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Abstract. Chellali et al. introduced two degree concepts, ve-degree and ev-degree (Chellali et
al, 2017). The ve-degree of a vertex v equals to number of different edges which are incident
to a vertex from the closed neighborhod of v. Moreover the ev-degree of an edge e = ab equals
to the number of vertices of the union of the closed neighborhoods of a and b. The most private
feature of these degree concepts is, total number of ve-degrees and total number of ev-degrees
equal to first Zagreb index of the graphs for triangle-free graphs. In this paper we introduce ve-
degree entropy, ev-degree entropy and investigate the relations between these entropies and the
first Zagreb index entropy. Finally we obtain the maximal trees with respect to ve-degree
irregularity index.
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1. Introduction

There are many studies to determine the complexity of the networks in the last years.
Computation of graph entropy measures is used in interdisciplinary researchs for example
chemistry, information science and biology [1 — 6]. In order to determine the complexity of
the graphs, most of the graph entropies are based on entropy of Shannon [7].

In the literature there are several graph entropy measures by using the order of the graphs,

degree sequence of the graphs, distance of the graphs, eccentricity of the graphs, characteristic
polynomials and other graph polynomials of the graphs [7 — 14]. Graph entropies which are
related to molecular descriptors are introduced in the last years. Network entropies which are
based on degree powers of graphs were further studied in the last years [15 — 18]. Calculation
of graph entropy measures which are based on matchings and independent sets was defined
[19] and furter studied [20]. Some relations between Randic index and Randic information
were studied by Gutman et al. [21]. Some extremal properties of general graph entropies
studied by Eliasi [22]. Entopies of fullerene graphs which are based on eccentricity of vertices
were studied by Ghorbani et al. [23]. Entropy of weighted graphs was studied by Kazemi [24].
More details about the graph entropies can be found in the book [25].

Vertex-edge domination and end-vertex domination are two mixed type domination invariants.
The ve-domination and ev-domination concepts were introduced by Peters [26] and studied in
for example [27,28].
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Chellali et al. introduced two degree concepts, ve-degree and ev-degree of the graphs [29].
The regularity and irregularity of the graphs about ve-degree and ev-degree were studied by
Horoldagva et al. [30]. The ve-degree and ev-degree concepts of the graphs were widely
applied to Chemical Graph Theory [31,32]. Approximately forty papers were written about
modified versions of the various topological indices with respect to ve-degree and ev-degree.
Some chemical materials were investigated with this modified versions of the topological
indices [33,34]. It was seen that ve-degree and ev-degree topological indices can be used as
possible tools in QSPR researches.

First Zagreb index was introduced by Gutman and Trinajsti¢ in 1972 [35]. The first Zagreb
index is a well studied molecular descriptor in the past [36, 37].

In this paper we introduce two graph entropy measures which are based on ve-degrees and ev-
degrees of the graphs. Moreover we investigate the relations of these graph entropies with first
Zagreb index entropy. Finally we investigate the ve-degree irregularity index and we obtain
the maximal trees with respect to ve-degree irregularity index.

2. Preliminaries

Let G be a simple graph with the vertex set VV(G) and the edge set E(G) such that [V (G)| = n
and |E(G)| = m. For a vertex u € V(G), the open neighborhood of u is defined as N;(u) =
{v| uv € E(G)} and the closed neighborhood of u is defined as N [u] = {u} U Ng(u).

The degree of a vertex u is cardinality of N;(u) and it is denoted by deg(u). The ve-degree
of a vertex v equals to number of different edges which are incident to a vertex from the closed
neighborhod of v and it is denoted by deg,.(v). Moreover the ev-degree of an edge e = ab
equals to the number of vertices of the union of the closed neighborhoods of a and b, it is
denoted by deg,,, (v).

A graph G is ve-regular if all its vertices have the same ve-degree. A graph G is ev-regular if
all its edges have the same ev-degree. The paths, cycles and stars of order n are denoted by
B,, C, and S, ,,_1, respectively. Moreover complete graphs of order n are denoted by K,, and
complete bipartite graphs are deonted by K, ,. The double star graphs DS,, ,are consisted of the
stars Sy, and Sy 4 such that n = p + g + 2. The subdivided star S, is obtained from a star S, ;
by adding a vertex to every vertex of the star which has degree one.

Definition 2.1. For a connected graph G [35],

M@= ) deg’(uw)

uev(G)

Definition 2.2. For a connected graph G,

Z degye(v) = Z degey(e) = My (G) —3ng

such that n,; is total number of triangles contained by G [29].

It implies that for a triangle-free graph G,
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> degue@) = ) degen(e) = My(©).

veV(G) e€E(G)
Definition 2.3. Let G be a triangle-free graph. Then for a vertex u € V(G) [32]
degue(®) = ) deg(uw).
uENG(v)
Definition 2.4. Let G be a triangle-free graph. Then for an edge e = ab € E(G) [29]
deg.,(e) = deg(a) + deg(b).

Definition 2.5. The entropy of a graph G is defined by Dehmer’s information functional method
[8] where an arbitrary information functional denoted by f as in the following equations

14
Fw) F)
1,6 = — 1
! Zzﬁ.@lf(vj) > (zﬁ-ihf(v,-)>

i=1

14 14

_ f(;)
= log ;fm) —;mlogﬂva.

Now we can give the definiton of the ve-degree and ev-degree entropies.

Definition 2.6. For a triangle-free graph G with V(G) = {v,, vy, ..., v, }, We introduce the
information functional such that

degye(vi)

f = degye(v;) and py (v;) = T degue()

for 1 < i < n. Then by using Definition 2.5 we obtain the ve-degree entropy

degve(vi) 10< degve(vi) )
11'1=1 degve (vi) ?:1 degve (vi)

L (G) = If(G) = -

i=1
1 n
= log(M;(G)) — mz degye (vi)IOg(degve (vi))'

Definition 2.7. For a triangle-free graph G with E(G) = {e,, e,, ..., e}, We introduce the
information functional such that

degev(e;)

f = dege,(e;) and pe,(e;) = T degen(eD)

forl1 <i<m.Thus

_ _ N degev(ei) degev(ei)
(@) =1 (6 == ) S degon(en < ﬁldege,,(eo)
1 m
= Log(:(6)) = 3775 ., deden(enlog(deges e)
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Definition 2.8. For a graph G with V(G) = {v,, v, ..., v,}, we introduce the information
functional such that

_ _deg?(wy)
f :=deg?(vy) and py, (v;) = M6

for 1 < i < n. Therefore

In, (G) = I;(G) = —

i=1

deg®(v) | ( deg?(v)) )
(0]
" _deg?(vy) °\ST, deg?(v;)

1

= log(M,(G)) — WE deg?(v)log(deg?(v).

We obtain very similar three graph entropy measures. Now we can obtain some relations
between them in the next section.

3. Main Results

In order to make some comparisons, we use majorization method as in defined by Das and Shi
[18]. We consider non-increasing arrangement of each vector in R™ such that for a vector x =
(x4, %5, .., X)) € R™ Thus we have x; > x, = -+ = x,,.

When , x < y, x is said to be majorized by y (y majorizes x).

Let p,(G) = (pa(vl),pa(vz), vy Pa (Un)) is a probably vector of the graph G with respect to a
parameter a. Since the information entropy 1,(G) = —Yi; po(v;) log e (v;),it is obtained
that the fuction h(x) = —xlogx is a concave function for x > 0. Therefore we can give an
essential theorem as used in [18].

Theorem 3.2. Let H and G be two non-isomorphic graphs of order n and p, (H), p,(G) be the
probability vectors of H and G, respectively. If p,(H) < p,(G) , then we obtain that 1(G) <
I(H).

Example 3.3. For a path graph P;: v, v, ... v;, we obtain that deg(v,) = deg(v;) = 1 and the
other vertices have degree two. Thus M;(P;) = 22.

Moreover, deg,e(v1) = degye(v;) =2, degye(vy) = degye(ve) =3 and deg,.(vs) =
deg'l]e(vll-) = degve(vs) =4,

The ev-degrees are as follows. deg.,(viv,) = dege,(Vgv;) =3 and deg,,(v,v3) =
degev(v3v4) = degev(v4v5) = degev(v5v6) = 4. Then,
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L.(P,) = 2% g 4 2 X S log o 4 3 X log oty = 2.739
ve(P7) = =(2x 37 log 57 22 %8722 57 10855) = 2

1 4 4
+ 5 X% —log—) = 2,626

Iy (P7) = = (2 X5310855 22 9837

1,(P,) = (2><31 S x4 4)—2562
evif7) = 22 %677 22 9%657) = ©

In the following theorem we obtain a general relation between ve-degree entropy and first
Zagreb index entropy of the trees.

Theorem 3.4. Let T be a tree with order n. Then Iy, (T) < L, (T).

Proof. Let T be a tree with order n. We label the vertices of T such that deg,.(v;) =

degye(vy) = -+ = degye.(vy,) With probably vectors p,.(v;) = “j”—é’)"'). Moreover we label
1
the vertices of T such that deg?(v,) = deg?(v,) = --- > deg?(v,)) with probably vectors

2(p;
pm, (Vi) = djz((;;‘). In these two partitions the orderings of vertices are not same. These

probably vectors are obtained from the tree T but the degree concepts are different such that

> degue®) = ) deg?(®) =My (),

veV(T) vev(T)
D @ = ) pu @) =1
vev(T) veVv(T)

Therefore we use Theorem 3.2. For a connected tree T

k k
D Poe@) <) P @)= 12k~ 1
i=1 i=1

Since T is a tree, at least two vertices of T have degree 1 but the ve-degrees of these vertices
are at least 2. Thus summation of ve-degrees for the first n — 1 vertices is smaller than the
summation of squares of the first n — 1 vertices. Consequently by Theorem 3.2, we obtain that

n n
D Poe@d =) P = 1,
i=1 i=1

Pre (T) < le (T) and IM1 (T) < Ive (T)
By Theorem 3.4, we also obtain that I,;, (P;) < I,,.(P;) as in computed in Example 3.3.

We know that the S; ,,_; is the only ve-regular tree such that all its vertices have same ve-
degree n — 1. Moreover S; ,,_, is the only ev-regular tree such that all its edges have same ev-
degree n. The cycle C,(n = 4) is the unique unicyclic graph which is ve-regular and ev-
regular.

For simplicity, a ve-regular graph each of whose vertices has ve-degree r is called r,.-regular
and an ev-regular graph each of whose edges has ev-degree r is called r,,-regular [29]. For
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example the cycle graph is 4,,.-regular and 4.,-regular for n > 4. Furthermore the complete
graph K,, is my.-regular such that the size m = n(n — 1)/2 and it is n,,-regular. A complete
bipartite graph K, ; is pqy.-regular and (p + q).,-regular.

Das and Shi [18] obtained that first degree based entropy of the graphs have the maximum
value for regular graphs. By a similar way we obtain the following theorems about ve-regular
and ev-regular graphs.

Theorem 3.5. Let G be a ve-regular graph and H be an arbitrary graph of order n. Thus
I,.(H) < I,,(G) = logn, the equality holds if and only if G = H.

Theorem 3.6. Let G be a ev-regular graph and H be an arbitrary graph of size m. Thus I,.,,(H) <
1.,(G) = logm, the equality holds if and only if G = H.

Result 3.7. Let T be a tree with order n. Thus I (T) < I,(S1,—1) = logn, the equality holds
ifandonly if T = S; ,,_;4.

Result 3.8. Let T be a tree with order n. Thus I, (T) < I,(S1n-1) = log(n — 1), the equality
holds if and only if G = S;,,—4.

Result 3.9. Let G be a unicyclic graphs with order n. Thus I,.(G) < I,.(C,) = logn, the
equality holds if and only if G = C,, forn > 4.

Result 3.10. Let G be a unicyclic graphs with order n. Thus 1,,(G) < I,,(C,) = logn, the
equality holds if and only if G = C,, for n > 4.

Theorem 3.11. Let G be a regular graph. If G is ev-regular, then it is ve-regular ([30]).
The complete bipartite graph K, , (p # q) is both ev-regular and ve-regular, but not regular.
Theorem 3.12. For the cycle C,, other than C3, L, (C,) = I, (C) = Iy, (C,) = logn.

Proof. By Theorem 3.11, we know that the C,, is 2-regular, 4,,.-regular and 4.,,-regular. Thus

1

4
pve(vi) = pev(vi) = Dm, (vi) = E — E

and

1 1
Ive(cn) = Iev(Cn) = IM1 (Cn) = —naloga = logn.

Theorem 3.13. Let T be a tree of order n. Then it is obtained that I, (T) < I, (P,), the equality
holds if and only if T = B;; Iy, (T) = Iy,(Sy), the equality holds if and only if T = S,
([15,18]).

Theorem 3.14. Let K, , be a complete bipartite graph. Then I,,.(Kp,4) < Loy (K; ), the equality
holds if and only if T = K ,.

Proof. A complete bipartite graph K, , is ve -regular and ev-regular. Thus I,,e(Kp,q) =
log(p +q) and I,,(K,,) =log(pq). Since logx is an increasing function for x >0,
Ie(Kpq) < Lew(Kpq)- For the equality, it has to be attained that
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p+4q=pq
_I_
- T
pq
1 1
—4+2=1
P q

Now we use the p + g = pq and it means p = q(p — 1). Therefore, q divides p. This relation
can be obtained as p divides q. Consequently, p = q. Then the equality %+% = 1 is obtained
forp=q=2.

Theorem 3.15. Let T (2 S;,—1) be a tree of order n. Thus

i degye(vy) > 2
M(T) ~n?-3n+6

i degey(en—1) S 3
M{(T) ~n?-3n+6

with equalities hold if and only if T = DS,,_3 ;.
Proof. Let T be a tree of order n with probably vectors

Pye (T) = (pve(vl)r DPve (772)' -y Pve (Un)) as Pye (Ul) = Pre (UZ) = Pre (Un) and
Pev(T) = (Pev(€1), Dev(€2), ) Pev(€n—1)) 8 Pev(€1) = Pev(€2) - = Pev(€n-1)-

Let T be a double star graph which is obtained from a star graph S; ,,_3 with the central vertex
u and a path P, xy such that u is joined to x. Thus deg,.(y) = 2, degy.(x) = deg,.(u) =
n — 1 and the remaining (n — 3) vertices have ve-degree (n — 2). Moreover deg,,(xy) = 3,
deg.,(ux) = n and the remaining (n — 3) edges have ev-degree (n —1). Then M,(G) =

degye(vn) 2 degey(en—1) 3
n? —3n + 6 and the p,,(v,) = M = wsnre and p,,(e,_1) = G D _ e —

It means that the equalities are obtained. Otherwise, let T % DS,_34. It is obtained that
M;(T) = n? — 3n + 6 is the maximum value of the first Zagreb index with maximum degree
(n—2) ([37]). We know that ve-degree of a vertex is minimum 2 and ev-degree of an edge
is 3 for n > 3.Therefore,

() = degve(n) 2
Pveln M, (T) n?—3n+6
degev(en—l) 3
Pev(en-1) = M, (T) W _3n+6

ve-irregular graphs and ev-irregular graphs were studied Chellali et al. [29] and Horoldagva et
al. [30]. Therefore we can intrdoduce the wve-degree Albertson index [39] for further
investigations.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2021

Definition 3.16. Let G be a graph of order n. Then ve-degree irregularity of G is computed by
irrve(G) = z Idegve(u) - degve(v)l-
UvEE(G)
It is clear that irr,, (G) = 0 for ve-irregular graphs.
Theorem 3.17. Let T be a simple, connected tree with order n, then

n? —4n+3
2

if n = 2k + 1 and the equality holds ifand only if T = S,.

D)irt,e(T) <

n?—4n+4
2

if n = 2k + 2 and the equality holds if and only if T = T, depicted in Figure 1.

i)irr,,(T) <

Proof. In order to prove the equalities we apply some operations to S; ,,_; graphs. Clearly the
star graphs are ve-regular graphs and they have maximum value of total number of the ve-
degrees in trees.

i) Assume that n = 2k + 1. If we remove a vertex of degree 1 from a star S; ,_; and attach it
to an other vertex which has degree one, we obtain double star graph T; = DS,,_3 ;. It is used
in the proof of Theorem 3.15. Therefore irrn,,(T;) = 2n — 6.

T4 TS T6

Figure 1. The trees Ty, Ty, T5, Ty, Ts, Ts.

If we remove a vertex of degree one and attach it (z) to the vertex y on T,, we obtain the tree
T,. Itis obtained that deg,,.(z) = 2, deg,.(y) = 3,degye(x) =n —1,deg,.(u) = n— 2 and
the remaining (n — 4) vertices have ve-degree (n — 3) for T,. Then irn,.(T,) = 2n — 6. We
can see that irr,, (T;) = irn,(T,).
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Now we remove a vertex of degree one and attach it to a vertex (r) which is incident to the
central vertex u on T;. Thus we obtain the tree T5. For the tree Ts, deg,(y) = degy.(s) = 2,
degye(x) = degye(r) = n — 2,deg,.(u) =n—1 and the remaining (n — 5) vertices have
ve-degree (n—3). Then irn,(T;) = 4n —16. Consequently, irn,,(T3) > irn,(T;) =
irye (T2).

By this way we obtain the subdivided star graph S, which is maximal tree with respect to ve-
degree irregularity index with order n = 2k + 1. For S, ve-degree of the central vertex u is
2k, ve-degree of the vertices at distance 1 from the w is (k + 1) and ve-degree of the vertices
at distance 2 from the w is 2. Therefore

n? —4n+3
5 .

ii) We investigate the second case for n = 2k + 2. It means that a vertex of degree one has to
be attached to a subdivided star graph S;. Thus we observe the tree subcase for T, Ts, Ts.

irre(Sg) = 2k(k— 1) =

For the tree Ty, deg,.(c) = 2,deg,.(b) = 3, deg,.(a) = k + 2,deg,.(u) = 2k, ve-degree
of the (k — 1) vertices at distance 1 from the u is (k + 1) and ve-degree of the (k — 1) vertices
at distance 2 from the w is 2. Thus

i1, (Ty) = 2(k — 1) + 2(k — 2)
= 2k? -2k
_n2 —6n+8
B 2

For the tree Ty, deg,.(l) = deg,.(m) = 3,deg,.(k) =k + 2,deg,.(u) = 2k +1, ve-
degree of the (k — 1) vertices at distance 1 from the w is (k + 1) and ve-degree of the (k — 1)
vertices at distance 2 from the u is 2. Thus

irt,e(Ts) = (k—1)2k—1)+3(k—1)
=Q2k+2)(k—-1)
_n?—4n
2
For the tree Ty, deg,. (W) = k + 1,deg,.(u) = 2k + 1, ve-degree of the k vertices at distance
1 from the u is (k + 2) and ve-degree of the k vertices at distance 2 from the u is 2. Thus

irr,e(Tg) = k(RQk—1) + k
= 2k?

_n2—4n+4
B 2

This completes the proof.
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0, n=23
Theorem 3.18. irr,,(B,) =42, n=4
4, n=>5

Proof. The proof is clear and we omit the details.

Conclusion

In this paper we initiated to study ve-degree and ev-degree entropies of the graphs. Moreover
we introduced the ve-degree Albertson index and we obtain the maximal trees for this modified
version. There are many open problems in this topics. We obtain that ve-regular and ev-regular
trees are maximal trees with respect to ve-degree and ev-degree entropies of the trees. The
minimal trees should be found. We also know that there is no ve-regular bicyclic graphs [29].
The extremal trees should be found for bicyclic graphs. Finally, ve-degree irregularity should
be extended to other graphs.
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