with fewer rows, more specific domains
for columns (e.g., the object column for foaf:age can be
defined as an integer type, which would be particularly
beneficial for column-wise storage), and fewer self-joins.
A key limitation of this approach is that it becomes
complicated to evaluate triple patterns with variable
predicates, which require applying a union on all rela-
tions in the database. Furthermore, RDF graphs may
have upwards of thousands of properties [198], which
may lead to a schema with many relations.

Vertical partitioning can be used to store quads by
adding a Graph column to each table [54,75].

4.3 Extended vertical partitioning

S2RDF [171] proposes a storage and indexing technique
called extended vertical partitioning based on semi-join
reductions (we recall from Table 3 that a semi-joinM1n
M2, aka. FILTER EXISTS, returns the tuples in M1 that
are “joinable”with M2). Letting x,y, z denote variables
and p, q denote RDF terms, then for each property pair
(p, q) ∈ p(G)× p(G) such that p 6= q, extended vertical
partitioning stores three semi-join reductions:

1. {(x, p,y)}(G)n {(y, q, z)}(G) (o–s),
2. {(x, p,y)}(G)n {(x, q, z)}(G) (s–s),
3. {(x, p,y)}(G)n {(z, q,x)}(G) (s–o).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 7

skos:broader
ns–s skos:related

Subject Object

:SW :Web

skos:broader
ns–o skos:related

Subject Object

:DB :CS

skos:related
no–s skos:broader

Subject Object

:SW :DB

skos:related
ns–s skos:broader

Subject Object

:SW :DB

Fig. 5: Example semi-join reduction for two properties

The semi-join {(x, p,y)}(G) n {(z, q,y)}(G) (o–o) is
not stored as most o–o joins have the same predicate,
and thus would occur in the same relation. In Fig-
ure 5 we give an example of a semi-join reduction for
skos:broader and skos:related over the running ex-
ample in both directions; empty semi-joins are omitted.

In comparison with vertical partitioning, observing
that (M1nM2) on (M2nM1) ≡M1 onM2, we can apply
joins over the corresponding semi-join reductions know-
ing that each tuple read from each side will contribute
to the join, thus reducing I/O, which is particularly use-
ful for distributed storage (reducing network I/O). The
cost involves storing (and updating) each tuple in up to
3(|p(G)|−1) additional relations; omitting empty semi-
joins can help to mitigate this issue in practice [171].
Like vertical partitioning, extended vertical partition-
ing also presents complications for variable predicates,
RDF graphs with many properties, etc.

4.4 Property table

Property tables aim to emulate the n-ary relations typ-
ical of relational databases. A property table usually
contains one subject column, and n further columns
to store objects for the corresponding properties of the
given subject. The subject column then forms a primary
key for the table. The tables to define can be based on
classes, clustering [153], coloring [29], etc., to group sub-
jects with common properties. We provide an example
of a property table based on the class foaf:Person in
Figure 6 for the RDF graph of Figure 1.

Property tables allow for storing and retrieving mul-
tiple triples with a given subject as one tuple (e.g., to
find people with age < 30 and interest = :SW) with-
out requiring joins; such queries are common in prac-
tice [164]. As per vertical partitioning, property tables
often store terms of the same type in the same col-
umn, enabling better compression and optimizations
for column-wise storage. Complications, however, arise
for multi-valued (. . . -to-many) or optional (zero-to-. . .)

foaf:Person

Subject age topic knows cProj pProj

:Alice 26 :DB :Bob _:p null
:Bob 21 :DB :Alice null _:p

Fig. 6: Example property table for people

properties. In the example of Figure 1, Alice is also
interested in SW, which does not fit in the cell. Fur-
thermore, Alice has no past project, and Bob has no
current project, leading to nulls. While multi-valued
and optional properties in the graph can be normal-
ized into separate relations, effectively using property
graphs for a subset of the graph (per, e.g., Jena2 [203]),
changes to the graph may require renormalization; for
example, even though each person currently has only
one value for knows, adding that Alice knows another
person would require renormalizing the tables. As per
vertical partitioning, complications also arise when con-
sidering triple patterns with variable predicates, RDF
graphs with many properties or classes, etc.

Storing SPARQL datasets using property tables is
also quite complicated. One approach might be to add
for each column (e.g., age) a second column indicating
the graph that indicates the age for the given subject
(e.g., age_g), but this would not support cases where
the same triple appears in multiple named graphs. A
more general but highly-redundant solution would be
to rather duplicate information into, e.g., a quad table.

4.5 Graph-based storage

While the previous three storage mechanisms rely on re-
lational storage, graph-based storage is adapted specifi-
cally for the graph-based model of RDF and the graph-
pattern-based queries of SPARQL. There are a num-
ber of key characteristics of such models that can be
exploited for storage, including the notion of adjacency
between connected nodes, the fixed arity of graphs, etc.

Unlike in the relational model, graph models have
bounded arity (3 for triples, 4 for quads). This can
be exploited to build specialized storage. Some engines
(e.g., 4store [75], YARS2 [78]) build native triple/quad
tables, which differ from relational triple/quad tables in
that they have fixed arity, fixed attributes (s,p,o(,g)),
and more general domains (e.g., the o column can con-
tain any RDF term). Such tables may or may not use
OID encodings. Another type of storage involves using
tensors of bits with order equal to the arity of the rela-
tion; a simple variant is to use 2-dimensional adjacency
matrices for each property (e.g., BitMat [15], BMa-
trix [30], QDags [137]), as exemplified in Figure 7, which

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

8 Ali et al.

skos:broader

:CS :DB :SW :Web
:CS 0 0 0 0
:DB 1 0 0 0
:SW 0 0 0 1

:Web 1 0 0 0

Fig. 7: Example bit matrix for skos:broader

s

:Alice

:Bob

...

(s)p

foaf:age

foaf:currentProject

foaf:knows

foaf:topic_interest

rdf:type

(sp)o

"26"^^xsd:int

_:p

:Bob

:DB

:SW

foaf:Person

(s)p

foaf:age

foaf:knows

foaf:pastProject

foaf:topic_interest

rdf:type

(sp)o

"21"^^xsd:int

:Alice

_:p

:DB

foaf:Person

Fig. 8: Example adjacency list for two subjects with
dashed links indicating index-free adjacency pointers

constitutes a binary form of vertical partitioning. While
such an approach may lead to sparse matrices/tensors,
compact data structures offer compressed representa-
tions that also support efficient operations [15,30,137].

Graphs can feature a high degree of local repetition
that can be compressed using storage techniques based
on (nested) adjacency lists (see, e.g., Hexastore [201],
gStore [223], SpiderStore [25], Trinity.RDF [219], and
GRaSS [120]). These lists are akin to tries, where sub-
ject or subject–predicate prefixes are followed by the
rest of the triple. Such tries can be stored row-wise,
where blocks of triples with a common prefix are stored
together; or column-wise, where all subjects are stored
contiguously, with each subject pointing to a contigu-
ous predicate block, with pointers in turn to a contigu-
ous object block. Index-free adjacency can be used to
support efficient navigation, where terms in the suffix
directly point to the location on disk of their associ-
ated prefix. We refer to Figure 8 for an example. Such
structures can be naturally extended to include edges
in the other direction (as used by Trinity.RDF [219]
and GRaSS [120]). Such approaches can also be seen as
storing subgraphs around a central node [120].

LV

Node Attributes

:Alice {(foaf:age, "26"^^xsd:int)}
:Bob {(foaf:age, "21"^^xsd:int)}
:DB {}
.

LE

Edge Label

(:Alice,:Bob) {foaf:knows}
(:Alice,:DB) {foaf:topic_interest}
(:Bob,:Alice) {foaf:knows}
.

Fig. 9: Example of the multi-graph representation

Another alternative is to decompose an RDF graph
into its constituent graph components and store these
separately. One such technique is the multigraph repre-
sentation proposed for the AMBER engine [87], where
an RDF graph G is decomposed into a set of (non-
literal) nodes V := so(G) ∩ IB, a set of (non-literal)
edges E := {(s, o) ∈ V × V | ∃p : (s, p, o) ∈ G}, an
edge-labelling function of the form LE : V → 2I such
that LE(s, o) := {p | (s, p, o) ∈ G}, and an attribute-
labelling function of the form LV : IB→ 2I×L such that
LV (s) := {(p, o) | (s, p, o) ∈ G ∧ o ∈ L}. We provide an
example in Figure 9 (in practice, AMBER dictionary-
encodes nodes, attributes, and edge-labels).

4.6 Miscellaneous storage

Aside from relational-based and graph-based storage,
other engines have proposed to leverage other forms of
storage as implemented by existing systems. A com-
mon example is the use of NoSQL key-value, tabular or
document stores for distributed storage [91,218].

4.7 Discussion

Early works on storing RDF tended to rely on rela-
tional storage, which had been subject to decades of
developments and optimizations before the advent of
RDF (e.g., [203,1,54]). Though such an approach still
has broad adoption [54], more recent storage techniques
aim to exploit the graph-based characteristics of RDF
– and SPARQL – in order to develop dedicated storage
techniques (e.g., [15,201,223]). A more recent trend is
to leverage NoSQL storage (e.g., [110,147,19]) in or-
der to distribute the management of RDF data; we will
discuss distribution in more detail in Section 8.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 9

5 Indexing

Indexing enables efficient lookup operations on RDF
graphs (i.e., O(1) or O(log |G|) time to return the first
result or an empty result). The most common such op-
eration is to find all triples that match a given triple
pattern. However, indexes can also be used to match
non-singleton BGPs (with more than one triple pat-
tern), to match path expressions, etc. We now discuss
indexing techniques proposed for RDF graphs.

5.1 Triple indexes

The goal of triple-pattern indexes is to efficiently find
all triples that match a given triple pattern. Specifi-
cally, letting s, p, o denote RDF terms and s,p,o vari-
ables, there are 23 = 8 abstract triple patterns: (s,p,o),
(s,p, o), (s, p,o), (s,p,o), (s, p, o), (s,p, o), (s, p,o) and
(s, p, o). Unlike relational databases, where often only
the primary key of a relation will be indexed by default
and further indexes must be specified by the database
administrator, most RDF stores aim to have a com-
plete index by default, covering all eight possible triple
patterns. However, depending on the type of storage
chosen, this might not always be feasible.

When a storage scheme such as vertical partitioning
is used [1], only the five patterns where the predicate
is constant can be efficiently supported (variable pred-
icates require a union over all relations, of which there
O(n) in the worst case). These five patterns can be
supported efficiently by indexing the subject and ob-
ject columns. In the case that the RDF graph is stored
as a (binary) adjacency matrix for each property [15,
137], again only constant-predicate patterns can be ef-
ficiently supported. Specialized indexes can be used to
quickly evaluate such patterns, where QDags [137] uses
quadtrees: a hierarchical index structure that recursively
divides the matrix into four sub-matrices; we provide
an example quadtree in Figure 10. A similar structure,
namely a k2-tree, is used by BMatrix [30].

Otherwise, in triple tables, or similar forms of graph-
based storage, all triple patterns can be efficiently sup-
ported by using different triple permutations. As an ex-
ample, Figure 8 illustrates a single spo permutation.
A total of 3! = 6 permutations are possible and suffice
to cover all eight abstract triple patterns assuming that
the index structure permits prefix lookups; for example,
in an spo permutation we can efficiently support four
abstract triple patterns (s,p,o), (s,p,o), (s, p,o) and
(s, p, o) as we require the leftmost terms of the permuta-
tion to be filled. Such index permutations can be imple-
mented using standard data structures such as ISAM

0 0 0 0
1 0 0 0
0 0 0 1
1 0 0 0

Fig. 10: Example of a quadtree index based on the bit
matrix of Figure 7; the root represents the full matrix,
while children denote four sub-matrices of the parent;
a node is colored black if it contains only 1’s, white if
it contains only 0’s, and gray if it contains both; it is
only necessary to add children for gray nodes

files [78], B(+)Trees [142], AVL trees [205], tries/adja-
cency lists [201] (see Figure 8), etc. In fact, with only(

3
b3/2c

)
= 3 permutations – e.g., spo, pos and osp – we

can cover all eight abstract triple patterns.4

Recent works have proposed methods to reduce the
redundancy in the index permutations. In particular,
RDFCSA [32] uses a compact suffix-array (CSA) such
that one permutation suffices to efficiently support all
triple patterns. Intuitively speaking, triples can be in-
dexed cyclically in a CSA, such that in an spo permu-
tation, one can continue from o back to s, thus covering
spo, pos and osp permutations in one CSA index.

5.2 Entity-based indexes

By entity-based indexes, we refer to indexes that sup-
port the efficient evaluation of graph patterns that “cen-
ter on” a particular entity. In particular, BGPs can be
reduced to joins over their triple patterns; for example,
{(x, p,y), (y, q, z)}(G)={(x, p,y)}(G)on{(y, p, z)}(G).
A common type of join targeted by such indexes is that
of star joins, typically defined to be a join on a common
subject, e.g., {(w, p,x), (w, q,y), (w, r, z)}. Some au-
thors allow star joins that include s–o joins on the com-
mon variable, e.g., {(w, p,x), (w, q,y), (z, r,w)} [120].
Star joins can thus be seen as querying on/for the data
surrounding a particular entity (in this case w). Entity-
based indexes permit efficient evaluation of such joins.

Star joins can be efficiently supported through prop-
erty table storage, so long as the relevant property ta-
bles for the star join can be found efficiently, and there
are indexes on the relevant columns (e.g., for p, q and/or
r). The EAGRE system [221] uses an index for prop-
erty tables where entities with n properties are en-
coded in n-dimensional space. A space-filling curve –
such as a Z-order curve or a Hilbert curve – is then

4 However, with 3 permutations we may lose the ability to
iterate over results in order; e.g., given spo, pos and osp, and
a pattern (s,p,o), we cannot iterate over the results in order
of object, which would be possible with sop, and which would
enable more join algorithms (e.g., merge joins [142]).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

10 Ali et al.

:A

:B

:C
:D

Fig. 11: Space-filling indexing with a Hilbert curve

used to index the space. We illustrate the idea in Fig-
ure 11, where four entities are indexed (abbreviating
:Alice, :Bob, :Carol, :Dave) with respect to two di-
mensions (say foaf:age for x and integer-encoded val-
ues of foaf:knows for y). We show the first-, second-
and third-order Hilbert curves from left to right. Let-
ting d denote the number of dimensions, the nth-order
Hilbert curve assigns an ordinal to 2dn regions of the
space based on the order in which it visits the region;
for example, starting with the curve on the bottom left,
then :A is in the region of ordinal 2, 7 and 26, respec-
tively, as the order increases. The space-filling curve
thus “flattens” multidimensional data into one dimen-
sion (the ordinal), which can be indexed sequentially.

Indexes based on property tables encounter compli-
cations when presented with multi-valued properties,
missing values, etc. A more flexible approach is to in-
dex signatures of entities, which are bit-vectors encod-
ing the set of property–value pairs of the entity. One
such example is the vertex signature tree of gStore [223],
which first encodes all outgoing (p, o) pairs for a given
entity into a bit vector similar to a Bloom filter, and
then indexes these bit vectors hierarchically allowing for
fast, approximate containment checks that quickly find
candidate entities given a subset of such pairs. A sim-
ilar approach is adopted by the GRaSS engine [120],
which optimizes for star subgraphs that include both
outcoming and incoming edges on nodes, where a cus-
tom FDD-index allows for efficient retrieval of the sub-
graphs containing a triple that matches a triple pattern;
each subgraph is further assigned a signature that en-
codes elements of the subgraph similar to gStore.

5.3 Property-based indexes

Returning to the star join {(w, p,x), (w, q,y), (w, r, z)},
another way to quickly return candidate bindings for
the variable w is to index nodes according to their ad-
jacent properties; then we can find nodes that have at
least the adjacent properties p, q, r. Such an approach is
used by RDFBroker [179], which defines the signature
of a node s as Σ(s) = {p | ∃o : (s, p, o) ∈ G}; for exam-
ple, the signature of :SW in Figure 1 would be Σ(:SW) =
{skos:broader, skos:related} (corresponding to char-

{}

{r:t, f:a, f:t, f:k, f:c} {r:t, f:a, f:t, f:k, f:p}{r:t, r:l}{s:b}

{s:b, s:r}

Fig. 12: Lattice of node signatures with abbreviated
terms (e.g., s:b denotes skos:broader)

acteristic sets proposed later [139]). A property table
is then created for each signature. At query time, prop-
erty tables whose signatures subsume {p, q, r} are found
using a lattice of signatures. We provide an example in
Figure 12 with respect to the RDF graph of Figure 1,
where children subsume the signatures of their parent.

AxonDB [132] uses extended characteristic sets such
that each triple (s, p, o) in the RDF graph is indexed
along with the signatures (i.e., characteristic sets) of its
subject and object; i.e., (Σ(s), Σ(o)). Thus for example,
the triple (:SW, skos:related, :DB) of Figure 1 would
be indexed alongside the extended characteristic set
({skos:broader, skos:related}, {skos:broader}). This
index then allows for efficiently identifying two star
joins that are connected by a given property p.

5.4 Path indexes

A path join involves successive s–o joins between triple
patterns; e.g., {(w, p,x), (x, q,y), (y, r, z)}, where the
start and end nodes (w, z) may be variables or con-
stants. While path joins have fixed length, path queries
in navigational graph patterns may further match ar-
bitrary length paths. A number of indexing approaches
have been proposed to speed up querying paths.

A path can be seen as a string of arbitrary length;
e.g., a path {(w, p, x), (x, q, y), (y, r, z)} can be seen as
a string wpxqyrz$, where $ indicates the end of the
string; alternatively, if intermediate nodes are not of
importance, the path could be represented as the string
wpqrz$. The Yaanii system [37] builds an index of paths
of the form wpxqyrz$ that are clustered according to
their template of the form wpqrz$. Paths are then in-
dexed in B+trees, which are partitioned by template.
Fletcher et al. [56] also index paths in B+trees, but
rather than partition paths, they apply a maximum
length of at most k for the paths included. The fact that
paths are analogous to strings suggests that text index-
ing techniques can be applied for paths. Along these
lines, Maharjan et al. [124] and the HPRD system [117]
both leverage suffix arrays – a common indexing tech-
nique for text – to index paths. The downside of such
approaches is that they may index an exponential num-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 11

(1, 7) :CS

(5, 4) :DB(2, 3) :AI (6, 6) :Web

(3, 1) :ML (4, 2) :KR (7, 5) :SW

Fig. 13: Preorder and postorder on a skos:narrower
tree; e.g., :CS has preorder 1 and postorder 7

ber of paths; in the case of HPRD, for example, users
are thus expected to specify which paths to index [117].

Other path indexes are inspired by prior works on
efficient evaluation of path queries over trees (e.g., for
XPath). Bartoň [20] proposes a tree-based index based
on preorder and postorder traversal. A preorder traver-
sal starts at the root and traverses children in a depth-
first manner from left to right. A postorder traversal
starts at the leftmost leaf and traverses all children,
from left to right, before moving to the parent. We pro-
vide an example preorder and postorder in Figure 13.
Given two nodes m and n in the tree, an interesting
property is that m is a descendant of n if and only if
m is greater than n for preorder and less than n for
postorder. Bartoň [20] uses this property to generate
an index on ascending preorder so as to linearize the
tree and quickly find descendants based on postorder.
A disadvantage is that RDF graphs are not trees, where
Bartoň thus proposes a decomposition of the graph into
a forest of trees that are then indexed [20].

Another type of path index, called PLSD, is used in
System Π [207] for indexing the transitivity of a single
property, allowing to efficiently answer path queries of
the form (s, p∗,o), or (s, p∗,o), etc. For a given property
p, each incident (subject or object) node x is assigned
a triple of numbers (i, j, k) ∈ N3, where i is a unique
prime number that identifies the node x, j is the least
common multiple of the i-values of x’s parents (i.e.,
nodes y such that (y, p, x) ∈ G), and k is the least
common multiple of the k-values of x’s parents and the
i-value of x. We provide an example in Figure 14. PLSD
can further handle cycles by multiplying the k-value of
all nodes by the i value of all nodes in its strongly-
connected component. Given the i-value of a node, the
i-values of its parents and ancestors can be retrieved
by factorizing j and k/i respectively. The disadvantage
is that the least common multiple can reach a large
number, where no polynomial time algorithm is known
for factorization of binary input numbers.

Gubichev et al. [64] use a path index of directed
graphs, called FERRARI [177], for each property in an
RDF graph. First, a condensed graph is computed that
merges each set of nodes that are pairwise reachable
from each other (i.e., the nodes of strongly connected

(2, 1, 2) :CS

(5, 2, 10) :DB(3, 2, 6) :AI (7, 2, 14) :Web

(11, 3, 66) :ML (13, 15, 390) :DM (17, 35, 1190) :SW

Fig. 14: PLSD index on an example skos:narrower hi-
erarchy; terms (e.g., :CS) are indexed externally

components) into one “supernode”; the result is a di-
rected acyclic graph (DAG) that preserves reachability.
If the DAG has multiple nodes without incoming edges,
the index adds an artificial root node connected to these
nodes. A spanning tree – a subgraph that includes all
nodes and is a tree – of the DAG is computed and
labeled with its postorder. All subtrees thus have con-
tiguous identifiers, where the maximum identifies the
root; e.g., in Figure 13, the subtree at :AI has the
interval [1, 3], where 3 identifies the root. Then there
exists a (directed) path from x to y if and only if y is in
the subtree interval for x. Nodes in a DAG may, how-
ever, be reachable through paths not in the spanning
tree. Hence each node is assigned a set of intervals for
nodes that can be reached from it, where overlapping
and adjacent intervals are merged; we must now check
that y is in one of the intervals of x. To improve time
and space at the cost of precision, approximate intervals
are proposed that merge non-overlapping intervals; e.g.,
[4, 6], [8, 9] is merged to [4, 9], which can reject reacha-
bility for nodes with id less than 2 or greater than 9,
but has a 1

6 chance of a false positive for nodes in [4, 9],
which must be verified separately. Dynamic program-
ming is used to select an optimal set of approximate
intervals based on a budget of intervals per node set by
the user. Intervals are marked as approximate or ex-
act and indexed for each node in sorted order, enabling
binary search to check reachability for a given node.

5.5 Join indexes

The results of joins can also be indexed. Groppe et
al. [62] proposed to construct 6 × 24 = 96 indexes for
joins between two triple patterns, where 6 is the num-
ber of non-symmetric types of joins (s–s, s–p, s–o, p–p,
p–o, o–o). Hash maps are used to cover the 24 permu-
tations of the remaining elements (not considering the
join variable). Such an approach enables O(1) join per-
formance for two triple patterns, but at a potentially
massive space cost. More commonly, only joins that are
frequently encountered in queries are indexed [43,129].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

12 Ali et al.

(:Alice, 2)

(_:p, 2) (:CS, 1)

.

Fig. 15: Distance-based indexing (GRIN)

5.6 Structural indexes

Another family of indexes – referred to as structural
indexes [119] – rather build a high-level summary of the
RDF graph. Such summaries may take different forms.

A first type of structural index is based on distance.
Udrea et al. propose GRIN [194], which divides the
graph hierarchically into regions based on the distance
of its nodes to selected centroids. These regions form
a tree, where the non-leaf elements indicate a node x
and a distance d referring to all nodes at most d steps
from x. The root element chooses a node and distance
such that all nodes of the graph are covered. Each non-
leaf element has two children that capture all nodes of
their parent. Each leaf node contains a set of nodes N ,
which induces a subgraph of triples between the nodes
of N ; the leaves can then be seen as partitioning the
RDF graph. We provide an example in Figure 15 for
the RDF graph of Figure 1, where all nodes are within
distance two of :Alice, which are then divided into two
regions: one of distance at most two from _:p, and an-
other of distance at most one from :CS. The index can
continue dividing the graph into regions, and can then
be used to find subgraphs within a particular distance
from a given node (e.g., a node given in a BGP).

Another type of structural index relies on some no-
tion of a quotient graph [38], where the nodes of a
graph so(G) are partitioned into {X1, . . . , Xn}, such
that 1 ≤ i < j ≤ n implies Xi ∩Xj = {} (i.e., the sets
are pairwise disjoint) and

⋃n
i=1Xi = so(G). Then edges

of the form (Xi, p,Xj) are added if and only if there ex-
ists (xi, p, xj) ∈ G such that xi ∈ Xi and xj ∈ Xj . Intu-
itively, a quotient graph merges nodes from the input
graph into “supernodes” while maintaining the input
(labeled) edges between the supernodes. We provide an
example of a quotient graph in Figure 16 featuring six
supernodes. Any partitioning of nodes can form a quo-
tient graph, ranging from a single supernode with all
nodes so(G) and loops for all properties in p(G), to the
graph itself replacing each node x ∈ so(G) with the
singleton {x}. If the input graph yields solutions for a
BGP, then the quotient graph will also yield solutions
(with variables now matching supernodes). For exam-
ple, taking the BGP of Figure 2, matching foaf:Person
to the supernode containing foaf:Person in Figure 16,
then the variables ?a and ?b will match to the supern-

foaf:Person
foaf:Project

:Alice
:Bob

foaf:knows

rdf:type
"21"^^xsd:int
"26"^^xsd:int

foaf:age

_:p

foaf:currentProject
foaf:pastProject

rdf:type

"Motor RDF"@es
"RDF Engine"@en

rdfs:label

:CS
:DB
:SW
:Web

foaf:topic_interest

skos:broader
skos:related

Fig. 16: Quotient graph with six supernodes

ode containing :Alice and :Bob, while ?ia and ?ib will
match to the supernode containing :CS, :DB, :SW and
:Web; while we do not know the exact solutions for the
input graph, we know they must correspond to elements
of the supernodes matched in the quotient graph.

In summary, quotient graphs provide a structural
summary of an RDF graph, where fewer partitions lead
to a smaller summary, while more partitions lead to a
higher fidelity summary. The DOGMA [33] RDF store
partitions an RDF graph into subgraphs, from which
a balanced binary tree is computed, where each parent
node contains a quotient-like graph of both its children.
The (O)SQP approach [191] creates an in-memory in-
dex graph, which is a quotient graph whose partition
is defined according to various notions of bisimulation.
Each supernode indexes (on disk) all triples mention-
ing any node in the supernode. The query is first eval-
uated on the index graph, identifying relevant supern-
odes, where exact solutions are then computed from
the triples of those supernodes. The SAINT-DB sys-
tem [154] adopts a similar approach, but where the su-
pernodes of the indexed quotient graph are rather de-
fined directly as a partition of the triples of the RDF
graph, and edges are labeled with the type of join (s–s,
p–o, etc.) that exists between them.

5.7 Quad indexes

When indexing quads for SPARQL datasets, most sys-
tems follow the triple index scheme [205,78,75,54], ex-
tending it to add another element. The number of per-
mutations then grows, where we must now consider
24 = 16 abstract index patterns, 4! = 24 potential per-
mutations, and

(
4
b4/2c

)
= 6 flat (ISAM/B+Tree/AVL

tree/trie) permutations or 2 circular (CSA) permuta-
tions to efficiently support all abstract quad patterns. A

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 13

practical compromise is to maintain a selection of per-
mutations that cover the most common patterns [54];
for example, a pattern (s,p, o, g) may be uncommon
in practice, and could be supported reasonably well by
evaluating (e.g.) (s,p, o,g) and filtering on g = g.

The RIQ system [100] rather proposes a custom in-
dex for quads called a PV-index. The system specifi-
cally focuses on the problem of finding (named) graphs
that match a BGP. Each graph is indexed using hash-
ing applied for all seven abstract patterns on triples
with some constant, generating seven pattern vectors
for each graph. For example, a triple (s, p, o) in a graph
named g will be hashed as (s, p, o), (s, p, ?), (s, ?, o),
(?, p, o), (s, ?, ?), (?, p, ?), (?, ?, o), where ? is an arbi-
trary fixed token, and each result will be added to one
of seven pattern vectors for g for that abstract pattern.
A triple pattern (s,p, o) can then likewise be encoded as
(s, ?, o), and a BGP can be encoded analogously as pat-
tern vectors. The goal then is to find graphs with similar
pattern vectors to the BGP vectors, returning poten-
tial matches. Rather than comparing the BGP to each
graph, locality sensitive hashing is used to group and
retrieve similar pattern vectors. A downside is the po-
tential space requirements when handling many graphs;
the PV-index thus uses Bloom filters to encode groups
of similar graphs in order to reduce the space used.

5.8 Miscellaneous Indexing

RDF stores may use legacy systems, such as NoSQL
stores, for indexing. Since such approaches are not tai-
lored to RDF, and often correspond conceptually to one
of the indexing schemes already discussed, we again re-
fer to Janke and Staab [91] and Zambom Santana [218]
for further discussion on such approaches. Other stores
provide specialized indexes for particular types of val-
ues such as spatial or temporal data [197,109]; we do
not discuss such specialized indexes in detail.

5.9 Discussion

While indexing triples or quads is conceptually the most
straightforward approach, a number of systems have
shown positive results with entity- and property-based
indexes that optimize the evaluation of star joins, path
indexes that optimize the evaluation of path joins, or
structural indexes that allow for isolating regions of the
graph that are relevant for a particular graph pattern.
The proposal of diverse indexing schemes shows that
rather than there being a clear winner, such schemes ex-
plore different trade-offs: in general, there exists a time–
space trade-off, where more comprehensive indexes en-

able faster queries at the cost of space, and also often
at the cost of more costly updates.

6 Join Processing

RDF stores employ diverse query processing strategies,
but all require translating logical operators, which rep-
resent the query, into “physical operators”, which im-
plement algorithms for efficient evaluation of the opera-
tion. The most important such operators – as discussed
in this section – are (equi-)joins.

6.1 Pairwise join algorithms

We recall that the evaluation of a BGP {t1, . . . tn}(G)
can be rewritten as t1(G) .// tn(G), where the
evaluation of each triple pattern ti (1 ≤ i ≤ n) pro-
duces a relation of arity |vars(ti)|. Thus the evalua-
tion of a BGP B produces a relation of arity |vars(B)|.
The relational algebra – including joins – can then be
used to combine or transform the results of one or
more BGPs, giving rise to CGPs. The core of evaluat-
ing graph patterns is thus analogous to processing re-
lational joins. The simplest and most well-known such
algorithms perform pairwise joins; for example, a pair-
wise strategy may for computing {t1, . . . tn}(G) may
evaluate ((t1(G) ./ t2(G)) ./ . . .) ./ tn(G).

Without loss of generality, we assume a join of two
graph patterns P1(G) ./ P2(G), where the join variables
are denoted by V = {v1, . . . , vn} = vars(P1)∩vars(P2).
Well-known algorithms for performing pairwise joins in-
clude (index) nested-loop joins, where P1(G) ./ P2(G) is
reduced to evaluating

⋃
µ∈P1(G){µ} ./ µ(P2)(G); hash

joins, where each solution µ ∈ P1(G) is indexed by
hashing on the key (µ(v1), . . . , µ(vn)) and thereafter a
key is computed likewise for each solution in P2(G) to
probe the index with; and (sort-)merge joins, where
P1(G) and P2(G) are (sorted if necessary and) read in
the same order with respect to V , allowing the join to be
reduced to a merge sort. In general, an index nested-
loop join performs well when |P1(G)| � |P2(G)| (as-
suming that µ(P2)(G) can be reduced to index lookups)
since, unlike the other two alternatives, it does not re-
quire reading all of P2(G). Otherwise hash or merge
joins perform well, where merge joins are a better choice
when solutions can be read directly from the index in
the required order [142]. Pairwise join algorithms are
used in many RDF stores (e.g., [77,54,142]).

A number of techniques are used to complement
and optimize traditional pairwise join algorithms. One
such technique is that of sideways information pass-
ing [23], which refers to how information about inter-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

14 Ali et al.

mediate results is passed between different parts of the
query. Neumann and Weikum [141] propose a strategy
called ubiquitous sideways information passing (U-SIP)
for computing joins over RDF, which allows for globally
sharing information on the range of values for a given
query variable. The strategy also considers variables
that must be bound to the same values (based, for ex-
ample, on an equality constraint FILTER(?a=?b)), form-
ing equivalence classes of variables. U-SIP is then im-
plemented in different ways for different types of joins.
For merge joins, where data are read in order, a max-
imum value for a given equivalence class of variables
can be shared across pairwise joins, allowing individual
operators to skip ahead to the current maximum. For
hash joins, a global domain filter is employed – consist-
ing of a maximum value, a minimum value, and Bloom
filters – for each equivalence class of variables, allowing
to filter values for those variables elsewhere.

6.2 Multiway joins

Multiway join algorithms exploit the commutativity and
associativity of joins to evaluate them over two or more
operands at once. For example, in order to compute
{t1, . . . tn}(G), a multiway join algorithm may evaluate
((t1(G) .// tk(G)) ./ (tk+1(G) .// tn(G))

where k ≥ 2, or even simply (t1(G) .// tn(G)).

Some of the previous storage and indexing schemes
we have seen lend themselves naturally to processing
certain types of multiway joins in an efficient manner.
For example, entity-based indexes allow for processing
star joins efficiently, while path indexes allow for pro-
cessing path joins efficiently (see Section 5). A BGP can
then be decomposed into sub-BGPs that can be evalu-
ated per the corresponding multiway join, with pairwise
joins being applied across the sub-BGPs; for example:
{(w, p,x), (w, q,y), (w, r, z), (x, q,y), (x, r, z)} may be
divided into the sub-BGP {(w, p,x), (w, q,y), (w, r, z)}
and the sub-BGP {(x, q,y), (x, r, z)}, which are evalu-
ated individually as multiway joins before being them-
selves joined. Even in the case of (sorted) triple/quad
tables, multiway joins can be applied taking advantage
of the locality of processing, where, for example, in
an spo index permutation, triples with the same sub-
ject will be grouped together. Similar locality (across
sources) is exploited by SMJoin [58], which decomposes
BGPs into sub-BGPs corresponding to star joins, eval-
uating these separately before combining the results.

6.3 Worst case optimal joins

A new family of join algorithms have arisen as a result
of the AGM bound [16], which puts an upper bound on
the number of solutions that ran be returned from rela-
tional join queries. The result can be adapted straight-
forwardly to the case of BGPs. Let B = {t1, . . . , tn}
denote a BGP with vars(B) = V . Now define a frac-
tional edge cover as a mapping λ : B → R[0,1] that
assigns a real value in the interval [0, 1] to each triple
pattern of B such that for all v ∈ V , it holds that∑
t∈Bv

λ(t) ≥ 1, where Bv denotes the set of triple pat-
terns inB that mention v. The AGM bound tells us that
if B has the fractional edge cover λ, then for any RDF
graph it holds that |B(G)| ≤

∏n
i=1 |{ti}(G)|λ(ti). More-

over, if no two triple patterns ti and tj in B (ti 6= tj)
can be unified – i.e., there does not exist solution map-
pings µi and µj such that µi(ti) = µj(tj)

5 – then the
bound is tight, meaning that there exists an RDF graph
G and a fractional edge cover λ such that |B(G)| =∏n
i=1 |{ti}(G)|λ(ti). In the case that two triple patterns

in B unify (akin to self-joins in the relational setting),
the AGM bound only varies by a constant factor.

To illustrate the AGM bound, consider the BGP
B = {t1, t2, t3} from Figure 17. There exists a fractional
edge cover λ of B such that λ(t1) = λ(t2) = λ(t3) =

1
2 ;

taking ?a, we have that B?a = {t1, t3}, λ(t1)+λ(t3) = 1,
and thus ?a is “covered”, and we can verify the same for
?b and ?c. Then the AGM bound is given as the inequal-
ity |B(G)| ≤

∏n
i=1 |{ti}(G)|λ(ti). For G the graph in

Figure 17, |{t1}(G)| = |{t2}(G)| = |{t3}(G)| = 5, and
hence |B(G)| ≤ 5

3
2 . In reality, for this graph, |B(G)| =

5, thus satisfying the inequality, but we further know
that there exists a graph where B =

∏n
i=1 |{ti}(G)|λ(ti).

Recently, join algorithms have been proposed that
can enumerate the results for a BGP B over a graph G
in time O(agm(B,G)), where agm(B,G) denotes the
AGM bound of B over G. Since such an algorithm
must at least spend O(agm(B,G)) time writing the
results in the worst case, such algorithms can be con-
sidered worst-case optimal (wco) [143]. Though such
algorithms were initially proposed in a relational set-
ting [143,195], they were later applied for processing
joins over RDF graphs [95,81,137]. Note that tradi-
tional pairwise join algorithms are not wco. If we try
to evaluate {t1, t2}(G) by pairwise join, for example,
in order to later join it with {t3}(G), the AGM bound
becomes quadratic as λ(t1) = λ(t2) = 1, and thus we
have the bound |{t1}(G)| · |{t2}(G)|, which exceeds the
AGM bound for B. The same holds for any pairwise
join in B. In practice, note that {t1, t2}(G) will indeed

5 For example, (x, r, z) can be unified with (x,y, z),
(y, r,x), (y, r, z), etc., but not with (x, p, z), (x, r, q), etc.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 15

:CS

:SW

s:bs:n

:DB

s:b
s:n

s:r :Web

s:b

s:n
s:r

s:r

:IR
s:b

s:n

s:r

:AI
s:b
s:n

s:rG :

?a ?cs:r

(t3)

?b

s:b s:n

(t2)(t1)

B : B(G) :

?a ?b ?c

:DB :CS :AI
:DB :CS :SW
:IR :CS :Web
:SW :CS :Web
:Web :CS :SW

Fig. 17: Example RDF graph G, BGP B and its eval-
uation B(G); the IRIs s:b, s:n and s:r abbreviate
skos:broader, skos:narrower and skos:related, resp.

produce (25) quadratic results, mapping ?a to :CS and
?b and ?c to {:AI, :DB, :IR, :SW, :Web}2.

Wco join algorithms – including Leapfrog Triejoin
(LTJ) [195] – perform a multiway join that resolves
a BGP B variable-by-variable rather than pattern-by-
pattern. First an ordered sequence of variables is se-
lected; say (?a, ?b, ?c). Then the set of partial solutions
M{?a} = {µ | dm(µ) = {?a} and µ(B?a)(G) 6= ∅} are
computed for the first variable ?a such that each im-
age of B?a under µ ∈ M{?a} has solutions for G; e.g.,
M{?a} = {{?a/:DB}, {?a/:IR}, {?a/:SW}, {?a/:Web}} in
Figure 17, since replacing ?a in B?a with :DB, :IR, :SW
or :Web yields a BGP with solutions over G. Next we
compute M{?a,?b} = {µ ∪ µ′ | µ ∈ M{?a},dm(µ′) =

{?b} and µ′(µ(B?b))(G) 6= ∅}, “eliminating” the next
variable ?b. In the example of Figure 17, M{?a,?b} =

{{?a/:DB, ?b/:CS}, . . . , {?a/:Web, ?b/:CS}}, where each
solution µ ∈M{?a} is extended with {?b/:CS}. Finally,
M{?a,?b,?c} is computed analogously, eliminating the last
variable, and yielding the five results seen in Figure 17.

In order to be wco-compliant, the algorithm must
always be able to efficiently compute M{v}, i.e., all so-
lutions µ with dm(µ) = {v}, such that µ(Bv)(G) 6= ∅.
For instance, to computeM{?a} in the running example,
we need to efficiently intersect all nodes with an outgo-
ing s:b edge and an incoming s:r edge. This is typically
addressed by being able to read the results of a triple
pattern, in sorted order, for any variable, which enables
efficient intersection by allowing to seek ahead to the
maximum current value of all triple patterns involving
a given variable. Jena-LTJ [81], which implements an
LTJ-style join algorithm for SPARQL, enables this by
maintaining all six index permutations over triples.

Wco algorithms have been shown to outperform tra-
ditional join algorithms for complex BGPs [95,81].

6.4 Join reordering

The order of join processing can have a dramatic effect
on computational costs. For Figure 17, if we apply pair-
wise joins in the order ({t1}(G) on {t2}(G)) on {t3}(G),
the first join ({t1}(G) on {t2}(G)) yields 25 intermedi-
ate results, before 5 final results are produced with the
second join. On the other hand, if we evaluate the join
in the order ({t2}(G) on {t3}(G)) on {t1}(G), the first
join ({t2}(G) on {t3}(G)) produces only 5 intermediate
results, before the second join produces the same 5 final
results as before. The second plan should thus be more
efficient than the first; if considering a graph at larger
scale, the differences may reach orders of magnitude.

A good plan depends not only on the query, but also
the graph. Selecting a good plan thus typically requires
some assumptions or statistics over the graph. As in
relational settings, the most important information re-
lates to cardinalities: how many (distinct) solutions a
given pattern returns; and/or selectivity : what percent-
age of solutions are kept when fixing variables to con-
stants or adding filters. Statistics can be used not only
to select an ordering for joins, but also to decide which
join algorithm to apply. For example, given an arbitrary
(sub-)BGP {t1, t2}, if we estimate that |{t2}(G)| �
|{t1}(G)|, we may prefer to evaluate {t2}(G) on {t1}(G)
as an index nested loop join, rather than a hash or
merge join, to avoid reading {t1}(G) in full.

While cardinality and/or selectivity estimates can
be managed in a similar way to relational database op-
timisers, a number of approaches have proposed cus-
tom statistics for RDF graphs. In the context of Jena,
Stocker et al. [181] collect statistics relating to the num-
ber of triples, the number of unique subjects, and for
each predicate, the number of triples and a histogram
of associated objects. RDF-3X [142] uses a set of aggre-
gated indexes, which store the cardinality of all triple
patterns with one or two constants. RDF-3X [142] fur-
ther stores the exact cardinality of frequently encoun-
tered joins, while characteristic sets [139] and extended
characteristic sets [132] (discussed in Section 5.3) allow
for estimating the cardinality of star joins.

Computing and maintaining such statistics incur
costs in terms of space and updates. An alternative is
to apply sampling while evaluating the query. Vidal et
al. [196] estimate the cardinality of star joins by evalu-
ating all solutions for the first pattern of the join, there-
after computing the full solutions of the star pattern for
a sample of the initial solutions; the full cardinality of
the star pattern is then estimated from the samples.
Another alternative is to use syntactic heuristics for
reordering. Stocker et al. [181] propose heuristics such
as assuming that triple patterns with fewer variables

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

16 Ali et al.

have lower cardinality, and that constant subjects are
most selective, followed by constant objects, and con-
stant predicates. Similar syntactic heuristics were ex-
plored by Tsialiamanis et al. [193], who further propose
to prioritize rarer joins (such as p–s and p–o joins), and
to consider literals as more selective than IRIs.

Taking into account the various heuristics and statis-
tics, the simplest strategy to try to find a good join or-
dering – applied in various RDF stores (e.g., [181,132])
– is to apply a greedy heuristic, starting with the triple
pattern t1 estimated to have the lowest cardinality, and
joining it with the triple pattern t2 with the next lowest
cardinality; typically a constraint is added such that tn
(n > 1) must have a variable in common with some
triple pattern in {t1, . . . , tn−1} to avoid costly Carte-
sian products. Aside from considering the cardinality
of triple patterns, Meimaris and Papastefanatos [131]
propose a distance-based planning, where pairs of triple
patterns with more overlapping nodes and more simi-
lar cardinality estimates have lesser distance between
them; the query planner then tries to group and join
triple patterns with the smallest distances first in a
greedy manner. Greedy strategies may not, however,
always provide the best ordering (see, e.g., Figure 17).

More generally, reordering joins based on cost esti-
mates is an optimization problem, where classical meth-
ods from the relational literature can be leveraged like-
wise for BGPs, including dynamic programming [176]
(used, e.g., by [78,142,66]) and simulated annealing [88]
(used, e.g., by [196]). Other metaheuristics that have
been applied for join reordering in BGPs include ge-
netic algorithms [84] and ant colony systems [83,94].

With respect to wco join algorithms, though the
wco guarantee does not depend on the ordering of vari-
ables (any order will do), runtimes can vary for differ-
ent orderings. Following the intuitive idea that start-
ing with variables generating fewer results should help
lower runtimes, Jena-LTJ [81] uses similar selectivity-
based heuristics to Jena [181] in order to estimate the
cardinality of individual variables, thereafter ordering
variables per a greedy strategy that avoids Cartesian
products. While specialized orderings for wco algorithms
based on hypertree decompositions have been explored
in the relational literature [5], to the best of our knowl-
edge they have not yet been explored for BGPs.

6.5 Caching

Aside from reordering joins, another possible route for
optimization – based on the observation that queries in
practice may feature overlapping or similar patterns – is
to reuse work done previously for other queries. Specif-
ically, we can consider caching the results of queries.

In order to increase cache hit rates, we can further try
to reuse the results of subqueries, possibly generaliz-
ing them to increase usability. Ideally the cache should
store solutions for subqueries that (a) have a high po-
tential to reduce the cost of future queries; (b) can re-
duce costs for many future queries; (c) do not have a
high space overhead; and (d) will remain valid for a long
time. Some of these aims can be antagonistic; for ex-
ample, caching solutions for triple patterns satisfy (b)
and (c) but not (a), while caching solutions for complex
BGPs satisfies (a) but not (b), (c) or (d).

Lampo et al. [111] propose caching of solutions for
star joins, which may strike a good balance in terms
of reducing costs, being reusable, and not having a
high space overhead (as they share a common vari-
able). Other caching techniques try to increase cache
hit rates by detecting similar (sub)queries. Stucken-
schmidt [183] proposes a similarity measure for caching
– based on the edit distance between BGPs – that esti-
mates the amount of computational effort needed to
compute the solutions for one query given the solu-
tions to the other. Lorey and Naumann [118] propose
a technique for grouping similar queries, which enables
a pre-fetching strategy based on predicting what a user
might be interested in based on their initial queries. An-
other direction is to normalize (sub)queries to increase
cache hit rates. Wu et al. [208] propose various alge-
braic normalizations in order to identify common sub-
queries [118], while Papailiou et al. [149] generalize sub-
queries by replacing selective constants with variables
and thereafter canonically labeling variables (modulo
isomorphism) to increase cache hit rates.

A limitation of caching solutions is that an arbitrary
BGP can produce an exponential number of results,
where an alternative solution is to cache frequently used
subgraphs. Along these lines, Zhang et al. [220] rather
propose a caching technique based on caching frequently
accessed “hot triples” from the RDF graph in memory,
which limits space overhead and can improve runtimes
for many queries, but still requires all joins to be com-
puted. Addressing dynamic data, Martin et al. [127]
propose a cache where results for queries are stored in
a relational database but are invalidated when a triple
matching a query pattern changes, while Williams and
Weaver [204] propose adding last-updated times to the
RDF index that indicate whether or not any relevant
data have changed for a repeated query.

6.6 Discussion

Techniques for processing BGPs are often based on
techniques for processing relational joins. Beyond tra-
ditional pairwise evaluation, multiway joins can help

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 17

to emulate some of the benefits of property table stor-
age by evaluating star joins more efficiently. Another
recent and promising approach is to apply wco join
algorithms whose runtime is bounded theoretically by
the number of results that the BGP could generate.
Aside from specific algorithms, the order in which joins
are processed can have a dramatic effect on runtimes.
Statistics about the RDF graph help to find a good or-
dering at the cost of computing and maintaining those
statistics; more lightweight alternatives include runtime
sampling, or syntactic heuristics that consider only the
query. To decide the ordering, options range from sim-
ple greedy strategies to complex metaheuristics; while
simpler strategies have lower query planning times, more
complex strategies may find more efficient plans. An-
other optimization is to cache results across BGPs, for
which a time–space trade-off must be considered.

7 Query Processing

While we have defined RDF stores as engines capa-
ble of storing, indexing and processing joins over RDF
graphs, SPARQL engines must support additional fea-
tures beyond joins. We describe some of the proposed
techniques for efficiently evaluating such features.

7.1 Property paths

Navigational graph patterns (NGPs) extend BGPs with
property paths that allow for matching paths of arbi-
trary length. Given a property path such as :p+, a
direct strategy is to simply apply standard join algo-
rithms recursively, where, in an early work, Stucken-
schmidt et al. [184] propose cost models for processing
such queries using nested-loop and hash joins. However,
specialized algorithms have also been proposed for eval-
uating property paths in an efficient manner.

One approach is to use graph search algorithms.
Though not part of the SPARQL standard, Gubichev
and Neumann [65] implement single-source (i.e., a start
or end node is given) shortest paths with constraints re-
garding the length of the path, the elements it contains,
etc. Dijsktra’s search algorithm is then implemented
over B-Trees for all six index permutations of an RDF
graph, with optimizations including the ability to find
the neighbors of multiple nodes in one lookup, which re-
duces I/O costs; a dictionary encoding technique that
assigns successive IDs to nodes in a breadth-first man-
ner, which achieves better locality of neighborhoods;
and estimators for the cardinality of paths, which en-
ables join reordering over NGPs. Baier et al. [17] pro-
pose to use the A* search algorithm, where the search

is guided by a heuristic that measures the minimum
distance from the current node to completing a full
path; though they evaluate property paths over the
Web, their techniques can be applied in local settings.

Extending RDF-3X, Gubichev et al. [64] build a
FERRARI index [177] (see Section 5.4) for each prop-
erty :p in the graph that forms one or more directed
paths of length at least 2. These indexes are used to
evaluate the paths :p* or :p+ . For the purposes of
join reordering, the cardinality of paths is estimated
based on pre-computing, for each property, the average
number of nodes reachable from a given node (i.e., the
average number of elements in the intervals of a node
in the FERRARI index). A sideways-information pass-
ing strategy (see Section 6.1) is further implemented
by sharing Bloom filters that encode the FERRARI in-
tervals for particular variables across joins, along with
their maximum and minimum values, allowing for glob-
ally filtering nodes that fall outside said intervals. How-
ever, paths of the form (:p/:q)∗, (:p|:q)∗, etc., are not
directly supported by such methods.

A way to support more expressive property paths is
to write them as recursive queries. Yakovets et al. [213]
propose a rewriting from property paths to recursive
queries in SQL, i.e., queries using the WITH RECURSIVE
feature. The evaluation of the property paths can then
be delegated to a relational database. Though all fea-
tures of property paths can be supported, the authors
observe that highly nested SQL queries are sometimes
generated, and that many popular relational databases
cannot (efficiently) detect cycles. Reutter et al. [161],
on the other hand, extend SPARQL to support recur-
sion. A temporary RDF graph is built by recursively
adding triples produced through CONSTRUCT queries over
the base graph and the temporary graph up to a fix-
point; a SELECT query can then be evaluated over both
graphs. The authors discuss how property paths can
then be supported through linear recursion, meaning
that each new triple only needs to be joined with the
base graph, not the temporary graph, to produce fur-
ther triples, which leads to competitive performance
with systems that implement property paths “directly”.
Recursive queries are more expressive than property
paths, and thus may be more difficult to optimize, but
there are known optimizations (e.g., for Datalog), such
as linear recursion, magic sets, etc., that can be used.

Yakovet et al. [214] propose Waveguide that first
converts the property path into a parse tree, from which
plans can be built based on finite automata (FA), or re-
lational algebra with transitive closure (α-RA, where α
denotes transitive closure). Figure 18 gives an example
of a parse tree and both types of plans. Although there
is overlap, FA can express physical plans that α-RA

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

18 Ali et al.

cannot, and vice versa. For example, in FA we can ex-
press non-deterministic transitions (see q0 in Figure 18),
while in α-RA we can materialize (cache) a particu-
lar relation in order to apply transitive closure over it.
Waveguide then uses hybrid waveplans, where breadth
first search is guided in a similar manner to FA, but
where the results of an FA can be memoized (cached)
and reused multiple times like in α-RA. We provide an
example of a waveplan that uses a memoized waveplan
in Figure 18. The authors show that waveplans can ex-
press more plans than FA and α-RA combined, and
develop algorithms and cost models for them.

Evaluating arbitrarily complex property paths can
be costly, but property paths in practice are often rel-
atively simple. Along these lines, Martens and Traut-
ner [126] propose a class of RPQs called simple transi-
tive expressions (STEs) that are found to cover 99.99%
of the queries found in Wikidata SPARQL logs, and
have desirable theoretical properties. Specifically, they
call an expression p1| . . . |pn, where p1, . . . , pn are IRIs
and n ≥ 0 an atomic expression, and an expression of
the form a1/ . . . /ak or a1?/ . . . /ak? where a1, . . . , ak
are atomic expressions, a bounded expression of length
k ≥ 0. Then an expression of the form b1/a

∗/b2, is
a simple transitive expression (STE), where b1 and b2
are bounded expressions, and a is an atomic expres-
sion. They then show that simple paths for STEs can
be enumerated more efficiently than arbitrary RPQs.

7.2 Relational algebra (beyond joins)

Complex (navigational) graph patterns C(N)GPs intro-
duce additional relational operators beyond joins.

Like in relational databases, algebraic rewriting rules
can be applied over C(N)GPs in SPARQL in order to
derive equivalent but more efficient plans. Schmidt et
al. [174] present a comprehensive set of such rules for
SPARQL. Key rules involve filters, which allow for se-
lections to be “pushed” closer to the base operators in
order to filter intermediate solutions as early as possi-
ble. Along these lines, Schmidt et al. [174] derive the
following rewriting rules involving filters:

σR1∨R2
(M) ≡ σR1

(M) ∪ σR2
(M)

σR1∧R2
(M) ≡ σR1

(σR2
(M))

σR1
(σR2

(M)) ≡ σR2
(σR1

(M))

σR(M1 ∪M2) ≡ σR(M1) ∪ σR(M2)

σR(M
∗
1 ./ M2) ≡ σR(M∗1) ./ M2

σR(M
∗
1 ./ M2) ≡ σR(M∗1) ./ M2

σR(M
∗
1 BM2) ≡ σR(M∗1) BM2

where for each µ ∈M∗1 , it holds that vars(R) ⊆ dm(µ).
The first two rules allow for simplifying filters, meaning
that they can be pushed further down in a query. The
third rule allows the order in which filters are applied to
be swapped. Finally the latter four rules describe how
filters can be pushed “down” inside various operators.

Another feature of importance for querying RDF
graphs are optionals (./), as they facilitate returning
partial solutions over incomplete data. Given that an
optional can be used to emulate a form of negation (in
Table 3 it is defined using an anti-join), it can lead to
jumps in computational complexity [152]. Works have
thus studied a fragment called well-designed patterns,
which forbid using a variable on the right of an op-
tional that does not appear on the left but does ap-
pear elsewhere in the query; taking an example, the
CGP ({(x, p,y)} OPTIONAL {(x, q, z)}) . {(x, r, z)} is
not well designed as the variable z appears on the right
of an OPTIONAL and not on the left, but does appear else-
where in the query. Such variables may or may not be
left unbound after the left outer join is evaluated, which
leads to complications if they are used outside the op-
tional clause. Most SPARQL queries using optionals in
practice are indeed well-designed, where rewriting rules
have been proposed to optimize such queries [152,115].

7.3 Query rewriting

Another approach to processing SPARQL queries is to
rewrite them to another language and delegate their op-
timization and execution to an existing engine that sup-
ports the target language. A common strategy (used,
e.g., by Virtuoso [54]) is to rewrite the SPARQL query
to SQL, which allows for leveraging the existing op-
timizations of relational database engines, and also al-
lows for querying the same data using SQL or SPARQL;
however, care is required to handle SPARQL features
that go beyond SQL, such as property paths (perhaps
using recursive SQL, as aforementioned [213]). Another
approach is to rewrite SPARQL to existing graph query
languages that support navigational features, such as
Gremlin (e.g., SPARQL–Gremlin [189]); again, how-
ever, there are features of SPARQL that typical graph
query languages may not support, such as variable pred-
icates, full property path expressions, etc. Other works
rather propose to rewrite SPARQL queries to languages
executable in a distributed environment, including Pig-
Latin (e.g., PigSPARQL [169], RAPID+ [160]), Hadoop
(e.g., Sempala [170]), Spark (e.g., S2RDF [171]), etc.
While this allows query execution to be handled by
multiple machines, not all SPARQL features are eas-
ily supported on existing distributed frameworks.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 19

Property path: (?x s:n/(s:r|s:n)* ?z)

s:r s:n

|

*s:n

/

q0

q1

s:n

s:r s:n (?y,s:r,?z) (?y,s:n,?z)

∪

α(?x,s:n,?y)

./

q0

q1

s:n s:r

q0

q1

s:n

WP′

PT FA α-RA WP′ WP

Fig. 18: An example property path with its parse tree (PT) and three plans based on finite automata (FA),
relational algebra with transitive closure (α-RA), and a waveplan (WP) that uses a memoized waveplan (WP′)

7.4 Discussion

SPARQL supports various features beyond joins that
ideally should be implemented in an efficient manner.
One option is to rewrite SPARQL queries into a target
language and evaluate them using an existing engine for
that language. However, it is unlikely that an existing
language/engine will support all features of SPARQL
in an efficient manner. Better performance for a wider
range of features can be achieved with custom imple-
mentations and optimizations, where property paths
have been the focus of many works. Other features that
have been targeted for optimization are filters and op-
tionals, noting that optionals are quite frequently used
in the context of querying incomplete RDF data.

8 Partitioning

In distributed RDF stores and SPARQL engines, the
data are partitioned over a cluster of machines in order
to enable horizontal scale, where additional machines
can be allocated to the cluster to handle larger volumes
of data. However, horizontal scaling comes at the cost of
network communication costs. Thus a key optimization
is to choose a partitioning scheme that reduces com-
munication costs by enforcing various forms of local-
ity, principally allowing certain types of (intermediate)
joins to be processed on each individual machine [7].
Formally, given an RDF graph G and n machines, an
n-partition of G is a tuple of subgraphs (G1, . . . , Gn)

such that G =
n⋃
i=1

Gi, with the idea that each subgraph

Gi will be stored on machine i.6 We now discuss differ-
ent high-level alternatives for partitioning.

6 We relax the typical requirement for a set partition that
Gi ∩Gj = ∅ for all 1 ≤ i < j ≤ n to allow for the possibility
of replication or other forms of redundancy.

8.1 Triple/Quad-based Partitioning

A first option is to partition based on individual triples
or quads without considering the rest of the graph. For
simplicity we will speak about triples as the discussion
generalizes straightforwardly to quads. The simplest op-
tion is to use round robin or random partitioning, which
effectively places triples on an arbitrary machine. This
allows for an equal number of triples to be assigned to
each machine, but does not support any locality of pro-
cessing, and does not allow for finding the particular
machine storing triples that match a given pattern.

An alternative is to partition according to a deter-
ministic function over a given key; for example, a par-
tition key of s considers only the subject, while a parti-
tion key of po considers both the predicate and object.
Later given a triple pattern that covers the partition key
(e.g., with a constant subject if the key is s), we can
find the machine(s) storing all triples that match that
pattern. We show some examples using different func-
tions and partition keys in Figure 19 considering four
machines. Range-based partitioning assigns a range over
the partition key to each function, where the example
of Figure 19 splits s into [a:1,a:3], [a:4,a:6], [b:1,b:3],
[c:1,d:1]. This approach allows for range-based queries
to be pushed to one machine, but requires maintaining
a mapping of ranges to machines, and can be compli-
cated to keep balanced. An alternative is hash-based
partitioning where we compute the hash of the par-
tition key modulo the number of machines, where the
second example of Figure 19 splits p by hash. This does
not require storing any mapping, and techniques such as
consistent hashing can be used to rebalance load when a
machine enters or leaves; however, if partition keys are
skewed (e.g., one predicate is very common), it may
lead to an unbalanced partition. A third option is to
apply a hierarchical-based partition based on prefixes,
where the third example of Figure 19 partitions o by
their namespace. This may lead to increased locality of
data with the same prefix [93], where different levels of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

20 Ali et al.

prefix can be chosen to enable balancing, but choosing
prefixes that offer balanced partitions is non-trivial.

Any such partitioning function will send any triple
with the same partition key to the same machine, which
ensures that (equi-)joins on partition keys can be pushed
to individual machines. Hash-based partitioning is per-
haps the most popular among distributed RDF stores
(e.g., YARS2 [78], SHARD [162], etc.). Often triples will
be hashed according to multiple partition keys in order
to support different index permutations, triple patterns,
and indeed joins across different types of partition keys
(e.g, with s and o as two partition keys, we can push
s–s, o–o and s–o (equi-)joins to each machine). When
the partition key p is chosen, the scheme is analogous
to distributed vertical partitioning7 as discussed in Sec-
tion 4.2. Care must be taken to avoid imbalances caused
by frequent terms, such as the rdf:type predicate, or
frequent objects such as classes, countries, etc. Omit-
ting partitioning on highly-skewed partition keys may
be advantageous for balancing purposes [78].

8.2 Graph-based Partitioning

Graph-based partitioning takes into consideration the
entire graph when computing a partition. A common
strategy is to apply a k-way partition of the RDF graph
G [99]. Formally, letting V = so(G) denote the nodes
of G, the goal is to compute a node partition V1, . . . , Vn

such that V =
k⋃
i=1

Vn, Vi ∩ Vj = ∅ for all 1 ≤ i <

j ≤ k, b |V |k c ≤ |Vi| ≤ d
|V |
k e for all 1 ≤ i ≤ k, and the

number of triples (s, p, o) ∈ G such that s and o are
in different node partitions is minimised. In Figure 20,
we show the optimal 4-way partitioning of the graph
seen previously, where each partition has 3 nodes, there
are 10 edges between partitions (shown dashed), and no
other such partition leads to fewer edges (<10) between
partitions. Edges between partitions may be replicated
in the partitions they connect. Another alternative is
to k-way partition the line graph of the RDF graph: an
undirected graph where each triple is a node, and triples
sharing a subject or object have an edge between them.

7 The term “vertical partitioning” in the context of RDF
(per Section 4.2) may be misleading. Vertical partitioning in
a relational context typically refers to splitting a table with
many columns into several tables with fewer columns shar-
ing the same primary key (a natural join over the partitions
should recreate the original table). Horizontal partitioning
refers to splitting a table with many rows into several tables
with fewer rows sharing the same columns (a union over the
partitions should recreate the original table). “Vertical parti-
tioning” in an RDF context is actually horizontal partitioning
in a traditional sense as partitioning is done by row: we can
still read entire triples from each partition.

Finding an optimal k-way partition is intractable8,
where approximations are thus necessary for large-scale
graphs, including spectral methods, which use the eigen-
vectors of the graph’s Laplacian matrix to partition
it; recursive bisection, which recursively partitions the
graph in two; multilevel partitioning, which “coarsens”
the graph by computes a hierarchical graph summary
(similar to a multilevel quotient graph, per Figure 16),
then partitions the smaller graph summary (using, e.g.,
spectral methods), and finally “uncoarsens” by expand-
ing back out to the original graph maintaining the parti-
tions; etc. We refer for more details to Buluç et al. [36],
who argue that multilevel partitioning is “clearly the
most successful heuristic for partitioning large graphs”.
Such techniques have been used by H-RDF-3x [86], EA-
GRE [221], Koral [92], and more besides.

8.3 Query-based Partitioning

While the previous partitioning schemes only consider
the data, other partitioning methods are (also) based
on queries. Workload-based partitioning strategies have
been broadly explored, where the idea is to identify
common joins in query logs that can be used to parti-
tion or replicate parts of the graph in order to ensure
that high-demand joins can be pushed to individual
machines. Partitioning can then be a priori, for exam-
ple, based on a query log; or dynamic (aka. adaptive),
where the partitions change as queries are received.
Such strategies are used by WARP [85], Partout [57],
WORQ [123], chameleon-DB [10], AdPart [73], etc.

8.4 Replication

Rather than partitioning data, another option is to repli-
cate data across partitions. This may vary from repli-
cating the full graph on each machine, such that queries
can be answered in full by any machine increasing query
throughput (used, e.g., by DREAM [72]), to replicat-
ing partitions that are in high-demand (e.g., containing
schema data, central nodes, etc.) so that more queries
can be evaluated on individual machines and/or ma-
chines have equal workloads that avoid hot-spots (used,
e.g., by Blazegraph [190] and Virtuoso [54]).

8.5 Discussion

Triple/quad-based partitioning is the simplest to com-
pute and maintain, requiring only the data present in

8 Given a graph, deciding if there is a k-way partition with
fewer than n edges between partitions is NP-complete.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 21

a:1 a:2:p
(1)

a:4

:p
(2)

a:3

:p
(1)

:q
(1)

a:5

:q
(1)

:r
(2)

a:6

:p
(1)

:s
(2)

b:1

:r
(1)

:q
(3)

b:2:p
(3)

:q
(3)

b:3:r
(3)

c:1

:p
(4)

c:2

:r
(3)

d:1

:r
(4)

:r
(4)

:q
(4)

:p
(4)

Range-based (s)

a:1 a:2:p
(3)

a:4

:p
(3)

a:3

:p
(3)

:q
(1)

a:5

:q
(1)

:r
(2)

a:6

:p
(3)

:s
(4)

b:1

:r
(2)

:q
(1)

b:2:p
(3)

:q
(1)

b:3:r
(3)

c:1

:p
(3)

c:2

:r
(2)

d:1

:r
(2)

:r
(2)

:q
(1)

:p
(3)

Partition-based (p)

a:1 a:2:p
(1)

a:4

:p
(1)

a:3

:p
(1)

:q
(1)

a:5

:q
(1)

:r
(1)

a:6

:p
(1)

:s
(1)

b:1

:r
(2)

:q
(1)

b:2:p
(2)

:q
(1)

b:3:r
(2)

c:1

:p
(1)

c:2

:r
(3)

d:1

:r
(1)

:r
(2)

:q
(4)

:p
(4)

Hierarchy-based (o)

Fig. 19: Examples of triple-based partitioning schemes

a:1 a:2:p
(1)

a:4

:p
(-)

a:3

:p
(-)

:q
(2)

a:5

:q
(-)

:r
(-)

a:6

:p
(1)

:s
(-)

b:1

:r
(2)

:q
(2)

b:2:p
(-)

:q
(3)

b:3:r
(3)

c:1

:p
(-)

c:2

:r
(-)

d:1

:r
(-)

:r
(-)

:q
(4)

:p
(4)

Fig. 20: Example of optimal k-way partitioning (k = 4)

an individual tuple, allowing joins on the same partition
key to be pushed to individual machines. Graph-based
partitions can allow for evaluating more complex graph
patterns on individual machines, but are more costly
to compute and more difficult to maintain (considering,
e.g., dynamic data). Information about queries, where
available, can also be used for the purposes of workload-
based partitioning, which partitions or replicates data
in order to enable locality for common sub-patterns.
Replication can further improve load balancing, local-
ity and fault-tolerance at the cost of redundant storage.

9 Conclusion

We have introduced the key techniques underlying state-
of-the-art RDF stores and SPARQL engines, specif-
ically for storing and indexing RDF graphs, as well
as processing joins and more complex forms of graph
queries. We have further summarized techniques for
partitioning and managing large RDF graphs over mul-
tiple machines. We now conclude this survey by intro-
ducing additional material that can be found in the

appendix complementing the current paper, as well as
general research challenges in the area.

9.1 Systems and Benchmarks

We have conducted a comprehensive survey of over one
hundred individual RDF stores and SPARQL query en-
gines – both distributed and local – in terms of which
of the techniques discussed herein they use. We have
further surveyed the synthetic and real-world bench-
marks available for evaluating these systems under a
variety of criteria. For discussion of individual systems
and benchmarks, we refer to the appendix of this ex-
tended version.

9.2 Research challenges

Though major advances have been made in terms of
the scale and efficiency of RDF stores in recent years,
these will remain central challenges as the scale of RDF
graphs and demand for querying them in more com-
plex ways increases. Other challenges have only been
occasionally or partially addressed, such as support for
dynamicity, where many of the techniques surveyed as-
sume static data, and would not be able to handle up-
dates gracefully. Another challenge relates to query ex-
pressivity, where most works have focused on optimiz-
ing joins, with some works further exploring optimiza-
tions for property paths; however, SPARQL contains a
rich set of query features that could benefit from fur-
ther optimizations, and the expressivity of the language
is sure to grow (e.g., in the context of SPARQL 1.2).
Yet another emerging challenge is that of query vol-
ume, where leading SPARQL endpoints process mil-
lions of queries per day; though related to efficiency,
this challenge specifically motivates further research on

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

22 Ali et al.

workload-aware or caching strategies that leverage fre-
quent patterns. With the diversity of techniques and
systems that have been proposed, and the RDF graphs
and queries that can be considered, evaluation remains
a key challenge in order to understand the complex
trade-offs that underlie such systems. In the broader
context of the Semantic Web, challenges also arise from
providing support for federated querying, entailment,
validation, etc., which raise many interesting questions.

Acknowledgments Hogan was supported by Fondecyt
Grant No. 1181896. and by ANID – Millennium Science
Initiative Program – Code ICN17_002.

References

1. D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach.
SW-Store: a vertically partitioned DBMS for Semantic
Web data management. VLDB J., 18(2):385–406, 2009.

2. D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollen-
bach. Scalable Semantic Web Data Management Using
Vertical Partitioning. In VLDB, pages 411–422. ACM,
2007.

3. I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis. A
Survey and Experimental Comparison of Distributed
SPARQL Engines for Very Large RDF Data. PVLDB,
10(13):2049–2060, 2017.

4. I. Abdelaziz, R. Harbi, S. Salihoglu, and P. Kalnis. Com-
bining Vertex-Centric Graph Processing with SPARQL
for Large-Scale RDF Data Analytics. IEEE Trans. Par-
allel Distributed Syst., 28(12):3374–3388, 2017.

5. C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Oluko-
tun, and C. Ré. EmptyHeaded: A Relational Engine
for Graph Processing. ACM Trans. Database Syst.,
42(4):20:1–20:44, 2017.

6. F. Abiri, M. Kahani, and F. Zarinkalam. An entity
based RDF indexing schema using Hadoop and HBase.
In International Conference on Computer and Knowl-
edge Engineering (ICCKE), pages 68–73, 2014.

7. A. Akhter, A.-C. N. Ngonga, and M. Saleem. An em-
pirical evaluation of RDF graph partitioning techniques.
In European Knowledge Acquisition Workshop, pages 3–
18. Springer, 2018.

8. K. Alaoui. A Categorization of RDF Triplestores. In
International Conference on Smart City Applications
(SCA), pages 1–7. ACM, 2019.

9. G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diver-
sified stress testing of RDF data management systems.
In International Semantic Web Conference (ISWC),
pages 197–212. Springer, 2014.

10. G. Aluç, M. T. Özsu, K. Daudjee, and O. Hartig.
chameleon-db: a Workload-Aware Robust RDF Data
Management System, 2013.

11. S. Álvarez-García, N. R. Brisaboa, J. D. Fernández,
M. A. Martínez-Prieto, and G. Navarro. Compressed
vertical partitioning for efficient RDF management.
Knowl. Inf. Syst., 44(2):439–474, 2015.

12. R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reut-
ter, and D. Vrgoc. Foundations of Modern Query Lan-
guages for Graph Databases. ACM CSUR, 50(5):68:1–
68:40, 2017.

13. A. Aranda-Andújar, F. Bugiotti, J. Camacho-
Rodríguez, D. Colazzo, F. Goasdoué, Z. Kaoudi,
and I. Manolescu. AMADA: Web Data Repositories
in the Amazon Cloud. In Conference on Information
and Knowledge Management (CIKM), page 2749–2751.
ACM, 2012.

14. M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Ma-
trix "Bit" loaded: a scalable lightweight join query pro-
cessor for RDF data. In International Conference on
World Wide Web (WWW), pages 41–50. ACM, 2010.

15. M. Atre and J. A. Hendler. BitMat: A Main Memory
Bit-matrix of RDF Triples. InWorkshop on Scalable Se-
mantic Web Knowledge Base Systems (SSWS), page 33,
2009.

16. A. Atserias, M. Grohe, and D. Marx. Size Bounds and
Query Plans for Relational Joins. SIAM J. Comput.,
42(4):1737–1767, 2013.

17. J. Baier, D. Daroch, J. L. Reutter, and D. Vrgoc. Evalu-
ating Navigational RDF Queries over the Web. In ACM
Conference on Hypertext and Social Media (HT), pages
165–174. ACM, 2017.

18. S. Bail, S. Alkiviadous, B. Parsia, D. Workman, M. van
Harmelen, R. S. Gonçalves, and C. Garilao. FishMark:
A Linked Data Application Benchmark. InWorkshop on
Scalable and High-Performance Semantic Web Systems
(SSWS+HPCSW), pages 1–15. CEUR, 2012.

19. M. Banane. RDFMongo: A MongoDB Distributed
and Scalable RDF management system based on Meta-
model. Int. J. of Adv. Trends in Comp. Sci. and Eng.,
8:734–741, 2019.

20. S. Bartoň. Designing Indexing Structure for Discovering
Relationships in RDF Graphs. In International Work-
shop on DAtabases, TExts, Specifications and Objects
(DATESO), pages 7–17. CEUR, 2004.

21. B. R. Bebee, D. Choi, A. Gupta, A. Gutmans, A. Khan-
delwal, Y. Kiran, S. Mallidi, B. McGaughy, M. Person-
ick, K. Rajan, S. Rondelli, A. Ryazanov, M. Schmidt,
K. Sengupta, B. B. Thompson, D. Vaidya, and S. Wang.
Amazon Neptune: Graph Data Management in the
Cloud. In ISWC Posters & Demonstrations, Industry
and Blue Sky Ideas Tracks. CEUR-WS.org, 2018.

22. D. Beckett. The design and implementation of the red-
land RDF application framework. In World Wide Web
Conference (WWW), pages 449–456. ACM, 2001.

23. C. Beeri and R. Ramakrishnan. On the Power of Magic.
J. Log. Program., 10(3&4):255–299, 1991.

24. A. Bigerl, F. Conrads, C. Behning, M. Sherif, M. Saleem,
and A.-C. N. Ngomo. Tentris: A Tensor-Based Triple
Store. In International Semantic Web Conference
(ISWC), pages 56–73. Springer, 2020.

25. R. Binna, W. Gassler, E. Zangerle, D. Pacher, and
G. Specht. SpiderStore: A Native Main Memory Ap-
proach for Graph Storage. In Grundlagen von Daten-
banken (GI-Workshop), pages 91–96. CEUR, 2011.

26. B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Ta-
shev, and R. Velkov. OWLIM: A family of scalable se-
mantic repositories. Semantic Web, 2(1):33–42, 2011.

27. C. Bizer, R. Meusel, and A. Primpel. Web Data Com-
mons – Microdata, RDFa, JSON-LD, and Microformat
Data Sets, 2020.

28. C. Bizer and A. Schultz. The Berlin SPARQL Bench-
mark. Int. J. Sem. Web Inf. Syst., 5(2):1–24, 2009.

29. M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srini-
vas, P. Dantressangle, O. Udrea, and B. Bhattachar-
jee. Building an Efficient RDF Store over a Relational
Database. In International Conference on Management
of Data (SIGMOD), page 121–132. ACM, 2013.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 23

30. N. R. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, and
A. Fariña. Revisiting Compact RDF Stores Based on k2-
Trees. In Data Compression Conference (DCC), pages
123–132. IEEE, 2020.

31. N. R. Brisaboa, A. Cerdeira-Pena, G. de Bernardo,
A. Fariña, and G. Navarro. Space/time-efficient
RDF stores based on circular suffix sorting. CoRR,
abs/2009.10045, 2020.

32. N. R. Brisaboa, A. Cerdeira-Pena, A. Fariña, and
G. Navarro. A Compact RDF Store Using Suffix Ar-
rays. In String Processing and Information Retrieval
(SPIRE), pages 103–115. Springer, 2015.

33. M. Bröcheler, A. Pugliese, and V. S. Subrahmanian.
DOGMA: A Disk-Oriented Graph Matching Algorithm
for RDF Databases. In International Semantic Web
Conference (ISWC), pages 97–113. Springer, 2009.

34. J. Broekstra, A. Kampman, and F. Van Harmelen.
Sesame: A generic architecture for storing and query-
ing RDF and RDF Schema. In International Semantic
Web Conference (ISWC)), pages 54–68. Springer, 2002.

35. C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Van-
denbussche. SPARQL Web-Querying Infrastructure:
Ready for Action? In International Semantic Web Con-
ference (ISWC), pages 277–293. Springer, 2013.

36. A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent Advances in Graph Partitioning. In
Algorithm Engineering - Selected Results and Surveys,
pages 117–158. Springer, 2016.

37. P. Cappellari, R. D. Virgilio, and M. Roantree. Path-
oriented keyword search over graph-modeled Web data.
World Wide Web Conference (WWW), 15(5-6):631–
661, 2012.

38. S. Cebiric, F. Goasdoué, H. Kondylakis, D. Kotzinos,
I. Manolescu, G. Troullinou, and M. Zneika. Summariz-
ing semantic graphs: a survey. VLDBJ, 28(3):295–327,
2019.

39. T. Chawla, G. Singh, E. S. Pilli, and M. Govil. Stor-
age, partitioning, indexing and retrieval in big rdf frame-
works: A survey. Computer Science Review, 38:100309,
2020.

40. T. Chawla, G. Singh, E. S. Pilli, and M. C. Govil. Stor-
age, partitioning, indexing and retrieval in Big RDF
frameworks: A survey. Comput. Sci. Rev., 38:100309,
2020.

41. X. Chen, H. Chen, N. Zhang, and S. Zhang. SparkRDF:
Elastic Discreted RDF Graph Processing Engine with
Distributed Memory. In ISWC Posters & Demos
(ISWC-PD), pages 261–264. CEUR, 2014.

42. L. Cheng and S. Kotoulas. Scale-out processing of large
RDF datasets. IEEE Trans. Big Data, 1(4):138–150,
2015.

43. E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
Efficient SQL-Based RDF Querying Scheme. In Inter-
national Conference on Very Large Databases (VLDB),
page 1216–1227. VLDB End., 2005.

44. F. Conrads, J. Lehmann, M. Saleem, M. Morsey, and
A. N. Ngomo. IGUANA: A Generic Framework for
Benchmarking the Read-Write Performance of Triple
Stores. In International Semantic Web Conference
(ISWC), pages 48–65. Springer, 2017.

45. O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Query-
ing the semantic web with corese search engine. In R. L.
de Mántaras and L. Saitta, editors, European Confer-
ence on Artificial Intelligence (ECAI), pages 705–709.
IOS Press, 2004.

46. O. Corby and C. Faron-Zucker. Implementation of
SPARQL Query Language Based on Graph Homomor-

phism. In International Conference on Conceptual
Structures (ICCS), pages 472–475. Springer, 2007.

47. M. Cossu, M. Färber, and G. Lausen. PRoST: Dis-
tributed Execution of SPARQL Queries Using Mixed
Partitioning Strategies. In International Conference on
Extending Database Technology (EDBT), pages 469–
472. OpenProceedings, 2018.

48. O. Curé, G. Blin, D. Revuz, and D. C. Faye. Water-
fowl: A compact, self-indexed and inference-enabled im-
mutable RDF store. In Extended Semantic Web Con-
ference (ESWC), pages 302–316. Springer, 2014.

49. G. Demartini, I. Enchev, M. Wylot, J. Gapany, and
P. Cudré-Mauroux. BowlognaBench - Benchmarking
RDF Analytics. In Symposium on Data-Driven Pro-
cess Discovery and Analysis (SIMPDA), pages 82–102.
Springer, 2011.

50. F. Du, H. Bian, Y. Chen, and X. Du. Efficient SPARQL
Query Evaluation in a Database Cluster. In BigData
Congress, pages 165–172. IEEE, 2013.

51. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea.
Apples and oranges: A comparison of RDF benchmarks
and real RDF datasets. In International Conference on
Management of Data (SIGMOD), pages 145–156. ACM,
2011.

52. N. M. Elzein, M. A. Majid, I. A. T. Hashem, I. Yaqoob,
F. A. Alaba, and M. Imran. Managing big RDF data in
clouds: Challenges, opportunities, and solutions. Sus-
tainable Cities and Society, 39:375–386, 2018.

53. O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gu-
bichev, A. Prat-Pérez, M. Pham, and P. A. Boncz. The
LDBC Social Network Benchmark: Interactive Work-
load. In International Conference on Data Management
(SIGMOD), pages 619–630. ACM, 2015.

54. O. Erling and I. Mikhailov. Virtuoso: RDF Support in
a Native RDBMS, pages 501–519. Springer, 2010.

55. D. C. Faye, O. Curé, and G. Blin. A survey of RDF stor-
age approaches. In Revue Africaine de la Recherche en
Informatique et Math{é}matiques Appliqu{é}es, page
pp. 25, 2012.

56. G. H. L. Fletcher, J. Peters, and A. Poulovassilis. Effi-
cient regular path query evaluation using path indexes.
In Extending Database Technology (EDBT), pages 636–
639. OpenProceedings.org, 2016.

57. L. Galárraga, K. Hose, and R. Schenkel. Partout: A dis-
tributed engine for efficient RDF processing. In WWW
Companion, pages 267–268. ACM, 2014.

58. M. Galkin, K. M. Endris, M. Acosta, D. Collarana,
M. Vidal, and S. Auer. SMJoin: A Multi-way Join Oper-
ator for SPARQL Queries. In International Conference
on Semantic Systems (SEMANTICS), pages 104–111.
ACM, 2017.

59. F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz,
and S. Zampetakis. CliqueSquare: Flat plans for mas-
sively parallel RDF queries. In International Conference
on Data Engineering (ICDE), pages 771–782. IEEE,
2015.

60. D. Graux, L. Jachiet, P. Genevès, and N. Layaïda.
SPARQLGX: Efficient distributed evaluation of
SPARQL with Apache Spark. In International Seman-
tic Web Conference (ISWC), pages 80–87. Springer,
2016.

61. J. Groppe, S. Groppe, A. Schleifer, and V. Linnemann.
LuposDate: a semantic web database system. In ACM
Conference on Information and Knowledge Manage-
ment (CIKM), pages 2083–2084. ACM, 2009.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

24 Ali et al.

62. S. Groppe, J. Groppe, and V. Linnemann. Using an in-
dex of precomputed joins in order to speed up SPARQL
processing. In International Conference on Enterprise
Information Systems (ICEIS), pages 13–20, 2007.

63. S. Groppe, T. Kiencke, S. Werner, D. Heinrich,
M. Stelzner, and L. Gruenwald. P-LUPOSDATE: Using
Precomputed Bloom Filters to Speed Up SPARQL Pro-
cessing in the Cloud. Open J. Semantic Web, 1(2):25–
55, 2014.

64. A. Gubichev, S. J. Bedathur, and S. Seufert. Sparqling
kleene: fast property paths in RDF-3X. In Workshop
on Graph Data Management Experiences & Systems
(GRADES), page 14. CWI/ACM, 2013.

65. A. Gubichev and T. Neumann. Path Query Processing
on Very Large RDF Graphs. In International Workshop
on the Web and Databases (WebDB), 2011.

66. A. Gubichev and T. Neumann. Exploiting the query
structure for efficient join ordering in SPARQL queries.
In International Conference on Extending Database
Technology (EDBT), pages 439–450. OpenProceed-
ings.org, 2014.

67. X. Guo, H. Gao, and Z. Zou. Leon: A Distributed RDF
Engine for Multi-query Processing. In International
Conference on Database Systems for Advanced Appli-
cations (DASFAA), pages 742–759. Springer, 2019.

68. X. Guo, H. Gao, and Z. Zou. WISE: Workload-Aware
Partitioning for RDF Systems. Big Data Research,
22:100161, 2020.

69. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. J. Web Sem., 3(2-
3):158–182, 2005.

70. S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald.
TriAD: A distributed shared-nothing RDF engine based
on asynchronous message passing. In International
Conference on Management of Data (SIGMOD), pages
289–300. ACM, 2014.

71. P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A
Comparison of RDF Query Languages. In Interna-
tional Semantic Web Conference (ISWC), pages 502–
517. Springer, 2004.

72. M. Hammoud, D. A. Rabbou, R. Nouri, S. M. R. Be-
heshti, and S. Sakr. DREAM: Distributed RDF engine
with adaptive query planner and minimal communica-
tion. PVLDB, 8(6):654–665, 2015.

73. R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis,
Y. Ebrahim, and M. Sahli. Accelerating SPARQL
queries by exploiting hash-based locality and adaptive
partitioning. VLDBJ, 25(3):355–380, 2016.

74. S. Harris and N. Gibbins. 3store: Efficient Bulk RDF
Storage. In International Workshop on Practical and
Scalable Semantic Systems (PSSS), pages 1–20, 2003.

75. S. Harris, N. Lamb, and N. Shadbolt. 4store: The design
and implementation of a clustered RDF store. In Inter-
national Workshop on Scalable Semantic Web Systems
(SSWS), pages 94–109, 2009.

76. S. Harris, A. Seaborne, and E. Prud’hommeaux.
SPARQL 1.1 Query Language. W3C Recommendation,
2013. http://www.w3.org/TR/sparql11-query/.

77. A. Harth and S. Decker. Optimized index structures for
querying RDF from the Web. In Latin American Web
Congress (LA-WEB), pages 71–80. IEEE, 2005.

78. A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2:
A Federated Repository for Querying Graph Structured
Data from the Web. In International Semantic Web
Conference (ISWC), pages 211–224. Springer, 2007.

79. M. Hassan and S. K. Bansal. Data Partitioning Scheme
for Efficient Distributed RDF Querying Using Apache

Spark. In International Conference on Semantic Com-
puting (ICSC), pages 24–31. IEEE, 2019.

80. L. He, B. Shao, Y. Li, H. Xia, Y. Xiao, E. Chen, and
L. J. Chen. Stylus: A Strongly-Typed Store for Serving
Massive RDF Data. PVLDB, 11(2):203–216, 2017.

81. A. Hogan, C. Riveros, C. Rojas, and A. Soto. A worst-
case optimal join algorithm for SPARQL. In Interna-
tional Semantic Web Conference (ISWC), pages 258–
275. Springer, 2019.

82. A. Hogan, C. Riveros, C. Rojas, and A. Soto. Wiki-
data Graph Pattern Benchmark (WGPB) for RDF/S-
PARQL, 2019.

83. A. Hogenboom, F. Frasincar, and U. Kaymak. Ant
colony optimization for RDF chain queries for decision
support. Expert Syst. Appl., 40(5):1555–1563, 2013.

84. A. Hogenboom, V. Milea, F. Frasincar, and U. Kay-
mak. RCQ-GA: RDF Chain Query Optimization Using
Genetic Algorithms. In E-Commerce and Web Tech-
nologies (EC-Web), pages 181–192. Springer, 2009.

85. K. Hose and R. Schenkel. WARP: Workload-aware repli-
cation and partitioning for RDF. In ICDE Workshops,
pages 1–6, 2013.

86. J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB, 4(11):1123–
1134, 2011.

87. V. Ingalalli, D. Ienco, and P. Poncelet. Querying RDF
Data: a Multigraph-based Approach, chapter 5, pages
135–165. John Wiley & Sons, 2018.

88. Y. E. Ioannidis and E. Wong. Query Optimization by
Simulated Annealing. In International Conference on
Management of Data (SIGMOD), pages 9–22. ACM,
1987.

89. H. Jabeen, E. Haziiev, G. Sejdiu, and J. Lehmann.
DISE: A Distributed in-Memory SPARQL Processing
Engine over Tensor Data. In International Conference
on Semantic Computing (ICSC), pages 400–407. ACM,
2020.

90. M. Janik and K. Kochut. BRAHMS: a workbench RDF
store and high performance memory system for semantic
association discovery. In International Semantic Web
Conference (ISWC), pages 431–445. Springer, 2005.

91. D. Janke and S. Staab. Storing and Querying Semantic
Data in the Cloud. In Reasoning Web Summer School,
pages 173–222. Springer, 2018.

92. D. Janke, S. Staab, and M. Thimm. Koral: A Glass
Box Profiling System for Individual Components of Dis-
tributed RDF Stores. In Workshop on Benchmarking
Linked Data (BLINK). CEUR, 2017.

93. D. Janke, S. Staab, and M. Thimm. On Data Place-
ment Strategies in Distributed RDF Stores. In Interna-
tional Workshop on Semantic Big Data (SBD), pages
1–6. ACM, 2017.

94. E. G. Kalayci, T. E. Kalayci, and D. Birant. An ant
colony optimisation approach for optimising SPARQL
queries by reordering triple patterns. Inf. Syst., 50:51–
68, 2015.

95. O. Kalinsky, O. Mishali, A. Hogan, Y. Etsion, and
B. Kimelfeld. Efficiently Charting RDF. CoRR,
abs/1811.10955, 2018.

96. Z. Kaoudi and I. Manolescu. RDF in the clouds: a sur-
vey. VLDB Journal, 24(1):67–91, 2015.

97. G. Karvounarakis, S. Alexaki, V. Christophides,
D. Plexousakis, and M. Scholl. RQL: a declarative query
language for RDF. In International World Wide Web
Conference (WWW), pages 592–603. ACM, 2002.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

http://www.w3.org/TR/sparql11-query/
https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 25

98. G. Karvounarakis, A. Magkanaraki, S. Alexaki,
V. Christophides, D. Plexousakis, M. Scholl, and
K. Tolle. Querying the Semantic Web with RQL. Com-
put. Net., 42(5):617–640, 2003.

99. G. Karypis and V. Kumar. A Fast and High Qual-
ity Multilevel Scheme for Partitioning Irregular Graphs.
SIAM J. Sci. Comput., 20(1):359–392, 1998.

100. A. Katib, V. Slavov, and P. Rao. RIQ: Fast processing of
SPARQL queries on RDF quadruples. Journal of Web
Sem., 37:90–111, 2016.

101. V. Khadilkar, M. Kantarcioglu, B. Thuraisingham, and
P. Castagna. Jena-HBase: A Distributed, Scalable and
Efficient RDF Triple Store. In ISWC Posters and De-
mos (ISWC-PD), page 85–88. CEUR, 2012.

102. J. Kim, H. Shin, W.-S. Han, S. Hong, and H. Chafi.
Taming Subgraph Isomorphism for RDF Query Process-
ing. PVLDB, 8(11), 2015.

103. K. Kim, B. Moon, and H. Kim. Rg-index: An RDF
graph index for efficient SPARQL query processing. Ex-
pert Syst. Appl., 41(10):4596–4607, 2014.

104. K. Kim, B. Moon, and H. Kim. R3F: RDF triple filtering
method for efficient SPARQL query processing. WWW
J., 18(2):317–357, 2015.

105. A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM -
A pragmatic semantic repository for OWL. In WISE
Workshops, pages 182–192. Springer, 2005.

106. D. Kolas, I. Emmons, and M. Dean. Efficient linked-list
RDF indexing in Parliament. In International Work-
shop on Scalable Semantic Web Knowledge Base Sys-
tems (SSWS), pages 17–32. CEUR, 2009.

107. E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vr-
goc. SPARQL with Property Paths. In International Se-
mantic Web Conference (ISWC), pages 3–18. Springer,
2015.

108. M. Koubarakis and K. Kyzirakos. Modeling and Query-
ing Metadata in the Semantic Sensor Web: The Model
StRDF and the Query Language StSPARQL. In Ex-
tended Semantic Web Conference (ESWC), pages 425–
439. Springer, 2010.

109. K. Kyzirakos, M. Karpathiotakis, and M. Koubarakis.
Strabon: A Semantic Geospatial DBMS. In Interna-
tional Semantic Web Conference (ISWC), pages 295–
311. Springer, 2012.

110. G. Ladwig and A. Harth. CumulusRDF: Linked Data
Management on Nested Key-Value Stores, 2011.

111. T. Lampo, M. Vidal, J. Danilow, and E. Ruckhaus.
To Cache or Not To Cache: The Effects of Warming
Cache in Complex SPARQL Queries. In On the Move
to Meaningful Internet Systems (OTM), pages 716–733.
Springer, 2011.

112. K. Lee and L. Liu. Scaling queries over big RDF graphs
with semantic hash partitioning. PVLDB, 6(14):1894–
1905, 2013.

113. J. Leeka and S. Bedathur. RQ-RDF-3X: going beyond
triplestores. In ICDE Workshops, pages 263–268. IEEE,
2014.

114. J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal,
C. Stadler, I. Ermilov, S. Bin, N. Chakraborty,
M. Saleem, A.-C. Ngonga Ngomo, and H. Jabeen. Dis-
tributed Semantic Analytics Using the SANSA Stack. In
International Semantic Web Conference (ISWC), pages
147–155. Springer, 2017.

115. A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static
analysis and optimization of semantic web queries. ACM
TODS, 38(4):25:1–25:45, 2013.

116. W. Li, B. Zhang, G. Rao, R. Chen, and Z. Feng. Hash
Tree Indexing for Fast SPARQL Query in Large Scale

RDF Data Management Systems. In ISWC Posters &
Demonstrations and Industry Tracks. CEUR-WS.org,
2017.

117. B. Liu and B. Hu. HPRD: a high performance RDF
database. Int. J. Parallel Emergent Distr. Syst.,
25(2):123–133, 2010.

118. J. Lorey and F. Naumann. Caching and Prefetching
Strategies for SPARQL Queries. In ESWC Satellite
Events, pages 46–65. Springer, 2013.

119. Y. Luo, F. Picalausa, G. H. L. Fletcher, J. Hidders, and
S. Vansummeren. Storing and Indexing Massive RDF
Datasets. In Semantic Search over the Web, pages 31–
60. Springer, 2012.

120. X. Lyu, X. Wang, Y. Li, Z. Feng, and J. Wang. GraSS:
An Efficient Method for RDF Subgraph Matching.
In Web Information Systems Engineering Conference
(WISE), pages 108–122. Springer, 2015.

121. L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. RStar: an
RDF storage and query system for enterprise resource
management. In International Conference on Informa-
tion and Knowledge Management (CIKM), pages 484–
491, 2004.

122. Z. Ma, M. A. Capretz, and L. Yan. Storing massive
Resource Description Framework (RDF) data: A survey.
Knowl. Eng. Rev,, 31(4):391–413, 2016.

123. A. Madkour, A. M. Aly, and W. G. Aref. WORQ:
Workload-Driven RDF Query Processing. In Interna-
tional Semantic Web Conference (ISWC), pages 583–
599. Springer, 2018.

124. R. Maharjan, Y. Lee, and S. Lee. Exploiting Path In-
dexes to Answer Complex Queries in Ontology Repos-
itory. In International Conference on Computational
Science and Its Applications (ICCSA), pages 56–61.
IEEE, 2009.

125. S. Malyshev, M. Krötzsch, L. González, J. Gonsior,
and A. Bielefeldt. Getting the Most Out of Wikidata:
Semantic Technology Usage in Wikipedia’s Knowledge
Graph. In International Semantic Web Conference
(ISWC), pages 376–394. Springer, 2018.

126. W. Martens and T. Trautner. Evaluation and Enumer-
ation Problems for Regular Path Queries. In Interna-
tional Conference on Database Theory (ICDT), pages
19:1–19:21, 2018.

127. M. Martin, J. Unbehauen, and S. Auer. Improving
the Performance of Semantic Web Applications with
SPARQL Query Caching. In Extended Semantic Web
Conference (ESWC), pages 304–318. Springer, 2010.

128. B. McBride. Jena: A semantic web toolkit. IEEE In-
ternet Computing, 6(6):55–58, 2002.

129. J. P. McGlothlin and L. R. Khan. RDFJoin: A Scal-
able Data Model for Persistence and Efficient Querying
of RDF Datasets. Tech. Rep. UTDCS-08-09, Univ. of
Texas at Dallas, 2009.

130. J. P. McGlothlin and L. R. Khan. RDFKB: Efficient
support for RDF inference queries and knowledge man-
agement. In International Database Engineering & Ap-
plications Symposium (IDEAS), pages 259–266. ACM,
2009.

131. M. Meimaris and G. Papastefanatos. Distance-based
triple reordering for SPARQL query optimization. In
International Conference on Data Engineering (ICDE),
pages 1559–1562. IEEE Computer Society, 2017.

132. M. Meimaris, G. Papastefanatos, N. Mamoulis, and
I. Anagnostopoulos. Extended Characteristic Sets:
Graph Indexing for SPARQL Query Optimization. In
International Conference on Data Engineering (ICDE),
pages 497–508. IEEE, 2017.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

26 Ali et al.

133. M. Morsey, J. Lehmann, S. Auer, and A. N. Ngomo.
DBpedia SPARQL Benchmark - Performance Assess-
ment with Real Queries on Real Data. In Interna-
tional Semantic Web Conference (ISWC), pages 454–
469. Springer, 2011.

134. R. Mutharaju, S. Sakr, A. Sala, and P. Hitzler. D-
SPARQ: Distributed, Scalable and Efficient RDF Query
Engine. In ISWC Posters & Demos (ISWC-PC), page
261–264. CEUR, 2013.

135. A. Muys. Building an Enterprise-Scale Database for
RDF Data. Netymon technical paper, 2006.

136. H. Naacke and O. Curé. On distributed SPARQL query
processing using triangles of RDF triples. Open J. Se-
mantic Web, 7(1):17–32, 2020.

137. G. Navarro, J. L. Reutter, and J. Rojas-Ledesma. Opti-
mal Joins Using Compact Data Structures. In Interna-
tional Conference on Database Theory (ICDT), pages
21:1–21:21. Schloss Dagstuhl, 2020.

138. Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and
J. Banerjee. RDFox: A Highly-Scalable RDF Store. In
International Semantic Web Conference (ISWC), pages
3–20. Springer, 2015.

139. T. Neumann and G. Moerkotte. Characteristic sets: Ac-
curate cardinality estimation for RDF queries with mul-
tiple joins. In International Conference on Data Engi-
neering (ICDE), pages 984–994. IEEE, 2011.

140. T. Neumann and G. Weikum. RDF-3X: a RISC-style
engine for RDF. Proc. VLDB Endow., 1(1):647–659,
2008.

141. T. Neumann and G. Weikum. Scalable join processing
on very large RDF graphs. In International Conference
on Management of Data (SIGMOD), pages 627–640.
ACM, 2009.

142. T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDBJ, 19(1):91–
113, 2010.

143. H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
Optimal Join Algorithms. J. ACM, 65(3):16:1–16:40,
2018.

144. A. Owens, A. Seaborne, N. Gibbins, and m. schrae-
fel. Clustered TDB: A clustered triple store for Jena.
EPrints Server, 2008.

145. M. T. Özsu. A survey of RDF data management sys-
tems. Frontiers of Comp. Sci., 10(3):418–432, 2016.

146. Z. Pan, T. Zhu, H. Liu, and H. Ning. A sur-
vey of RDF management technologies and benchmark
datasets. Journal of Ambient Intelligence and Human-
ized Computing, 9(5):1693–1704, 2018.

147. N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Kar-
ras, and N. Koziris. H2RDF+: High-performance dis-
tributed joins over large-scale RDF graphs. Interna-
tional Conference on Big Data (Big Data), pages 255–
263, 2013.

148. N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2RDF: Adaptive Query Processing on RDF
Data in the Cloud. In World Wide Web Conference
(WWW), page 397–400. ACM, 2012.

149. N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris.
Graph-Aware, Workload-Adaptive SPARQL Query
Caching. In International Conference on Management
of Data (SIGMOD), pages 1777–1792. ACM, 2015.

150. P. Peng, L. Zou, L. Chen, and D. Zhao. Adaptive
Distributed RDF Graph Fragmentation and Allocation
based on Query Workload. IEEE TKDE, 31(4):670–685,
2019.

151. P. Peng, L. Zou, M. T. Özsu, L. Chen, and D. Zhao. Pro-
cessing SPARQL Queries over Distributed RDF Graphs.
VLDBJ, 25(2):243–268, 2016.

152. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
Complexity of SPARQL. ACM TODS, 34(3), 2009.

153. M. Pham and P. A. Boncz. Exploiting Emergent
Schemas to Make RDF Systems More Efficient. In In-
ternational Semantic Web Conference (ISWC), pages
463–479, 2016.

154. F. Picalausa, Y. Luo, G. H. L. Fletcher, J. Hidders,
and S. Vansummeren. A Structural Approach to In-
dexing Triples. In Extended Semantic Web Conference
(ESWC), pages 406–421. Springer, 2012.

155. A. Potocki, A. Polukhin, G. Drobyazko, D. Hladky, V. P.
Klintsov, and J. Unbehauen. OntoQuad: Native High-
Speed RDF DBMS for Semantic Web. In Knowledge
Engineering and the Semantic Web (KESW), volume
394 of Communications in Computer and Information
Science, pages 117–131. Springer, 2013.

156. A. Potter, B. Motik, Y. Nenov, and I. Horrocks. Dy-
namic Data Exchange in Distributed RDF Stores. IEEE
TKDE, 30(12):2312–2325, 2018.

157. R. Punnoose, A. Crainiceanu, and D. Rapp. Rya: A
Scalable RDF Triple Store for the Clouds. In Interna-
tional Workshop on Cloud Intelligence (Cloud-I). ACM,
2012.

158. S. Qiao and Z. M. Özsoyoglu. RBench: Application-
Specific RDF Benchmarking. In International Confer-
ence on Management of Data (SIGMOD), pages 1825–
1838. ACM, 2015.

159. A. Rajith, S. Nishimura, and H. Yokota. JARS:
join-aware distributed RDF storage. In Interna-
tional Database Engineering & Applications Symposium
(IDEAS), pages 264–271. ACM, 2016.

160. P. Ravindra, H. Kim, and K. Anyanwu. An Intermediate
Algebra for Optimizing RDF Graph Pattern Matching
on MapReduce. In Extended Semantic Web Conference
(ESWC), pages 46–61. Springer, 2011.

161. J. L. Reutter, A. Soto, and D. Vrgoc. Recursion in
SPARQL. In International Semantic Web Conference
(ISWC), pages 19–35. Springer, 2015.

162. K. Rohloff and R. E. Schantz. High-Performance, Mas-
sively Scalable Distributed Systems Using the MapRe-
duce Software Framework: The SHARD Triple-Store. In
Programming Support Innovations for Emerging Dis-
tributed Applications (PSI EtA). ACM, 2010.

163. S. Sakr and G. Al-Naymat. Relational processing of
RDF queries: a survey. SIGMOD Record, 38(4):23–28,
2010.

164. M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N.
Ngomo. LSQ: The Linked SPARQL Queries Dataset. In
International Semantic Web Conference (ISWC), pages
261–269. Springer, 2015.

165. M. Saleem, A. Hasnain, and A. N. Ngomo. LargeRDF-
Bench: A billion triples benchmark for SPARQL end-
point federation. J. Web Sem., 48:85–125, 2018.

166. M. Saleem, Q. Mehmood, and A. N. Ngomo. FEASI-
BLE: A Feature-Based SPARQL Benchmark Genera-
tion Framework. In International Semantic Web Con-
ference (ISWC), pages 52–69. Springer, 2015.

167. M. Saleem, G. Szárnyas, F. Conrads, S. A. C. Bukhari,
Q. Mehmood, and A.-C. Ngonga Ngomo. How Rep-
resentative Is a SPARQL Benchmark? An Analysis of
RDF Triplestore Benchmarks. InWorld Wide Web Con-
ference (WWW), page 1623–1633. ACM, 2019.

168. A. Schätzle, M. Przyjaciel-Zablocki, T. Berberich, and
G. Lausen. S2X: Graph-Parallel Querying of RDF with
GraphX. In Workshop on Biomedical Data Manage-
ment and Graph Online Querying (Big-O(Q)), pages
155–168. Springer, 2016.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 27

169. A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen.
PigSPARQL: Mapping SPARQL to Pig Latin. In Inter-
national Workshop on Semantic Web Information Man-
agement (SWIM), 2011.

170. A. Schätzle, M. Przyjaciel-Zablocki, A. Neu, and
G. Lausen. Sempala: Interactive SPARQL query pro-
cessing on Hadoop. In International Semantic Web
Conference (ISWC), pages 164–179, 2014.

171. A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and
G. Lausen. S2RDF: RDF querying with SPARQL on
Spark. PVLDB, 9(10):804–815, 2016.

172. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig,
A. Schwarte, and T. Tran. FedBench: A Benchmark
Suite for Federated Semantic Data Query Processing. In
International Semantic Web Conference (ISWC), pages
585–600. Springer, 2011.

173. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP2Bench: A SPARQL Performance Benchmark. In
International Conference on Data Engineering ICDE,
pages 222–233. IEEE, 2009.

174. M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In International Confer-
ence on Database Theory (ICDT), pages 4–33, 2010.

175. G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C
Working Group Note, 2014. http://www.w3.org/TR/rd
f11-primer/.

176. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access Path Selection in a Rela-
tional Database Management System. In International
Conference on Management of Data (SIGMOD), pages
23–34. ACM, 1979.

177. S. Seufert, A. Anand, S. J. Bedathur, and G. Weikum.
FERRARI: Flexible and efficient reachability range as-
signment for graph indexing. In International Confer-
ence on Data Engineering (ICDE), pages 1009–1020.
IEEE, 2013.

178. J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast
and Concurrent RDF Queries with RDMA-Based Dis-
tributed Graph Exploration. In Conference on Operat-
ing Systems Design and Implementation (OSDI), pages
317–332. USENIX, 2016.

179. M. Sintek and M. Kiesel. RDFBroker: A Signature-
Based High-Performance RDF Store. In European
Semantic Web Conference (ESWC), pages 363–377.
Springer, 2006.

180. C. Stadler, G. Sejdiu, D. Graux, and J. Lehmann.
Sparklify: A Scalable Software Component for Efficient
Evaluation of SPARQL Queries over Distributed RDF
Datasets. In International Semantic Web Conference
(ISWC), pages 293–308. Springer, 2019.

181. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern optimiza-
tion using selectivity estimation. In World Wide Web
Conference (WWW), pages 595–604. ACM, 2008.

182. M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-Store: A Column-Oriented DBMS. In VLDB, pages
553–564. VLDB End., 2005.

183. H. Stuckenschmidt. Similarity-Based Query Caching. In
International Conference on Flexible Query Answering
Systems (FQAS), pages 295–306. Springer, 2004.

184. H. Stuckenschmidt, R. Vdovjak, J. Broekstra, and
G. Houben. Towards distributed processing of RDF
path queries. Int. J. Web Eng. Tech., 2(2/3):207–230,
2005.

185. P. Stutz, A. Bernstein, and W. Cohen. Signal/Collect:
Graph Algorithms for the (Semantic) Web . In Interna-

tional Semantic Web Conference (ISWC), pages 764–
780. Springer, 2010.

186. P. Stutz, M. Verman, L. Fischer, and A. Bernstein.
TripleRush: A Fast and Scalable Triple Store. In Work-
shop on Scalable Semantic Web Knowledge Base Sys-
tems (SSWS), page 50–65. CEUR, 2013.

187. M. Svoboda and I. Mlỳnková. Linked Data indexing
methods: A survey. In OTM Confederated International
Conferences (OTM), pages 474–483. Springer, 2011.

188. G. Szárnyas, B. Izsó, I. Ráth, and D. Varró. The
Train Benchmark: Cross-technology performance evalu-
ation of continuous model queries. Softw. Syst. Model.,
17(4):1365–1393, 2018.

189. H. Thakkar, R. Angles, M. Rodriguez, S. Mallette, and
J. Lehmann. Let’s build Bridges, not Walls: SPARQL
Querying of TinkerPop Graph Databases with Sparql-
Gremlin. In International Conference on Semantic
Computing (ICSC), pages 408–415. IEEE, 2020.

190. B. B. Thompson, M. Personick, and M. Cutcher. The
bigdata® rdf graph database. In Linked Data Manage-
ment, pages 193–237. CRC Press, 2014.

191. T. Tran, G. Ladwig, and S. Rudolph. Managing Struc-
tured and Semistructured RDF Data Using Structure
Indexes. IEEE TKDE, 25(9):2076–2089, 2013.

192. C. Tschanz. Query-Driven Index Partitioning for
TripleRush. Bachelor Thesis, 2014.

193. P. Tsialiamanis, L. Sidirourgos, I. Fundulaki,
V. Christophides, and P. A. Boncz. Heuristics-based
query optimisation for SPARQL. In International Con-
ference on Extending Database Technology (EDBT),
pages 324–335. ACM, 2012.

194. O. Udrea, A. Pugliese, and V. S. Subrahmanian. GRIN:
A Graph Based RDF Index. In Conference on Artificial
Intelligence (AAAI), pages 1465–1470. AAAI, 2007.

195. T. L. Veldhuizen. Triejoin: A Simple, Worst-Case Op-
timal Join Algorithm. In International Conference on
Database Theory (ICDT), pages 96–106. OpenProceed-
ings.org, 2014.

196. M. Vidal, E. Ruckhaus, T. Lampo, A. Martínez,
J. Sierra, and A. Polleres. Efficiently Joining Group Pat-
terns in SPARQL Queries. In Extended Semantic Web
Conference (ESWC), pages 228–242. Springer, 2010.

197. A. Vlachou, C. Doulkeridis, A. Glenis, G. M. Santipan-
takis, and G. A. Vouros. Efficient Spatio-Temporal
RDF Query Processing in Large Dynamic Knowledge
Bases. In Symposium on Applied Computing (SAC),
page 439–447. ACM, 2019.

198. D. Vrandecic and M. Krötzsch. Wikidata: a free collab-
orative knowledgebase. CACM, 57(10):78–85, 2014.

199. X. Wang, L. Chai, Q. Xu, Y. Yang, J. Li, J. Wang, and
Y. Chai. Efficient Subgraph Matching on Large RDF
Graphs Using MapReduce. Data Sci. Eng., 4(1):24–43,
2019.

200. X. Wang, S. Wang, Y. Xin, Y. Yang, J. Li, and
X. Wang. Distributed Pregel-based provenance-aware
regular path query processing on RDF knowledge
graphs. World Wide Web, 23(3):1465–1496, 2020.

201. C. Weiss, P. Karras, and A. Bernstein. Hexastore:
Sextuple indexing for semantic web data management.
PVLDB, 1(1):1008–1019, 2008.

202. R. T. Whitman, B. G. Marsh, M. B. Park, and E. G.
Hoel. Distributed Spatial and Spatio-Temporal Join on
Apache Spark. ACM TSAS, 5(1), 2019.

203. K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds.
Efficient RDF storage and retrieval in Jena2. In Inter-
national Conference on Semantic Web and Databases
(SWDB), pages 120–139. CEUR, 2003.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-primer/
https://doi.org/10.20944/preprints202104.0199.v1

28 Ali et al.

204. G. T. Williams and J. Weaver. Enabling Fine-Grained
HTTP Caching of SPARQL Query Results. In Interna-
tional Semantic Web Conference (ISWC), pages 762–
777. Springer, 2011.

205. D. Wood, P. Gearon, and T. Adams. Kowari: A plat-
form for semantic web storage and analysis. In XTech
Conference, pages 1–7, 2005.

206. B. Wu, Y. Zhou, P. Yuan, H. Jin, and L. Liu. Sem-
Store: A Semantic-Preserving Distributed RDF Triple
Store. In Conference on Information and Knowledge
Management (CIKM), pages 509–518. ACM, 2014.

207. G. Wu, J. Li, J. Hu, and K. Wang. System Pi: A Native
RDF Repository Based on the Hypergraph Representa-
tion for RDF Data Model. J. Comput. Sci. Technol.,
24(4):652–664, 2009.

208. G. Wu and M. Yang. Improving SPARQL query perfor-
mance with algebraic expression tree based caching and
entity caching. J. Zhejiang Univ. Sci. C, 13(4):281–294,
2012.

209. H. Wu, T. Fujiwara, Y. Yamamoto, J. Bolleman, and
A. Yamaguchi. BioBenchmark Toyama 2012: An eval-
uation of the performance of triple stores on biological
data. J. Bio. Sem., 5, 2014.

210. M. Wylot and P. Cudré-Mauroux. DiploCloud: Efficient
and Scalable Management of RDF Data in the Cloud.
IEEE TKDE, 28(3):659–674, 2016.

211. M. Wylot, M. Hauswirth, P. Cudré-Mauroux, and
S. Sakr. RDF Data Storage and Query Processing
Schemes: A Survey. ACM CSUR, 51(4):84:1–84:36,
2018.

212. M. Wylot, J. Pont, M. Wisniewski, and P. Cudré-
Mauroux. DipLODocus[RDF]: Short and Long-Tail
RDF Analytics for Massive Webs of Data. In Interna-
tional Semantic Web Conference (ISWC), pages 778–
793. Springer, 2011.

213. N. Yakovets, P. Godfrey, and J. Gryz. Evaluation of
SPARQL Property Paths via Recursive SQL. In Alberto
Mendelzon International Workshop on Foundations of
Data Management (AMW). CEUR, 2013.

214. N. Yakovets, P. Godfrey, and J. Gryz. Query Planning
for Evaluating SPARQL Property Paths. In Interna-
tional Conference on Management of Data (SIGMOD),
pages 1875–1889. ACM, 2016.

215. S. Yang, X. Yan, B. Zong, and A. Khan. Towards effec-
tive partition management for large graphs. In Interna-
tional Conference on Management of Data (SIGMOD),
pages 517–528. ACM, 2012.

216. M. Q. Yasin, X. Zhang, R. Haq, Z. Feng, and
S. Yitagesu. A Comprehensive Study for Essentiality
of Graph Based Distributed SPARQL Query Process-
ing. In International Conference on Database Systems
for Advanced Applications (DASFAA), pages 156–170.
Springer, 2018.

217. P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.
TripleBit: A Fast and Compact System for Large Scale
RDF Data. PVLDB, 6(7):517–528, 2013.

218. L. H. Zambom Santana and R. dos Santos Mello. An
Analysis of Mapping Strategies for Storing RDF Data
into NoSQL Databases. In Symposium on Applied Com-
puting (SAC), pages 386–392. ACM, 2020.

219. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A
distributed graph engine for web scale RDF data. In
PVLDB, pages 265–276, 2013.

220. W. E. Zhang, Q. Z. Sheng, K. Taylor, and Y. Qin. Iden-
tifying and Caching Hot Triples for Efficient RDF Query
Processing. In Database Systems for Advanced Appli-
cations (DASFAA), pages 259–274. Springer, 2015.

221. X. Zhang, L. Chen, Y. Tong, and M. Wang. EAGRE:
Towards scalable I/O efficient SPARQL query evalua-
tion on the cloud. In International Conference on Data
Engineering (ICDE), pages 565–576, 2013.

222. W. Zheng, L. Zou, X. Lian, H. Zhang, W. Wang, and
D. Zhao. SQBC: an efficient subgraph matching method
over large and dense graphs. Inf. Sci., 261:116–131,
2014.

223. L. Zou, J. Mo, L. Chen, M. Tamer Özsu, and
D. Zhao. gStore: Answering SPARQL queries via sub-
graph matching. PVLDB, 4(8):482–493, 2011.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 29

A Survey of RDF Stores

We now present a survey of local and distributed RDF
stores, and how they use the aforementioned techniques.
At the end of this section we will discuss some gen-
eral trends for RDF stores. We include here systems
for which we could find technical details regarding (at
least) the storage, indexing and processing of joins over
RDF graphs. In the case of distributed RDF stores, we
expect similar technical details, along with the type of
partitioning and/or replication used. We include sys-
tems with associated publications, as well as systems
that are unpublished but widely known in practice.
Both local and distributed systems are presented in
approximate chronological order, based on the year of
publication, or an approximate year in which the sys-
tem was released. For unpublished local stores, we in-
clude the year where RDF was first supported. For un-
published distributed stores, we include the approxi-
mate year when distributed features were added. Some
stores that are often deployed in local environments also
support distribution; they are included in both sections.
Some systems are unnamed; if it is a distributed store
that extends an existing local store, we append the suf-
fix “-D” or “-D2” to the local store’s name; otherwise we
use an abbreviation based on authors and year. Where
systems change name, we prefer the more modern name.
The papers sometimes use different terminology to refer
to similar concepts; we often map the original terminol-
ogy to that used in the body of the survey in order to
increase coherence and improve readability.

A.1 Local RDF Stores

The local RDF stores we include, and the techniques
they use, are summarized in Table 4.

Redland [22] (2001) is a set of RDF libraries for native
storage of RDF that has seen various developments over
the years. The original paper describes triple-table like
storage based on creating three hash maps – sp→o,
po→s, so→p – which, given two elements of an RDF
triple, allow for finding the third element; for example,
using po→s, we can find the subjects of triples with
a given predicate and object. The hash maps can be
stored either in-memory or on a persistent storage. Sup-
port for the RDQL and SPARQL query languages were
later enabled through the Rasqal RDF query library.

Jena [128] (2002) uses relational databases to store RDF
graphs as triple tables, with entries for subject, predi-
cate, object IRIs, and object literals. IRIs and literals
are encoded as IDs and two separate dictionaries are

created for both. Indexing is delegated to an underly-
ing relational DBMS (e.g., Postgresql, MySQL, Oracle,
etc.). RDQL is used as a query language and is trans-
lated into SQL and run against the underlying rela-
tional DBMS. The Jena store would later be extended
in various directions, with SDB referring to the use of
relational-style storage (per the original system), and
TDB referring to the use of native storage.

RDF4J [34] (2002), known originally as Sesame, pro-
vides persistent storage and querying of RDF data.
RDF4J provides storage-independent solutions and can
thus be deployed on top of a variety of storage engines
such as RDBMSs and object-oriented databases. Graph
queries can be expressed with the RQL language. The
storage, indexing, and query processing techniques de-
pend on the underlying storage engine used by RDF4J.
Recent versions of RDF4J features improved function-
alities such as both in-memory and persistent data stor-
age, SeRQL and SPARQL support etc.

RSSDB [97,98] (2002) stores an RDF graph using a
vertical partitioning approach with Postgres as the un-
derlying database. Two variants are considered for class
instances: creating a unary table per class (named after
the class, with rows indicating instances), or creating
one binary table called instances (with rows contain-
ing both the instance and the class) in order to reduce
the number of tables. Four tables are also added to
model RDFS definitions (classes, properties with their
domain and range, sub-classes and sub-properties). The
system supports queries in RQL (proposed in the same
paper [98]), which are translated to SQL by an RQL
interpreter and evaluated over Postgres.

3store [74] (2003) uses MySQL as its back-end, sort-
ing RDF graphs in four tables, namely a triple table, a
models table, a resource table, and a literal table. The
triple table stores RDF triples (one per row) with ad-
ditional information: (1) the model the triple belongs
to, (2) a boolean value to indicate if the object is a lit-
eral, and (3) a boolean value to indicate if this triple
is inferred. The models, resource, and literal tables are
two-column tables that dictionary encode models, re-
sources, and literals, respectively. Queries expressed in
RDQL are rewritten to SQL for execution over MySQL.

AllegroGraph 9 (2003) is a general purpose store for
semi-structured data that can be used to query docu-
ments (e.g., JSON) and graph data (e.g., RDF). RDF
data is stored and indexed in six permutations as quads,

9 https://franz.com/agraph/allegrograph/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://franz.com/agraph/allegrograph/
https://doi.org/10.20944/preprints202104.0199.v1

30 Ali et al.

Table 4: Categorization of local RDF Engines.
Storage: T = Triple Table, Q = Quad Table, V = Vertical Partitioning, P = Property table, G = Graph-based, M = Miscellaneous
Indexing: T = Triple, Q = Quad, E = Entity, P = Property, N = Path/Navigational, J = Join, S = Structural, M = Miscellaneous
Join Proc.: P = Pairwise, M = Multiway, W = Worst case optimal
Query Proc.: N = Paths/Navigational, R = Relational, Q = Query rewriting

Engine Year Storage Indexing Join Pr. Query Pr.
T Q V P G M T Q E P N J S M P M W N R Q

RedLand [22] 2001 3 3
Jena [128] 2002 3 3 3 3
RDF4J [34] 2002 3 3 3 3 3
RSSDB [97,98] 2002 3 3 3 3
3store [74] 2003 3 3 3 3
AllegroGraph 2003 3 3 3 3 3
Jena2 [203] 2003 3 3 3 3 3 3
CORESE [45,46] 2004 3 3 3 3
Jena TDB 2004 3 3 3 3 3 3 3
RStar [121] 2004 3 3 3 3
BRAHMS [90] 2005 3 3 3
GraphDB [105,26] 2005 3 3 3 3 3 3 3
Kowari [205] 2005 3 3 3 3 3
RDF_MATCH [43] 2005 3 3 3 3 3 3 3 3 3
YARS [77] 2005 3 3 3 3
RDFBroker [179] 2006 3 3 3 3 3
Virtuoso [54] 2006 3 3 3 3 3 3
GRIN [194] 2007 3 3 3
SW-Store [1] 2007 3
Blazegraph [190] 2008 3 3 3 3 3 3 3 3
Hexastore [201] 2008 3 3 3 3
RDF-3X [142] 2008 3 3 3 3 3
BitMat [15] 2009 3 3 3 3
DOGMA [33] 2009 3 3 3 3
LuposDate [61] 2009 3 3 3
Parliament [106] 2009 3 3 3 3
RDFJoin 2009 3 3 3 3 3 3 3
System Π [207] 2009 3 3 3 3 3
HPRD [117] 2010 3 3 3 3 3 3 3
Stardog 2010 3 3 3 3 3
dipLODocus [212] 2011 3 3 3 3 3
gStore [223] 2011 3 3 3 3
SpiderStore [138] 2011 3 3
SAINT-DB [154] 2012 3 3 3
Strabon [109] 2012 3 3 3 3 3 3
DB2RDF [29] 2013 3 3 3 3 3 3
OntoQuad [155] 2013 3 3 3 3 3
OSQP [191] 2013 3 3 3 3
Triplebit [217] 2013 3 3 3 3 3
R3F [103,104] 2014 3 3 3 3 3 3
RQ-RDF-3X [113] 2014 3 3 3 3
SQBC [222] 2014 3 3 3
WaterFowl [48] 2014 3 3 3 3
GraSS [120] 2015 3 3 3 3
k2-triples [11] 2015 3 3 3
RDFCSA [32,31] 2015 3 3 3
RDFox [138] 2015 3 3 3 3 3
TurboHOM++ [102] 2015 3 3 3
RIQ [100] 2016 3 3 3 3 3
axonDB [131] 2017 3 3 3 3 3
HTStore [116] 2017 3 3
AMBER [87] 2018 3
Jena-LTJ [81] 2019 3 3 3
BMatrix [30] 2020 3 3
Tentris [24] 2020 3 3 3 3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 31

which are additionally associated with a triple identi-
fier. SPARQL queries are supported, where the most
recent version provides an option for two query en-
gines: SBQE, which is optimized for SPARQL 1.0-style
queries, and MJQE, which features merge joins and
caching techniques optimized for property paths.

Jena2 [203] (2003) is a revised version of the original
Jena database schema, with support for both triple and
property tables. Unlike the original version, IRIs and
literals are stored directly in the tables, unless they ex-
ceed a certain length, in which case they are dictio-
nary encoded by two separate tables; this allows fil-
ter operations to be directly performed on the triple
and property tables, thus reducing dictionary lookups,
but increasing storage sizes as string values are stored
multiple times. Indexing is handled by an underlying
relational database, and graph queries in RDQL are
rewritten to SQL queries evaluated over the database.

CORESE [45,46] (2004) began as a search engine with
path-finding functionality and inference support for on-
tologies [45], but was extended to support SPARQL
query features [46]. CORESE models RDF graphs as
conceptual graphs; for simplicity we discuss their meth-
ods in terms of the RDF model. RDF graphs are in-
dexed according to the terms, enabling the efficient
evaluation of triple patterns. Given a basic graph pat-
tern, the triple patterns are reordered based on heuris-
tics – such as the number of constants or filters associ-
ated with the triple pattern, or the number of variables
bound by previous triple patterns in the order – as well
as cardinality estimates. A nested-loop style algorithm
is then applied to perform joins. Filters are also evalu-
ated as soon as possible to reduce intermediate results.

Jena TDB 10 (2004) is a native RDF store that has
seen continuous development in the past decades. A
TDB instance consists of three tables: a node table
(a dictionary, allowing to encode/decode RDF terms
to/from 8-byte identifiers), a triple/quad table (with
dictionary-encoded terms), and a prefixes table (used
to store common prefixes used for abbreviations). Stor-
age is based on custom B+trees, which are used to build
indexes for various triple/quad permutations. Join pro-
cessing uses pairwise (nested-loop) joins, with a variety
of statistic- and heuristic-based methods available for
join reordering. SPARQL 1.1 query processing is im-
plemented in the custom Jena ARQ query processor.
Jena TDB has become the recommended RDF store for
Jena, with older relational-based storage (later named
Jena SDB) having been deprecated.
10 https://jena.apache.org/documentation/tdb/architectu
re.html

RStar [121] (2004) is designed to store (RDFS-style)
ontology information and instance data. The storage
is based on multiple relations, stored in the IBM DB2
RDBMS. Five two-column tables are used to store on-
tological data (property dictionary, sub-property rela-
tions, class dictionary, sub-class relations, and domain
and range relations). Another five two-column tables
are used to store instance-related data (literal dictio-
nary, IRI dictionary, triples, class instances, namespace
dictionary). RStar pushes indexing and other tasks to
the underlying database. The RStar Query Language
(RSQL) is used to express queries, where RStar trans-
lates RSQL into the SQL of an underlying database.

BRAHMS [90] (2005) is an in-memory RDF store. The
RDF graph is stored and indexed in three hash tables
– s→po, o→sp, p→so – which allow for finding triples
that use a particular constant. The main motivating
use-case of BRAHMS is to find semantic associations
– i.e., paths between two subject/object nodes – in
large RDF graphs. This path-search functionality was
implemented in BRAHMS using depth-first search and
breadth-first search algorithms.

GraphDB [105,26] (2005) (formerly known as OWLIM)
stores RDF graphs using a mix of triple and quad ta-
bles. In the most recent version, indexes are built for
two triple permutations (pos and pso) as well as a
quad permutation (gpso). Predicate lists (sp and op)
can also be indexed in order to quickly find the predi-
cates associated with a given subject or object. Terms
are dictionary encoded. Joins are reordered according
to cardinality estimations. SPARQL 1.1 is supported,
along with a wide range of other features, including spa-
tial features, full-text indexing, inference, semantic sim-
ilarity, integration with MongoDB, and more besides.

Mulgara [205,135] (2005), a fork of an earlier RDF store
known as Kowari, implements native RDF storage in
the form of quads tables using AVL trees. Dictionary
encoding based on 64-bit longs is used. Support for
transactions is provided using immutable arrays that
store quads on disk in compressed form, with skiplists
enabling fast search; insertions and deletions lead to
a new immutable array being generated on disk. In-
dexing is based on six permutations of quads (which
is sufficient to efficiently evaluate all sixteen possible
quad patterns). Joins are evaluated pairwise and re-
ordered (possibly on-the-fly) based on cardinality esti-
mations. Queries are expressed in the iTQL language,
where SPARQL support was added later.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://jena.apache.org/documentation/tdb/architecture.html
https://jena.apache.org/documentation/tdb/architecture.html
https://doi.org/10.20944/preprints202104.0199.v1

32 Ali et al.

RDF_MATCH [43] (2005) is an RDF store that uses
the Oracle RDBMS as an underlying database. It stores
RDF data in two different tables: a dictionary table,
and a quads table. Indexes are defined based on B-trees.
Queries are evaluated as self-joins over the quads table,
which is further joined with the dictionary. Materialized
views can further be used to index s–s, s–p, s–o, p–
p, p–o and o–o joins on-demand, as well as selected
property tables. Support for Datalog-style rules is also
provided. Queries are expressed in an SQL-style syntax,
with functions used to express graph patterns, which in
turn are interpreted and evaluated by Oracle.

YARS [77] (2005) is a native RDF store that indexes
quad tables in B+trees using dictionary encoded terms.
It uses four types of indexes: dictionary indexes, key-
word indexes, quad indexes (with six permutations),
and cardinality indexes that count occurrences of quad
patterns. YARS implements pairwise (nested-loop) joins
that are reordered based on cardinalities. Basic graph
patterns in Notation3 (N3) syntax are supported.

RDFBroker [179] (2006) is an RDF store that follows a
property table approach. For each subject in the graph,
its signature (equivalent to the notion of characteristic
sets that would come later) is extracted, with a property
table defined for each signature, including a column for
the subject, and a column for each property in the sig-
nature. Support for RDFS reasoning is also described.
An index over signatures is proposed based on a lat-
tice that models set containment between signatures.
Given a signature extracted from the query, the lattice
can be used to find tables corresponding to signatures
that subsume that of the query. A prototype based on
in-memory storage is described, implementing typical
relational query optimizations such as join reordering.

Virtuoso [54] (2006) stores RDF data as a quad table,
where in the most recent version, by default, the quad
table includes five indexes: psog (for p, ps, pso and
psog prefixes), pogs (for po and pog), sp (for s), op
(for o), and gs (for g). The table is sorted according
to the primary key psog. If only the subject or object
are known, the sp/op index can be used to identify
predicates, allowing the psog/pogs index to be subse-
quently used. In the case that only the graph is known,
the gs index is joined with sp and then with psog.
Subjects, predicates and graph names are dictionary
encoded; objects are stored in raw form (for fast fil-
tering). By default, column-wise storage is used. Query
execution is based on translating SPARQL queries into
SQL to be executed on a custom underlying database.

GRIN [194] (2007) is an RDF store based on a struc-
tural index (see Section 5.6). This index is a binary tree,
where the root refers to all the nodes of the graph, and
both children divide the nodes of its parents based on
a given distance from a given node in the graph. The
leaves can then be seen as forming a partition of the
triples in the graph induced by the nodes in its division.
The structural index is used to find small subgraphs
that may generate results for a query, over which an
existing subgraph matching algorithm is applied.

SW-Store [2,1] (2007) is an RDF store based on verti-
cal partitioning. SW-Store relies on a column-oriented
DBMS called C-store [182], which is shown to pair well
with vertical partitioning in terms of performance (e.g.,
the object column of a foaf:age table with have inte-
gers in an interval [0, 150], which are highly compress-
ible). Each table is indexed by both subject and ob-
ject. An “overflow” triple table is used for inserts along-
side the compressed, vertically partitioned tables. Jena
ARQ is used to translate SPARQL queries into SQL for
evaluation over C-Store. Pairwise joins are used, pre-
ferring merge joins when data are sorted appropriately,
otherwise using index-nested loop joins. Materialization
of s–o joins is also discussed.

Blazegraph [190] (2008), formerly known as BigData,
is a native RDF store supporting SPARQL 1.1. Blaze-
graph allows for indexing triples for RDF graphs, or
quads for SPARQL datasets. Three index permutations
are generated for triples, and six permutations are gen-
erated for quads; indexes are based on B+trees. Both
row and column data storage models are supported,
which can be saved both in-memory or on-disk. Dic-
tionary encoding with 64-bit integers is used for com-
pressed representation of RDF triples. Two query opti-
mization strategies are available: the default approach
uses static analysis and cardinality estimation; the sec-
ond approach uses runtime sampling of join graphs.
Supported joins include hash joins, index nested-loop
joins, merge joins, and multiway star joins.

Hexastore [201] (2008) is an in-memory RDF store based
on adjacency lists similar to Figure 8. Six indexes are
built for all 3! = 6 possible orderings of the elements
of a triple. For example, in the spo index, each subject
s is associated with an ordered vector of predicates,
wherein each p in turn points to an ordered vector of
objects. In the pso index, each p points to a vector of
subjects, wherein each s points to the same vector of
objects as used for sp in the spo index. Terms are dic-
tionary encoded. Having all six index orders allows for
(pairwise) merge joins to be used extensively.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 33

RDF-3X [140,141,142] (2008) stores an RDF graph as
triple tables in compressed indexes, which are based
on clustered B+trees whose values are delta-encoded
to reduce space. Triples are indexed in all six possible
ways. RDF-3X also indexes counts for all triple pat-
terns with one or two (distinct) constants; thus, it can
find the exact number of triples matching, for example,
(s,p,o), (s,p,o), etc. Counts are also maintained for fre-
quent path and star joins. Join reordering is based on a
dynamic programming procedure, which uses the afore-
mentioned counts as cardinality statistics, and leverages
the complete indexing of all six permutations to enable
merge joins, further evaluating multiway joins in the
case of star patterns. A later extension adds sideways
information passing strategies [141] in order to filter
intermediate results based on global heuristics.

BitMat [15,14] (2009) considers a one-hot encoding of
an RDF graph, i.e., a 3-dimensional bit array (or ma-
trix/tensor) of dimension |S| × |P | × |O|, where S, P ,
O, indicate the set of subjects, predicates and objects
of the graph; and where index s, p, o contains a 1 if
the corresponding (dictionary encoded) triple (s, p, o)

exists, or 0 otherwise. The system stores slices of this
array (called BitMats), where for each predicate, so and
os BitMats are stored; for each subject, a po BitMat is
stored; and for each object, a ps BitMat is stored. Each
BitMat is a 2-dimensional bit array; e.g., the os matrix
of a given predicate p enables finding all objects match-
ing o in (s, p,o) or all subjects matching s in (s, p, o).
Though op and sp BitMats could be indexed for sub-
jects and objects, resp., the authors argue they would be
rarely used. BitMats also store the count of 1’s (triples)
they contain, a row vector indicating which columns
contain a 1, and a column vector indicating which rows
contain a 1. In total, 2|P ||S||O| BitMats are generated,
gap compressed, stored on disk, and loaded into mem-
ory as needed. Bitwise AND/OR/NOT operators are
used, in memory, to process multiway joins.

DOGMA [33] (2009) is a graph-based RDF store, where
an RDF graph is first decomposed into subgraphs us-
ing a graph partitioning algorithm. These subgraphs are
indexed as the leaves of a balanced binary tree stored
on disk. Each non-leaf node in this tree encodes the
k-merge of its two children, which is a graph with k

nodes that is isomorphic to a quotient graph (see Sec-
tion 5.6) of both children. DOGMA then proposes a va-
riety of algorithms for evaluating basic graph patterns
with constant predicates. The basic algorithm gener-
ates a set of candidate results for each individual vari-
able node based on its incoming and outgoing edges;
starting with the node with the fewest candidates, the
algorithm then proceeds to check the edges between

them in a depth-first manner (similar to wco joins).
Further algorithms prune the sets of candidates based
on their distance from the candidates of other nodes in
the query, leveraging the distance within and between
nodes in the subgraphs in the leaves of the binary tree.

LuposDate [61] (2009) stores data in a triple table. A
total of seven hash indexes are added for s, p, o, sp,
so, po, spo, enabling efficient evaluation of all eight
triple patterns. Triples are also annotated with their
rank (position in the order) with respect to the six per-
mutations of the triple; for example, the ops rank indi-
cates the position of the triple when the graph is sorted
in ops order. These ranks are used for fast sorting of
intermediate results when applying sort-merge joins.

Parliament [106] (2009) stores RDF graphs in three
types of tables: a resource table encoding details of in-
dividual terms, a statement table encoding triples, and
a dictionary table. These tables are stored as linked
lists. For each RDF term, the resource table stores the
first triple containing the term in the statement table;
the number of triples that use it in the subject, pred-
icate and object position; a pointer to its entry in the
dictionary; and a bitvector encoding metadata about
the term. The statement table contains eight compo-
nents: a statement identifier; three identifiers for the
subject, predicate, and object of the triple; three state-
ment identifiers pointing to the next triple with the
same subject, predicate, and object; and a bitvector
for encoding metadata of the statement. This storage
scheme avoids the need for multiple orders and enables
fast lookups when triple patterns have one constant; for
triple patterns with multiple constants, however, the
most selective constant is looked up, with filters run to
check the other constants. SPARQL query processing is
enabled through existing libraries, such as Jena ARQ.

RDFJoin [129] (2009) stores RDF graphs using three
types of tables. Two dictionary tables are used to en-
code and decode subjects/objects and predicates. Three
triple tables are used, where each has two positions of
the triple as the primary key, and the third position is
encoded as a bit vector; for example, in the po table,
predicate and object are used as a primary key, and
for each predicate–object pair, a bit vector of length
|so(G)| is given, with a 1 at index k encoding a triple
with the subject identifier k for the given predicate
and object. Join tables store the results of s–s, o–o,
and s–o joins, encoded with the two predicates of both
triples as primary key (joins using the same predicate
twice are excluded), and a bit vector to encode the join
terms for that predicate pair (the subject/object that

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

34 Ali et al.

matches the join variable). MonetDB and LucidDB are
proposed as underlying databases. SPARQL queries are
supported, where joins are evaluated using the join in-
dexes and pairwise algorithms. Inference support would
later be added in the extended RDFKB system [130].

System Π [207] (2009) is a graph-based RDF store.
Nodes of the graph are indexed with an identifier, value
and type, while edges are indexed as triples, with their
subject, predicate and object identifiers. Nodes are then
linked to their inward and outward edges, which en-
ables lookups for triples with a given subject or object.
A more compressed version where outward edges only
store the predicate and object, or inward edges only
store the subject and predicate, is also proposed. Edges
are then grouped by their vertex (outward edges by sub-
ject, inward edges by object). The compressed variant
is thus similar to an adjacency list. Indexes are built
for three triple permutations, as well as for reachability
queries on a single predicate (PLSD – see Section 5.4).
SPARQL (1.0) queries are supported over the proposed
indexes using pairwise joins, with the PLSD index used
to support entailment over transitive properties.

HPRD [117] (2010) is an RDF store based on three
types of index over the dictionary-encoded graph. Triple
indexes are based on B+trees and cover three triple per-
mutations: spo, po, os. A path index is built using a
suffix arrays, and is used only to cache paths that are
commonly accessed in queries; the paths are indexed by
their predicates. Context indexes are based on B+Trees
and are used to support temporal data, versioning, or
named graphs; six permutations are covered, namely
gspo, spo, poc, ocs, cp and so. Cardinality statis-
tics are further stored for triple patterns, and used for
greedy join reordering. RDQL queries supported.

dipLODocus [212] (2011) is an RDF store based on the
notion of a “molecule”, which is a subgraph surround-
ing a particular “root” node. The root nodes are defined
based on matching triple patterns provided by the ad-
ministrator. The molecule of a root node is then the
subgraph formed by expanding outward in the graph
until another root node is encountered. Dictionary en-
coding is used. Indexes are further built mapping nodes
and the values of properties indicated by the adminis-
trator to individual molecules. SPARQL is supported
through the Rasqal query library, with joins pushed
within individual molecules where possible; otherwise
hash joins are used. Aggregate queries are further pushed
to the indexes on values of individual properties (which
offer benefits similar to column-wise storage).

Stardog 11 (2010) is a commercial RDF store based on
RocksDb: a persistent key-value store for fast storage.
Stardog indexes quads in various permutations using
RocksDB. Different types of pairwise joins – such as
hash join, bind join, merge join etc. – are used. Stardog
supports SPARQL 1.1, full-text search through Lucene,
ACID transactions, versioning, and a variety of other
features, including support for property graphs.

gStore [223] (2011) is a graph-based RDF store. The
RDF graph is stored using adjacency lists (see Sec-
tion 4.5) where each node is associated with a bit vector
– which serves as a vertex signature (see Section 5.2)
– that encodes the triples where the given node is the
subject. gStore then indexes these signatures in a vertex
signature tree (VS-tree) that enables multi-way joins.
The leaves of the VS-tree encode signatures of nodes,
and non-leaf nodes encode the bitwise OR of their chil-
dren; the leaves are further connected with labelled
edges corresponding to edges between their correspond-
ing nodes in the graph. Basic graph patterns can then
be encoded in a similar manner to the graph, where
gStore then evaluates the pattern by matching its sig-
nature with that of the indexed graph.

SpiderStore [138] (2011) is an in-memory graph store
based on adjacency lists. Specifically, for each node in
the RDF graph, an adjacency list for incoming and
outgoing edges is stored. Likewise, for each predicate,
a list of subject nodes is stored. Rather than storing
the constants directly in these lists, pointers are stored
to the location of the term (with the adjacency lists
for the node or the subjects of the predicate). Along-
side these pointers, cardinality metadata are stored.
(Though SPARQL queries with basic graph patterns
and filters are evaluated in the experiments, the types
of join algorithms used are not described.)

SAINT-DB [154] (2012) is an RDF store with a struc-
tural index that organizes triples in the graph according
to the type of join that exists between them (s–s, p–o,
etc.). The index itself is then a directed edge-labeled
graph whose nodes represent a set of triples from the
graph, edges indicate that some pair of triples in both
nodes are joinable, and edge labels indicate the type of
join that exists (which makes the graph directed as s–o
differs from o–s). The nodes of the index then form a
partition of the graph: no triple appears in more than
one node, and their union yields the graph. This in-
dex can range from a single node with all triples in
the graph (with loops for each type of join present), to
singleton nodes each with one triple of the graph. A

11 https://docs.stardog.com/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://docs.stardog.com/
https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 35

condition based on semi-joins is used to strike a bal-
ance, minimizing the intermediate results generated for
individual triple patterns. Given a basic graph pattern,
each triple pattern is then mapped to nodes in the struc-
tural index, where the triple patterns it joins with must
match some triple in a neighbor on an edge whose label
corresponds to the type of join.

Strabon [109] (2012) is an RDF store that supports cus-
tom features for storing and querying geospatial data
(specifically in the form of stRDF [108] data). Stra-
bon is built upon Sesame/RDF4J, which is chosen as
an open-source solution that can easily integrate with
PostGIS: a DBMS with spatial features. Strabon then
stores RDF using a vertical partitioning scheme with
dictionary encoding; an identifier for each triple is also
included. B+tree indexes are built for the three columns
of each table (subject, predicate, identifier). Strabon
supports an extension of SPARQL, called stSPARQL
[108], for querying stRDF based datasets, with spatial
features supported through PostGIS.

DB2RDF [29] (2013) uses a relational schema similar
to property tables to store RDF data. However, rather
than having a column for each property/predicate asso-
ciated with a given subject, DB2RDF uses a “primary
hash” table with columns s, p1, o1, . . . , pk, ok, where
each pi, oi pair of columns indicates the ith predicate–
object pair associated with the subject listed in the s
column. A binary “spill” column is added, with a 1 indi-
cating that a subject has more than k triples, in which
case it will occupy more than one row of the table. Rows
for subjects with fewer than k triples are completed
with nulls. A second table is used to deal with multi-
valued properties, where if a subject s has multiple val-
ues for the property p – say o1, . . . , on – then a single
fresh value v is used in the primary hash table, which is
mapped to o1, . . . , on (as a binary relation) in the sec-
ond table. Two orders are indexed: in the second order,
subjects and objects are reversed. IBM DB2 is used as
the underlying database for experiments, with SPARQL
queries being optimized and translated to SQL.

OntoQuad [155] (2013) is an RDF store that extends
the triple-based representation of Hexastore to addi-
tionally support quads. A structure similar to a trie is
used, where the top layer is a vector of values for s,
p, o, g; the second level encodes sp, . . . ,go, etc., with
three children for each parent in the top layer (e.g.,
sp, so, sg for s); the third layer has two children for
each parent in the second layer encoding spo, . . . ,gop;
the fourth layer has one child for each parent in the
third layer, completing the quad permutation. B-trees

are then used for indexing. Both pairwise and multiway
joins are supported using zig-zag joins that seek for-
ward to the maximum compatible join value across the
triple patterns. Cardinality estimates and query rewrit-
ing rules are used to optimize SPARQL query plans.

OSQP [191] (2013) is an RDF store based on a struc-
tural index using various notions of bisimulation, where
two nodes in the graph are bisimilar if they cannot be
distinguished from their paths. The nodes of the graph
are then partitioned into sets that are pairwise bisimi-
lar. The index is then based on a quotient graph, where
supernodes correspond to a set of bisimilar nodes in the
input graph. In order to reduce index sizes, a parameter
corresponding to path lengths is added, such that bisim-
ulation only considers paths within a bounded region of
the graph rather than the entire graph. A basic graph
pattern is then matched over the quotient graph (kept
in-memory), where the triples corresponding to each
matched node are retrieved (from the disk) and used
to compute the final results. Custom optimizations are
considered for triples with unprojected variables, whose
triple patterns can be definitively “satisfied” and thus
pruned based on the index; and selective triple patterns,
which are evaluated directly over the RDF graph.

Triplebit [217] (2013) represents a dictionary-encoded
RDF graph as a compressed 2-dimensional bit matrix.
Each column of the matrix represents a triple, and each
row represents a subject/object node. The subject and
object rows are assigned 1 for the corresponding col-
umn of the triple. Columns are sorted by predicate,
where a range of columns corresponds to the triples for
that predicate. The columns for triples are sparse (at
most two 1’s) and thus the two identifiers for subjects
and objects are used, rather than storing 1’s; two orders
are maintained for so and os (thus effectively covering
pso and pos orders). Two auxiliary indexes are used in
TripleBit. Given a subject or object node and a pred-
icate node, the first index (called ID-Chunk) supports
lookups for finding the range for the unspecified ob-
ject or subject. Given a subject or object node alone,
the second index (called ID-predicate) finds predicates
associated with that subject or object. Basic graph pat-
terns are evaluated using multiway merge-joins for star
joins, with semi-joins used to reduce the number of in-
termediate results across star joins. Join ordering uses
a greedy strategy based on selectivity estimates.

R3F [103,104] (2014) is an extension of RDF-3X with
path-based indexes and novel join processing techniques.
The first addition is the “RP-index”, which indexes all
nodes with a given incoming path expression up to a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

36 Ali et al.

certain length; for example, the incoming path expres-
sion pqr (of length 3) indexes all nodes z such that
there exists w, x, y, such that (w, p, x), (x, q, y), (y, r, z)
are all triples of the graph. The RP-index is structured
as a trie indexing the prefixes of the incoming path ex-
pressions, whose leaves are the list of nodes (which are
dictionary encoded, sorted and delta encoded). Virtual
inverse predicates are added to the RDF graph to sup-
port paths in both directions. The second extension is a
modification to the sideways information passing strat-
egy of RDF-3X to incorporate information about paths
for filtering additional intermediate results.

RQ-RDF-3X [113] (2014) is an extension of RDF-3X –
which supports triples – towards support for quads. The
extension follows the same principles and techniques
for RDF-3X, but the extension to quads requires cov-
ering additional permutations. Indexes are built for all
4! = 24 quad permutations, similar to how RDF-3X
indexes all 3! = 6 triple permutations; having all per-
mutations enables reading the results for any variable
of any triple pattern in sorted order, which in turn en-
ables merge joins. The delta encoding used by RDF-
3X is extended to the fourth element. Like in RDF-3X,
counts are indexed for all quad patterns with 1, 2, or 3
constants, requiring 4, 12 and 24 indexes, respectively
(40 in total). Join and query processing use RDF-3X’s
techniques. RQ-RDF-3X then offers optimized support
for reification using named graphs/triple identifiers.

SQBC [222] (2014) is a graph store – with support for
RDF graphs – inspired by existing subgraph match-
ing techniques for efficiently finding subgraph isomor-
phisms.12 In order to index the graph, codes are ex-
tracted for each node that capture structural informa-
tion about it, including its label, the largest clique con-
taining it, the degrees of its neighbours, etc. Given a
basic graph pattern, candidates are identified and fil-
tered for variable nodes. If the basic graph pattern has
no cliques, degree information is used; otherwise clique
sizes can be used to filter candidate matches.

WaterFowl [48] (2014) is a compact RDF store based
on succinct data structures. The RDF graph is dictio-
nary encoded and sorted in spo order, and represented
as a trie: the first layer denotes subjects, connected to
their predicates in a second layer, connected to their ob-
jects in the third layer. This trie structure is encoded

12 The evaluation of basic graph patterns in SPARQL is
defined in terms of homomorphisms, rather than subgraph
isomorphisms as supported by SQBC, with the difference be-
ing that two or more variables in a basic graph pattern can
match one node in the RDF graph.

in a compact representation using a combination of bit
strings that indicate the number of children for a par-
ent (e.g., for predicates, 100101 . . . tells us that the first
subject has three children (unique predicates) and the
second has two); and wavelet trees that encode the se-
quence of terms themselves (e.g., the sequence of predi-
cates). Pairwise joins are evaluated in terms of left-deep
plans, with further support for SPARQL (1.0) features.
RDFS inference is also supported.

GraSS [120] (2015) is an RDF store that is based on
decomposing basic graph patterns into subgraph pat-
terns forming star joins (considering s–s, s–o, or o–o
joins). An “FFD-index” for star joins is proposed, where
for each node, a bit-string signature is computed that
encodes its incoming and outgoing edges, i.e., the triples
in which it appears as subject or object. A neighbour-
hood table is constructed: each row denotes a node,
which is associated with its signature and edges. Five
triple permutations are further indexed (covering sp*,
op*, s*, p*, o*), where in the sp* permutation, for
example, (s, p) pairs are mapped to a list of objects
and their degrees. A basic graph pattern is then de-
composed into sub-patterns forming star joins, which
are evaluated using the available indexes.

k2-triples [11] (2015) is a compact in-memory RDF
store based on k2 trees. The RDF graph is first dictio-
nary encoded. For each predicate, a k2 tree is used to
index its subjects and objects. In order to support vari-
able predicates in triple patterns, sp and op indexes are
used to map subjects and objects, respectively, to their
associated predicates; these indexes are encoded using
compressed predicate lists. For processing basic graph
patterns, s–s, s–o, o–s and o–o index nested-loop joins
and merge joins are supported. A sideways information
passing optimization is supported where two k2 trees
involved in a join can be descended in a coordinated
fashion to filter intermediate results.

RDFox [138] (2015) is an in-memory RDF engine that
supports materialization-based Datalog reasoning. The
RDF graph is stored as a triple table implemented as a
linked list, which stores identifiers for subject, predicate
and object, as well as three pointers in the list to the
next triple with the same subject, predicate and object
(similar to Parliament [106]). Four indexes are built: a
hash table for three constants, and three for individ-
ual constants; the indexes for individual constants offer
pointers to the first triple in the list with that constant,
where patterns with two constants can be implemented
by filtering over this list, or (optionally) by using vari-
ous orderings of the triple list to avoid filtering (e.g., a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 37

triple list ordered by spo can be used to evaluate pat-
terns with constant subject and predicate without fil-
tering). These in-memory indexes support efficient par-
allel updates, which are key for fast materialization.
According to the implementation, (index) nested-loop
joins are supported; optionally join plans can be gen-
erated based on tree decompositions. SPARQL 1.1 is
further supported over the engine.

RDFCSA [32,31] (2015) is a compact in-memory RDF
store based on text indexes. Specifically, triples of the
RDF graph are dictionary encoded and considered to
be strings of length 3. The graph is thus sorted and en-
coded as a string of length 3n, where n is the number
of triples. This string is indexed in a compressed suf-
fix array (CSA): a compact data structure commonly
used for indexing text. The CSA is modified by shift-
ing elements so that instead of indexing a string of 3n
elements, triples cycle back on themselves, giving n cir-
cular strings of length 3. Thus in an spo permutation,
after reading the object of a triple, the next integer
will refer to the subject of the same triple rather than
the next one in the order. With cyclical strings, one
triple permutation is sufficient to support all triple pat-
terns; spo is in fact equivalent to pos and osp. Merge
joins, sort–merge joins and a variant of index nested-
loop joins (called “chain joins”) are supported.

TurboHOM++ [102] (2015) is an in-memory, graph-based
RDF store. The RDF graph is stored as the combina-
tion of adjacency lists for incoming and outgoing triples
(see Section 4.5), and an index that allows for finding
nodes of a particular type (based on rdf:type). Eval-
uation of basic graph patterns is then conducted by
generating candidates for an initial node of the query
graph based on local information (intersecting adja-
cency lists and type information in order to match all
triple patterns that the node appears in), where the
neighbors of the candidates are explored recursively in
the graph guided by the graph pattern, generating can-
didates for further query nodes (in a manner akin to
DOGMA [33]). A number of optimizations are included,
including a multiway join that can check if a new can-
didate is connected to the candidates of multiple query
nodes in one operation in a way that satisfies the query.

RIQ [100] (2016) provides a layer on top of an exist-
ing RDF store that indexes similar named graphs in a
SPARQL dataset. A bit vector – called a “pattern vec-
tor” – is computed for each named graph in the dataset.
The pattern vector consists of seven vectors for s, p, o,
sp, so, po and spo, where, e.g., the sp vector hashes all

subject–predicate pairs in the named graph. An index
over the pattern vectors (PV-index) is constructed by
connecting similar pattern vectors (based on locality-
sensitive hashing) into a graph; each connected com-
ponent of the graph forms a group of similar graphs.
The union of the graphs in each group is further en-
coded into Bloom filters. In order to evaluate a basic
graph pattern, a pattern vector is computed combining
the triple patterns (e.g., a triple pattern (s, p,o) will
generate a single sp sub-vector). The PV-index is then
used to optimize an input query by narrowing down the
candidate (named) graphs that match particular basic
graph patterns (if any) before evaluating the optimized
query over the underlying SPARQL store.

axonDB [131] (2017) uses two dictionary-encoded triple
tables to store RDF graphs. In the first table, each
triple is additionally associated with the characteris-
tic set (CS) of its subject (see Section 5.3). The CS is
assigned a unique identifier and one-hot encoded, i.e.,
represented by a bit vector with an index for each prop-
erty that carries a 1 if the property is part of the CS,
or a 0 otherwise. Triples are then sorted by their CS,
grouping subjects with the same CS together. A sec-
ond triple table stores each triple, along with the cor-
responding extended characteristic set (ECS; again see
Section 5.3). The ECS is encoded with a unique identi-
fier, and the identifiers for the subject and object CSs.
The triple table is sorted by ECS. When evaluating a
basic graph pattern, its analogous CSs and ECSs are ex-
tracted, along with the paths that connect them. The
CSs and ECSs are matched with those of the graph,
enabling multiway joins; binary hash joins are used to
join the results of multiple CSs/ECSs.

HTStore [116] (2017) uses hash-based indexes to build
an RDF store. Specifically, the RDF graph is indexed in
a hash tree whose top layer forms a hash table over the
nodes of the graph. The hash tree is based on a sequence
of prime numbers. When hashing a node, the first prime
number is used, and if no collision is detected, the node
is inserted in the first layer. Otherwise the second prime
number is used, and if no collision is detected, it is
inserted in that layer as a child of the bucket of the
first layer that caused the collision. Otherwise the third
prime number is used, and so forth. Nodes in the hash
tree then point to their adjacency lists in the graph.
SPARQL queries are supported. When querying, con-
stant nodes in the query are hashed in the same man-
ner in order to retrieve the data for the node. SPARQL
queries are supported, though details about join and
query processing are omitted.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

38 Ali et al.

AMBER [87] (2018) stores RDF graphs using a “multi-
graph” representation, where IRIs form nodes, whereas
predicate–literal pairs form “attributes” on nodes. All
nodes, predicates and attributes are dictionary encoded.
AMBER then generates three indexes: the first stores
the set of nodes for each attribute, the second stores ver-
tex signatures that encode meta-data about the triples
where a given node is subject or object, and the third
stores adjacency lists. Basic graph patterns are evalu-
ated by classifying query nodes with degree greater than
one as core nodes, and other nodes as satellite nodes.
Core nodes are processed first, where candidates are
produced for each query node based on the available in-
dexes, recursively producing candidates for neighbors;
the algorithm starts with the core query node with the
most satellite nodes attached, or the highest degree. For
each solution over the code nodes, each satellite node is
then evaluated separately as they become disconnected
once the core nodes are bound to constants.

Jena-LTJ [81] (2019) extends the Jena TDB RDF store
with the ability to perform worst-case optimal (wco)
joins (see Section 6.3). Specifically, Jena TDB is ex-
tended with an algorithm inspired by Leapfrog TrieJoin
(LTJ), which is adapted from a relational setting for the
RDF/SPARQL settings. The algorithm evaluates basic
graph patterns variable-by-variable in a manner that
ensures that the overall cost of enumerating all of the
results is proportional to the number of results that
it can return in the worst case. In order to reach wco
guarantees, the three-order index of Jena TDB – based
on B+trees – is extended to include all six orders. This
ensures that for any triple pattern, the results for any
individual variable can be read in sorted order directly
from the index, which in turn enables efficient intersec-
tion of the results for individual variables across triple
patterns. Thus Jena-LTJ uses twice the space of Jena
TDB, but offers better query performance, particularly
for basic graph patterns with cycles.

BMatrix [30] (2020) is a compact in-memory RDF store,
where the RDF graph is first dictionary encoded and
sorted by predicate. Two binary matrices are created:
an s × n matrix called st and an o × n matrix called
ot, where s, o and n are the number of unique sub-
jects, objects and triples respectively. The st/ot ma-
trix contains a 1 in index i, j if the subject/object of
the jth triple corresponds to the ith term (or a 0 other-
wise). Both matrices are indexed with k2-trees, while a
bit string of length n encodes the predicate boundaries
with a 1, i.e., in which columns of the matrix (denot-
ing triples sorted or grouped by predicate) the predi-
cate changes. These indexes are sufficient to cover all

eight possible triple patterns. Further compression tech-
niques can be applied to the leaf matrices of the k2.tree
in order to trade space for time. The authors mention
that joins can be supported in a similar fashion as used
for RDFCSA and k2-triples.

Tentris [24] (2020) is an in-memory RDF store wherein
an RDF graph is viewed as a one-hot encoded 3-order
tensor (equivalent to the 3-dimensional array used in
BitMat [14]), which in turn is viewed as a trie of three
levels for s, p and o. However, rather than storing tries
for all permutations, a hypertrie is used with three lev-
els. The leaves in the third level correspond to all pos-
sible combinations of two constants in a triple: for each
triple (s, p, o), there exists a leaf that maps (s, p, ?) to
the set of all objects that replace ? in the graph (includ-
ing o), with analogous leaves for (?, p, o) and (s, ?, o).
The second level refers to single constants, where three
nodes are present for (s, ?, ?), (?, p, ?), (?, ?, o) such that
(s, ?, ?) will map to the leaves for (s, p, ?) and (s, ?, o),
and likewise for (?, p, ?) and (?, ?, o). Finally, the top
level – the root, representing zero constants – simply
maps to all the second level elements. Basic graph pat-
terns (with projection) are translated into tensor oper-
ations that can be evaluated on the hypertrie using a
worst-case optimal join algorithm.

A.2 Distributed RDF Engines

We now survey distributed RDF stores. Table 5 sum-
marizes the surveyed systems and the techniques they
use. We further indicate the type of underlying stor-
age used, where italicized entries refer to local stores.
Some systems that appear in the following may have
appeared before in the local discussion if they are com-
monly deployed in both settings.

YARS2 [78] (2007) is an RDF store based on similar
principles to YARS (see local stores) but for a dis-
tributed environment. The index manager in YARS2
uses three indexes namely a quad index, keyword in-
dex, and a join index for evaluating queries. The quad
indexes cover six permutations of quads. The keyword
index is used for keyword lookups. The join indexes
help speeding up query execution for common joins.
The core index on quads is based on hashing the first
element of the permutation, except in the case of predi-
cates (e.g., for a pogs permutation), where hashing cre-
ates skew and leads to imbalance, and where random
distribution is thus used. Indexed nested loop joins are
used, with triple patterns being evaluated on one ma-
chine where possible (based on hashing), or otherwise
on all machines in parallel (e.g., for constant predicates

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 39

Table 5: Categorization of distributed RDF Engines.
Storage: T = Triple Table, Q = Quad Table, V = Vertical Partitioning, P = Property table, G = Graph-based, M = Miscellaneous
Indexing: T = Triple, Q = Quad, E = Entity, P = Property, N = Path/Navigational, J = Join, S = Structural, M = Miscellaneous
Join P.: P = Pairwise, M = Multiway, W = Worst case optimal
Query P.: N = Paths/Navigational, R = Relational, Q = Query rewriting
Partitioning: S = Statement (Triple/Quad)-based, G = Graph-based, Q = Query-based, R = Replication

Engine Year Storage Indexing Join P. Query P. Partitioning
T Q V P G M T Q E P N J S M P M W N R Q S G Q R Store

YARS2 [78] 2007 3 3 3 3 3 Custom
Clustered TDB [144] 2008 3 3 3 3 Jena TDB
Virtuoso EE [54] 2008 3 3 3 3 3 3 3 3 3 3 Custom
4store [75] 2009 3 3 3 3 3 Custom
Blazegraph 2009 3 3 3 3 3 3 3 3 3 3 Custom
SHARD [162] 2009 3 3 3 3 3 HDFS
Allegrograph 2010 3 3 3 3 3 3 3 Custom
GraphDB [105,26] 2010 3 3 3 3 3 3 3 3 Custom
AnzoGraph 2011 3 3 3 3 3 Custom
CumulusRDF [110] 2011 3 3 3 3 3 3 3 3 Cassandra
H-RDF-3X [86] 2011 3 3 3 3 3 3 3 RDF-3X
PigSPARQL [169] 2011 3 3 3 3 3 3 HDFS
Rapid+ [160] 2011 3 3 3 3 3 3 HDFS
AMADA [13] 2012 3 3 3 3 3 SimpleDB
H2RDF(+) [148] 2012 3 3 3 3 3 3 HBase
Jena-HBase [101] 2012 3 3 3 3 3 3 3 HBase
Rya [157] 2012 3 3 3 3 3 3 Accumulo
Sedge [215] 2012 3 3 3 3 3 Pregel
chameleon-db [10] 2013 3 3 3 3 3 3 3 Custom
D-SPARQ [134] 2013 3 3 3 3 3 3 3 MongoDB
EAGRE [221] 2013 3 3 3 3 3 3 3 3 HDFS
MR-RDF [50] 2013 3 3 3 3 3 3 RDF-3X
SHAPE [112] 2013 3 3 3 3 3 RDF-3X
Trinity.RDF [219] 2013 3 3 3 3 3 3 3 Trinity
TripleRush [186] 2013 3 3 3 3 Signal/Collect
WARP [85] 2013 3 3 3 3 3 3 RDF-3X
AKZ14 [6] 2014 3 3 3 3 3 3 3 3 3 3 HBase
Partout [57] 2014 3 3 3 3 3 RDF-3X
P-LUPOSDATE [63] 2014 3 3 3 3 3 3 3 HBase
Sempala [170] 2014 3 3 3 3 3 3 HDFS
SemStore [206] 2014 3 3 3 3 3 3 TripleBit
SparkRDF [41] 2014 3 3 3 3 3 3 HDFS/Spark
TriAD [70] 2014 3 3 3 3 3 3 Custom
CK15 [42] 2015 3 3 3 3 3 3 Custom
CliqueSquare [59] 2015 3 3 3 3 3 HDFS
DREAM [72] 2015 3 3 3 3 3 RDF-3X
AdPart [73] 2016 3 3 3 3 3 Custom
DiploCloud [210] 2016 3 3 3 3 3 3 3 Custom
gStore-D [151] 2016 3 3 3 3 3 3 gStore
JARS [159] 2016 3 3 3 3 3 Custom
S2RDF [171] 2016 3 3 3 3 3 3 HDFS
S2X [168] 2016 3 3 3 3 3 Spark
SPARQLGX [60] 2016 3 3 3 3 HDFS
Wukong [178] 2016 3 3 3 3 DrTM-KV
Koral [92] 2017 3 3 3 3 3 Custom
SANSA [114] 2017 3 3 3 3 3 HDFS
Spartex [4] 2017 3 3 3 3 GSP/Custom
Stylus [80] 2017 3 3 3 3 3 3 3 3 Trinity
Neptune 2018 3 3 3 3 3 3 Custom
PRoST [47] 2018 3 3 3 3 3 3 3 HDFS
RDFox-D [156] 2018 3 3 3 3 RDFox
WORQ [123] 2018 3 3 3 3 Spark
DiStRDF [202] 2019 3 3 3 3 3 3 HDFS
gStore-D2 [150] 2019 3 3 3 3 3 3 Custom
Leon [67] 2019 3 3 3 3 3 3 Custom
SPT+VP [79] 2019 3 3 3 3 3 3 Spark
StarMR [199] 2019 3 3 3 3 HDFS
DISE [89] 2020 3 3 3 3 3 Spark
DP2RPQ [200] 2020 3 3 3 Spark
Triag [136] 2020 3 3 3 3 3 3 Spark
WISE [68] 2020 3 3 3 3 3 3 3 3 Leon

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

40 Ali et al.

or keyword searches). Dynamic programming is used
for join reordering in order to optimize the query.

Clustered TDB [144] (2008) is a distributed RDF store
based on Jena TDB storage (a local system). The sys-
tem is based on a master–slave architecture where the
master receives and processes queries, and slaves index
parts of the graph and can perform joins. Hash-based
partitioning is used to allocate dictionary-encoded tri-
ples to individual slaves based on each position of the
triple; more specifically, distributed spo, pos and osp
index permutations are partitioned based on s, p and
o, respectively. An exception list is used for very fre-
quent predicates, which are partitioned by po instead
of p. Index-nested loop joins are supported and used to
evaluate SPARQL basic graph patterns.

Virtuoso EE [54] (2008) is a local RDF store whose en-
terprise edition also offers support for indexing over a
cluster of machines. Recalling that Virtuoso stores RDF
graphs as a quads table in a custom relational database,
the most recent version of Virtuoso offers three options
for each table: partitioned, replicated or local. Parti-
tioning is based on partition columns specified by the
administrator, which are used for hash-based partition-
ing; partitions can also be replicated, if specified. Repli-
cation copies the full table to each machine, which can
be used for query-based partitioning, or to store a global
schema that is frequently accessed by queries. Local ta-
bles are only accessible to the individual machine, and
are typically used for local configuration.

4store [75] (2009) stores quads over a cluster of ma-
chines, where subject-based hash partitioning is used.
Three types of indexes are used in 4Store namely R, M,
and P indexes. The R index is a hash table that dic-
tionary encodes and stores meta-data about individual
RDF terms (called “resources”). The M index is a hash
table that maps graph names (called “models”) to the
corresponding triples in the named graph. The P In-
dexes consist of radix tries, with two for each predicate
(similar to vertical partitioning): one for sog order and
another for osg order. Joins are pushed, where possible,
to individual machines. Join reordering uses cardinality
estimations. SPARQL queries are supported.

Blazegraph [190] (2009), discussed previously as a lo-
cal store, also features partitioning. In particular, key-
range shards are supported that allow for partitioning
B+tree indexes, potentially across multiple machines.
An alternative replication cluster is supported that in-
dexes the full RDF graph or SPARQL dataset on each

machine, allowing queries to be evaluated entirely on
each machine without network communication.

SHARD [162] (2009) is a distributed, Hadoop-based
RDF store. It stores an RDF graph in flat files on HDFS
such that each line presents all the triples associated
with a given subject resource of the RDF triple, which
can be seen as an adjacency list. The graph is hash par-
titioned, so that every partition contains a distinct set
of triples. As the focus is on batch processing of joins,
rather than evaluating queries in real-time, there is no
specific indexing employed in SHARD. Query execution
is performed through MapReduce iterations: first, it
collects the results for the subqueries, which are joined
and finally filtered according to bound variables and to
remove redundant (duplicate) results.

AllegroGraph (2010), discussed previously as a local
store, also features a distributed version, where data are
horizontally partitioned into shards, which are indexed
locally on each machine per the local version. Alongside
these shards, “knowledge bases” can be stored, consist-
ing of triples that are often accessed by all shards (e.g.,
schema or other high level data), such that queries can
be evaluated (in a federated manner) over one shard,
and potentially several knowledge bases.

GraphDB [105,26] (2010), included as a local store,
also offers the ability to store RDF graphs on a clus-
ter of machines. Specifically, the enterprise edition of-
fers a master–slave architecture, where each cluster has
at least one master node that manages one or more
worker nodes, each replicating the full database copy,
thus allowing for queries to be evaluated in full on any
machine. Updates are coordinated through the master.

AnzoGraph 13 (2011) is an in-memory, massively par-
allel processing (MPP) RDF store based on a master–
slave architecture. The system indexes named graphs,
where partitioning and replication are also organized by
named graphs. By default, all triples involving a partic-
ular term are added into a named graph for that term.
A dictionary is provided to map terms to named graphs.
The query is issued at a master node, which features a
query planner that decides the type of join (hash or
merge joins are supported) or aggregation needed. In-
dividual operations are then processed over the slaves
in parallel, generating a stream of intermediate results
that are combined on the master.
13 https://docs.cambridgesemantics.com/anzograph/userdo
c/features.htm

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://docs.cambridgesemantics.com/anzograph/userdoc/features.htm
https://docs.cambridgesemantics.com/anzograph/userdoc/features.htm
https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 41

CumulusRDF [110] (2011) works on top of Apache Cas-
sandra: a distributed key-value store with support for
tabular data. Three triple permutations – spo, pos,
osp – and one quad permutation – gspo – are consid-
ered. A natural idea would be to index the first element
as the row key (e.g., s for spo), the second (e.g., p)
as the column key, and the third (e.g., o) as the cell
value, but this would not work in multi-valued cases as
columns are unique per row. Two other data storage
layouts are thus proposed. Taking spo, the “hierarchi-
cal layout” stores s as the row key (hashed and used
for partitioning), p as the supercolumn key (sorted), o
as the column key (sorted), with the cell left blank. An
alternative that outperforms the hierarchical layout is
a “flat layout”, where for spo, s remains the row key,
but po is concatenated as the column key, and the cell
is left blank. In the pos permutation, the p row key
may create a massive row; hence po is rather used as
the row key, with p being indexed separately. Join and
query processing is enabled though Sesame.

H-RDF-3X [86] (2011) is a Hadoop-based distributed
RDF store that uses RDF-3X on a cluster of machines.
A graph-based partitioning (using the METIS software
package) is used to distribute triples among multiple
worker nodes. It also employs a k-hop guarantee, which
involves replicating nodes and edges that are k hops
away from a given partition, thus increasing the local-
ity of processing possible, and reducing communication
costs. Local joins are optimized and evaluated on in-
dividual machines by RDF-3X, while joins across ma-
chines are evaluated using Hadoop. The use of Hadoop –
which involves expensive coordination across machines,
and heavy use of the disk – is minimized by leveraging
the k-hop guarantee and other heuristics.

PigSPARQL [169] (2011) is a Hadoop-based distributed
RDF store that uses a vertical partitioning strategy.
Data are stored on HDFS without indexes, and thus
the focus is on batch processing. SPARQL queries are
translated into PigLatin: an SQL-inspired scripting lan-
guage that can be compiled into Hadoop tasks by the
Pig framework. Jena ARQ is used to parse SPARQL
queries into an algebra tree, where optimizations for
filters and selectivity-based join reordering are applied.
The tree is traversed in a bottom-up manner to gen-
erate PigLatin expressions for every SPARQL algebra
operator. The resulting PigLatin script is then trans-
lated to – and run as – MapReduce jobs on Hadoop.

Rapid+ [160] (2011) is a Hadoop-based system that
uses a vertical partitioning strategy for storing RDF
data. Without indexing, the system targets batch pro-
cessing. Specifically, Pig is used to generate and access

tables under a vertical partitioning strategy. In order to
translate SPARQL queries into PigLatin scripts, user-
defined-functions are implemented that allow for opti-
mizing common operations, such as loading and filter-
ing in one step. Other optimizations include support
for star joins using grouping, and a look-ahead heuris-
tic that reduces and prepares intermediate results for
operations that follow; both aim to reduce the number
of Hadoop tasks needed to evaluate a query.

AMADA [13] (2012) is an RDF store designed for use
on the Amazon Web Services (AWS) cloud infrastruc-
ture. Indexes for the RDF graph are built using us-
ing Amazon SimpleDB: a key-value storage solution
that supports a subset of SQL. SimpleDB offers several
indexing strategies, where “attribute indexing” can be
used to create three indexes for the three elements of a
triple. In AMADA, a query is submitted to a query pro-
cessing module running on EC2, which in turn evaluates
triple patterns using the SimpleDB-based indexes.

H2RDF(+) [148,147] (2012) stores RDF graphs in the
HBase distributed tabular NoSQL store. Three triple
permutations (spo, pos, and osp) are created over the
HBase tables in the form of key-value pairs. A join ex-
ecutor module creates the query plan, which decides
between the execution of joins in a centralized (local)
and distributed (Hadoop-based) manner. It further re-
orders joins according to selectivity statistics. Multiway
(sort-)merge joins are implemented in Hadoop.

Jena-HBase [101] (2012) is a distributed RDF store us-
ing HBase as its back-end. Jena-HBase supports three
basic storage layouts for RDF graphs in HBase namely
“simple”: three triple tables, the first indexed and par-
titioned by s, the second by p, the third by o; “vertical
partitioning”: two tables for each predicate, one indexed
by s, the other by o; “indexed”: six triple tables covering
all permutations of a triple. Hybrid layouts are also pro-
posed that combine the basic layouts, and are shown to
offer better query times at the cost of additional space.
Jena is used to process joins and queries.

Rya [157] (2012) is a distributed RDF store that em-
ploys Accumulo – a key-value and tabular store – as its
back-end. However, it can also use other NoSQL stores
as its storage component. Rya stores three index per-
mutations namely spo, pos, and osp. Query processing
is based on RDF4J, with index-nested loop joins being
evaluated in a MapReduce fashion. The count of the
distinct subjects, predicates, and objects is maintained
and used during join reordering and query optimization.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

42 Ali et al.

Sedge [215] (2012) is an RDF store based on Pregel:
a distributed (vertex-centric) graph processing frame-
work. Pregel typically assumes a strict partition of the
nodes in a graph, where Sedge relaxes this assump-
tion to permit nodes to coexist in multiple partitions.
A complementary graph partitioning approach is pro-
posed involving two graph partitionings, where the cross-
partition edges of one are contained within a partition
of the other, reducing cross-partition joins. Workload-
aware query-based partitioning is also proposed, where
commonly accessed partitions and frequently-queried
cross-partition “hotspots” are replicated. The store is
implemented over Pregel, where indexes are built to
map partitions to their workloads and to their replicas,
and to map nodes to their primary partitions.

chameleon-db [10] (2013) is a distributed RDF store us-
ing custom graph-based storage. Partitioning is graph-
based and is informed by the queries processed, which
may lead to dynamic repartitioning to optimize for the
workload being observed. An incremental indexing tech-
nique – using a decision tree – is used to keep track of
partitions relevant to queries. It also uses a hash-table
to index the nodes in each partition, and a range-index
to keep track of the minimum and maximum values for
literals of each distinct predicate in each partition. The
evaluation of basic graph patterns is delegated to a sub-
graph matching algorithm over individual partitions,
whose results are then combined in a query processor
per the standard relational algebra. Optimizations in-
volve rewriting rules that preserve the equivalence of
the query but reduce intermediate results.

D-SPARQ [134] (2013) is a distributed RDF store built
on MongoDB: a NoSQL store for JSON-like documents.
D-SPARQ partitions the RDF graph by subject. Par-
tial data replication is used whereby selected triples are
replicated across partitions to increase parallelism when
executing (sub-)queries. Indexes are built for sp and po
permutations. D-SPARQ optimizes multiway s–s (star)
joins, taking advantage of the s-based partitioning; se-
lectivity estimates are used to reorder joins.

EAGRE [221] (2013) stores RDF data on HDFS, where
data are pre-processed using Hadoop to extract entities
and their classes, thereafter applying graph-based data
partitioning based on METIS. For each entity class,
EAGRE adopts a space-filling curve technique (see Sec-
tion 5.2): an in-memory index structure that is used to
index high-dimensional data, and more specifically in
this case, to decide where the data for a given entity
should be stored. Joins are pushed to individual nodes
where possible, with multiway joins between nodes be-
ing evaluated using Hadoop. A strategy similar to a dis-
tributed form of sideways-information-passing is used

to reduce network traffic, where nodes share informa-
tion about the possible ranges of constants matching
individual variables, filtering intermediate results out-
side those ranges before they are sent over the network.

MR-RDF [50] (2013) is a distributed RDF store that
uses RDF-3X for local storage, and Hadoop for join pro-
cessing. A partition is generated for each characteristic
set, where a triple is added to the partition for the char-
acteristic set of its subject. Given that this may give
rise to a large number of partitions, similar characteris-
tic sets are clustered together to form larger partitions
corresponding to the number of machines available. The
larger partition is then described by the union of the
characteristic sets it contains, which can be used for
matching star joins (with constant predicates) to parti-
tions. Star joins are evaluated locally by RDF-3X, and
their results are joined over Hadoop.

SHAPE [112] (2013) uses RDF-3X to store and in-
dex RDF triples on a distributed cluster of machines.
Triples are partitioned using a semantic hash partition-
ing scheme that is based on the IRI prefix hierarchy:
triples with the same subject or object prefixes are iden-
tified and are placed in the same partition. The intu-
ition is that such triples are more likely to be queried
together. A distributed query execution planner coor-
dinates the intermediate results from different nodes,
which are joined using Hadoop.

Trinity.RDF [219] (2013) is an RDF store implemented
on top of Trinity: a distributed memory-based key-value
storage system. A graph-based storage scheme is used,
where an inward and outward adjacency list is indexed
for each node. Hash-based partitioning is then applied
on each node such that the adjacency lists for a given
node can be retrieved from a single machine; however,
nodes with a number of triples/edges exceeding a thresh-
old may have their adjacency lists further partitioned.
Aside from sorting adjacency lists, a global predicate in-
dex is also generated, covering the pos and pso triple
permutations. Queries are processed through graph ex-
ploration, with dynamic programming over cardinality
estimates used to choose a query plan.

TripleRush [186] (2013) is based on the Signal/Collect
framework [185]: a distributed graph processing frame-
work. Within this framework, TripleRush considers an
in-memory graph with three types of nodes. Triple nodes
embed an RDF triple with its subject, predicate, and
object. Index nodes embed a triple pattern. Query nodes

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 43

coordinate the query execution. The index graph is
formed by index and triple nodes, which are linked
based on matches. A query execution is initialized when
a query node is added to a TripleRush graph. The
query vertex emits a query particle (a message) which is
routed by the Signal/Collect framework to index nodes
for matching. Partitioning of triples and triple patterns
is based on the order s, o, p, where the first constant
in this order is used for hash-based partitioning. Later
work explored workload-aware query-based partitioning
methods [192].

WARP [85] (2013) uses RDF-3X to store triples in par-
titions among a cluster of machines. Like H-RDF-3X,
graph-based partitioning is applied along with a replica-
tion strategy for k-hop guarantees. Unlike H-RDF-3X,
WARP proposes a query-based, workload-aware parti-
tioning, whereby the value of k is kept low, and selec-
tive replication is used to provide guarantees specifically
with respect to the queries of the workload, reducing
storage overheads. Sub-queries that can be evaluated
on one node are identified and evaluated locally, with
custom merge joins (rather than Hadoop, as in the case
of H-RDF-3X) used across nodes. Joins are reordered
to minimize the number of single-node subqueries.

AKZ14 [6] (2014) is a distributed RDF store based
on the HBase tabular store. A property table storage
scheme is implemented over HBase, which is built based
on clustering entities with similar properties. A sec-
ondary triple table is used for multi-valued properties
and (infrequent) properties that do not appear in the
clusters. Property tables are used to solve subject-based
star joins, with other joins being evaluated over Hadoop
by translating SPARQL queries to Hive (an SQL-like
language for Hadoop). Metadata for the HBase tables
are stored in a relational database (MySQL).

Partout [57] (2014) is a distributed RDF store that
uses RDF-3X for underlying storage on each machine.
The RDF graph is partitioned using a workload-aware
query-based partitioning technique, aiming to group to-
gether triples that are likely to be queried together.
Each partition is indexed using standard RDF-3X in-
dexing. The SPARQL query is issued to a query pro-
cessing master, which uses RDF-3X to generate a suit-
able query plan according to a global statistics file. The
local execution plan of RDF-3X is transformed into a
distributed plan, which is then refined by a distributed
cost model that assigns subqueries to partitions. This
query plan is executed by slave machines in parallel,
whose results are combined in the master.

P-LUPOSDATE [63] (2014) is a distributed RDF store
based on HBase. Triples are distributed according to
six triple permutations – partitioning on s, p, o, sp,
so, po – enabling lookups for any triple pattern. In or-
der to reduce network communication, Bloom filters are
pre-computed for each individual variable of each triple
pattern with at least one constant and one variable that
produces some result; e.g., for sp, a Bloom filter is gen-
erated encoding the objects of each subject–predicate
pair; for s, a Bloom filter is generated for each subject
encoding its predicates, and optionally, another Bloom
filter is generated for its objects. These Bloom filters are
sent over the network in order to compute approximate
semi-join reductions, i.e., to filter incompatible results
before they are sent over the network. SPARQL (1.0)
queries are evaluated by translating them to PigLatin,
which are compiled into Hadoop jobs by Pig.

Sempala [170] (2014) stores RDF triples in a distributed
setting, using the columnar Parquet format for HDFS
that supports queries for specific columns of a given
row (without having to read the full row). In this sense,
Parquet is designed for supporting a single, wide (po-
tentially sparse) table and thus Sempala uses a single
“unified property table” for storing RDF triples with
their original string values; multi-valued properties are
stored using additional rows that correspond to a Carte-
sian product of all values for the properties of the en-
tity. SPARQL queries are translated into SQL, which is
executed over the unified property table using Apache
Impala: a massively parallel processing (MPP) SQL en-
gine that runs over data stored in HDFS.

SemStore [206] (2014) is a distributed RDF store with
a master–slave architecture. A custom form of graph
partitioning is used to localize the evaluation of sub-
queries of particular patterns – star, chain, tree, or cycle
– that form the most frequent elements of basic graph
patterns. A k-means partitioning algorithm is used to
assign related instances of patterns to a particular ma-
chine, further increasing locality. The master creates
a global bitmap index over the partitions and collects
global cardinality-based statistics. Slave nodes use the
TripleBit local RDF engine for storage, indexing and
query processing. The master node then generates the
query plan using dynamic programming and global car-
dinality statistics, pushing joins (subqueries) to individ-
ual slave nodes where possible.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

44 Ali et al.

SparkRDF [41] (2014) is a Spark-based RDF engine
that distributes the graph into subgraphs using vertical
partitioning, adding tables for classes as well as prop-
erties. SparkRDF then creates indexes over the class
and property tables, and further indexes class–property,
property–class, and class–property-class joins. These in-
dexes are loaded into an in-memory data structure in
Spark (a specialized RDD) that implements query pro-
cessing functionalities such as joins, filters, etc. Class
information is used to filter possible results for individ-
ual variables, where a greedy selectivity-based strategy
is used for reordering joins. Joins themselves are evalu-
ated in a MapReduce fashion.

TrIAD [70] (2014) implements a distributed RDF store
in main-memory based on a master–slave architecture.
The master maintains a dictionary of terms, a graph
summary that allows for pruning intermediate results,
as well as global cardinality-based statistics that allow
for query planning. The graph summary is a quotient
grant based on graph partitioning (using METIS): each
partition forms a supernode, and labeled edges between
supernodes denote triples that connect nodes in differ-
ent partitions; the graph summary is indexed in two
permutations: pso and pos. The triples for each parti-
tion are stored on a slave; triples connecting two parti-
tions are stored on both slaves. Each slave indexes their
subgraph in all six triple permutations. Given a basic
graph pattern, the graph summary is used to identify
relevant partitions, which are shared with the slaves and
used to prune results; dynamic programming uses the
global statistics to optimize the query plan. Alongside
distributed hash and merge joins, an asynchronous join
algorithm using message passing is implemented.

CK15 [42] (2015) is a distributed in-memory RDF store
that combines two types of partitioning: triple-based
partitioning and query-based partitioning. The graph
is initially divided over the machines into equal-size
chunks and dictionary-encoded in a distributed manner
(using hash-based partitioning of terms). The encoded
triples on each machine are then stored using a verti-
cal partitioning scheme, where each table is indexed by
hashing on subject, and on object, providing p → so,
ps → o and po → s lookups. Parallel hash joins are
proposed. Secondary indexes are then used to cache in-
termediate results received from other machines while
processing queries, such that they can be reused for fu-
ture queries. These secondary indexes can also be used
for computing semi-join reductions on individual ma-
chines, thus reducing network traffic.

CliqueSquare [59] (2015) is a Hadoop-based RDF en-
gine used to store and process massive RDF graphs. It

stores RDF data in a vertical partitioning scheme using
semantic hash partitioning, with the objective of en-
abling co-located or partitioned joins that can be eval-
uated in the map phase of the MapReduce paradigm.
CliqueSquare also maintains three replicas for fast query
processing and increased data locality. In order to evalu-
ate SPARQL queries, CliqueSquare uses a clique-based
algorithm, which works in an iterative way to identify
cliques in a query–variable graphs and to collapse them
by evaluating joins on the common variables of each
clique. The process terminates when the query–variable
graph consists of only one node.

DREAM [72] (2015) is a distributed RDF store that
uses RDF-3X for its underlying storage and indexing.
The entire RDF graph is replicated on every machine,
with standard RDF-3X indexing and query processing
being applied locally. However, only dictionary-encoded
terms are communicated within the cluster. In the query
execution phase, the SPARQL query is initially repre-
sented as a directed graph, which is divided into mul-
tiple subqueries to be evaluated by different machines.
The results of subqueries are combined using hash joins.

AdPart [73] (2016) is a distributed in-memory RDF
store following a master–slave architecture. The mas-
ter initially performs a hash-based partitioning based
on the subjects of triples. The slave stores the corre-
sponding triples using an in-memory data structure.
Within each slave, AdPart indexes triples by predicate,
predicate–subject, and predicate–object. Each slave ma-
chine also maintains a replica index, which incremen-
tally replicates data that are accessed by many queries;
details of this replication are further indexed by the
master machine. Query planning then tries to push joins
locally to slaves (hash joins are used locally), falling
back to distributed semi-joins where that is not pos-
sible. Join reordering then takes communication costs
and cardinalities into account.

DiploCloud [210] (2016) is a distributed version of the
local RDF store dipLODocus. The store follows a master–
slave architecture, where slaves store “molecules” (see
the previous discussion on dipLODocus). The master
provides indexes for a dictionary, for the class hier-
archy (used for inference), as well as an index that
maps the individual values of properties selected by
the administrator to their molecule. Each slave stores
the molecule subgraphs, along with an index mapping
nodes to molecules, and classes to nodes. Query pro-
cessing pushes joins where possible to individual slaves;
if intermediate results are few, the master combines re-
sults, or otherwise a distributed hash join is employed.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 45

Molecules can be defined as a k-hop subgraph around
the root node, based on input from an administrator,
or based on a given workload of queries.

gStore-D [151] (2016) is a distributed RDF store that
uses a variation of the local gStore RDF engine for local
storage and indexing (it uses adjacency lists and vertex
signatures, as discussed previously). A graph partition-
ing algorithm is applied over the RDF graph, with the
subgraphs induced by each partition being assigned to
individual machines. Edges that connect distinct par-
titions are indexed within the subgraphs of both par-
titions. Where possible, joins are then pushed to the
individual subgraphs. Joins across subgraphs can be
evaluated in a central (i.e., by a single master) or dis-
tributed (i.e., by several slaves) manner. Support for
the relational features of SPARQL (1.0) is described.

JARS [159] (2016) is a distributed RDF store that com-
bines triple-based and query-based partitioning. The
graph is partitioned by hashing on subject, and hash-
ing on object, constructing two distributed triple tables.
The subject-hashed table is indexed on the pos, pso,
osp and spo permutations, while the object-hashed ta-
ble is indexed on pos, pso, sop and ops. Specifically,
by hashing each triple on subject and object, the data
for s–s, o–o and s–o are on one machine; the permu-
tations then allow for such joins to be supported as
merge joins on each machine. Basic graph patterns are
then decomposed into subqueries answerable on a sin-
gle machine, with a distributed hash join applied over
the results. Jena ARQ is used to support SPARQL.

S2RDF [171] (2016) is a distributed RDF store based
on HDFS (using the Parquet format). The specific stor-
age scheme is based on an extended version of ver-
tical partitioning that uses semi-join reductions (see
Section 4.3). This scheme has a high space overhead,
but ensures that only data useful for a particular (pair-
wise) join will be communicated over the network. In
order to reduce the overhead, semi-join tables are not
stored in cases where the selectivity of the join is high;
in other words, semi-join tables are stored only when
many triples are filtered by the semi-join (the authors
propose a threshold of 0.25, meaning that at least 75%
of the triples must be filtered by the semi-join for the
table to be included). SPARQL queries are optimized
with cardinality-based join reordering, and then trans-
lated into SQL and evaluated using Spark.

S2X [168] (2016) processes SPARQL queries over RDF
graphs using GraphX: a distributed graph processing
framework built on the top of Spark. The triples are

stored in-memory on different slave machines with Spark
(RDDs), applying a hash-based partitioning on subject
and objects (per GraphX’s default partitioner). S2X
does not maintain any custom indexing. For SPARQL
query processing, graph pattern matching is combined
with relational operators (implemented in the Spark
API) to produce solution mappings.

SPARQLGX [60] (2016) stores RDF data on HDFS us-
ing a vertical partitioning scheme. Specifically, a sep-
arate file is created for each unique predicate in the
RDF graph, with each file containing the subjects and
objects of that triple. No indexes are provided, and
thus the system is intended for running joins in batch-
mode. SPARQL queries are first optimized by applying
a greedy join reordering based on cardinality and selec-
tivity statistics; the query plan is then translated into
Scala code, which is then directly executed by Spark.

Wukong [178] (2016) stores RDF graphs in DrTM-KV:
a distributed key–value store using “remote direct mem-
ory access” (RDMa), which enables machines to access
the main memory of another machine in the same clus-
ter while by-passing the remote CPU and OS kernel.
Within this store, Wukong maintains three kinds of in-
dexes: a node index that maps subjects or (non-class)
objects to their corresponding triples; a predicate in-
dex, which returns all subjects and objects of triples
with a given predicate; and a type index, which returns
the class(es) to which a node belongs. Hash-based par-
titioning is used for the node index, while predicate and
type indexes are split and replicated to improve balanc-
ing. A graph-traversal mechanism is used to evaluate
basic graph patterns, where solutions are incrementally
extended or pruned. For queries involving fewer data,
the data are fetched from each machine on the cluster
and joined centrally; for queries involving more data,
subqueries are pushed in parallel to the individual ma-
chines. A work-stealing mechanism is employed to pro-
vide better load balancing while processing queries.

Koral [92] (2017) is a distributed RDF store based on
a modular master–slave architecture that supports var-
ious options for each component of the system. Among
these alternatives, various triple-based and graph-based
partitioning schemes are supported. In order to eval-
uate basic graph patterns, joins are processed in an
analogous way to TrIAD, using asynchronous execu-
tion, which makes the join processing strategy indepen-
dent of the partitioning chosen. The overall focus of the
system is to be able to quickly evaluate different alter-
natives for individual components – particularly parti-
tioning strategies – in a distributed RDF store.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

46 Ali et al.

SANSA [114] (2017) is a Spark-based distributed RDF
store. RDF data are stored on HDFS, where triple-
based partitioning – such as predicate-based vertical
partitioning – is employed. Queries are then transformed
into Spark (or Flink) programs, using Sparklify [180]: a
query engine for SPARQL-to-SQL translations, which
can, in turn, be run over Spark. SANSA is part of a
larger stack that supports RDF-based inferencing and
machine learning in a distributed environment.

Spartex [4] (2017) is a distributed RDF store with an-
alytical capabilities. An extension of SPARQL queries
is proposed with user-defined procedures for analytics
(e.g., PageRank), among other features. The system is
built on top of GPS: an open-source implementation
of Pregel’s distributed, vertex-centric graph processing
framework. A master–slave architecture is employed.
The master is responsible for query planning and man-
ages global statistics. The RDF graph is partitioned
among its slaves; namely each (subject/object) node
and its incident edges (triples) is assigned to a slave.
Each slave stores and indexes its subgraph in-memory
using ps and po permutations. Basic graph patterns
are then evaluated using graph traversals in GSP, with
nodes (vertexes) sharing intermediate results as mes-
sages, which are joined with local data. Optimizations
are based on minimizing duplicate traversals involving
(non-Eulerian) cycles, and cardinality estimates.

Stylus [80] (2017) is a distributed RDF store that uses
Trinity: a graph engine based on an in-memory key–
value store. Terms of the RDF graph are dictionary
encoded. Each subject and object node is associated
with a dictionary identifier and its characteristic set. A
sorted adjacency list (for inward and outward edges) is
then stored for each node that also encodes an identi-
fier for the characteristic set of the node. Schema-level
indexes for characteristic sets are replicated on each ma-
chine. Hash-based partitioning is employed on the data
level. Indexes are used to efficiently find characteristic
sets that contain a given set of properties, as well as to
evaluate common triple patterns. Given a basic graph
pattern, the characteristic sets are used to prune in-
termediate results on star joins, where candidates are
kept for each variable node in the query. Cardinality-
based join reordering is applied. Relational features are
supported for SPARQL (1.0) queries.

Neptune [21] (2018) is an RDF store that is hosted as
a service on Amazon’s S3 cloud storage infrastructure.
Neptune stores SPARQL datasets in the form of quads
with three index permutations: spog, pogs and gspo;
this is sufficient to cover 9 out of 16 possible quad pat-
terns. Neptune makes use of cardinality estimations and

static analysis to rewrite queries. Partitioning is not
supported, where Neptune rather offers up to 16 repli-
cas of the full graph to increase query throughput; a
primary replica is nominated to receive and coordinate
updates. Graphs in Neptune can be queried (and pro-
cessed) through the SPARQL 1.1, Apache TinkerPop
and Gremlin languages.

PRoST [47] (2018) is a distributed RDF store based on
HDFS storage and Spark query processing. The storage
scheme uses a combination of vertical partitioning and
property tables that aims to leverage the strengths and
minimize the weaknesses of both schemes. Like Sem-
pala, the property table is stored in the column-wise
Parquet format; multi-valued properties are supported
by adding lists of values. Star joins on a common sub-
ject variable are evaluated on the property table, while
other patterns and joins are addressed with the verti-
cal partitioning tables. Selectivity-based heuristics are
used to reorder joins. Queries are then rewritten into
SQL for execution with Spark.

RDFox-D [156] (2018) is a distributed in-memory RDF
store based on RDFox that uses index nested loops joins
in the distributed setting. A global index is built map-
ping the terms of the RDF graph to the partitions it ap-
pears in. The graph is partitioned by a weighted graph-
based partitioning scheme, where nodes are weighted
by the number of triples they appear in as subject. The
partitioning minimizes cross-partition edges while bal-
ancing the sum of the node weights in each partition.
Triples with a subject in the same partition are sent
to the same machine; the weights used for partition-
ing then help to ensure more even balancing. Joins are
evaluated in a pairwise manner, where each machine
extends solutions asynchronously, without central co-
ordination, based on its partition of the graph; it then
sends the extended partial solution to the machines
that can potentially extend it further (based on the
global index). Termination occurs when all partial so-
lutions have been forwarded. Various optimizations are
discussed. Joins are reordered based on cardinalities.

WORQ [123] (2018) is a distributed RDF store that
uses a workload-aware approach to partition data. In
order to reduce the number of intermediate results,
Bloom filters are used to index the constants match-
ing the variable of a given triple pattern, which are
shared and used to filter results for that variable else-
where. Bloom filters provide an approximate member-
ship function (i.e., they may yield false positives), and
thus a distributed join algorithm must be applied over

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 47

the (reduced) intermediate results. Further Bloom fil-
ters can be computed for multiway joins, analogous to
an approximate form of semi-join reduction (as used by
S2RDF). These reductions can be cached for later re-
use, where they are partitioned across machines based
on the join element. WORQ is implemented over Spark.

DiStRDF [202] (2019) is a massively parallel process-
ing (MPP) RDF store based on Spark with support for
spatio-temporal queries. A special dictionary-encoding
mechanism is used where the identifier concatenates a
bit-string for spatial information, a bit-string for tem-
poral information, and a final bit-string to ensure that
the overall identifier is unique. Thus spatial and tem-
poral processing can be applied directly over the iden-
tifiers. Storage based on both on a triple table and
property tables is supported, where range-based par-
titioning is applied to the triples (based on the spatio-
temporal information). Data is stored on HDFS in CSV
or Parquet formats. Query processing is implemented
in Spark. Distributed hash joins and sort–merge joins
are supported; selections and projections are also sup-
ported. Three types of query plans are proposed that
apply RDF-based selections, spatio-temporal selections
and joins in different orders.

gStore-D2 [150] (2019) is a distributed RDF store that
proposes various forms of workload-aware query-based
graph partitioning methods. Frequently accessed (sub-
graph) patterns are mined from the workload, where
all subjects and objects are mapped to variables. Sub-
graphs that instantiate these patterns are assigned DFS
codes that are indexed as a tree, and associated with
various meta-data, including identifiers for queries that
use the pattern, cardinality estimations, partition iden-
tifiers, etc. Three partitioning methods are based on
these patterns, with partitions stored locally in gStore.
“Vertical partitioning” indexes all instances of a given
pattern on the same machine. “Horizontal partitioning”
distributes instances of the same pattern across various
machines based on its constants. “Mixed partitioning”
combines the two. Basic graph patterns are then de-
composed into frequent sub-patterns, over which var-
ious types of joins can be applied; the join order and
algorithms are selected to reduce communication costs.

Leon [67] (2019) is an in-memory distributed RDF store
based on a master–slave architecture. Triples are parti-
tioned based on the characteristic set of their subject;
the characteristic sets are ordered in terms of the num-
ber of triples they induce, and assigned to machines
with the goal of keeping a good balance. Indexes (simi-
lar to those of Stylus [80]) are built, including a bidirec-
tional index between subjects and their characteristic

sets, an index to find characteristic sets that contain a
given set of properties, and indexes to evaluate certain
triple patterns. A multi-query optimization technique is
implemented where, given a workload (a set) of queries,
the method searches for an effective way to evaluate and
share the results for common subqueries – in this case,
based on characteristic sets – across queries.

SPT+VP [79] (2019) is a distributed RDF store based
on the principle of combining two partitioning tech-
niques. First, a modified property table scheme is used
for storage, where one table is maintained with a col-
umn for subject and all properties in the RDF graph;
instead of storing multi-valued properties in multiple
rows, as in Sempala’s unified property table, such val-
ues are stored as lists nested in the given row. The
property table is then split (vertically) into multiple ta-
bles, similar to a clustering-based definition of a prop-
erty table, but where a subject may appear in mul-
tiple tables. This “subset property table” approach is
combined, secondly, with vertical partitioning storage.
Given a SPARQL query, joins are reordered based on
global statistics, with the property tables used for s–s
joins and vertical partitioning used for other joins. The
query is then translated into Spark SQL for execution.

StarMR [199] (2019) is a distributed RDF store that
centers around optimizations for star joins. A graph-
based storage scheme is employed, where for each node
in the graph, its outward edges are represented in an
adjacency list; this then supports efficient evaluation
for s–s star joins. No indexing is provided, where the
system targets batch-based (e.g., analytical) processing.
A basic graph pattern is then decomposed into (star-
shaped) sub-patterns, which are evaluated and joined.
Hadoop is then used to join the results of these individ-
ual sub-patterns. Optimizations include the use of char-
acteristic sets to help filter results, and the postpone-
ment of Cartesian products, which are used to produce
the partial solutions for star joins including the non-
join variables; these partial solutions are not needed if
the corresponding join value is filtered elsewhere.

DISE [89] (2020) is an in-memory, distributed RDF
store that conceptualizes an RDF graph as a 3-dimensional
binary tensor, similar to local approaches such as Bit-
Mat; however, physical representation and storage is
based on dictionary encoded triples. Partitioning is based
on slicing the tensor, which is equivalent to a triple-
based partitioning. Joins are evaluated starting with
the triple pattern with the fewest variables. SPARQL
queries are supported through the Jena (ARQ) query
library and evaluated using Spark.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

48 Ali et al.

DP2RPQ [200] (2020) is an RDF store based on a dis-
tributed graph processing framework with support for
regular path queries (RPQs), which form the core of
SPARQL’s property paths. Unlike the standard RPQ
semantics, the evaluation returns the “provenance” of
the path, defined to be the subgraph induced by match-
ing paths. Automata are used to represent the states
and the potential transitions of paths while evaluat-
ing the RPQ, and are thus used to guide a navigation-
based evaluation of the RPQ implemented by passing
messages between nodes in the framework. Optimiza-
tions include methods to filter nodes and edges that
cannot participate in the solutions to the RPQ, com-
pression techniques on messages, as well as techniques
to combine multiple messages into one. The system is
implemented on top of Spark’s GraphX framework.

Triag [136] (2020) is a distributed RDF store that opti-
mizes for triangle-based (sub)-patterns in queries. Two
types of triangular RDF subgraphs are extracted using
Spark: cyclic ones (e.g., (a, p, b), (b, q, c), (c, r, a)) and
(directed) acyclic ones (e.g., (a, p, b), (b, q, c), (a, r, c)).
The predicates of these triangular subgraphs are ex-
tracted, ordered, hashed, and indexed in a distributed
hash table using the predicate-based hash as key and
the three nodes (e.g., a, b, c) as value. An encoding is
used to ensure that the ordering of predicates is canon-
ical for the pattern (assuming that nodes are variables)
and that the subgraph can be reconstructed from the
node ordering, even when some predicates are the same.
Parallel versions of hash joins and nested loop joins are
supported, where triangular subqueries can be pushed
to the custom index. Queries are executed over Spark.
Support for inferencing is also described.

WISE [68] (2020) is a distributed RDF store that fea-
tures workload-aware query-based partitioning. The sys-
tem follows a master–slave architecture. As queries ar-
rive at the master, aside from being processed, they are
analyzed in terms of workload: common sub-patterns
are extracted from a generalized version of the queries
where constant subject and object nodes are first con-
verted to variables. Query-based partitioning is then
applied so that common sub-patterns can be pushed to
individual machines. Partitioning is dynamic, and may
change as queries are received. A cost model is thus de-
fined for the dynamic partitioning, taking into account
the benefits of the change in partitioning, the cost of
migrating data, and potential load imbalances caused
by partition sizes; a greedy algorithm is then used to
decide on which migrations to apply. The system uses
Leon – an in-memory distributed RDF store discussed
previously – for underlying storage and indexing.

A.3 Trends

We remark on some general trends based on the previ-
ous survey of local and distributed systems.

In terms of local systems, earlier approaches were
based on underlying relational stores given that their
implementations were already mature when interest be-
gan to coalesce around developing RDF stores. Thus,
many of these earlier stores could be differentiated in
terms of the relational schema (triple table, vertical par-
titioning, property tables, etc.) used to represent and
encode RDF graphs. Systems that came later tended to
rather build custom native storage solutions, optimizing
for specific characteristics of RDF in terms of its graph
structure, its fixed arity, etc.; relating to the fixed arity,
for example, native stores began to develop complete
indexes, by default, that would allow efficient lookups
for any triple pattern possible. Also, many engines be-
gan to optimize for star-joins, which are often used to
reconstruct n-ary relations from RDF graphs. Engines
would soon start to explore graph-inspired storage and
indexing techniques, including structural indexes, com-
pressed adjacency lists, etc. A more recent trend – likely
following developments in terms of hardware – has been
an increased focus on in-memory stores using compact
representations. Another recent development has been
the application of worst-case optimal join algorithms for
evaluating basic graph patterns, replacing traditional
pairwise join techniques from the database literature.

With respect to distributed RDF stores, in line with
an increased demand for managing RDF graphs at very
large scale, proposals began to emerge around 2007 re-
garding effective ways to store, index and query RDF
over a cluster of machines.14 Initial proposals were based
on existing native stores, which were extended with
triple/quad-based partitioning and distributed join pro-
cessing techniques to exploit a cluster of machines. A
second trend began to leverage the maturation and pop-
ularity of “Big Data” platforms, including distributed
processing frameworks like Hadoop and later Spark,
and distributed NoSQL stores like Cassandra, HBase,
MongoDB, etc., in order to build distributed RDF stores.
During this time, graph-based and later query-based
partitioning methods began to emerge. Like in the local
case – and following a more general trend in Big Data
towards exploiting the main memory of machines, in-
cluding Spark, Trinity, etc. – more and more in-memory
distributed RDF stores began to emerge. Another trend
was to explore the use of distributed graph processing

14 We highlight that decentralized proposals for managing
RDF graphs existed before this, including federated systems,
P2P systems, etc., but are not considered in-scope here.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 49

frameworks – that offer a vertex-based computation and
messaging paradigm – for evaluating queries over RDF.

While proposed solutions have clearly been matur-
ing down through the years, and much attention has
been given to evaluating basic graph patterns over RDF,
some aspects of SPARQL query processing have not
gained much attention. Most stores surveyed manage
triples rather than quads, meaning that named graphs
are often overlooked. A key feature of SPARQL – and
of graph query languages in general – is the ability to
query paths of arbitrary length, where optimizing prop-
erty paths in SPARQL has not received much attention,
particularly in the distributed setting. Many works also
focus on a WORM (write once, read many) scenario,
with relatively little attention paid (with some excep-
tions) to managing dynamic RDF graphs.

A final aspect that is perhaps not well-understood
is the trade-off that exist between different proposals,
what precisely are their differences on a technical level
(e.g., between relational- and graph-based conceptual-
izations), and which techniques perform better or worse
in which types of settings. In this regard, a number
of benchmarks have emerged to try to compare RDF
stores in terms of performance; we discuss these next.

B SPARQL Benchmarks for RDF Stores

We now discuss a variety of SPARQL benchmarks for
RDF stores. We speak specifically of SPARQL bench-
marks since benchmarks for querying RDF either came
after the standardization of SPARQL (and thus were
formulated in terms of SPARQL), or they were later
converted to SPARQL for modern use. The discussion
herein follows that of Saleem et al. [167], who ana-
lyze different benchmarks from different perspectives.
We first discuss the general design principles for bench-
marks, and then survey specific benchmarks.

B.1 SPARQL Benchmark Design

SPARQL query benchmarks comprise of three elements:
RDF graphs (or datasets), SPARQL queries, and per-
formance measures. We first discuss some design con-
siderations regarding each of these elements.

Datasets The RDF graphs and datasets proposed for
use in SPARQL benchmarks are of two types: real-world
and synthetic. Both have strengths and weaknesses.

Real-world graphs reflect the types of graphs that
one wishes to query in practice. Graphs such as DB-
pedia, Wikidata, YAGO, etc., tend to be highly com-
plex and diverse; for example, they can contain hun-

dreds, thousands or tens of thousands of properties and
classes. Presenting query performance over real-world
graphs is thus a relevant test of how a store will per-
form over RDF graphs found in practice. Certain bench-
marks may also include a number of real-world graphs
for the purposes of distributed, federated or even de-
centralized (web-based) querying [172].

Synthetic graphs are produced using specific genera-
tors that are typically parameterized, such that graphs
can be produced at different scales, or with different
graph-theoretic properties. Thus synthetic graphs can
be used to test performance at scales exceeding real-
world graphs, or to understand how particular graph-
theoretic properties (e.g., number of properties, distri-
butions of degrees, cyclicity, etc.) affect performance.
Synthetic graphs can also be constructed in order to
emulate certain properties of real-world graphs [51].

A number of measures have been proposed in or-
der to understand different properties of benchmark
graphs. Obvious ones include basic statistics, such as
number of nodes, number of triples, number of prop-
erties and classes, node degrees, etc. [165,51]. Other
(less obvious) proposals of measures include structured-
ness [51], which measures the degree to which entities of
the same class tend to have similar characteristic sets;
relationship specialty [158], which indicates the degree
to which the multiplicity of individual properties varies
for different nodes, etc. Observations indicate that the
real-world and synthetic graphs that have been used in
benchmarks tend to vary on such measures, with more
uniformity seen in synthetic graphs [51,158,167]. This
may affect performance in different ways; e.g., property
tables will work better over graphs with higher struc-
turedness and (arguably) lower relationship specialty.

SPARQL Queries The second important element of the
benchmark is the queries proposed. There are four ways
in which the queries for a benchmark may be defined:

– Manually-generated : The benchmark designer may
manually craft queries against the RDF graph, try-
ing to balance certain criteria such as query features,
complexity, diversity, number of results, etc.

– Induced from the graph: The queries may be induced
from the RDF graph by extracting sub-graphs (e.g.,
using some variation on random walks), with con-
stants in the sub-graphs replaced by variables to
generate basic graph patterns.

– Extracted from logs: The queries to be used may
be extracted from real-world SPARQL logs reflect-
ing realistic workloads; since logs may contain mil-
lions of queries, a selection process is often needed
to identify an interesting subset of queries in the log.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

50 Ali et al.

Aside from concrete queries, benchmarks may also de-
fine query templates, which are typically queries where
a subset of variables are marked as placeholders. These
placeholders are replaced by constants in the data, typi-
cally so that the resulting partially-evaluated query still
returns results over the RDF graph. In this way, each
template may yield multiple concrete queries for use
in the benchmark, thus smoothing variance for perfor-
mance that may occur for individual queries.

Queries can vary in terms of the language consid-
ered (SPARQL 1.0 vs. SPARQL 1.1) and the algebraic
features used (e.g., projection, filters, paths, distinct,
etc.), but also in terms of various measures of the com-
plexity and diversity of the queries – and in particu-
lar, the basic graph patterns – considered. Some ba-
sic measures to characterize the complexity and diver-
sity of queries in a benchmark include the number of
queries using different features, measures for the com-
plexity of the graph patterns considered (e.g., number
of triple patterns, number of variables, number of joins
variables, number of cyclic queries, mean degree of vari-
ables, etc.), etc. Calculating such measures across the
queries of the benchmark, a high-level diversity score
can be computed for a set of queries [167], based on the
average coefficient of variation (dividing the mean by
the standard deviation) across the measures.

Performance Measures The third element of a bench-
mark is the performance measures used. Some bench-
marks may be provided without a recommended set of
measures, but at the moment in which a benchmark is
run, the measures to be used must be selected. Such
measures can be divided into four categories [167]:
– Query Processing Related : The most important di-

mension relating to query processing relates to run-
times. Since a benchmark usually contains many
queries, reporting the runtime for each and every
query is often too fine-grained. Combined results
can rather be presented using measures like Query
Mix per Hour (QMpH), Queries per Second (QpS),
or measures over the distributions of runtimes (max,
mean, percentile values, standard deviation, etc.).
Other statistics like the number of intermediate re-
sults generated, disk/memory reads, resource usage,
etc., can be used to understand lower-level perfor-
mance issues during query processing load [173].

– Data Storage Related: This category includes mea-
sures like data loading time, storage space, index
sizes, etc. Often there is a space–time trade-off in-
herent in different approaches, where more aggres-
sive indexing can help to improve query runtimes
but at the cost of space and more expensive up-
dates. Hence these measures help to contextualize
query-processing related measures.

– Result Related: Some systems may produce partial
results for a query based on fixed thresholds or time-
outs. Thus an important consideration for a fair
comparison between two RDF engines relates to the
results produced in terms of correctness and com-
pleteness. This can often be approximately captured
in terms of the number of results returned, the num-
ber of queries returning empty results (due to time-
outs), the recall of individual queries, etc.

– Update Related: In real-world scenarios, queries must
often be executed while the underlying data are
being updated in parallel. While the previous cat-
egories consider a read-only scenario, benchmarks
may also record measures while updates are being
executed [53,44]. Measures may include the number
of insertions or deletions per second, the number of
read/write transactions processed, etc.

Often a mix of complementary measures will be pre-
sented in order to summarize different aspects of the
performance of the tested systems.

B.2 Synthetic Benchmarks

We now briefly survey the SPARQL benchmarks that
have been proposed and used in the literature, and
that are available for download and use. We start with
benchmarks based on synthetic data.

LUBM (Lehigh) [69] (2005) generates synthetic RDF
graphs that describe universities, including students,
courses, professors, etc. The number of universities de-
scribed by the graph is a parameter that can be changed
to increase scale. The benchmark includes 14 hand-
crafted queries. LUBM further includes an OWL ontol-
ogy to benchmark reasoning capabilities, though often
the benchmark is run without reasoning.

BSBM (Berlin) [28] (2009) is based on an e-commerce
use-case describing entities in eight classes relating to
products. The number of products can be varied to pro-
duce RDF graphs of different scales. A total of 12 query
templates are defined with a mix of SPARQL features.
The benchmark is also given in SQL format, allowing
to compare RDF stores with RDBMS engines.

SP2Bench [173] (2009) creates synthetic RDF graphs
that emulate an RDF version of the DBLP bibliographic
database. Various distributions and parameters from
the DBLP data are extracted and defined in the gen-
erator. A total of 17 queries are then defined for the
benchmark in both SPARQL and SQL formats.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 51

BowlognaBench [49] (2012) generates synthetic RDF
graphs inspired by the Bologna process of reform for
European universities. The dataset describes entities
such as students, professors, theses, degrees, etc. A to-
tal of 13 queries are defined that are useful to derive
analytics for the reform process.

WatDiv [9] (2014) provides a data generator that pro-
duces synthetic RDF graphs with an adjustable value
of structuredness, and a query template generator that
generates a specified number of query templates accord-
ing to specified constraints. The overall goal is to be
able to generate diverse graphs and queries.

LDBC-SNB [53] (2015) is a benchmark based on syn-
thetically generated social networking graphs. Three
workloads are defined: interactive considers both queries
and updates in parallel; business intelligence considers
analytics that touch a large percentage of the graph; al-
gorithms considers the application of graph algorithms.

TrainBench [188] (2018) is a synthetic benchmark in-
spired by the use-case of validating a railway network
model. The graph describes entities such as trains, swi-
tches, routes, sensors, and their relations. Six queries
are defined that reflect validation constraints. Train-
Bench is expressed in a number of data models and
query languages, including RDF/SPARQL and SQL.

B.3 Real-World Benchmarks

Next we survey benchmarks that are based on real-
world datasets and/or queries from real-world logs.

DBPSB (DBpedia) [133] (2011) clusters queries from
the DBpedia logs, generating 25 query templates rep-
resentative of the common queries found within. These
queries can then be evaluated over DBpedia, where a
dataset of 153 million triples is used for testing, though
smaller samples are also provided.

FishMark [18] (2012) is based on the FishBase dataset
and is provided in RDF and SQL formats. The full RDF
graph uses 1.38 billion triples, but a smaller graph of
20 million triples is used for testing. In total, 22 queries
from a log of real-world (SQL) queries are converted to
SPARQL for testing.

BioBenchmark [209] (2014) is based on queries over
five real-world RDF graphs relating to bioinformatics
– Allie, Cell, DDBJ, PDBJ and UniProt – with the
largest dataset (DDBJ) containing 8 billion triples. A
total of 48 queries are defined for the five datasets based
on queries generated by real-world applications.

FEASIBLE [166] (2015) is a framework for generat-
ing SPARQL benchmarks from real-world query logs
based on clustering and feature selection techniques.
The framework is applied to DBpedia and Semantic
Web Dog Food (SWDF) query logs and used to extract
15–175 benchmark queries from each log. The DBpedia
and SWDF datasets used contain 232 million and 295
thousand triples, respectively.

WGPB [82] (2019) is a benchmark of basic graph pat-
terns over Wikidata. The queries are based on 17 ab-
stract patterns, corresponding to binary joins, paths,
stars, triangles, squares, etc. The benchmark contains
850 queries, with 50 instances of each abstract pattern
mined from Wikidata using guided random walks. Two
Wikidata graphs are given: a smaller one with 81 mil-
lion triples, and a larger one with 958 million triples.

B.4 Benchmark Comparison and Results

For a quantitative comparison of (most of) the bench-
marks mentioned here, we refer to the work by Saleem
et al. [167], which provides a breakdown of various mea-
sures for SPARQL benchmarks. For benchmarks with
results comparing different RDF stores, we refer to the
discussion for (italicizing non-RDF/SPARQL engines):

– BSBM [28] (2009) including results for Jena, RDF4J,
Virtuoso and MySQL;

– SP2Bench [173] (2009) including results for Kowari,
Jena, RDF4J, Redland and Virtuoso.

– DBPSB [133] (2011) including results for GraphDB,
Jena, RDF4J and Virtuoso;

– BowlognaBench [49] (2012) including results for 4st-
ore, dipLODocus, RDF-3X and Virtuoso.

– FishMark [18] (2012) including results for Virtuoso,
MySQL and Quest ;

– BioBench [209] (2014) including results for 4store,
Blazegraph, GraphDB, Kowari and Virtuoso.

– WatDiv [9] (2014) including results for 4store, gSt-
ore, RDF-3X, Virtuoso and MonetDB ;

– FEASIBLE [166] (2015) including results for Graph-
DB, Jena, RDF4J and Virtuoso;

– LDBC-SB [53] (2015), including results for SparkSee
and Virtuoso;

– TrainBench [188] (2018) including results for Jena,
RDF4J, Neo4j and SQLite, among others.

For a performance comparison of eleven distributed
RDF stores (SHARD, H2RDF+, CliqueSquare, S2X,
S2RDF, AdPart, TriAD, H-RDF-3x, SHAPE, gStore-
D and DREAM) and two local RDF stores (gStore and
RDF-3X) over various benchmarks (including LUBM
and WatDiv), we refer to Abdelaziz et al. [3].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2021 doi:10.20944/preprints202104.0199.v1

https://doi.org/10.20944/preprints202104.0199.v1

