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Abstract: We work with reference to a well-known semiclassical model, in which quantum degrees1

of freedom interact with classical ones. We show that, in the classical limit, it is possible to represent2

classical results (e.g., classical chaos) by means a pure-state density matrix.3
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1. Introduction6

The quantum-classical transition is certainly a frontier issues that constitute a tran-7

scendental physics topic [1–5]. On the other hand, the use of semi-classical systems8

to describe problems in physics has a long historical [6–8]. A particularly important9

case is to be highlighted, in which quantum features in one of the two components10

of a composite system are negligible in comparison to those in the other. Regarding11

this scenario as classical simplifies the description and provides deep insight into the12

combined system dynamics [9]. This methodology is widely used for the interaction of13

matter with a field. In this effort we will look at these matters through a well-known14

semi-classical model [10,11]. This model has been analyzed in great detail from a purely15

dynamic viewpoint [11] and also using statistical quantifiers derived from Information16

Theory (IT) [12,13]. For this model and in [14], a suitable density matrix was found17

for describing the system’s route on its way to the classical limit. Rather exhaustive18

numerical results were presented.19

20

The purpose of this work is to analytically determine what happens with the above21

mentioned mixed density matrix in the exact classical limit. Same interesting insight will22

ensue.23

2. Model24

We will consider a Hamiltonian Ĥ containing classical degrees of freedom (DOF)
interacting with strictly quantum DOFs. The dynamical equations for the quantum
operators will be the canonical ones [11], i.e., any operator O evolves (in the Heisenberg
picture) as

dO
dt

=
i
h
[ H, O ] . (1)

The evolution equation for its mean value 〈O〉 ≡ Tr [ρ O(t)] will be d〈O〉
dt =

i
h
〈[ H, O ]〉,25

where the average is taken with respect to a proper quantum density operator ρ. Addi-26
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tionally, the classical variables will obey the Hamilton equations of motion, but where27

the generator is the mean value of the Hamiltonian, i.e.,28

dA
dt

=
∂〈H〉
∂PA

, (2a)

dPA
dt

= −∂〈H〉
∂A

. (2b)

The above equations constitute an autonomous set of coupled differential equations,
that allows for a dynamical description in which no quantum rules are violated, e.g.,
particularly the Principle of Uncertainty is conserved for all times. A plays the role
of a time-dependent parameter for the quantum system, and the initial conditions are
determined by a proper quantum density operator ρ̂.

We consider now a well-known semiclassical system [10,11], whose Hamiltonian is

Ĥ =
1
2

(
p̂2

mq
+

PA
2

mcl
+ mqω2 x̂2

)
, (3)

where x̂ and p̂ are quantum operators, while A and PA are classical variables. The term
ω2 = ωq

2 + e2 A2 is an interaction one introducing nonlinearity in our problem, with ωq
a frequency. mq and mcl are masses. The Hamiltonian (3) is a particular case of a family
of semiclassical ones, quadratic in x̂ and p̂, without linear terms (see below), This family
has as a time-invariant a quantity I that relates to the Uncertainty Principle [11] as

I = 〈x̂2〉〈 p̂2〉 − 〈L̂〉
2

4
≥ h̄2

4
. (4)

I describes the deviation of the semiquantum system from the classical one given by29

I = 0. The quantity L̂ is defined as L̂ = x̂ p̂ + p̂x̂. To investigate the classical limit one30

needs also to consider the classical analogous of (3), in which all variables are classical.31

In this case is L = 2xp. We analyze in this work the limit I → 0. A well known ODE-32

theorem establishes uniqueness and a continuous dependence of the ODE-solutions33

on the initial conditions, if a condition called the Lipschitz one is fulfilled [15]. If the34

ODE solutions remain bounded as time grows towards infinity, the condition is always35

satisfied.36

37

Consider semiquantum systems (SS) governed by operators that close a partial Lie38

algebra with the Hamiltonian. These SS’ dynamics will be ruled by closed systems39

of equations (CSE), involving also the classical variables. These CSE will depend in40

continuous fashion on the initial conditions. For instance, this happens with the set (x̂2,41

p̂2, L̂) for quadratic (in x̂ and p̂) Hamiltonians [11]. This fact guarantees the existence of42

the limit I → 0 [11].43

44

If the Hamiltonian includes lineal terms in x̂ and p̂, I no longer remains a constant45

of the motion. In this case one uses, instead of I, I∆ = ∆2x ∆2 p − ∆L2

4 , which is a46

time-invariant quantity. The pertinent analysis is similar to the one above described.47

3. MaxEnt Density operator for the semiquantum problem48

We assume49

• Complete knowledge about the initial conditions of the classical variables.50

• Incomplete knowledge regarding the system’s quantum components.51

• We only know the initial values of the quantum expectation values of the set of52

operators Ô1 = x̂2, Ô2 = p̂2, Ô3 = L̂.53
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• This set is the smallest one that carries information regarding the uncertainty54

principle (via I).55

The MaxEnt statistical operator ρ̂ is given by [14]

ρ̂ = exp−
(

λ0Î + λ1 x̂2 + λ2 p̂2 + λ3 L̂
)

, (5)

where the Lagrange multipliers λi are determined so as to fulfill the set of constraints
posed by our prior information (i.e., normalization of ρ̂ and the supposedly a priori
known EV’s)

〈Ôi〉 = Tr [ ρ̂ Ôi ] , i = 0, . . . , 3, (6)

(Ô0 = Î is the identity operator). A simplified way to obtaining the values of the
multipliers is that of solving the coupled set of equations [16]

∂λ0

∂λi
= − 〈Ôi〉, i = 1, 2, 3, (7)

where

λ0 = Tr

[
exp

(
−

3

∑
i=1

λiÔi

)]
. (8)

Using Eq. (7), one can determine the “initial” ρ̂ given by (5). On the other hand, the
statistical operator must evolve in time from (5) according to the Lioville-von Neumann
equation

ih̄
dρ̂

dt
(t) = [ Ĥ, ρ̂(t) ] . (9)

As the operators Ôi close a partial Lie algebra with respect to the Hamiltonian Ĥ [16,17],
we have

[ Ĥ(t), Ôi ] = ih̄
3

∑
j=1

gji(t)Ôj , i = 0, 1, . . . , 3, (10)

the statistical operator depends on the time t according to [17]

ρ̂(t) = exp−
(

λ0 Î + λ1(t)x̂2 + λ2(t) p̂2 + λ3(t)L̂
)

, (11)

provided that the Lagrange multipliers λj(t) verify the set of differential equations [17]

dλi
dt

(t) =
3

∑
j=1

gijλj(t) , i = 1, 2, 3, (12)

with λj(0) = λj from (5). The demonstration of this property can be encountered in
the celebrated article given by [17] and is based on the uniqueness of the solutions of
the Liouville Equation and the MaxEnt principle, together with the conservation of the
Entropy

S(ρ̂) = −Tr [ ρ̂ ln ρ̂ ] = λ0 +
3

∑
i=1

λi〈Ôi〉 , (13)

(Boltzmann’s constant is set equal to unity), which is maximized by the statistical
operator (11).
From now on we will use the fact that λj(t) = λj to simplify the notation. In this way,
Eqs. (5)–(8) are valid for all t. Additionally, once ρ̂(t)) is obtained, we can determine (in
the Schrödinger picture), the temporal evolution of the EV of any operator Ô through

〈Ô〉(t) = Tr[ρ̂(t)Ô]. (14)

Note that in this type of semiclassical problem, the gij of Eqs. (10) and (12) depend on the
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classical variables A and PA. We use equation (14) (with Ô = Ĥ) in order to obtain 〈Ĥ〉
and thus describe, via Eqs. (2), the temporal evolution of A and PA. The idea is then to
regard the set of equations (12), together with the equations (2), as a single autonomous
first-order system. Note that the classical equations in turn depend on the mean values.
In this case the presence of the term 〈x̂2〉 in the equation for PA introduces an additional
non-linearity (as such a term is a function of the multipliers) through

〈x̂2〉(t) = Tr[ρ̂(t)x̂2], (15)

but we will presently see that this non-linearity can be easily handled.56

4. Some convenient mathematical results57

It is necessary to calculate λ0 to relate the initial values of the multipliers and their58

respective EV’s, using Eq. (7). We begin by performing a change of representation, made59

by recourse to the unitary transformation [14]60

x̂ =

√
2

2

(
λ2

λ1

)1/4
((

λT
λV

)1/4
X̂ +

(
λV
λT

)1/4
P̂

)
, (16a)

p̂ =

√
2

2

(
λ1

λ2

)1/4
(
−
(

λT
λV

)1/4
X̂ +

(
λV
λT

)1/4
P̂

)
, (16b)

where λV =
√

λ1λ2 + λ3 and λT =
√

λ1λ2− λ3. For reasons of convergence, λ1, λ2, and
λ1λ2 − λ3

2 must be positive. Then, λV and λT become positive too and Iλ in (18) is well
defined. Of course, the transformation (16) preserves commutation relations. Thus, I
is also preserved. These new operators are not dimensionless ones [they are expressed
in units of the square root of an action and do not depend on h̄, which is a convenient
fact at the time of going over to thhe classical limit]. Further, X̂ and P̂, via the λ’s that
appear as coefficients in their definition, are explicitly time-dependent and contain all
the relevant information regarding the classical degrees of freedom. Now ρ(t) becomes
[14]

ρ̂(t) = exp(−λ0) exp
[
−Iλ

(
X̂2 + P̂2

)]
. (17)

The quantity Iλ defined as

Iλ =
(

λ1λ2 − λ3
2
)1/2

, (18)

a constant of the motion [14]. This invariant is the equivalent of the one in Eq. (4),
expressed in terms of the λ’s.

Despite the characteristics assigned to X̂ and P̂, the operator X̂2 + P̂2 has a discrete
spectrum, one resembling that of a the Harmonic Oscillator, because the commutation
relations are preserved for all time. After a little algebra, it is easy to see from (8) that

λ0 = − ln[exp(h̄ Iλ)− exp(−h̄ Iλ)], (19)

and using Eq. (7) (or Eq. 14), the particular EV’s can be cast in the fashion [14]61

〈x̂2〉 =
T(Iλ)

Iλ
λ2, (20a)

〈 p̂2〉 =
T(Iλ)

Iλ
λ1, (20b)

〈L̂〉 = −2
T(Iλ)

Iλ
λ3, (20c)
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with T(Iλ) given by [14]

T(Iλ) =
h̄
2

(
exp(2 h̄ Iλ) + 1
exp(2 h̄ Iλ)− 1

)
. (21)

Further, we deduce from (20) that

T(Iλ) =
√

I . (22)

Now, by recourse to the Eqs. (2), (12), and (20a), we are in position to write down our62

dynamical system of equations as a closed one in both multipliers and classical variables.63

We have [14]64

dλ1

dt
= 2mqω2λ3, (23a)

dλ2

dt
= − 2

mq
λ3, (23b)

dλ3

dt
= − 1

mq
λ1 + mqω2λ2, (23c)

dA
dt

=
PA
mcl

, (23d)

dPA
dt

= −e2mq A
T(Iλ)

Iλ
λ2. (23e)

This system associates a kind of phase-space to the density operator (11), determined65

by classical variables and Lagrange multipliers. The system (23) depends in nonlinear66

fashion upon the classical variable A, via ω2, but the non-linear term T(Iλ) in (23e) is67

easily tractable as a function of I, using (22). This non-linearity is thus replaced by a68

dependence upon I plus the initial conditions. This last dependence emerges via the69

invariant Iλ (which in turn is fixed by ρ̂(0), i.e. by the initial values of the Lagrange70

multipliers).71

5. Useful previous results72

In [14], we investigated the dynamics described by the density operator (11) as a
function of the relative energy Er, defined as Er =

|E|
I1/2ωq

. The classical limit obtains for

Er → ∞ (a particular case is I → 0, which we will study below).

In [14], we also showed that, by augmenting Er (for example decreasing I), the physical
system passes through three regions: a quasiclassical one, a transitional one, and a
classical one (see Figs. 1 and 2 of [14]). As Er grows, complexity augments and, eventu-
ally, chaos emerges. This is a phenomenon of a semi-classical nature, since the classical
dynamics-stage has, obviously, not yet been reached. Remark on the coexistence of the
Uncertainty Principle with chaos and also on that, having ρ̂(t), one can know the time
dependence of any expectation value via Eq. (14).
Also, from Eqs. (21) and (22) we found in [14] that

Iλ =
1

2 h̄
ln

(√
I + h̄

2√
I − h̄

2

)
, (24)

relating Iλ to I. Note here that as I decreases, Iλ augments. If I approaches h̄2/4, then73

Iλ → ∞, since X2 + P̂2 approaches the ground state. Even then I 6= 0. Thus, we do not74

reach the classical limit yet. We need to take the limit h̄→ 0 and still Iλ → ∞ holds [14].75
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6. Present results regarding the classical limit (CL)76

Our present elaborations begin at this point. We are going to analytically study the77

limit I → 0 of the density operator (17). Speaking of a CL entails that both h̄ and I → 0.78

In going to this limit we must always respect the restriction (4). Two roads are open to us79

1. Take first h̄ → 0 (and then I → 0). Classical statistics and quantum one are both
compatible with (4), for any h̄ > 0. Additionally in the classical case may be h̄ = 0.
In the limit h̄→ 0, the density matrix (17) adopts the form

ρ =
I

Tr[I ] , (25)

with I the identity matrix. One has80

lim
h̄→0

Iλ =
1

2
√

I
, (26)

as a result of
lim
h̄→0

h̄ Iλ = 0, (27)

where we employed Eq. (24). (25) is the maximally mixed density matrix of81

diagonal elements 1/n, n εN , with n → ∞. Such matrix should arise out of a82

decoherence process. We have obtained a statistical quantum limit. The limit83

I → 0 would entail classicality and can not be taken now. To better understand this84

issue an analysis made with classical statistic is added in the Appendix.85

2. Proceed to effect lim
h̄→0

lim
I→h̄2/4

Λ, Λ referring here to any of our quantities of interest.86

This second choice of venue respects the restriction (4) and would constitute the87

correct way to go. According to (24), we have88

lim
h̄→0

( lim
I→h̄2/4

Iλ) = ∞, (28a)

lim
h̄→0

( lim
I→h̄2/4

h̄ Iλ) = ∞, (28b)

lim
h̄→0

( lim
I→h̄2/4

λi) = ∞, i = 0, 1, 2, (28c)

lim
h̄→0

( lim
I→h̄2/4

|λ3|) = ∞. (28d)

Note that in the second instance, when I tends to its minimum possible value h̄2/4, ρ (
17) tends to its ground state. Thus, considering the pseudo generalized temperature 1/Iλ,
we ascertain that 1/Iλ → 0. Remark that Iλ depends on both the classical variables
and the initial conditions for the EVs. Our results holds also for h̄ → 0. Lo and be-
hold, we have found that the classical limit is represented by a pure-state density matrix!.

Looking at the asymptotic behavior of λ0 en (19), we see that exp(−λ0) ∼ exp(h̄ Iλ),
entailing that the asymptotic eigenvalues of ρ become exp [−nh̄Iλ], n = 0, 1, 2, . . .. Thus,
ρ (17) (or (5)), asymptotically, in its eigen-basis has the associate density matrixR(t)

R(t) =


1 0 0 . . .
0 0 0 . . .
0 0 0 . . .

...

. (29)

This is a rather surprising. Not only the classical features of the semiclassical evolution
depicted in Figs. 1 and 2 of [14] are represented by a mixed quantum density matrix, but
purely classical results with I = 0, are masked by a pure-state density matrix. In the
first case semi-classical chaos is obtained. In the second case, totally classical Chaos,
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because the classical system is chaotic [14].

The expectation values 〈X̂n P̂m〉 will be null at all times, thus being trivially classic.
Additionally, the EVs of the set (x̂2, p̂2, L̂) will evolve asymptotically with the classical
equations corresponding to the classical counterpart of our quantum Hamiltonian (3).
Any other asymptotic value of a given EV can be calculated using equations (14) and (16).

As a proof of the correctness of our results, it is easy to see that I calculated with
ρ(t) given by (29) vanishes. Denoting the ground state by |0 >, we have < 0|X̂2|0 >=<
0|P̂2|0 >= lim

h̄→0
h̄/2 and < 0|L̂|0 >= 0, so that I = 0. Moreover, via (13), we obtain for

the entropy
S = −λ0 − 2 Iλ

√
I, (30)

which is a decreasing monotonic function of I, with asymptotic value S = 0, as expected89

for a pure state. In this way, the Density Operator smoothly y becomes less and less90

mixed, as I tends to zero, until it is gets represented by a pure-state density matrix.91

7. Results and Conclusions92

In this work we have exhaustively investigated the classical limit of a density oper-93

ator ρ associated to a well-known non-linear semi-classical system that possesses both94

classical and quantum interacting degrees of freedom. This ρ was presented previously95

in [14], in a context of incomplete prior information.96

97

In [14] its authors detected three well delimited and different regions in traversing98

the road towards the classical limit. These zones were characterized by the parameter99

Er =
|E|

I1/2ωq
, con Er → ∞, with E the total energy and I a dynamical invariant intimately100

linked to the uncertainty principle.101

102

One had a quasiclassical region, a transitional one, and a classical zone. As Er grows,103

complexity augments and, eventually, chaos emerges. This was a phenomenon of a104

semi-classical nature. On the other hand, the analogous classic system is chaotic.105

106

It is article focused attention specifically on the classical limit per se, not on the road to it107

as in [14].108

109

A purely analytical treatment was effected, for I → 0. Two possible paths were con-110

templated to perform our study. The first was to research the h̄→ 0 calculation. Some111

difficulties were encountered in such instance, that were discussed in the text.112

113

The second path turned to be both correct and coherent. It consist in taking first114

lim I → h̄2/4, approaching the minimum I−value that quantum mechanics permits.115

A posteriori one deals with the limit h̄ → 0. In quite a counter-intuitive fashion, we116

stumbled on an asymptotic density matrix R corresponding to a pure state (29). R117

adequately describes classical features.118

Indeed, the EVs of the set (x̂2, p̂2, L̂) will evolve asymptotically with the classical equa-119

tions corresponding to the classical counterpart of our Hamiltonian. In particular, we120

conclusively showed thatR competently describes classical chaos.121
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Appendix A The pertinent classical statistical limit treatment125

For completeness, let us consider the concomitant classical statistical procedure.
This analysis could shed some clarity on oyr proceedings. The inequality (4) is satisfied
both for the pure quantum case and for both a quantum and a classical statistics. To
avoid notation problems, we rewrite (4)) for the classical case as

Icl = 〈x2〉〈p2〉 − 〈L〉
2

4
≥ k2

4
, (A1)

where Icl is the classical version of (4) and x2, p2 and L = 2xp are simple functions.
We have introduced the constant k for obvious convenience. k is any number that
verifies k ≥ 0 and plays the role of h̄ here. Obviously, taking the limit h̄ → 0 in (4), is
equivalent to taking the limit k→ 0. In other words, this limit is compatible with both
statistics and the result does not express certainty in any case. To solve this situation in
the quantum case, it is clear that the second path of the previous section must be used.
Let us see now how to proceed in classic case. Let us consider the equivalent classical
statistical case. The pertinent MaxEnt Probability Density Function corresponding to (
11) is

ρ(x, p, t) = exp−
(

λ0cl + λ1cl x2 + λ2cl p2 + λ3cl L
)

. (A2)

The mean value of any general F(x, p, t), for all t, is given via
∫ ∞
−∞

∫ ∞
−∞ F(x, p, t) ρ(x, p, t) dxdy.126

Using a transformation equivalent to (16), but for classical variables, we obtain the clas-127

sical version of (17), with λ0cl = ln(π/Iλcl). After some manipulation we are led to128

129

〈x2〉 =

√
Icl

Iλcl
λ2cl , (A3a)

〈p2〉 =

√
Icl

Iλcl
λ1cl , (A3b)

〈L〉 = −2
√

Icl
Iλcl

λ3cl , (A3c)

where
Iλcl =

(
λ1clλ2cl − λ3cl

2
)1/2

, (A4)

is a time-invariant quantity, since the λicl obey the same system of equations used in the
quantum treatment (Eqs. 23). Moreover, Eqs. (A3) coincide with Eqs. (20), together with
(22). However, in this instance the dependence of Iλcl with Icl is not given by (24), since

Iλcl =
1

2
√

Icl
, (A5)

but will coincide with Eq. (26), as one may expect. Obviously, to complete the present
analysis, the limit given by Icl → 0 (or Iλcl → ∞) is demanded. The probability density
function (A2) will read

lim
Icl→0

ρ(x, p, t) = δ(X)δ(P), (A6)

being a Dirac delta function of X and P, as one should expect. In the limit (A6), also130

〈X̂n P̂m〉 = 0 at all times and all results with total certainty are obtained via (16).131
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