
𝒗𝒆-degree, 𝒆𝒗-degree and First Zagreb Index Entropies of Graphs 

Bünyamin ŞAHİN*1, Abdulgani ŞAHİN 2 

1Selçuk University,  Science Faculty, 42130, Konya, TURKEY  

bunyamin.sahin@selcuk.edu.tr 

2 Ağrı İbrahim Çeçen University, Science-Art Faculty 04000, Ağrı, TURKEY 

agani@agri.edu.tr 

 

Abstract. Chellali et al. introduced two degree concepts, 𝑣𝑒-degree and 𝑒𝑣-degree (Chellali et 

al, 2017). The 𝑣𝑒-degree of a vertex 𝑣 equals to number of different edges which are incident 

to a vertex from the closed neighborhod of 𝑣. Moreover the 𝑒𝑣-degree of an edge 𝑒 = 𝑎𝑏  equals 

to the number of vertices of the union of the closed neighborhoods of 𝑎 and 𝑏. The most private 

feature of these degree concepts is, total number of 𝑣𝑒-degrees and total number of 𝑒𝑣-degrees 

equal to first Zagreb index of the graphs for triangle-free graphs. In this paper we introduce 𝑣𝑒-

degree entropy, 𝑒𝑣-degree entropy and investigate the relations between these entropies and the 

first Zagreb index entropy. Finally we obtain the maximal trees with respect to 𝑣𝑒-degree 

irregularity index. 
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1. Introduction 

 There are many studies to determine the complexity of the networks in the last years. 

Computation of graph entropy measures is used in interdisciplinary researchs for example 

chemistry, information science and biology [1 − 6].  In order to determine the complexity of 

the graphs, most of the graph entropies are based on entropy of Shannon [7]. 

 In the literature there are several graph entropy measures by using the order of the graphs, 

degree sequence of the graphs, distance of the graphs, eccentricity of the graphs, characteristic 

polynomials and other graph polynomials of the graphs [7 − 14]. Graph entropies which are 

related to molecular descriptors are introduced in the last years. Network entropies which are 

based on degree powers of graphs were further studied in the last years [15 − 18].  Calculation 

of graph entropy measures which are based on matchings and independent sets was defined  

[19] and furter studied  [20]. Some relations between Randic index and Randic information 

were studied by Gutman et al. [21].  Some extremal properties of general graph entropies 

studied by Eliasi [22]. Entopies of fullerene graphs which are based on eccentricity of vertices  

were studied by Ghorbani et al. [23]. Entropy of weighted graphs  was studied by Kazemi [24]. 

More details about the graph entropies can be found in the book [25]. 

Vertex-edge domination and end-vertex domination are two mixed type domination invariants. 

The 𝑣𝑒-domination and 𝑒𝑣-domination concepts were introduced by Peters [26] and studied in 

for example [27,28].  
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 Chellali et al. introduced two degree concepts, 𝑣𝑒-degree and 𝑒𝑣-degree of the graphs [29]. 

The regularity and  irregularity of the graphs about 𝑣𝑒-degree and 𝑒𝑣-degree were studied by 

Horoldagva et al. [30]. The 𝑣𝑒-degree and 𝑒𝑣-degree concepts of the graphs were widely 

applied to Chemical Graph Theory [31,32]. Approximately forty papers were written about 

modified versions of the various topological indices with respect to 𝑣𝑒-degree and 𝑒𝑣-degree. 

Some chemical materials were investigated with this modified versions of the topological 

indices [33,34]. It was seen that 𝑣𝑒-degree and 𝑒𝑣-degree topological indices can be used as 

possible tools in QSPR researches. 

 First Zagreb index was introduced  by Gutman and Trinajstić in 1972 [35]. The first Zagreb 

index is a well studied molecular descriptor in the past [36, 37]. 

 In this paper we introduce two graph entropy measures which are based on 𝑣𝑒-degrees and 𝑒𝑣-

degrees of the graphs. Moreover we investigate the relations of these graph entropies with first 

Zagreb index entropy. Finally we investigate  the 𝑣𝑒-degree irregularity index and we obtain 

the maximal trees with respect to 𝑣𝑒-degree irregularity index.  

2. Preliminaries 

 Let 𝐺 be a simple graph with the vertex set 𝑉(𝐺) and the edge set 𝐸(𝐺) such that |𝑉(𝐺)| = 𝑛 

and |𝐸(𝐺)| = 𝑚. For a vertex 𝑢 ∈ 𝑉(𝐺), the open neighborhood of 𝑢 is defined as  𝑁𝐺(𝑢) =
{𝑣| 𝑢𝑣 ∈ 𝐸(𝐺)}  and the closed neighborhood of 𝑢 is defined as 𝑁𝐺[𝑢] = {𝑢} ∪ 𝑁𝐺(𝑢).   

 The degree of a vertex 𝑢 is cardinality of  𝑁𝐺(𝑢) and it is denoted by  𝑑𝑒𝑔(𝑢). The 𝑣𝑒-degree 

of a vertex 𝑣 equals to number of different edges which are incident to a vertex from the closed 

neighborhod of 𝑣 and it is denoted by 𝑑𝑒𝑔𝑣𝑒(𝑣). Moreover the 𝑒𝑣-degree of an edge 𝑒 = 𝑎𝑏  

equals to the number of vertices of the union of the closed neighborhoods of 𝑎 and 𝑏, it is 

denoted by 𝑑𝑒𝑔𝑒𝑣(𝑣). 

 A graph 𝐺 is 𝑣𝑒-regular if all its vertices have the same 𝑣𝑒-degree. A graph 𝐺 is 𝑒𝑣-regular if 

all its edges have the same 𝑒𝑣-degree. The paths, cycles and stars of order 𝑛 are denoted by 

𝑃𝑛, 𝐶𝑛 and 𝑆1,𝑛−1, respectively. Moreover complete graphs of order 𝑛 are denoted by 𝐾𝑛 and  

complete bipartite graphs are deonted by 𝐾𝑝,𝑞. The double star graphs 𝐷𝑆𝑝,𝑞are consisted of the 

stars 𝑆1,𝑝 and 𝑆1,𝑞 such that 𝑛 = 𝑝 + 𝑞 + 2. The subdivided star 𝑆𝑘
∗ is obtained from a star 𝑆1,𝑘 

by adding a vertex to every vertex of the star which has degree one. 

Definition 2.1. For a connected graph 𝐺 [35], 

𝑀1(𝐺) = ∑ 𝑑𝑒𝑔2(𝑢)

𝑢∈𝑉(𝐺)

. 

Definition 2.2. For a connected graph 𝐺, 

∑ 𝑑𝑒𝑔𝑣𝑒(𝑣) =

𝑣∈𝑉(𝐺)

∑ 𝑑𝑒𝑔𝑒𝑣(𝑒) = 𝑀1(𝐺) −

𝑒∈𝐸(𝐺)

3𝜂𝐺  

such that 𝜂𝐺  is total number of triangles contained by 𝐺 [29]. 

It implies that for a triangle-free graph 𝐺,  
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∑ 𝑑𝑒𝑔𝑣𝑒(𝑣) =

𝑣∈𝑉(𝐺)

∑ 𝑑𝑒𝑔𝑒𝑣(𝑒) = 𝑀1(𝐺).

𝑒∈𝐸(𝐺)

 

Definition 2.3.  Let 𝐺 be a triangle-free graph. Then for a vertex 𝑢 ∈ 𝑉(𝐺)  [32] 

𝑑𝑒𝑔𝑣𝑒(𝑣) = ∑ 𝑑𝑒𝑔(𝑢)

𝑢∈𝑁𝐺(𝑣)

. 

Definition 2.4.  Let 𝐺 be a triangle-free graph. Then for an edge 𝑒 = 𝑎𝑏 ∈ 𝐸(𝐺)  [29] 

𝑑𝑒𝑔𝑒𝑣(𝑒) = deg(𝑎) + deg(𝑏). 

Definition 2.5. The entropy of a graph 𝐺 is defined by Dehmer’s information functional method 

[8]  where an arbitrary information functional denoted by 𝑓 as in the following equations 

𝐼𝑓(𝐺) = −∑
𝑓(𝑣𝑖)

∑ 𝑓(𝑣𝑗)
⌈𝑉⌉
𝑗=1

log (
𝑓(𝑣𝑖)

∑ 𝑓(𝑣𝑗)
⌈𝑉⌉
𝑗=1

)

|𝑉|

𝑖=1

 

= log(∑𝑓(𝑣𝑖)

⌈𝑉⌉

𝑖=1

) −∑
𝑓(𝑣𝑖)

∑ 𝑓(𝑣𝑗)
⌈𝑉⌉
𝑗=1

log 𝑓(𝑣𝑖)

|𝑉|

𝑖=1

. 

Now we can give the definiton of the 𝑣𝑒-degree and 𝑒𝑣-degree entropies. 

Definition 2.6. For a triangle-free graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛}, we introduce the 

information functional such that  

𝑓 ∶= 𝑑𝑒𝑔𝑣𝑒(𝑣𝑖) and 𝑝𝑣𝑒(𝑣𝑖) =
𝑑𝑒𝑔𝑣𝑒(𝑣𝑖)

∑ 𝑑𝑒𝑔𝑣𝑒(𝑣𝑖)
𝑛
𝑖=1

 

for 1 ≤ 𝑖 ≤ 𝑛. Then by using Definition 2.5 we obtain the 𝑣𝑒-degree entropy  

𝐼𝑣𝑒(𝐺) = 𝐼𝑓(𝐺) = −∑
𝑑𝑒𝑔𝑣𝑒(𝑣𝑖)

∑ 𝑑𝑒𝑔𝑣𝑒(𝑣𝑖)
𝑛
𝑖=1

log (
𝑑𝑒𝑔𝑣𝑒(𝑣𝑖)

∑ 𝑑𝑒𝑔𝑣𝑒(𝑣𝑖)
𝑛
𝑖=1

)

𝑛

𝑖=1

 

= log(𝑀1(𝐺)) −
1

𝑀1(𝐺)
∑𝑑𝑒𝑔𝑣𝑒(𝑣𝑖)log(𝑑𝑒𝑔𝑣𝑒(𝑣𝑖))

𝑛

𝑖=1

. 

Definition 2.7. For a triangle-free graph 𝐺 with 𝐸(𝐺) = {𝑒1, 𝑒2, … , 𝑒𝑚}, we introduce the 

information functional such that  

𝑓 ∶= 𝑑𝑒𝑔𝑒𝑣(𝑒𝑖) and 𝑝𝑒𝑣(𝑒𝑖) =
𝑑𝑒𝑔𝑒𝑣(𝑒𝑖)

∑ 𝑑𝑒𝑔𝑒𝑣(𝑒𝑖)
𝑚
𝑖=1

 

for 1 ≤ 𝑖 ≤ 𝑚. Thus 

𝐼𝑒𝑣(𝐺) = 𝐼𝑓(𝐺) = −∑
𝑑𝑒𝑔𝑒𝑣(𝑒𝑖)

∑ 𝑑𝑒𝑔𝑒𝑣(𝑒𝑖)
𝑚
𝑖=1

log (
𝑑𝑒𝑔𝑒𝑣(𝑒𝑖)

∑ 𝑑𝑒𝑔𝑒𝑣(𝑒𝑖)
𝑚
𝑖=1

)

𝑚

𝑖=1

 

= log(𝑀1(𝐺)) −
1

𝑀1(𝐺)
∑𝑑𝑒𝑔𝑒𝑣(𝑒𝑖)log(𝑑𝑒𝑔𝑒𝑣(𝑒𝑖))

𝑚

𝑖=1

. 
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Definition 2.8. For a  graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛}, we introduce the information 

functional such that   

𝑓 ∶= 𝑑𝑒𝑔2(𝑣𝑖) and  𝑝𝑀1(𝑣𝑖) =
𝑑𝑒𝑔2(𝑣𝑖)

𝑀1(𝐺)
 

for 1 ≤ 𝑖 ≤ 𝑛. Therefore 

𝐼𝑀1(𝐺) = 𝐼𝑓(𝐺) = −∑
𝑑𝑒𝑔2(𝑣𝑖)

∑ 𝑑𝑒𝑔2(𝑣𝑖)
𝑛
𝑖=1

log (
𝑑𝑒𝑔2(𝑣𝑖)

∑ 𝑑𝑒𝑔2(𝑣𝑖)
𝑛
𝑖=1

)

𝑛

𝑖=1

 

= log(𝑀1(𝐺)) −
1

𝑀1(𝐺)
∑𝑑𝑒𝑔2(𝑣𝑖)log(𝑑𝑒𝑔

2(𝑣𝑖))

𝑛

𝑖=1

. 

We obtain very similar three graph entropy measures. Now we can obtain some relations 

between them in the next section.  

 

3. Main Results 

 In order to make some comparisons, we use majorization method as in defined by Das and Shi 

[18]. We consider non-increasing arrangement of each vector in 𝑅𝑛 such that for a vector 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅

𝑛. Thus we have 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛. 

Definition 3.1. For  𝑥, 𝑦 ∈ 𝑅𝑛, 𝑥 ≺ 𝑦 if ([18]) 

{
 
 

 
 
∑𝑥𝑖

𝑘

𝑖=1

≤∑𝑦𝑖

𝑘

𝑖=1

, 𝑖 = 1,2, … , 𝑛 − 1,

∑𝑥𝑖

𝑛

𝑖=1

=∑𝑦𝑖

𝑛

𝑖=1

.

 

When , 𝑥 ≺ 𝑦, 𝑥 is said to be majorized by 𝑦 (𝑦 majorizes 𝑥).  

Let 𝑝𝛼(𝐺) = (𝑝𝛼(𝑣1), 𝑝𝛼(𝑣2), … , 𝑝𝛼(𝑣𝑛)) is a probably vector of the graph 𝐺 with respect to a 

parameter 𝛼. Since the information entropy 𝐼𝛼(𝐺) = −∑ 𝑝𝛼(𝑣𝑖) log 𝑝𝛼(𝑣𝑖)
𝑛
𝑖=1 ,it is obtained 

that the fuction ℎ(𝑥) = −𝑥 log 𝑥 is a concave function for 𝑥 > 0. Therefore  we can give an 

essential theorem as used in [18]. 

Theorem 3.2. Let 𝐻 and 𝐺 be two non-isomorphic graphs of order 𝑛 and 𝑝𝛼(𝐻), 𝑝𝛼(𝐺) be the 

probability vectors of 𝐻 and 𝐺, respectively. If  𝑝𝛼(𝐻) ≺ 𝑝𝛼(𝐺) , then we obtain that 𝐼(𝐺) ≤
𝐼(𝐻). 

Example 3.3. For a path graph 𝑃7: 𝑣1𝑣2…𝑣7, we obtain that deg(𝑣1) = deg(𝑣7) = 1 and the 

other vertices have degree two. Thus  𝑀1(𝑃7) = 22.  

Moreover, 𝑑𝑒𝑔𝑣𝑒(𝑣1) = 𝑑𝑒𝑔𝑣𝑒(𝑣7) = 2, 𝑑𝑒𝑔𝑣𝑒(𝑣2) = 𝑑𝑒𝑔𝑣𝑒(𝑣6) = 3 and  𝑑𝑒𝑔𝑣𝑒(𝑣3) =

𝑑𝑒𝑔𝑣𝑒(𝑣4) = 𝑑𝑒𝑔𝑣𝑒(𝑣5) = 4.                                                                        

The 𝑒𝑣-degrees are as follows. 𝑑𝑒𝑔𝑒𝑣(𝑣1𝑣2) = 𝑑𝑒𝑔𝑒𝑣(𝑣6𝑣7) = 3 and 𝑑𝑒𝑔𝑒𝑣(𝑣2𝑣3) =

𝑑𝑒𝑔𝑒𝑣(𝑣3𝑣4) = 𝑑𝑒𝑔𝑒𝑣(𝑣4𝑣5) = 𝑑𝑒𝑔𝑒𝑣(𝑣5𝑣6) = 4. Then,  
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𝐼𝑣𝑒(𝑃7) = −(2 ×
2

22
log

2

22
+ 2 ×

3

22
log

3

22
+ 3 ×

4

22
log

4

22
) = 2,739 

𝐼𝑀1(𝑃7) = −(2 ×
1

22
log

1

22
+ 5 ×

4

22
log

4

22
) = 2,626 

𝐼𝑒𝑣(𝑃7) = −(2 ×
3

22
log

3

22
+ 4 ×

4

22
log

4

22
) = 2,562 

In the following theorem we obtain a general relation between 𝑣𝑒-degree entropy and first 

Zagreb index entropy of the trees. 

Theorem 3.4. Let 𝑇 be a tree with order 𝑛. Then 𝐼𝑀1(𝑇) ≤ 𝐼𝑣𝑒(𝑇). 

Proof. Let 𝑇 be a tree with order 𝑛. We label the vertices of 𝑇 such that  𝑑𝑒𝑔𝑣𝑒(𝑣1) ≥

𝑑𝑒𝑔𝑣𝑒(𝑣2) ≥ ⋯ ≥ 𝑑𝑒𝑔𝑣𝑒(𝑣𝑛) with probably vectors 𝑝𝑣𝑒(𝑣𝑖) =  
𝑑𝑒𝑔𝑣𝑒(𝑣𝑖)

𝑀1(𝑇)
. Moreover we label 

the vertices of 𝑇 such that 𝑑𝑒𝑔2(𝑣1) ≥ 𝑑𝑒𝑔2(𝑣2) ≥ ⋯ ≥ 𝑑𝑒𝑔2(𝑣𝑛) with probably vectors 

𝑝𝑀1(𝑣𝑖) =  
𝑑𝑒𝑔2(𝑣𝑖)

𝑀1(𝑇)
. In these two partitions the orderings of vertices are not same. These 

probably vectors are obtained from the tree 𝑇 but the degree concepts are different such that  

∑ 𝑑𝑒𝑔𝑣𝑒(𝑣) = ∑ 𝑑𝑒𝑔2(𝑣)

𝑣∈𝑉(𝑇)

=

𝑣∈𝑉(𝑇)

𝑀1(𝐺), 

∑ 𝑝𝑣𝑒(𝑣) = ∑ 𝑝𝑀1(𝑣)

𝑣∈𝑉(𝑇)

=

𝑣∈𝑉(𝑇)

1. 

Therefore we use Theorem 3.2. For a connected tree 𝑇 

∑𝑝𝑣𝑒(𝑣𝑖) <

𝑘

𝑖=1

∑𝑝𝑀1(𝑣𝑖

𝑘

𝑖=1

), 𝑖 = 1,2, … , 𝑘 − 1 

Since 𝑇 is a tree, at least two vertices of 𝑇 have degree 1 but the 𝑣𝑒-degrees of these vertices 

are at least 2. Thus summation of 𝑣𝑒-degrees for the first 𝑛 − 1 vertices is smaller than the 

summation of squares of the first 𝑛 − 1 vertices. Consequently by Theorem  3.2, we obtain that  

∑𝑝𝑣𝑒(𝑣𝑖)

𝑛

𝑖=1

=∑𝑝𝑀1(𝑣𝑖

𝑛

𝑖=1

) = 1, 

𝑝𝑣𝑒(𝑇) ≺  𝑝𝑀1(𝑇) and 𝐼𝑀1(𝑇) ≤ 𝐼𝑣𝑒(𝑇). 

By Theorem 3.4, we also obtain that 𝐼𝑀1(𝑃7) ≤ 𝐼𝑣𝑒(𝑃7) as in computed in Example 3.3. 

We know that the 𝑆1,𝑛−1 is the only 𝑣𝑒-regular tree such that all its vertices have same 𝑣𝑒-

degree 𝑛 − 1. Moreover  𝑆1,𝑛−1 is the only 𝑒𝑣-regular tree such that all its edges have same 𝑒𝑣-

degree 𝑛. The cycle 𝐶𝑛(𝑛 ≥ 4) is the unique unicyclic graph which is 𝑣𝑒-regular and 𝑒𝑣-

regular.  

For simplicity, a 𝑣𝑒-regular graph each of whose vertices has 𝑣𝑒-degree 𝑟 is called 𝑟𝑣𝑒-regular 

and an 𝑒𝑣-regular graph each of whose edges has 𝑒𝑣-degree 𝑟 is called 𝑟𝑒𝑣-regular [29]. For 
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example the cycle graph is 4𝑣𝑒-regular and 4𝑒𝑣-regular for 𝑛 ≥ 4. Furthermore the complete 

graph 𝐾𝑛 is 𝑚𝑣𝑒-regular such that the size 𝑚 = 𝑛(𝑛 − 1) 2⁄  and it is 𝑛𝑒𝑣-regular. A complete 

bipartite graph 𝐾𝑝,𝑞 is 𝑝𝑞𝑣𝑒-regular and  (𝑝 + 𝑞)𝑒𝑣-regular. 

Das and Shi  [18] obtained that first degree based entropy of the graphs have the maximum 

value for regular graphs. By a similar way we obtain the following theorems about 𝑣𝑒-regular 

and 𝑒𝑣-regular graphs.  

Theorem 3.5. Let 𝐺 be a 𝑣𝑒-regular graph and 𝐻 be an arbitrary graph of order 𝑛. Thus 

𝐼𝑣𝑒(𝐻) ≤ 𝐼𝑣𝑒(𝐺) = log 𝑛, the equality holds if and only if 𝐺 ≅ 𝐻. 

Theorem 3.6. Let 𝐺 be a 𝑒𝑣-regular graph and 𝐻 be an arbitrary graph of size 𝑚. Thus 𝐼𝑒𝑣(𝐻) ≤

𝐼𝑒𝑣(𝐺) = log𝑚, the equality holds if and only if 𝐺 ≅ 𝐻. 

Result 3.7. Let 𝑇 be a tree with order 𝑛. Thus 𝐼𝑣𝑒(𝑇) ≤ 𝐼𝑣𝑒(𝑆1,𝑛−1) = log 𝑛, the equality holds 

if and only if 𝑇 ≅ 𝑆1,𝑛−1. 

Result 3.8. Let 𝑇 be a tree with order 𝑛. Thus 𝐼𝑒𝑣(𝑇) ≤ 𝐼𝑒𝑣(𝑆1,𝑛−1) = log(𝑛 − 1), the equality 

holds if and only if 𝐺 ≅ 𝑆1,𝑛−1. 

Result 3.9. Let 𝐺 be a unicyclic graphs with order 𝑛. Thus 𝐼𝑣𝑒(𝐺) ≤ 𝐼𝑣𝑒(𝐶𝑛) = log 𝑛, the 

equality holds if and only if 𝐺 ≅ 𝐶𝑛 for 𝑛 ≥ 4. 

Result 3.10. Let 𝐺 be a unicyclic graphs with order 𝑛. Thus 𝐼𝑒𝑣(𝐺) ≤ 𝐼𝑒𝑣(𝐶𝑛) = log 𝑛, the 

equality holds if and only if 𝐺 ≅ 𝐶𝑛 for  𝑛 ≥ 4. 

Theorem 3.11. Let  𝐺 be a regular graph. If 𝐺 is 𝑒𝑣-regular, then it is 𝑣𝑒-regular ([30]). 

The complete bipartite graph 𝐾𝑝,𝑞 (𝑝 ≠ 𝑞) is both 𝑒𝑣-regular and  𝑣𝑒-regular, but not regular. 

Theorem 3.12. For the cycle 𝐶𝑛 other than 𝐶3,  𝐼𝑣𝑒(𝐶𝑛) = 𝐼𝑒𝑣(𝐶𝑛) = 𝐼𝑀1(𝐶𝑛) = log 𝑛. 

Proof. By Theorem 3.11, we know that the 𝐶𝑛 is 2-regular, 4𝑣𝑒-regular and 4𝑒𝑣-regular. Thus   

𝑝𝑣𝑒(𝑣𝑖) = 𝑝𝑒𝑣(𝑣𝑖) = 𝑝𝑀1(𝑣𝑖) =
4

4𝑛
=
1

𝑛
 

and  

𝐼𝑣𝑒(𝐶𝑛) = 𝐼𝑒𝑣(𝐶𝑛) = 𝐼𝑀1(𝐶𝑛) = −𝑛
1

𝑛
log

1

𝑛
= log 𝑛. 

Theorem 3.13. Let 𝑇 be a tree of order 𝑛. Then it is obtained that 𝐼𝑀1(𝑇) ≤ 𝐼𝑀1(𝑃𝑛), the equality 

holds if and only if 𝑇 ≅ 𝑃𝑛; 𝐼𝑀1(𝑇) ≥ 𝐼𝑀1(𝑆𝑛), the equality holds if and only if 𝑇 ≅ 𝑆𝑛 

([15, 18]). 

Theorem 3.14. Let 𝐾𝑝,𝑞 be a complete bipartite graph. Then 𝐼𝑣𝑒(𝐾𝑝,𝑞) ≤ 𝐼𝑒𝑣(𝐾𝑝,𝑞), the equality 

holds if and only if 𝑇 ≅ 𝐾2,2. 

Proof.  A complete bipartite graph 𝐾𝑝,𝑞 is 𝑣𝑒 -regular and  𝑒𝑣-regular. Thus 𝐼𝑣𝑒(𝐾𝑝,𝑞) =

log (𝑝 + 𝑞) and 𝐼𝑒𝑣(𝐾𝑝,𝑞) = log (𝑝𝑞). Since log 𝑥 is an increasing function for 𝑥 > 0,  

𝐼𝑣𝑒(𝐾𝑝,𝑞) ≤ 𝐼𝑒𝑣(𝐾𝑝,𝑞). For the equality, it has to be attained that  
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𝑝 + 𝑞 = 𝑝𝑞 

𝑝 + 𝑞

𝑝𝑞
= 1 

1

𝑝
+
1

𝑞
= 1 

Now we use the 𝑝 + 𝑞 = 𝑝𝑞 and it means 𝑝 = 𝑞(𝑝 − 1). Therefore, 𝑞 divides 𝑝. This relation 

can be obtained as 𝑝  divides 𝑞. Consequently, 𝑝 = 𝑞. Then the equality  
1

𝑝
+

1

𝑞
= 1 is obtained 

for 𝑝 = 𝑞 = 2. 

Theorem 3.15. Let 𝑇 (≇ 𝑆1,𝑛−1) be a tree of order 𝑛. Thus  

𝑖)
𝑑𝑒𝑔𝑣𝑒(𝑣𝑛)

𝑀1(𝑇)
≥

2

𝑛2 − 3𝑛 + 6
 

𝑖𝑖)
𝑑𝑒𝑔𝑒𝑣(𝑒𝑛−1)

𝑀1(𝑇)
≥

3

𝑛2 − 3𝑛 + 6
 

 

with equalities hold if and only if 𝑇 ≅ 𝐷𝑆𝑛−3,1. 

Proof. Let  𝑇 be a tree of order 𝑛 with probably vectors  

𝑝𝑣𝑒(𝑇) = (𝑝𝑣𝑒(𝑣1), 𝑝𝑣𝑒(𝑣2), … , 𝑝𝑣𝑒(𝑣𝑛)) as 𝑝𝑣𝑒(𝑣1) ≥ 𝑝𝑣𝑒(𝑣2)… ≥ 𝑝𝑣𝑒(𝑣𝑛) and                       

𝑝𝑒𝑣(𝑇) = (𝑝𝑒𝑣(𝑒1), 𝑝𝑒𝑣(𝑒2),… , 𝑝𝑒𝑣(𝑒𝑛−1)) as 𝑝𝑒𝑣(𝑒1) ≥ 𝑝𝑒𝑣(𝑒2)… ≥ 𝑝𝑒𝑣(𝑒𝑛−1). 

  Let 𝑇 be a double star graph which is obtained from a star graph 𝑆1,𝑛−3 with the central vertex 

𝑢 and a path 𝑃2 𝑥𝑦 such that 𝑢 is joined to 𝑥. Thus 𝑑𝑒𝑔𝑣𝑒(𝑦) = 2, 𝑑𝑒𝑔𝑣𝑒(𝑥) = 𝑑𝑒𝑔𝑣𝑒(𝑢) =

𝑛 − 1 and the remaining (𝑛 − 3) vertices have 𝑣𝑒-degree (𝑛 − 2). Moreover  𝑑𝑒𝑔𝑒𝑣(𝑥𝑦) = 3, 

𝑑𝑒𝑔𝑒𝑣(𝑢𝑥) = 𝑛 and the remaining (𝑛 − 3) edges have 𝑒𝑣-degree (𝑛 − 1).  Then 𝑀1(𝐺) =

𝑛2 − 3𝑛 + 6 and the  𝑝𝑣𝑒(𝑣𝑛) =
𝑑𝑒𝑔𝑣𝑒(𝑣𝑛)

𝑀1(𝑇)
=

2

𝑛2−3𝑛+6
 and 𝑝𝑒𝑣(𝑒𝑛−1) =

𝑑𝑒𝑔𝑒𝑣(𝑒𝑛−1)

𝑀1(𝑇)
=

3

𝑛2−3𝑛+6
  

It means that the equalities are obtained. Otherwise, let 𝑇 ≇ 𝐷𝑆𝑛−3,1.  It is obtained that 

𝑀1(𝑇) = 𝑛
2 − 3𝑛 + 6 is the maximum value of the first Zagreb index with maximum degree 

(𝑛 − 2) ([37]). We know that 𝑣𝑒-degree of a vertex is minimum 2 and 𝑒𝑣-degree of an edge 

is 3 for 𝑛 ≥ 3.Therefore, 

 𝑝𝑣𝑒(𝑣𝑛) =
𝑑𝑒𝑔𝑣𝑒(𝑣𝑛)

𝑀1(𝑇)
>

2

𝑛2 − 3𝑛 + 6
 

𝑝𝑒𝑣(𝑒𝑛−1) =
𝑑𝑒𝑔𝑒𝑣(𝑒𝑛−1)

𝑀1(𝑇)
>

3

𝑛2 − 3𝑛 + 6
. 

 

𝑣𝑒-irregular graphs and 𝑒𝑣-irregular graphs were studied Chellali et al. [29] and Horoldagva et 

al. [30]. Therefore we can intrdoduce the  𝑣𝑒-degree Albertson index [39] for further 

investigations. 
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Definition 3.16. Let  𝐺 be a graph of order 𝑛. Then 𝑣𝑒-degree irregularity of 𝐺 is computed by  

𝑖𝑟𝑟𝑣𝑒(𝐺) = ∑ |𝑑𝑒𝑔𝑣𝑒(𝑢) − 𝑑𝑒𝑔𝑣𝑒(𝑣)|

𝑢𝑣∈𝐸(𝐺)

. 

It is clear that 𝑖𝑟𝑟𝑣𝑒(𝐺) = 0 for 𝑣𝑒-irregular graphs. 

Theorem 3.17. Let 𝑇 be a simple, connected tree with order 𝑛, then 

𝑖)𝑖𝑟𝑟𝑣𝑒(𝑇) ≤
𝑛2 − 4𝑛 + 3

2
 

if 𝑛 = 2𝑘 + 1 and the equality holds if and only if 𝑇 ≅ 𝑆𝑘
∗. 

𝑖𝑖)𝑖𝑟𝑟𝑣𝑒(𝑇) ≤
𝑛2 − 4𝑛 + 4

2
  

if 𝑛 = 2𝑘 + 2 and the equality  holds if and only if 𝑇 ≅ 𝑇6 depicted in Figure 1. 

Proof. In order to prove the equalities we apply some operations to 𝑆1,𝑛−1 graphs. Clearly the 

star graphs are 𝑣𝑒-regular graphs and they have maximum value of total number of the 𝑣𝑒-

degrees in trees. 

𝑖) Assume that 𝑛 = 2𝑘 + 1. If we remove a vertex of degree 1 from a star 𝑆1,𝑛−1 and  attach it 

to an other vertex which has degree one, we obtain double star graph 𝑇1 = 𝐷𝑆𝑛−3,1. It is used 

in the proof of Theorem 3.15. Therefore 𝑖𝑟𝑟𝑣𝑒(𝑇1) = 2𝑛 − 6. 

 

Figure 1. The  trees 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6. 

If we remove a vertex of degree one and attach it (𝑧) to the vertex 𝑦 on 𝑇1, we obtain the tree 

𝑇2. It is obtained that 𝑑𝑒𝑔𝑣𝑒(𝑧) = 2, 𝑑𝑒𝑔𝑣𝑒(𝑦) = 3, 𝑑𝑒𝑔𝑣𝑒(𝑥) = 𝑛 − 1, 𝑑𝑒𝑔𝑣𝑒(𝑢) = 𝑛 − 2 and 

the remaining (𝑛 − 4) vertices have 𝑣𝑒-degree (𝑛 − 3) for 𝑇2. Then 𝑖𝑟𝑟𝑣𝑒(𝑇2) = 2𝑛 − 6. We 

can see that 𝑖𝑟𝑟𝑣𝑒(𝑇1) = 𝑖𝑟𝑟𝑣𝑒(𝑇2). 
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Now we remove a vertex of degree one and attach it to a vertex (𝑟) which is incident to the 

central vertex 𝑢 on 𝑇1. Thus we obtain the tree 𝑇3. For the tree 𝑇3, 𝑑𝑒𝑔𝑣𝑒(𝑦) = 𝑑𝑒𝑔𝑣𝑒(𝑠) = 2, 

𝑑𝑒𝑔𝑣𝑒(𝑥) = 𝑑𝑒𝑔𝑣𝑒(𝑟) = 𝑛 − 2, 𝑑𝑒𝑔𝑣𝑒(𝑢) = 𝑛 − 1 and the remaining (𝑛 − 5) vertices have 

𝑣𝑒-degree (𝑛 − 3). Then 𝑖𝑟𝑟𝑣𝑒(𝑇3) = 4𝑛 − 16. Consequently, 𝑖𝑟𝑟𝑣𝑒(𝑇3) > 𝑖𝑟𝑟𝑣𝑒(𝑇1) =

𝑖𝑟𝑟𝑣𝑒(𝑇2). 

By this way we obtain the subdivided star graph 𝑆𝑘
∗  which is maximal tree with respect to 𝑣𝑒-

degree irregularity index with order 𝑛 = 2𝑘 + 1. For 𝑆𝑘
∗, 𝑣𝑒-degree of the central vertex 𝑢 is 

2𝑘, 𝑣𝑒-degree of the vertices at distance 1 from the 𝑢 is (𝑘 + 1) and 𝑣𝑒-degree of the vertices 

at distance 2 from the 𝑢 is 2. Therefore 

𝑖𝑟𝑟𝑣𝑒(𝑆𝑘
∗) = 2𝑘(𝑘 − 1) =

𝑛2 − 4𝑛 + 3

2
. 

𝑖𝑖) We investigate the second case for 𝑛 = 2𝑘 + 2. It means that a vertex of degree one has to 

be attached to a subdivided star graph 𝑆𝑘
∗. Thus we observe the tree subcase for  𝑇4, 𝑇5, 𝑇6. 

For the tree 𝑇4, 𝑑𝑒𝑔𝑣𝑒(𝑐) = 2, 𝑑𝑒𝑔𝑣𝑒(𝑏) = 3, 𝑑𝑒𝑔𝑣𝑒(𝑎) = 𝑘 + 2, 𝑑𝑒𝑔𝑣𝑒(𝑢) = 2𝑘, 𝑣𝑒-degree 

of the  (𝑘 − 1) vertices at distance 1 from the 𝑢 is (𝑘 + 1) and 𝑣𝑒-degree of the (𝑘 − 1) vertices 

at distance 2 from the 𝑢 is 2. Thus 

𝑖𝑟𝑟𝑣𝑒(𝑇4) = 2(𝑘 − 1)
2 + 2(𝑘 − 2) 

= 2𝑘2 − 2𝑘 

=
𝑛2 − 6𝑛 + 8

2
 

For the tree 𝑇5, 𝑑𝑒𝑔𝑣𝑒(𝑙) = 𝑑𝑒𝑔𝑣𝑒(𝑚) = 3, 𝑑𝑒𝑔𝑣𝑒(𝑘) = 𝑘 + 2, 𝑑𝑒𝑔𝑣𝑒(𝑢) = 2𝑘 + 1, 𝑣𝑒-

degree of the  (𝑘 − 1) vertices at distance 1 from the 𝑢 is (𝑘 + 1) and 𝑣𝑒-degree of the (𝑘 − 1) 

vertices at distance 2 from the 𝑢 is 2. Thus 

𝑖𝑟𝑟𝑣𝑒(𝑇5) = (𝑘 − 1)(2𝑘 − 1) + 3(𝑘 − 1) 

= (2𝑘 + 2)(𝑘 − 1) 

=
𝑛2 − 4𝑛

2
 

For the tree 𝑇6, 𝑑𝑒𝑔𝑣𝑒(𝑤) = 𝑘 + 1, 𝑑𝑒𝑔𝑣𝑒(𝑢) = 2𝑘 + 1, 𝑣𝑒-degree of the 𝑘 vertices at distance 

1 from the 𝑢 is (𝑘 + 2) and 𝑣𝑒-degree of the 𝑘 vertices at distance 2 from the 𝑢 is 2. Thus 

𝑖𝑟𝑟𝑣𝑒(𝑇6) = 𝑘(2𝑘 − 1) + 𝑘 

= 2𝑘2 

=
𝑛2 − 4𝑛 + 4

2
 

This completes the proof. 
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Theorem 3.18. 𝑖𝑟𝑟𝑣𝑒(𝑃𝑛) = {
0, 𝑛 = 2,3
2,    𝑛 = 4
4,    𝑛 ≥ 5

 

Proof. The proof is clear and we omit the details. 

 

 

Conclusion 

 In this paper we initiated to study 𝑣𝑒-degree and 𝑒𝑣-degree entropies of the graphs. Moreover 

we introduced the 𝑣𝑒-degree Albertson index and we obtain the maximal trees for this modified 

version. There are many open problems in this topics. We obtain that 𝑣𝑒-regular and 𝑒𝑣-regular 

trees are maximal trees with respect to 𝑣𝑒-degree and 𝑒𝑣-degree entropies of the trees. The 

minimal trees should be found. We also know that there is no 𝑣𝑒-regular bicyclic graphs [29]. 

The extremal trees should be found for bicyclic graphs. Finally, 𝑣𝑒-degree irregularity should 

be extended to other graphs. 
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