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1. Introduction

The quantum-classical transition is certainly a frontier issues that constitute a tran-
scendental physics topic [1-5]. On the other hand, the use of semi-classical systems
to describe problems in physics has a long historical [6-8]. A particularly important
case is to be highlighted, in which quantum features in one of the two components
of a composite system are negligible in comparison to those in the other. Regarding
this scenario as classical simplifies the description and provides deep insight into the
combined system dynamics [9]. This methodology is widely used for the interaction of
matter with a field. In this effort we will look at these matters through a well-known
semi-classical model [10,11]. This model has been analyzed in great detail from a purely
dynamic viewpoint [11] and also using statistical quantifiers derived from Information
Theory (IT) [12,13]. For this model and in [14], a suitable density matrix was found
for describing the system’s route on its way to the classical limit. Rather exhaustive
numerical results were presented.

The purpose of this work is to analytically determine what happens with the above
mentioned mixed density matrix in the exact classical limit. Same interesting insight will
ensue.

2. Model

We will consider a Hamiltonian H containing classical degrees of freedom (DOF)
interacting with strictly quantum DOFs. The dynamical equations for the quantum
operators will be the canonical ones [11], i.e., any operator O evolves (in the Heisenberg
picture) as

do i
o = ol )
The evolution equation for its mean value (O) = Tr [p O(t)] will be % = %([ H,0)),

where the average is taken with respect to a proper quantum density operator p. Addi-
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tionally, the classical variables will obey the Hamilton equations of motion, but where
the generator is the mean value of the Hamiltonian, i.e.,

dA  3(H)
Gt b, (22)
Py 3(H)
G A (2b)

The above equations constitute an autonomous set of coupled differential equations,
that allows for a dynamical description in which no quantum rules are violated, e.g.,
particularly the Principle of Uncertainty is conserved for all times. A plays the role
of a time-dependent parameter for the quantum system, and the initial conditions are
determined by a proper quantum density operator p.

We consider now a well-known semiclassical system [10,11], whose Hamiltonian is

N~ 1 P2 P42
S I W mow®£? |, 3)
2\ my M

where £ and p are quantum operators, while A and Py are classical variables. The term
w? = wy? + e A? is an interaction one introducing nonlinearity in our problem, with w,
a frequency. m,; and m,; are masses. The Hamiltonian (3) is a particular case of a family
of semiclassical ones, quadratic in £ and p, without linear terms (see below), This family
has as a time-invariant a quantity I that relates to the Uncertainty Principle [11] as

T\2 2
I = (£2)(p?) — % > hz. @)

I describes the deviation of the semiquantum system from the classical one given by
I = 0. The quantity L is defined as L. = £p + p#. To investigate the classical limit one
needs also to consider the classical analogous of (3), in which all variables are classical.
In this case is L = 2xp. We analyze in this work the limit I — 0. A well known ODE-
theorem establishes uniqueness and a continuous dependence of the ODE-solutions
on the initial conditions, if a condition called the Lipschitz one is fulfilled [15]. If the
ODE solutions remain bounded as time grows towards infinity, the condition is always
satisfied.

Consider semiquantum systems (SS) governed by operators that close a partial Lie
algebra with the Hamiltonian. These SS” dynamics will be ruled by closed systems
of equations (CSE), involving also the classical variables. These CSE will depend in
continuous fashion on the initial conditions. For instance, this happens with the set (£2,
p?, L) for quadratic (in £ and p) Hamiltonians [11]. This fact guarantees the existence of
the limit I — 0 [11].

If the Hamiltonian includes lineal terms in & and p, I no longer remains a constant
. . . 2 o
of the motion. In this case one uses, instead of I, I, = AZx Azp — %, which is a

time-invariant quantity. The pertinent analysis is similar to the one above described.

3. MaxEnt Density operator for the semiquantum problem
We assume
Complete knowledge about the initial conditions of the classical variables.
Incomplete knowledge regarding the system’s quantum components.

e  We only know the initial values of the quantum expectation values of the set of
operators O1 = £2, 0, = p2, 03 = L.
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e This set is the smallest one that carries information regarding the uncertainty
principle (via I).

The MaxEnt statistical operator f is given by [14]
p=exp — (Ao + M# 4+ Map? + Asl), ®)

where the Lagrange multipliers A; are determined so as to fulfill the set of constraints
posed by our prior information (i.e., normalization of ¢ and the supposedly a priori
known EV’s)

O)=Tr[pO;], i=0,...,3, (6)

(Op = I is the identity operator). A simplified way to obtaining the values of the
multipliers is that of solving the coupled set of equations [16]

o
A

= —(0), i=1,2,3, 7)

where

3
A =Tr [exp (— Z )\io,) . (8)
i=1

Using Eq. (7), one can determine the “initial” ¢ given by (5). On the other hand, the
statistical operator must evolve in time from (5) according to the Lioville-von Neumann
equation

A
A

. d A
in=E (1) = [H,0(0)]. ©)
As the operators O; close a partial Lie algebra with respect to the Hamiltonian H [16,17],
we have

3
[H(t),OZ-] :thg]l(t)O], i=01,...,3, (10)
j=1
the statistical operator depends on the time t according to [17]
p(t) = exp— (Aol + A1 (122 + A2(1)p* + A (1)), (11)

provided that the Lagrange multipliers A;(t) verify the set of differential equations [17]

A, 3 :
E(t) =Y giAi(t), i=1,2,3, (12)
j=1

with A;(0) = A; from (5). The demonstration of this property can be encountered in
the celebrated article given by [17] and is based on the uniqueness of the solutions of
the Liouville Equation and the MaxEnt principle, together with the conservation of the

Entropy
3

S(p)=-Tr[pInp] = Ao+ ) Mi(0), (13)
i=1
(Boltzmann’s constant is set equal to unity), which is maximized by the statistical
operator (11).
From now on we will use the fact that A;(f) = A; to simplify the notation. In this way,
Egs. (5)-(8) are valid for all t. Additionally, once p(t)) is obtained, we can determine (in
the Schrodinger picture), the temporal evolution of the EV of any operator O through

(O)(t) = Tr[p(1)O]. (14)

Note that in this type of semiclassical problem, the g;; of Egs. (10) and (12) depend on the
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classical variables A and P4. We use equation (14) (with O = H) in order to obtain (H)
and thus describe, via Egs. (2), the temporal evolution of A and P4. The idea is then to
regard the set of equations (12), together with the equations (2), as a single autonomous
first-order system. Note that the classical equations in turn depend on the mean values.
In this case the presence of the term (£2) in the equation for P4 introduces an additional
non-linearity (as such a term is a function of the multipliers) through

(%) (t) = Te[p(t)#2), (15)
but we will presently see that this non-linearity can be easily handled.

4. Some convenient mathematical results

It is necessary to calculate A to relate the initial values of the multipliers and their
respective EV’s, using Eq. (7). We begin by performing a change of representation, made
by recourse to the unitary transformation [14]

1/4 1/4 1/4
ﬁ(”) <(M> X+ <AV> P> (16a)
2 \ A Ay AT

A V2 [ Ay 1/4 A 1/4 Ay 1/4

= () (‘(w) x+(2) 7). (e
where Ay = v/A1A2 + Az and At = v/A1Ap — A3. For reasons of convergence, A1, A», and
A Ay — As% must be positive. Then, Ay and At become positive too and I, in (18) is well
defined. Of course, the transformation (16) preserves commutation relations. Thus, I
is also preserved. These new operators are not dimensionless ones [they are expressed
in units of the square root of an action and do not depend on i, which is a convenient
fact at the time of going over to thhe classical limit]. Further, X and P, via the A’s that
appear as coefficients in their definition, are explicitly time-dependent and contain all

the relevant information regarding the classical degrees of freedom. Now p(t) becomes
[14]

=
Il

p(t) = exp(—Ag) exp [—L\ (Xz + pz)} (17)

The quantity I, defined as
N%
= (Mrz—A?) (18)

a constant of the motion [14]. This invariant is the equivalent of the one in Eq. (4),
expressed in terms of the A’s.

Despite the characteristics assigned to X and P, the operator X2 + P2 has a discrete
spectrum, one resembling that of a the Harmonic Oscillator, because the commutation
relations are preserved for all time. After a little algebra, it is easy to see from (8) that

Ao = —In[exp(h 1)) —exp(—h1))], (19)

and using Eq. (7) (or Eq. 14), the particular EV’s can be cast in the fashion [14]

@y = Ty, (20a)
Ix

@y = Ty (20b)
Ix

0y = 2T, (20c)


https://doi.org/10.20944/preprints202104.0088.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2021 d0i:10.20944/preprints202104.0088.v1

with T(I,) given by [14]

_h (exp(2hIy)+1
Nm_2<wmmh)1> @

Further, we deduce from (20) that
T(I,) = V1. (22)

Now, by recourse to the Egs. (2), (12), and (20a), we are in position to write down our
dynamical system of equations as a closed one in both multipliers and classical variables.
We have [14]

% = quwz)xg,, (23a)
L 32M (23b)
%é: 1;M+%#M, (23¢)
%‘ _ ’% (23d)
P = oty aTy, (23¢)

This system associates a kind of phase-space to the density operator (11), determined
by classical variables and Lagrange multipliers. The system (23) depends in nonlinear
fashion upon the classical variable A, via w?, but the non-linear term T(I,) in (23e) is
easily tractable as a function of I, using (22). This non-linearity is thus replaced by a
dependence upon I plus the initial conditions. This last dependence emerges via the
invariant I, (which in turn is fixed by p(0), i.e. by the initial values of the Lagrange
multipliers).

5. Useful previous results
In [14], we investigated the dynamics described by the density operator (11) as a
function of the relative energy E,, defined as E, = % The classical limit obtains for

E; — oo (a particular case is I — 0, which we will study below).

In [14], we also showed that, by augmenting E, (for example decreasing I), the physical
system passes through three regions: a quasiclassical one, a transitional one, and a
classical one (see Figs. 1 and 2 of [14]). As E, grows, complexity augments and, eventu-
ally, chaos emerges. This is a phenomenon of a semi-classical nature, since the classical
dynamics-stage has, obviously, not yet been reached. Remark on the coexistence of the
Uncertainty Principle with chaos and also on that, having p(t), one can know the time
dependence of any expectation value via Eq. (14).

Also, from Egs. (21) and (22) we found in [14] that

1. (VI+}
A—Mm@mé> 24)

relating I, to I. Note here that as I decreases, I) augments. If I approaches /% /4, then
Iy — oo, since X2 + P? approaches the ground state. Even then I # 0. Thus, we do not
reach the classical limit yet. We need to take the limit # — 0 and still [, — oo holds [14].


https://doi.org/10.20944/preprints202104.0088.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2021 d0i:10.20944/preprints202104.0088.v1

6. Present results regarding the classical limit (CL)

Our present elaborations begin at this point. We are going to analytically study the
limit I — 0 of the density operator (17). Speaking of a CL entails that both 7z and I — 0.
In going to this limit we must always respect the restriction (4). Two roads are open to us

1.  Take first i — 0 (and then I — 0). Classical statistics and quantum one are both

compatible with (4), for any 7 > 0. Additionally in the classical case may be 71 = 0.
In the limit # — 0O, the density matrix (17) adopts the form

T
with 7 the identity matrix. One has
lim [} = 1 (26)
h—0 AT 2 \ﬁ !
as a result of
lim Iy =0, (27)
h—0

where we employed Eq. (24). (25) is the maximally mixed density matrix of
diagonal elements 1/n, ne N, with n — oo. Such matrix should arise out of a
decoherence process. We have obtained a statistical quantum limit. The limit
I — 0 would entail classicality and can not be taken now. To better understand this
issue an analysis made with classical statistic is added in the Appendix.

2. Proceed to effect lim lim A, A referring here to any of our quantities of interest.
h=0 1—n2/4
This second choice of venue respects the restriction (4) and would constitute the

correct way to go. According to (24), we have

lim ( lim [)) = oo, (28a)
=0 1 K%/4
lim ( lim hl,) = oo, (28b)
=0 112 /4
lim ( lim A;) = oo, i=0,1,2 (28¢)
=0 [5r%/4
lim ( im [Az]) = oo (28d)
=0 1512 /4

Note that in the second instance, when I tends to its minimum possible value %% /4, p (
17) tends to its ground state. Thus, considering the pseudo generalized temperature 1/ 1,
we ascertain that 1/I, — 0. Remark that I depends on both the classical variables
and the initial conditions for the EVs. Our results holds also for # — 0. Lo and be-
hold, we have found that the classical limit is represented by a pure-state density matrix!.

Looking at the asymptotic behavior of Ay en (19), we see that exp(—Ag) ~ exp(h 1)),
entailing that the asymptotic eigenvalues of p become exp [—nhI A], n=20,1,2,.... Thus,
p (17) (or (5)), asymptotically, in its eigen-basis has the associate density matrix R ()

100 ...
000 ...
RH=1 000 (29)

This is a rather surprising. Not only the classical features of the semiclassical evolution
depicted in Figs. 1 and 2 of [14] are represented by a mixed quantum density matrix, but
purely classical results with I = 0, are masked by a pure-state density matrix. In the
first case semi-classical chaos is obtained. In the second case, totally classical Chaos,
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because the classical system is chaotic [14].

The expectation values (X"P™) will be null at all times, thus being trivially classic.
Additionally, the EVs of the set (£2, p?, L) will evolve asymptotically with the classical
equations corresponding to the classical counterpart of our quantum Hamiltonian (3).
Any other asymptotic value of a given EV can be calculated using equations (14) and (16).

As a proof of the correctness of our results, it is easy to see that I calculated with

p(t) given by (29) vanishes. Denoting the ground state by |0 >, we have < 0|X2|0 >=<

0|P20 >= Fllirr(l) f/2 and < 0|L|0 >= 0, so that I = 0. Moreover, via (13), we obtain for
—

the entropy
S=—-N—2LVI, (30)

which is a decreasing monotonic function of I, with asymptotic value S = 0, as expected
for a pure state. In this way, the Density Operator smoothly y becomes less and less
mixed, as I tends to zero, until it is gets represented by a pure-state density matrix.

7. Results and Conclusions

In this work we have exhaustively investigated the classical limit of a density oper-
ator p associated to a well-known non-linear semi-classical system that possesses both
classical and quantum interacting degrees of freedom. This p was presented previously
in [14], in a context of incomplete prior information.

In [14] its authors detected three well delimited and different regions in traversing
the road towards the classical limit. These zones were characterized by the parameter

E = %, con E, — oo, with E the total energy and I a dynamical invariant intimately

linked to the uncertainty principle.

One had a quasiclassical region, a transitional one, and a classical zone. As E, grows,
complexity augments and, eventually, chaos emerges. This was a phenomenon of a
semi-classical nature. On the other hand, the analogous classic system is chaotic.

It is article focused attention specifically on the classical limit per se, not on the road to it
as in [14].

A purely analytical treatment was effected, for I — 0. Two possible paths were con-
templated to perform our study. The first was to research the i — 0 calculation. Some
difficulties were encountered in such instance, that were discussed in the text.

The second path turned to be both correct and coherent. It consist in taking first
limI — 7%/4, approaching the minimum I—value that quantum mechanics permits.
A posteriori one deals with the limit # — 0. In quite a counter-intuitive fashion, we
stumbled on an asymptotic density matrix R corresponding to a pure state (29). R
adequately describes classical features.

Indeed, the EVs of the set (#2, p?, L) will evolve asymptotically with the classical equa-
tions corresponding to the classical counterpart of our Hamiltonian. In particular, we
conclusively showed that R competently describes classical chaos.
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Appendix A The pertinent classical statistical limit treatment

For completeness, let us consider the concomitant classical statistical procedure.
This analysis could shed some clarity on oyr proceedings. The inequality (4) is satisfied
both for the pure quantum case and for both a quantum and a classical statistics. To
avoid notation problems, we rewrite (4)) for the classical case as

2
= (@t - L

7

(A1)

where I; is the classical version of (4) and x?, p2 and L = 2xp are simple functions.
We have introduced the constant k for obvious convenience. k is any number that
verifies k > 0 and plays the role of 7 here. Obviously, taking the limit 7 — 0 in (4), is
equivalent to taking the limit k — 0. In other words, this limit is compatible with both
statistics and the result does not express certainty in any case. To solve this situation in
the quantum case, it is clear that the second path of the previous section must be used.
Let us see now how to proceed in classic case. Let us consider the equivalent classical
statistical case. The pertinent MaxEnt Probability Density Function corresponding to (
11) is

p(x,p,t) = exp — (Ao + M1 + Agap? + AsalL)- (A2)
The mean value of any general F(x, p, t), for all t, is given via f_ozo f_ozo F(x,p,t)p(x, p, t)dxdy.

Using a transformation equivalent to (16), but for classical variables, we obtain the clas-
sical version of (17), with Ao,y = In(7t/1)). After some manipulation we are led to

T
(%) = T A, (A3a)
Acl
VI
(P = T Ma, (A3b)
Acl
2/1
(Ly = - 1\/; Asel, (A30)
Acl
where
2 1/2
Dt = (Maraa = Asa?) (A4)

is a time-invariant quantity, since the A;; obey the same system of equations used in the
quantum treatment (Eqs. 23). Moreover, Egs. (A3) coincide with Egs. (20), together with
(22). However, in this instance the dependence of I, with I; is not given by (24), since

1
I = ——, A5
but will coincide with Eq. (26), as one may expect. Obviously, to complete the present
analysis, the limit given by I,; — 0 (or Iy, — o) is demanded. The probability density
function (A2) will read
li ,p.t) =0(X)é(P), A6
Idlglop(xrﬂ ) = 6(X)4(P) (A6)
being a Dirac delta function of X and P, as one should expect. In the limit (A6), also
(X"P™) = 0 at all times and all results with total certainty are obtained via (16).
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