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Abstract: Only by understanding the ability to take third-person perspective can we begin to elu-
cidate the neural processes responsible for one’s inimitable conscious experience. The current study 
examined differences in hemispheric laterality during a first-person perspective (1PP) and 
third-person perspective (3PP) taking task, when using Transcranial Magnetic Stimulation (TMS). 
Participants were asked to take either the 1PP or 3PP when identifying the number of spheres in a 
virtual scene.  During this task, single-pulse TMS was delivered to the motor cortex of both the left 
and right hemispheres of 10 healthy volunteers.  Measures of TMS-induced motor-evoked poten-
tials (MEPs) of the contralateral abductor pollicis brevis (APB) were employed as an indicator of 
lateralized cortical activation. The data suggest that the right hemisphere is more important in 
discriminating between 1PP and 3PP. These data add a novel method for determining perspective 
taking and add to the literature supporting the role of the right hemisphere in meta representation. 

Keywords: Perspective Taking; Self-Awareness; Self-Representation; Metarepresentation; Theory 
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Perspective taking is a fundamental aspect of human existence and a likely driver of 
human brain evolution (Fabbro, Cantone, Feruglio, & Crescentini, 2019; Heyes & Frith, 
2014), including the enhancement of aspects of the frontal (Sherwood et al., 2006) and 
parietal lobes (Patel, Sestieri, & Corbetta, 2019). With the emergence of a variety of im-
aging techniques, a number of regions have been identified in perspective taking 
(Heleven & Van Overwalle, 2018; Lamm, Rütgen, & Wagner, 2019; Quesque & Brass, 
2019). Across both patients (Dichter, 2012; Vucurovic, Caillies, & Kaladjian, 2020) and 
experimental studies, converging evidence appears to implicate the Right Temporal Pa-
rietal Junction- rTPJ (Dichter, 2012; Patel et al., 2019; Vucurovic et al., 2020) and Medial 
Prefrontal Cortex- MPFC (Li, Mai, & Liu, 2014; Schurz, Radua, Aichhorn, Richlan, & 
Perner, 2014; Smith & Lane, 2015) in adopting another person’s perspective. 

One of the essential features of consciousness is perspective (Taylor, 2001; Schilbach et 
al., 2006).  At the most basic level, all mammals possess a first person-perspective (1PP), 
also termed “central-representation” or “primary representation” (Vogeley, 2004).  This 
is the non-reflexive ability to simply know without explicit reflection or me-
ta-representation of any kind.  During 1PP, one would not think, “I am here”, but rather 
just be here (Eilan, 1995).  The second person-perspective (2PP) is commonly defined as 
the ability to monitor one’s own mental state in a self-representational capacity, other-
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wise known as being self-aware (Gallup, 1970; Krachun, Lurz, Mahovetz, & Hopkins 
2019). In doing so, one is able to attend to one’s own cognitions in a proprietary, 
self-reflective manner. Differentiating between 1PP and 2PP is dependent upon the abil-
ity to actively monitor or mentalize one’s thoughts in the past, present, and future (2PP) 
as opposed to mere present awareness (1PP). 

Previous research into the understanding of perspective taking has utilized linguis-
tic paradigms (e.g., Molnar-Szakacs, Uddin, and Iacoboni, 2005; Platek, Myers, Critton, & 
Gallup, 2003; Platek, 2010; Richardson et al., 2020), self-face paradigms (e.g., Keenan, 
Wheeler, Gallup, Pacual-Leone, 2000; Liu et al., 2020; Platek, Keenan, Gallup, Mohamed, 
2004; Sperry, Zaidel, & Zaidel, 1979; Preilowski et al.,1977; Sugiura, 2014), affective in-
terpretation tasks (e.g., Simon Baron-Cohen, 1996; Rutherford, Baron-Cohen, & Wheel-
wright, 2002; Golan, Baron-Cohen, Hill & Rutherford, 2006; Eidelman-Rothman et al., 
2016), tactile tasks (e.g., Schaefer, Xu, Flor, & Cohen, 2009; Schaefer, Heinze & Rotte, 2012) 
and lesion studies (e.g., Feinberg & Keenan., 2005; Breen, Caine & Coltheart, 2001; Stuss, 
Gallup, & Alexander, 2001), using both on-line and off-line approaches (e.g., Perner & 
Lang, 1999). 

        Evidence suggests that 2PP and 3PP may recruit similar cortical areas, lending 
support for an underlying neuroanatomical network that mirrors their applied functional 
similarity. A number of brain regions have been implicated in these me-
ta-representational functions, including: the right prefrontal cortex (e.g., Keenan et al., 
2000; Platek et al., 2003; Feinberg et al., 2005; Tullett, Harmon-Jones & Inzlicht, 2012), pa-
rietal regions (e.g., Wolper, Goodbody, Hussain, 1998; Lou, Luber, Crupain, Keenan, 
Nowak, et al., 2004; Lou, Luber, Stanford & Lisanby, 2010;  Taylor, 2001; Northoff & 
Bermpohl, 2004), the medial prefrontal cortex (MPFC; e.g., Duran et. al., 2020; Mitchell, 
Banaji, & Macrae, 2005; Johnson, Raye, Mitchell, Touryan, Greene & Nolan-Hoeksems, 
2002; Gallagher, Happe, Brunswick, Fletcher, Frith, & Frith, 2000; Johnson, Schmitz, Ka-
wahara-Baccus, Rowley, Alexander, Lee, & Davidson, 2005; Vogeley et al. 2001; David et 
al. 2006; Schilbach et al., 2006; Pfeiffer et al., 2014; Zysset, Huber, Samson, Ferstl, & Yves 
von Cramon, 2002), orbitofrontal regions (e.g., Berthoz, Armony, Blair & Dolan, 2002; 
Gregory et al., 2002; Bouc et al., 2012; Sabbagh, 2004) and the posterior cingulate cortex 
(e.g., Johnson et al., 2002; Kircher et al., 2002; Lou et al., 2010; Oschner et al., 2005). 

Of key interest is that although a large body of evidence has examined the link be-
tween 2PP and 3PP, very little is known about the contrast between prima-
ry-representation (1PP) and that of the meta-representational states of 2PP and 3PP.  It is 
unclear whether 1PP relies on similar or disparate cortical regions as those involved 
during 3PP and if 1PP is preferentially lateralized in the RH. One way in which 1PP has 
been successfully studied is through visio-spatial tasks which require the “centering on 
one’s multimodal experiential space upon one’s own body, thus operating in an egocen-
tric reference frame” (Vogeley, May, Ritzl, Falkai, Zilles, & Fink, 2004).  Vogeley et al. 
(2004) created a visio-spatial paradigm in which the individual is required to shift be-
tween one’s own body axis perspective (1PP) and taking another’s vantage point as their 
own (3PP). 

1. Motor Evoked Potentials (MEPs) 
Transcranial Magnetic Stimulation (TMS) delivered to the ‘hand area’ of the motor 

cortex elicits a Motor Evoked Potential (MEP) in the contra-lateral digits (Barker, Jali-
nous, & Freeston, 1985; Klomjai, Katz, & Lackmy-Vallée, 2015). MEPs have become a part 
of almost every TMS application as they are used to measure individual differences in 
motor threshold (MT: Lefaucheur, 2019; Maeda, Keenan, Tormos, Topka, & Pascu-
al-Leone, 2000), and it is generally thought unsafe to use TMS without gauging some 
aspect of MT (Anand & Hotson, 2002; Groppa et al., 2012; Wassermann et al., 1996; Zis et 
al., 2019). Since its inception, MEPs have been used for wide-ranging investigations in-
cluding post-stroke recovery (Kubis, 2016), ALS (Vucic et al., 2018), schizophrenia (Kas-
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kie & Ferrarelli, 2018), intrinsic brain rhythm activity (Hanajima & Ugawa, 2019) and 
even veterinary medicine (Journée et al., 2019). 

In terms of perspective taking, a study examined piano players who were presented 
with music they practiced previously. When they thought the left hand part of the music 
was being played by another person, the MEPs in the left arm were greater, and MEPs 
increased as the participant’s empathy increased (Novembre, Ticini, Schütz-Bosbach, & 
Keller, 2012). Further, previous work by our lab demonstrated that adopting another’s 
perspective (e.g., pretending to be a fan of an opposing sports team) led to greater left 
motor cortex/right hand MEPs (Kelly et al., 2009). 

Centered on first-person perspective, a number of researchers employed TMS in-
duced motor-evoked potentials (MEPs) to measure lateralized cortical excitability during 
the presentation of self-descriptive adjectives (Molnar-Szakacs, Uddin, & Iacoboni, 2005). 
The adjectives identified as highly or not at all descriptive of the individual resulted in 
increased right hemisphere excitability, indicating that the degree of self (including re-
jecting descriptions of oneself) could be discriminated via MEPs. The amount of one’s 
self-perception can alter MEPs such that participants’ positivity or sense of personal power 
results in differing senses of personal space (Vergallito et al., 2019). 

Differences in perspective taking that exist in motor areas are not surprising. Lat-
eralized hand response differences (e.g., reaction time and identification) exist such that 
there is a tendency for left-handed responses to be quicker for self-related stimuli (Kee-
nan, Freund, Hamilton, Ganis, & Pascual-Leone, 2000; Keenan, Ganis, Freund, & Pascu-
al-Leone, 2000; Keenan et al., 1999; Ma & Han, 2010). Furthermore, the handedness of the 
individual plays a significant role in how self (compared to other) is processed in the 
brain. While right-handed individuals tend to be more consistent and right-hemisphere 
dominant for self-processing, left-handed individuals display greater variability (and 
more left hemisphere involvement) in cortical response (Morita, Asada, & Naito, 2020). 
Therefore, both the hand that performs the task and an individual’s hand dominance in-
fluence perspective taking.  

In order to further our understanding of the cortical mechanisms involved during 
1PP and 3PP, we employed the same task in which participants were presented with 
virtual scenes of an avatar (i.e., a virtual character) and a number of red spheres (Vogeley 
et al., 2004). Participants were instructed to report how many red balls would be visible 
either from their own (1PP) or the avatar’s perspective (3PP). The current study admin-
istered TMS to both the right and left motor cortices (MC) to determine the degree of 
lateralization during 1PP and 3PP. It was predicted that TMS administration to the right 
MC would generate larger MEPs during assumption of the avatar’s perspective (3PP). 
This prediction is suggestive of the greater involvement of the RH during Theory of Mind 
(ToM), lending support to the theoretical, anatomical and cognitive similarity between 
2PP and 3PP. The advatnatge of MEPs over traditional neuroimaging is the direct assay 
of excitability rather than the possibility that increased signal may be indicating inhibi-
tory firings (Maeda, Keenan, Tormos, Topka, & Pascual-Leone, 2000). Therefore, if dif-
ference are found, a more direct interpretation is possible.  

2. Materials and Methods 
2.1. Participants 

Ten right-handed adults (4 men, 6 women) were recruited via flyer and word of 
mouth from Montclair State University and Seton Hall University (for similar samples, 
see Brady et al., 2019; Kim et al., 2019; Kumru, Kofler, Valls-Sole, & Vidal., 2019). . The 
mean age of the participants was 22.1 (SD=2.84). Participants were appropriately 
screened using the TMS safety guidelines established by Wasserman (1996, 1998). All 
subjects received $25 for participation in the study and were treated in accordance with 
the standards and guidelines set forth by the Institutional Review Board (IRB) of 
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Montclair State University. Written informed consent was obtained from all subjects. 
(IRB code: MSU IRB 424) 

2.2. Materials 
A TMS-Magstim 200 MonoPulse device with a 70mm figure-8 coil was used to 

stimulate cortical areas of the brain. Stimuli were presented using SuperLab (Cedrus 
Corporation, Version 2.01) on a Dell computer with a 17” inch CRT monitor. MEPs were 
acquired using Biopac MP150 amplifiers and accompanying acquisition software in-
stalled on a Dell computer.  MEPs were recorded using three surface electrodes attached 
to areas of the hand, using EC2 electrode paste and surgical tape. 

2.3. Procedure 
For each subject, three surface electrodes were affixed to both hands, at the abductor 

pollicis brevis (APB) and the belly-tendon montage.  A ground electrode was placed on 
the back of the wrist. Subjects were fitted with earplugs and a swim cap and then seated 
in front of a computer monitor with their head in a chin rest, 30 inches away from the 
computer monitor.  Due to individual differences in corticoexcitability, Motor Threshold 
(MT) was first established.  The MT was determined by stimulating the area of the pri-
mary motor cortex (M1) responsible for hand movement. The Motor Threshold is 
achieved by slowly increasing the stimulation intensity until hand movements a) can be 
visually detected, in the contralateral hand, in 5/10 cortical stimulations (Wasserman, 
1996) and b) met the IFCN guideline of MEP’s over 50 (Rossini et al., 1994). MT deter-
mination was established for both hemispheres, for each subject. 

Subjects were then presented with a virtual scene that included an avatar and a 
varying number (1-3) of red spheres within or out of sight of the avatar (Figure 1). The 
subjects were asked to determine “how many balls they see” (1PP) or “how many balls 
the avatar sees” (3PP; Vogeley et al., 2004). The experimenter recorded verbal responses. 
Single-pulse TMS was administered to the motor cortex of either the left or right hemi-
sphere 150 ms or 300 ms following stimulus presentation onset. All stimulation was de-
livered at 100% MT due to IRB regulations at MSU which capped TMS at 100%. In each 
condition and for each hemisphere, 48 trials were presented (left hemisphere, 1PP; left 
hemisphere, 3PP; right hemisphere, 1PP; and right hemisphere, 3PP; 192 total pulses per 
individual were given). All stimuli remained on the screen until the participant made a 
verbal response. Reaction times were not recorded (that is, onset of verbal response time). 
Trials were separated by an inter-trial-interval (ITI) of 1500 ms between each trial within 
condition. The left and right hemispheres were stimulated separately with the order of 
stimulation and conditions counterbalanced across subjects. TMS onset post-stimulus 
presentation was randomized for each condition. 
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Figure 1. Stimuli of avatar and spherical balls. Each frame presented here demonstrates a different 
correct response for 1PP and 3PP. Stimuli were adapted from (Guise et al., 2007; Vogeley et al., 
2004). 
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Measures of TMS-induced MEPs of the APB were recorded. The EMG signal was 
amplified by a factor of 1,000, filtered (bandpass amplifier filter between 1 Hz - 500 Hz), 
and digitized using a sampling rate of 500 samples per second. All data were stored on a 
computer for off-line analysis. MEP data were filtered off-line using a Finite Impulse 
Response (FIR) linear bandpass filter (between 10-250 Hz) employing BIOPAC provided 
software. The remaining data were then rectified and averaged within-subject by condi-
tion. The threshold for data rejection was defined as baseline amplitudes that exceeded 
100 μv. Following data rejection, group means were computed. 

3. Results 
        For each condition (1PP and 3PP), measures of TMS-induced MEPs for 

grand-averaged data were analyzed in terms of peak amplitude, area under the curve 
(AUC) and overall variability (SD). We began out analyses be directly testing a number of 
apriori comparisons. The timing of TMS onset was first analyzed using an independent 
samples t-test. Across conditions, the TMS pulse onset (150 vs 300 msec) did not impact 
MEP peak, AUC or variability (p>.05). As such, pulse onset was collapsed across all trials 
and conditions. A 2x2x2 (1PP/3PP; Left/Right Hemisphere Stimulation; 150/300 msec 
TMS-Onset) repeated measures Analysis of Variance (ANOVA) was performed. In the 
absence of a 3-way interaction (F(1,23) = .72, p>.05), a significant interaction between 
Hemisphere x Perspective was found (F(1,23) = 6.55, p<.02). The Right Hemisphere x 1PP 
differed significantly from all other conditions. 1PP, during right hemisphere stimula-
tion, resulted in a significant decrease in peak amplitudes when compared to all other 
conditions.  Additionally, a significant main effect for Perspective was found (F(1,23) = 
5.57, p<.05), in that 1PP yielded less robust peak amplitudes as compared to 3PP (Figure 
2). There were no other significant main effects (p’s>.05). 

 

Figure 2. The Peak (A), AUC (B) and SD (C) across Hemisphere for 1PP and 3PP. In all 3 measures, 
the 1PP Right Hemisphere condition differed significantly from all other conditions (all p’s&lt;.05). 
All other comparisons were non-significant. A representative rectified, smoothed MEP is given for 
the 1PP (D) for RH and LH. 

A second repeated-measures ANOVA was calculated to examine AUC differences. 
There was no significant 3-way interaction (F(1,23) = .02, p>05).  However, a significant 
interaction between Hemisphere x Perspective was found (F(1,23) = 11.63, p=.002).  A 
significant main effect was found for the 1PP/3PP condition (F(1,23) = 8.029, p<.05), re-
vealing a decrease in MEP AUC during the 1PP condition. A main effect for Hemisphere 
was also revealed (F(1,23) = 6.63, p<.05), such that the LH AUC was significantly greater 
than the RH AUC. The interaction between Hemisphere and Perspective, for both peak 
amplitude and AUC, indicates decreased right hemisphere activation during 1PP only. 

Lateralized differences in MEP variability may offer unique insights into the con-
sistent nature of the cortical response during differing perspectives. We therefore exam-
ined differences in SD using ANOVAs.  There was no significant 3-way interaction 
(F(1,23) = .004, p>05).  There was no interaction between TMS Onset and Hemisphere or 
TMS Onset and Perspective (p’s>.05); however, a significant interaction between Hemi-
sphere and Perspective was found (F(1,23) = 8.86, p<.007).  Using the Bonferroni correc-
tion for multiple comparisons, post-hoc analysis revealed that the variability of the 
self-right hemisphere condition was significantly lower compared to all other conditions 
(p’s<.05). Additionally, a significant main effect for Perspective was found (F(1,23) = 
11.66, p<.002), such that the self-condition was less variable than the oth-
er-condition.  Main effects for Hemisphere and TMS onset were not found (p’s > .05). 
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4. Discussion 
    The current study sought to identify lateralized differences during first- and 

third-person perspective-taking. These data revealed significant differences within the 
RH for perspective taking. Both peak amplitude and AUC differed significantly between 
perspectives within the RH. No such differences were observed in the LH.  An MEP re-
duction (for both amplitude and AUC) was noted for the RH during prima-
ry-representation, indicating that 1PP may require less activation in the RH. While it is 
not surprising to see a general decrease in MEP measures from 3PP to 1PP, as a function 
of task difficulty, the RH is considered to be dominant in spatial processing. In keeping 
with this, the LH did not evidence a decrease in MEP measures across perspectives. 

The question remains: if meta-representational abilities of 1PP and 3PP seem to be 
lateralized in the RH, why was no significant difference in corticoexcitability between 
hemispheres during the 3PP condition found?  There are a few possible explana-
tions.  First, although not significant, the RH did produce larger peak amplitudes than 
the LH during 3PP.  However, the AUC measures were more similar.  This may suggest 
inherent differences in MEP latency and length.  As such, some studies indicate that the 
analysis of the MEP silent period (PMSP; Pascual-Leone, Bartres-Faz & Keenan, 1999) 
may provide an alternate means of interpretation.  However, these analyses were not 
possible with the data we collected, because our MEP recordings were not long enough 
to capture the inhibitory response (i.e., typically 300 ms).  Furthermore, there is some 
evidence to suggest that the left motor cortex produces a greater MEP response as a 
function of greater activation of the left motor cortex in general (Pascual-Leone, Bar-
tres-Faz & Keenan, 1999).  

Previously (Théoret, Kobayashi, Merabet, Wagner & Tormos, Pascual-Leone, 2004), 
an increase in MEPs were found for self-related processing. While one can describe the 
difference in results through task dissimilarity, a further explanation may be provided by 
a paper on Alexithymia (Moriguchi et al., 2006). Using functional magnetic resonance 
imaging (fMRI) during a perspective taking task, researchers found that the Alexithymic 
group demonstrated greater activation in the RH compared to the non-Alexithymic 
group, though performance was superior for the non-Alexithymic group. Furthermore, 
and perhaps critical, is that activation in the right superior parietal cortex in the Alexi-
thymic group increased as a function of symptom severity. Therefore, it is possible that 
reduced MEPs may indicate a region is particularly adept or specialized at processing 
stimuli. As we have previously reported (Kelly, Murray, Barrios, Gorman, Ganis & 
Keenan, 2009), during a linguistic processing task, we found reductions in cortical acti-
vation during ToM tasks as ToM ability increases.  Therefore, the possibility is likely 
more than speculative (Kobayashi, Glover & Temple, 2008). 

Because much research has indicated regions such as the MPFC (e.g., Courtney & 
Meyer, 2020; D’Argembeau, Feyers, Majerus, Collette, Van der Linden, et al., 2008; Kedia 
et al., 2019; Lieberman, 2007; Molnar-Szakacs, Uddin, Zaidel, Iacoboni, 2007; Oschner, 
Beer, Robertson, Cooper, Gabrieli, et al., 2005; Lou, Luber, Crupain, Keenan, Nowak, et 
al., 2004; Seger, Stone & Keenan, 2004; Schilbach, Ritzl, Krämer, Newen, Zilles, et al., 2006 
; Zhao et al., 2016) as critical for self/other differentiation, this study is limited in its scope. 
However, the current study further supports lateralized findings by demonstrating that 
self/other discriminations are significantly different between the hemispheres. These data 
add to a growing amount of evidence that the RH appears critical in evaluating self/other 
differences, tested across a number of different modalities in non-patient (e.g., Keenan, 
Nelson, O’Connor & Pascual-Leone, 2001; Keenan, Wheeler, Platek, Lardi & Lassonde, 
2003; Kotlewska & Nowicka, 2015; Morita, Asada, & Naito, 2020; Morita et al., 2008; Naito 
et al., 2017; Sugiura, Miyauchi, Kotozaki, Akimoto & Nozawa, et al., 2014; Uddin, 
Molnar-Szakacs, Zaidel & Iacoboni, 2007; Prencipe & Zelazo, 2005) and patient popula-
tions (e.g., Candini et al., 2018; Delgado & Bogousslavsky, 2018; Dieguez, 2018;  Feinberg 
& Keenan, 2005; Frassinetti et al., 2012; Frassinetti, Maini, Romualdi, Galante, & Avanzi, 
2008) ). Decety and Lamm (2007) have suggested that superior right parietal processing 
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may be critical for both switching and differentiating self/other distinctions. Our current 
data support this possibility.  

An underused measure of MEPs has been variability between responses, and here 
we show that the right MC has less variability in response. While it remains unclear what 
this may mean, we suggest that intuitively reduced variability may indicate increased 
efficiency. Typically, MEP variability is looked at in terms of either population differ-
ences (Richter, Ehlis, Jacob & Fallgatter, 2007) or physiological changes (Darling, Wolf & 
Butler, 2006). We suspect that a further use may be in terms of efficiency, though we 
admit this is speculative. We believe that testing other paradigms; in particular those that 
simulate ‘real-life’ situations (Klichowski & Kroliczak, 2020) such as knowing what an-
other driver sees vs. what one sees would be a valuable line of investigation. Future 
studies should also examine the associate priming (Werner, von Ramin, Spruyt, & Roth-
ermund, 2018) and we believe that a well-designed study could tease out both (the eco-
logical significance and the degree of semantic or associative priming the two tasks have). 

Further, our participant number could be increased in future studies. Likewise, ad-
ditional measures of 1pp and 3pp should be collected in future studies. 
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