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Abstract: The goal of clustering is to identify common structures in a data set by forming groups
of homogeneous objects. The observed characteristics of many economic time series motivated the
development of classes of distributions that can accommodate properties such as heavy tails and
skewness. Thanks to its flexibility, the Skewed Exponential Power Distribution (also called Skewed
Generalized Error Distribution) ensures a unified and general framework for clustering possibly
skewed and heavy tailed time series. This paper develops a clustering procedure of model-based
type, assuming that the time series are generated by the same underlying probability distribution but
with different parameters. Moreover, we propose to optimally combine the estimated parameters
to form the clusters with an entropy weighing k-means approach. The usefulness of the proposal
is showed by means of application to financial time series, demonstrating also how the obtained
clusters can be used to form portfolio of stocks.

Keywords: Classification, Generalized Error Distribution, Skewness, Skewed Exponential Power
Distribution, Financial time series, Portfolio selection

1. Introduction

The goal of clustering is to identify common structures in a data set by forming groups
of homogeneous data. This objective can be achieved by minimizing the within-group
similarity and by maximizing the between-group dissimilarity.
Clustering of time series data is an important tool for data analysis in different areas rang-
ing from engineering to finance and economics. For example, through clustering methods
it is possible to build portfolios of similar stocks for financial applications (for example
[1–3]). The main clustering approaches for time series can be summarized into three main
groups [4]: observation-based, feature-based and model-based.
In the observation-based clustering the raw data are clustered according to a specified
distance measure. Several authors proposed fuzzy extensions of common clustering algo-
rithms for raw data (for example [5–9]). The time series involved could have either the
same length or not. In the second case, it is common to take advantage of the Dynamic
Time Warping (DTW) technique that is used to find an optimal alignment between two
series with different lengths. (for example [9,10])
In the feature-based clustering the objects are clustered according to some of the data’s
features. The main advantage of this class of clustering approaches lies on the fact that
the time series length is not an issue because objects with different length can be clustered
together. Common time series features considered for clustering are the autocorrelation
function (ACF) [11,12], the partial autocorrelation function (PACF) [13], the features of
wavelet decomposition of the time series (for example [14,15]) or the cepstral (for example
[16,17]).
The model-based clustering approaches assume, instead, that the time series are generated
by the same statistical model (for example [18–21]) or that they have the same probability
distribution (for example [22,23]). The spirit of most of the model-based clustering pro-
cedures is to group objects according to the estimated parameters. Important examples
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are the clustering methods based on ARMA process distances (for example [18,19,24]),
GARCH-based distances for heteroskedastic time series [19,20,25], estimates of the proba-
bility distributions’ parameters (for example [22,23]) or, more recently, conditional higher
moments (for example see [26]).
This paper develops a clustering procedure of the model-based type, assuming that the
time series are generated by the same underlying probability distribution but with different
parameters. Clearly, with this aim the specification of a very general distribution is required
in order to account for a wide range of possible special cases.
Observed characteristics of many financial and economic time series motivated the devel-
opment of family of distributions that are enough flexible to accommodate skeweess and
heavy-tails, while nesting symmetric and bell-shaped distributions (e.g. the Normal) as
special cases.
An important desired property of these classes is that maximum likelihood estimation of
the parameters is possible. A class of asymmetric distributions with the desired properties
of accommodating heavy tails and skewness is represented by the Skewed Exponential
Power Distribution (SEPD) [27–30]. It generalizes the Exponential Power Distribution (also
called Generalized Error Distribution, GED) for skewness.
Many financial applications of the GED as well as its skewed extensions have been consid-
ered (for example [29–38]). For example, [30] explored moments (also see [29]) as well as
measures such as value at risk and expected shortfall that are useful in financial applica-
tions. Similarly, [37] proposed a GED-based Value at Risk model, while [38,39] studied the
role of the Skewed GED in forecasting volatility.
In general, the Exponential Power Distribution, either symmetric or not, encompasses a
very wide variety of special cases. Examples are the Gaussian, the skewed Normal, the
Laplace, the skewed Laplace distribution and many others [37,40–42].
Therefore, in what follows we consider the Skewed Exponential Power Distribution family
as the underlying assumption for all the considered time series. Thanks to its flexibility it
ensures a unified and general framework for clustering possibly skewed time series.
The paper is structured as follows. In the next section, the entropy weighted clustering
algorithm based on the Skewed Exponential Power Distribution is discussed. To show the
usefulness of the proposed approach we provide two applications to different financial
datasets in the Section 4. Then, in the Section 5 we propose to use the clusters obtained in
the Section 4 to build portfolio of stocks. At the end some conclusions are offered.

2. The SEPD-based clustering approach

A very general and flexible family of distribution is represented by the Exponential Power
Distribution (also the Generalized Error Distribution or the Exponential Power Function).
The EPD random variable Z has the following probability density function [42,43]:

f (z) =
exp(−| z−µ

σ |p/p)

2σp
1
p Γ
(

1 + 1
p

) (1)

where z ∈ R, µ ∈ R is called location parameter, σ > 0 is called scale parameter, p > 0 is a
measure of fatness of tails and is called shape parameter (see [40]) and Γ(·) is the Gamma
function. By construction, this distribution is symmetric and does not allow for skewness
(Fig. 1).
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Figure 1. Exponential Power Distribution for different values of shape.

It is possible to write the EPD probability density (1) in more compact form by means of
[40]:

f (z) =
1
σ

C exp
(
− 1

p

∣∣∣∣ z− µ

σ

∣∣∣∣p); C−1 = 2p1/pΓ(1 + 1/p) (2)

where C is a normalizing constant. The shape parameter p defines the heavy-taildness
of the distribution. Hence, with a small value of p we obtain more flat distribution and
vice-versa with a large p.
A very important feature of the EPD is that it includes many common distributions as
special cases, depending by the value of shape parameter p (Fig. 1).
In particular, the Gaussian distribution is a special case when p = 2, and when p < 2 the
distribution has fatter tails than a Gaussian distribution [37]. Moreover, when p = 1 we
have a Laplace distribution, and for p = +∞ we have the Uniform distribution [42].
Important contributions that extended the Exponential Power Distribution for skweness
are represented by [27,28], where an additional skewness parameter, denoted λ in this
paper, is introduced. (see Fig. 2).

Figure 2. Skewed Exponential Power Distribution for different values of shape and skewness.

Some papers (for example [29,30,34,40]) constructed seemingly different classes of SEPD
distributions. However, as suggested by [40], all of them are actually reparametrizations of
the SEPD proposed by [27,28].
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In this paper, following [34], we say that a random variable Z has a Skewed Exponential
Power Distribution if its probability density function is the following:

f (z) =
p

σΓ
(

1 + 1
p

) λ

1 + λ2 exp
(
−λp

σp [(z− µ)+]p − 1
σpλp [(z− µ)−]p

)
(3)

where:

(z− µ)+ = max(z− µ; 0) and (z− µ)− = max(µ− z; 0)

The parameters µ and σ correspond to location and scale, respectively, while λ controls
skewness, and p is the shape parameter. For λ = 1, the distribution is symmetric about µ
so we obtain the symmetric exponential power distribution. In the case λ 6= 1, by letting
p = 1 we obtain the skewed Laplace distribution with density [34]:

f (z) =
1
σ

λ

1 + λ2

{
exp(− λ

σ |z− µ|) for z ≥ µ,

exp(− 1
σλ |z− µ|) for z < µ

(4)

For p = 2 and λ 6= 1, instead, we obtain the skewed normal distribution as defined in [44].
More details about the SEPD and the skewed Laplace distribution can be found in [34].
The great flexibility of the SEPD can be successfully exploited in the clustering process if
the aim is to form distribution-based clusters. Distribution-based clustering could be of
interest for a variety of applications (for example [22,23]).
In what follows, following in the spirit the contribution of [23], we propose a clustering
algorithm that uses the estimated moments from the Skewed Exponential Power Distribu-
tion here introduced to form clusters. In other words, time series with similar estimated
parameters are be placed in the same cluster. Moreover, since the underlying distribution
has more than one parameter, following [7,45], we propose to optimally weight each pa-
rameter that represents a different feature of the data distribution.
The clustering model can be presented as follows. Let’s assume to have N(n = 1, . . . , N)
time series that are generated by a Skewed Exponential Power Distribution of parameters
µn, σn, pn and λn. We can store the estimated parameters in the following matrix:

X =



µ1 σ1 p1 λ1
µ2 σ2 p2 λ2
...

...
...

...
µn σn pn λn
...

...
...

...
µN σN pN λN


(5)

that we can be used to compute the time series’ dissimilarities.
As briefly stated before, since the SEPD has more than one parameter, a natural question is
how would we use this information. Indeed, it is surely possible to cluster the time series
only according to the location estimates or with respect to the scale parameter. Similarly,
we can be interested in clustering time series with similar skewness or shape.
In this paper, we don’t cluster the time series according to a single parameter but, instead,
we aim to optimally combine them.
An useful approach for optimally weighting different features is represented by the
weighted k-means (WKM) algorithm of [46]. The WKM algorithm proposes to incor-
porate a weighted distance function within the usual k-means algorithm. The main idea is
that the weights are a measure of the relative importance of each feature with respect to the
membership of the observations to a given cluster.
Formally, the Weighted k-Means algorithm (WKM) can be formalized as follows:
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min :
C

∑
c=1

N

∑
n=1

M

∑
m=1

un,cwβ
m,cD2

m,c (6)

under the constraints:

C

∑
c=1

un,c = 1, un,c ≥ 0, (7)

M

∑
m=1

wm,c = 1, 0 ≤ wm,c ≤ 1 (8)

where un,c ∈ {0, 1} is binary and takes value of 1 if the n-th object belongs to the c-th
cluster, wm,c represents the weight of the m-th feature in determining the c-th cluster and
Dm,c = d(xn,m, xc,m), represents the (Euclidean) distance between the m-th feature of the
n-th time series and the one of the c-th centroid.
Applied to the context of the distribution-based clustering, the weights wm,c are suitable
values associated to each parameter m in the matrix X shown in (5) of the specified distri-
bution within the c-th cluster.
Note that the weight wm,c is intrinsically associated with the squared distance D2

n,c for
the specified distribution parameters. This makes possible to optimally weighting each
distribution’s feature in calculating the dissimilarities. Moreover, another appealing feature
is that each c-th group has its own optimal weight vector.
Then, the exponent β has to be analyzed. With β = 0 we obtain the usual k-means clus-
tering algorithm, while with a value of β = 1, we have that the weights associated to the
feature with the smallest value of the weighted dissimilarity is equal to 1 and all the others
wm,c are equal to zero.
When β > 1, the larger the Dm, the smaller the weight wm. With a β < 0, we have that the
larger Dm the larger the weight wm. Then, if 0 < β < 1 the larger the features’ dissimilarity,
the larger is the weight wm and this is against the variable weighting principal [46].
Therefore we cannot choose 0 < β < 1, β = 0 or β = 1 but in the WKM algorithm suitable
values are β < 0 or β > 1.
However the exponent β is an artificial device, lacking a strong theoretical justification [7].
Note that the value of β in the formula (6) is similar to the fuzzines parameter in the fuzzy
c-means algorithm. To overcome this problem, the usage of a regularization term has been
proposed [7,45]. In this case, the burden represented by β is shifted to the regularization
term obtaining, in such a way, a factor that multiplies the regularization contribution to the
clusters formation.
With this respect, [45] proposed a clustering algorithm where the weight of a given feature
in a cluster represents the relevance of each feature in determining the clusters.
Therefore, [45] modified the objective function (6) by adding the weight entropy term
such that, at the same time, we minimize the within cluster dispersion and maximize the
negative weight entropy. Hence, we force more features to contribute in the formation of
the groups [47].
The new objective function can be written as follows:

min :
C

∑
c=1

[
N

∑
n=1

M

∑
m=1

un,cwn,mD2
m,c + γ

M

∑
m=1

wn,m log(wn,m)

]
(9)

subject to the constraints:

C

∑
c=1

un,c = 1, un,c ≥ 0, (10)
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M

∑
m=1

wm,c = 1, 0 ≤ wm,c ≤ 1 (11)

where un,c ∈ {0, 1} is binary, if a hard clustering procedure is developed, and takes value
of 1 if the n-th object belongs to the c-th cluster, wm,c represents the weight of the m-th
feature in determining the c-th cluster and Dm,c = d(xn,m, xc,m), represents the (Euclidean)
distance between the m-th feature in the matrix X shown in (5) of the n-th time series and
the one of the c-th centroid.
The first term in (9) is the sum of the within cluster dispersion, while the other one is the
negative weight entropy. The positive parameter γ controls for the size of the weights,
meaning that with γ we decide the degree of discrimination between the features [45].
The algorithm works as follows. An initial set of k means are identified as the starting
centroids. An initial cluster is defined considering that the observations are clustered
to the nearest centroid according to the Euclidean distance measure among distribution
parameter estimates (5). The centroids are identified based on these clusters, while the
weights are computed for each time series in any given cluster. Then, we compute the new
centroids and, by using an updated weighted distance, each time series is clustered to its
nearest new centroid. This steps are repeated until the algorithm converges.
In the case of Skewed Exponential Power Distribution, the optimal weights of the SEPD-
DWEKM model, obtained by the solution of the optimization problem (9), are equal to:

wm′ ,c =
exp(

−Dm′ ,c
γ )

∑4
m=1 exp(−Dm,c

γ )
(12)

The proof of (12) can easily be derived by following [46]. Similarly to the standard k-means
algorithm un,c is updated as follows:{

un,c = 1 if ∑4
m=1 wm,cD2

m,c ≤ ∑4
m=1 wm,c′D2

m,c′

un,c = 0 otherwise

where un,c = 1 means that the n-th object is assigned to the c-th cluster, so we have an hard,
not fuzzy, final assignment. If a time series is equidistant from two clusters, we assign it to
the one with the smallest index.
From (12) we understand the role played by the parameter γ, that is used to control for
the size of the weights. Indeed, if γ > 0, the weights wm,c are inversely proportional to
squared distance D2

m,c. Therefore, the smaller D2
m,c, the larger the weights wm,c and, hence,

the more important the corresponding dimension m. Instead, if γ < 0, the weights wm,c
is proportional to the distance D2

m,c. Therefore, the larger is the distance the larger is the
associated weight. This is a contradictory result and, hence, γ cannot be smaller than zero.
In the end, γ can be set equal to zero. In this case, the dimension m′ with the smallest
distance has a weight equal to 1, wm′ ,c = 1, while all the others are zero wm,c = 0. Therefore,
each cluster contains only one important dimension.
A final crucial aspect of the any clustering procedure is the selection of the number of
clusters (C). With this respect we compute the Silhouette Width Criterion (SWC) of [48].
Clearly, the best partition is expected to be pointed out when the SWC is maximized, which
implies the minimization of the intra-group distance the maximization of the inter-group
distance.

3. Application to financial time series

To show the effectiveness of the proposed clustering approach, in what follows we provide
an application to stock market data. The role of skewness and kurtosis in modeling financial
data is well documented (for a review see [49]).
Therefore, financial market data represent a clear example of the possible application
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since the empirical densities of the financial time series are proven to be non-Gaussian,
asymmetric and heavy tailed [50]1.
In what follows we provide empirical applications of the proposed clustering approach to
two different financial datasets. In the first expertiment, we consider the FTSE100’s stocks,
while in the second we consider the industrial sector’s stocks belonging to the S&P500
index.

3.1. FTSE100 stocks

The first application with real data aims to cluster the stocks belonging to the FTSE100
index. At this aim we consider the daily stock returns over the last 10 years, from the 1-st
January 2011 to the 1-st January 2021 (Fig. 3).

Figure 3. Sample of stock returns time series included in the dastaset under consideration (FTSE100
data).

In particular, over the 100 stocks we selected those without missing values within the
considered sampling period, hence getting as result N = 25 stocks. The list of the stocks
included in the sample is shown in Tab. 12 in the Appendix A.
To empirically motivate the peculiar distributional characteristics of the stock returns
included in the sample, we show some estimated empirical densities (Fig. 4).

1 We have to highlight that this statement is not always true. For example, it is known that most of monthly stock indices show a Gaussian distribution.
However, it is similarly accepted that daily stock returns are not normally, heavy tailed and asymmetric distributed. Therefore, in this paper we deal
with daily returns data.
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Figure 4. Empirical densities of the stocks shown in Fig. 3.

Moreover, in the Tab. 1 we report the sample estimators for mean, standard deviation,
skewness and kurtosis as well as the Jarque-Bera [51] normality test. The results of the
conducted normality tests suggest to reject the null hypothesis of normal distribution for
all the stocks (see JB test column of Tab. 1). Accordingly, it can be highlighted that any
stock shows a symmetric distribution and the majority of them are negatively skewed.
Furthermore, the stocks show very high leptokurtic distributions with fatter tails than the
Gaussian. Indeed, within the sample only one stock shows a kurtosis lower than 3 (i.e.
IAG) while all the others have much highier values.
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Mean St. Dev. Skewness Kurtosis JB test Length
AAL 0.0002 0.0326 0.4403 13.4706 19141.2841∗∗∗ 2516

ADM 0.0003 0.0161 -0.5162 5.4498 3233.0866∗∗∗ 2516
AHT -0.0010 0.0508 6.8974 177.1057 3313541.0732∗∗∗ 2516

AUTO -0.0002 0.0488 -0.7128 20.1631 42911.4151∗∗∗ 2516
AZN 0.0005 0.0151 -0.4973 13.6616 19707.8758∗∗∗ 2516
BHP 0.0000 0.0208 -0.3470 5.9551 3777.1783∗∗∗ 2516
BME 0.0006 0.0143 0.1503 10.5756 11758.3256∗∗∗ 2516
CPG -0.0011 0.0344 -1.7316 41.2409 179865.2429∗∗∗ 2516
CRH 0.0004 0.0204 -0.7531 9.0937 8925.6488∗∗∗ 2516
DGE 0.0003 0.0117 -0.7707 8.7590 8309.3523∗∗∗ 2516
EVR 0.0005 0.0229 -0.1605 10.2988 11152.9051∗∗∗ 2516

FERG 0.0006 0.0189 0.0795 64.6506 438904.5890∗∗∗ 2516
GSK 0.0002 0.0122 -0.6519 8.6100 7966.7005∗∗∗ 2516
IAG -0.0006 0.0383 -0.0550 2.7651 805.4615∗∗∗ 2516
IHG 0.0005 0.0192 -0.6035 15.9591 26903.8564∗∗∗ 2516

III 0.0002 0.0314 -0.9284 20.7329 45506.6850∗∗∗ 2516
MNG -0.0003 0.0195 -0.3442 9.4997 9530.2226∗∗∗ 2516
MRO -0.0004 0.0319 -2.7604 64.0144 433505.1309∗∗∗ 2516
NWG -0.0003 0.0272 -0.9661 11.1644 13485.1878∗∗∗ 2516

PRU 0.0002 0.0213 -0.8713 16.1174 27602.6225∗∗∗ 2516
RIO 0.0002 0.0218 0.0577 3.8344 1547.1291∗∗∗ 2516
SVT 0.0001 0.0261 0.7359 15.7558 26301.1559∗∗∗ 2516

TSCO 0.0007 0.0185 -0.1470 11.6275 14210.8902∗∗∗ 2516
VOD 0.0000 0.0160 -0.4344 11.4206 13780.2067∗∗∗ 2516
WPP 0.0001 0.0194 -1.7115 16.9938 31561.2513∗∗∗ 2516

Note: *** means significance at 1% confidence level.

Table 1: Descriptive statistics and normality test of [51] for the FTSE100 stocks.

Therefore, for clustering time series with similar distributions we use the approach based
on the Skewed Exponential Power Distribution presented in the previous Section. The first
step of the clustering procedure requires the estimation of the SEPD’s parameters. Then,
the number of clusters has to be choosen.
At this aim, we consider the average silhouette width criterion (SWC). In the Fig. 5 is
reported the final result.

Figure 5. Silhouette Width Criterion for different number of clusters C (distribution-based clustering)
– experiment with FTSE100 stocks.
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Accordingly, the parameters estimated by Maximum Likelihood (MLE)2 as well as the final
clustering results are reported in the Tab. 2.
From the Tab. 2 is evident that the second cluster contains the majority of the stocks.
Moreover, the two groups mainly differentiate each other in terms of their shapes. Indeed,
in the second cluster we have the stocks characterized by the lowest shape parameters p
and by a skewness parameter λ always greater than 1. In general, sorting by shape is in this
case more informative than sorting by the degree of skewness that, however, still reveals
important information about the distribution of the stocks placed within each group.
Moreover, some additional comments about data heterogeneity within each cluster can be
provided by looking at the Tab. 2. Indeed, the second cluster seems to be the one with the
highest degree of heterogeneity. To see why, we can look at the column of the estimated
skewness in Tab. 2. While in the first cluster we have all values of λ close to 1, in the case of
cluster 2 the values range from λ = 0.88 to λ = 1.03. A similar discussion can be provided
for the shape values p, since in the cluster 1 all the stocks have low shape’s parameters p.

Location Scale Shape Skewness Cluster
AHT 0.000938 0.038008 0.634380 1.020410 1

FERG 0.000396 0.003676 0.737628 1.087450 1
III 0.000215 0.030700 0.802500 1.005290 1

SVT 0.005273 0.024976 0.571017 1.206776 1
AAL 0.000173 0.031175 0.970264 0.978047 2

ADM 0.000326 0.015780 0.980135 0.923800 2
AUTO -0.007066 0.043761 0.840452 0.885689 2

AZN 0.000486 0.014322 1.005312 0.994350 2
BHP 0.000069 0.020380 1.131097 0.928945 2
BME 0.000587 0.013721 0.980685 1.002382 2
CPG -0.001029 0.032234 0.879535 0.976905 2
CRH 0.000370 0.019841 1.089496 0.981539 2
DGE 0.000287 0.011343 1.076945 0.925662 2
EVR 0.000544 0.022103 1.022613 0.964463 2
GSK 0.000174 0.011886 1.067266 0.966571 2
IAG -0.000660 0.038030 1.171752 1.034922 2
IHG 0.000484 0.018176 0.883195 0.953825 2

MNG -0.000304 0.018965 1.066270 0.969299 2
MRO -0.000229 0.029521 0.937861 0.975776 2
NWG -0.000333 0.026422 1.009514 0.946825 2

PRU 0.000284 0.020122 0.912030 0.975315 2
RIO 0.000231 0.021566 1.139757 0.987474 2

TSCO 0.000734 0.017782 1.042405 0.981452 2
VOD 0.000242 0.015358 0.999362 1.011196 2
WPP 0.000128 0.018252 0.952139 0.951217 2

Table 2: MLE parameters estimation from a SEPD and assigned clusters according to the
EWKM – FTSE100 data.

In general, the weights obtained by means of the entropy weighted k-means algorithm
(EKWM) reflect, as discussed in the previous Section, this heterogeneity. Indeed, the
weights are inversely proportional to squared distances such that to small distances are
associated larger weights.
The Tab. 3 shows the optimal weights computed with respect the selected C = 2 clusters.
According to the arguments presented so far, the weights effectively reflect the degree of
heterogeneity of the features. Indeed, in the cluster 2 the shape’s weight wp is the lowest

2 We use the software R to obtain the parameter estimates. More in details, the function nlminb is used in order to maximize the log-likelihood
function of the SEPD. As starting values for the function we use the sample estimates for location and scale parameters, while we set p = 2 and
λ = 1 (symmetric distribution) for shape and skweness, respectively, such that the starting values correspond to the normal distribution.
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one since the distances in terms of shape parameters in the second cluster are higher than
the same shape-based distances in the first cluster.
In the case of other parameters (i.e. location, scale and skewness) the weights assigned in
the two groups are very similar. In other words, the Tab. 3 highlights that the two clusters
mainly differentiate each other because of the distribution’s shape.

Location Scale Shape Skewness
Cluster 1 0.253624 0.253463 0.245611 0.247302
Cluster 2 0.261146 0.260772 0.222667 0.255415

Table 3: Distribution-based EWKM for FTSE100 stocks: resulting weights

However, one can ask whether a distribution-based clustering approach for time series is
more convenient than other common approaches available. Clearly there is not an easy
answer to this question since the usefulness of a clustering approach depends by its aim
and by the researcher’s goal.
However, in what follows we provide an in-sample comparison of a well-established
clustering approach for financial time series based on the stock returns correlations (e.g.
see [1]). In particular, assuming a k-medoids approach, we cluster the time series according
to the following correlation-based distance:

dn,j =
√

2(1− ρn,j) (13)

that depends by the correlation ρn,j between the n-th stock returns rn,t and the j-th returns
rj,t. In the Fig. 6 is reported the SWC criterion for different clusters C. The number of
clusters with highest validity are C = 7.

Figure 6. Silhouette Width Criterion for different number of clusters (correlation based clustering) –
experiment with the FTSE100 stocks.

However the highest SWC is equal to 0,08 and is dramatically lower than the SWC value in
Fig. 5 that is equal to 0,6. The differences between the two classifications are showed in the
Tab. 4.
In general, according to the SWC criterion, we can argue that the clusters obtained by
means of the distribution-based approach are much more accurate than those obtained
with a correlation-based approach, that is well established in finance.
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SEPD-based clustering Correlation-based clustering
AAL 2 1

ADM 2 1
AHT 1 1

AUTO 2 2
AZN 2 3
BHP 2 4
BME 2 3
CPG 2 5
CRH 2 1
DGE 2 3
EVR 2 1

FERG 1 6
GSK 2 3
IAG 2 4
IHG 2 1

III 1 1
MNG 2 5
MRO 2 5
NWG 2 1

PRU 2 1
RIO 2 4
SVT 1 7

TSCO 2 3
VOD 2 3
WPP 2 1

Table 4: Differences in the classification between the entropy weighted distribution-based
and the correlation-based clustering approaches – FTSE100 data.

3.2. S&P500 stocks: industrial sector

As additional experiment we also select the stock prices of the companies belonging to the
industrial sector that are included in the S&P500 Index. More in details, we downloaded
the last 10 years of daily observations for all the 74 stocks quoted, specifically from the 1-st
January 2011 to 1-st January 2021.
The considered stocks have different lengths because some of them have been quoted later.
Differently from the previous expertiment, we now decide to consider in the sample also
the stocks with different lengths, thus containing missing values.
Indeed, as the proposed approach is of model-based type, we are able to cluster two time
series with different length as far they share a similar distribution. Indeed, in the sample
there are also stocks with a length T = 200 as in the case of CARR and OTIS.
The entire list of the stocks considered in the sample, with their length, is shown in the Tab.
13. Particularly, for each time series we consider the logarithmic returns (Fig. 7).
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Figure 7. Sample of stock returns time series included in the dastaset under consideration (S&P500
data).

As in the previous experiment, in order to empirically show the aforementioned stock
returns characteristics (i.e. heavy tails and skewness) in the Fig. 8 are reported the empirical
densities for the sample of stock returns showed also in the Fig. 7.

Figure 8. Empirical densities of the stocks shown in Fig. 7.
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Stock Mean St. Dev. Skewness Kurtosis JB test Length
MMM 0.0002 0.0326 0.4403 13.4706 19141.2841∗∗∗ 2517

AOS 0.0006 0.0242 -0.8093 17.4330 32194.0594∗∗∗ 2517
ALK 0.0005 0.0164 -0.5533 9.9428 7494.6041∗∗∗ 1793

ALLE 0.0006 0.0163 -0.7401 16.1544 27639.5014∗∗∗ 2517
AAL 0.0008 0.0169 -0.0805 3.4418 1248.2562∗∗∗ 2517
AME 0.0006 0.0227 -0.6764 27.5441 79867.2387∗∗∗ 2517

BA 0.0058 0.0393 0.9665 7.8917 562.3908∗∗∗ 200
CHRW 0.0004 0.0183 -0.4986 5.0412 2775.3550∗∗∗ 2517
CARR 0.0001 0.0154 -1.3744 11.4410 14543.0106∗∗∗ 2517

CAT 0.0004 0.0186 -0.0322 8.3402 7308.2827∗∗∗ 2517
CTAS 0.0010 0.0159 -0.3440 14.9755 23605.0368∗∗∗ 2517
CPRT 0.0006 0.0183 0.1817 14.9407 23459.7916∗∗∗ 2517

CSX 0.0011 0.0162 -0.5401 19.4430 39825.4771∗∗∗ 2517
CMI 0.0005 0.0260 -0.7426 14.9902 23833.2396∗∗∗ 2517

DE 0.0006 0.0172 -0.1867 8.2728 7204.9810∗∗∗ 2517
DAL 0.0005 0.0173 -0.6308 10.5860 11939.0318∗∗∗ 2517
DOV 0.0007 0.0159 -1.2111 15.0746 24484.0007∗∗∗ 2517
ETN 0.0003 0.0173 -0.9108 17.9497 34187.4551∗∗∗ 2517
EMR 0.0004 0.0181 0.0802 12.4383 16253.7474∗∗∗ 2517
EFX 0.0003 0.0150 -0.3772 6.7968 4913.7515∗∗∗ 2517

EXPD 0.0006 0.0173 0.1549 7.6491 6157.3116∗∗∗ 2517
FAST 0.0009 0.0203 -0.4309 8.8030 7638.9534∗∗∗ 2339
FDX 0.0004 0.0182 -0.6436 10.6534 12096.2927∗∗∗ 2517
FTV 0.0005 0.0178 -0.3642 17.6651 14804.7770∗∗∗ 1133

FBHS 0.0004 0.0144 -0.4477 6.3062 4262.9559∗∗∗ 2517
GNRC -0.0001 0.0202 -0.0884 8.9715 8458.9914∗∗∗ 2517

GD 0.0012 0.0241 0.5907 10.1009 10864.4486∗∗∗ 2517
GE 0.0005 0.0173 0.0860 13.3704 18780.3863∗∗∗ 2517

GWW 0.0007 0.0175 -0.4450 6.4335 4337.4524∗∗∗ 2463
HON 0.0006 0.0148 -0.1974 11.3107 13454.9980∗∗∗ 2517

HWM -0.0001 0.0264 -0.4662 11.5068 13999.6075∗∗∗ 2517
HII 0.0007 0.0150 -0.5132 6.5607 4633.3047∗∗∗ 2517
IEX 0.0007 0.0160 1.9067 46.0650 146908.9322∗∗∗ 1647

INFO 0.0008 0.0251 -0.3388 6.9870 1892.4783∗∗∗ 917
ITW 0.0006 0.0150 -0.1942 11.5515 14032.6104∗∗∗ 2517

IR 0.0003 0.0180 -0.2123 5.1921 2852.1589∗∗∗ 2517
JBHT 0.0005 0.0158 -0.2285 8.1095 6931.2264∗∗∗ 2517

J 0.0004 0.0158 -0.4979 7.3329 5753.7195∗∗∗ 2517
JCI 0.0006 0.0196 -0.5279 12.0699 15419.7615∗∗∗ 2517

KSU 0.0006 0.0179 -1.2609 19.1160 39046.5207∗∗∗ 2517
LHX 0.0007 0.0161 -0.3588 10.6848 12046.8015∗∗∗ 2517

LDOS 0.0008 0.0134 -0.6141 14.4475 22082.3240∗∗∗ 2517
LMT 0.0005 0.0208 -0.4192 7.3590 5763.8034∗∗∗ 2517
MAS 0.0007 0.0207 -0.2718 5.2009 2873.8198∗∗∗ 2517

NLSN 0.0004 0.0137 -0.8574 11.6144 14478.3288∗∗∗ 2517
NSC 0.0001 0.0198 -1.6786 27.7429 81459.1085∗∗∗ 2500

NOC 0.0007 0.0143 -0.1255 8.0477 6811.0182∗∗∗ 2517
ODFL 0.0006 0.0175 -0.1828 10.7789 12218.9127∗∗∗ 2517
OTIS 0.0010 0.0181 -0.0697 4.9432 2570.1778∗∗∗ 2517

PCAR 0.0021 0.0255 0.3171 5.3143 245.0319∗∗∗ 200
PH 0.0003 0.0167 -0.1098 5.1097 2749.0581∗∗∗ 2517

PNR 0.0005 0.0195 -0.5206 12.0102 15265.5206∗∗∗ 2517
PWR 0.0004 0.0181 -0.5505 13.2218 18489.7124∗∗∗ 2517
RTX 0.0005 0.0207 -1.9917 34.1081 123835.8960∗∗∗ 2517
RSG 0.0004 0.0196 -0.1265 9.3393 9169.7468∗∗∗ 2517
RHI 0.0006 0.0189 -0.2785 11.0507 12860.5887∗∗∗ 2517

ROK 0.0008 0.0153 -0.4364 8.5542 7767.5581∗∗∗ 2517
ROL 0.0007 0.0148 -0.5568 8.8381 8336.3830∗∗∗ 2517
ROP 0.0006 0.0121 -1.7053 22.4745 54267.9783∗∗∗ 2517
SNA 0.0002 0.0164 -0.4683 16.5103 28722.5064∗∗∗ 2517
LUV 0.0005 0.0167 -0.1462 7.3703 5716.4328∗∗∗ 2517
SWK 0.0005 0.0198 -0.8209 22.7150 54471.1200∗∗∗ 2517
TDY 0.0011 0.0205 -0.6358 26.5648 74280.1975∗∗∗ 2517
TXT 0.0009 0.0173 -1.4434 25.9249 71458.1550∗∗∗ 2517

TT 0.0007 0.0175 -0.4868 6.2835 4248.3077∗∗∗ 2517
TDG 0.0003 0.0223 -0.3101 10.5591 11752.7020∗∗∗ 2517
UNP 0.0002 0.0307 -0.7200 16.6715 29409.5251∗∗∗ 2517
UAL 0.0007 0.0161 -0.4693 8.5580 7786.9958∗∗∗ 2517
UPS 0.0005 0.0137 0.0987 12.3985 16151.3421∗∗∗ 2517
URI 0.0009 0.0296 -0.5009 6.2084 4155.5368∗∗∗ 2517

VRSK 0.0007 0.0137 -0.1206 13.4321 18957.1646∗∗∗ 2517
WM 0.0004 0.0200 -0.5989 9.3161 9268.1082∗∗∗ 2517

WAB 0.0006 0.0120 -0.6692 14.2371 21478.1235∗∗∗ 2517
XYL 0.0007 0.0166 -0.1198 8.1649 6462.2884∗∗∗ 2320

Note: *** means significance at 1% confidence level.

Table 5: Descriptive statistics and normality test of [51] for the S&P500 stocks.
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From Fig. 8 it is possible to note that the considered time series show very different
distributions as well as a strong deviation from Gaussianity. Moreover, we also report in
the Tab. 5 the main descriptive statistics as well the [51] test of normality. In general, from
these simple considerations appear clearly the need for the specification of a very flexible
distribution able to accurately capture these differences.
As previously described, the first step of the proposed clustering procedure involves the
estimation of the Skewed Exponential Power Distribution parameters (i.e. location, scale,
skewness and shape) by means of maximum likelihood method. Then, as usual, the second
step of the procedure involves the decision about the number of clusters C.
As previously specified, we take advantage of the Silhouette Width Cirterion (SWC), whose
results are shown in the Fig. 9.

Figure 9. Silhouette Width Criterion for different number of clusters C (distribution-based clustering)
– S&P500 stocks.

The highest value of the silhouette is obtained with C = 2 clusters. Then, from the
distribution(SEPD)-based Entropy Weighting k-Means (SEPD-EWKM) algorithm we obtain
the hard partition showed in the Tab. 6.
As in the previous experiment, the two resulting clusters are not balanced since the second
cluster contains most of the stocks in the sample. Moreover, it appears clearly that the two
clusters differentiate each other in terms of shape. Indeed, the first cluster contains all the
stocks with shape parameter p lower than p = 0.9, while on the other side in the second
one we have all the stocks with higher shape’s parameters.
However, also the skweness λ allows a remarkable distinction among the two clusters since
in the first group we find most of the stocks with λ ≥ 1 while in the second one the stocks
with lower degree of skewness. Nevertheless, the heterogeneity in terms of skewness in
the first cluster appear considerable.
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Location µ Scale σ Shape p Skeweness λ Cluster
BA 0.000529 0.020121 0.809235 0.961483 1

CARR 0.005634 0.037575 0.869097 1.022203 1
CTAS 0.001057 0.014841 0.828099 0.972663 1

EFX 0.000743 0.015000 0.910557 0.976399 1
FTV 0.000516 0.016727 0.880068 1.010577 1

GE -0.000323 0.019545 0.819186 0.987702 1
GNRC 0.001210 0.023105 0.909975 1.013188 1

HON 0.000665 0.014166 0.898461 0.999329 1
INFO 0.000744 0.014293 0.862185 1.000896 1
LDOS 0.000719 0.016602 0.907270 0.955210 1
MMM 0.000428 0.013126 0.894845 0.965327 1
NLSN 0.000161 0.018310 0.886294 1.006444 1

OTIS 0.003455 0.024927 0.768527 1.186048 1
RTX 0.000246 0.015165 0.830205 0.979384 1

SWK -0.000646 0.018981 0.798267 0.880760 1
TDG 0.001156 0.018331 0.820059 0.992412 1
TXT 0.000295 0.021221 0.865774 1.001103 1

UAL 0.000242 0.028890 0.904769 1.006104 1
VRSK 0.000705 0.012904 0.881891 0.973572 1

WM 0.000407 0.011229 0.862004 0.943475 1
AAL 0.000173 0.031175 0.970261 0.978034 2
ALK 0.000561 0.022819 0.941247 0.978997 2

ALLE 0.000522 0.015682 0.980738 0.931036 2
AME 0.000644 0.015499 0.929582 0.973628 2
AOS 0.000757 0.016787 1.040460 0.949007 2
CAT 0.000356 0.018032 1.043622 0.999351 2

CHRW 0.000153 0.014709 0.959506 0.930355 2
CMI 0.000387 0.018176 0.977557 0.988523 2

CPRT 0.001047 0.014979 0.927105 0.992372 2
CSX 0.000646 0.017462 1.043010 0.955829 2

DAL 0.000517 0.024814 0.952124 0.980727 2
DE 0.000556 0.016703 0.951225 0.983644 2

DOV 0.000546 0.016845 0.988254 0.968131 2
EMR 0.000267 0.016463 0.930394 0.967078 2
ETN 0.000450 0.017423 0.995600 0.974408 2

EXPD 0.000267 0.014679 1.011972 0.957943 2
FAST 0.000560 0.016874 1.017518 0.999670 2
FBHS 0.000868 0.019631 0.965633 0.978979 2

FDX 0.000456 0.017386 0.963798 0.981288 2
GD 0.000396 0.014028 1.047922 0.940179 2

GWW 0.000490 0.016469 0.960258 0.995514 2
HII 0.000664 0.017031 1.015763 0.935556 2

HWM -0.000064 0.025139 0.909516 0.939999 2
IEX 0.000699 0.014599 1.031668 0.962203 2

IR 0.000843 0.024407 1.015252 0.942748 2
ITW 0.000639 0.014417 0.922543 0.969491 2

J 0.000343 0.017644 1.045491 0.976824 2
JBHT 0.000498 0.015420 1.081486 1.014217 2

JCI 0.000431 0.015401 1.046638 0.968509 2
KSU 0.000603 0.018785 1.023660 0.994975 2
LHX 0.000620 0.015306 0.974821 0.932664 2
LMT 0.000783 0.012718 0.962104 0.975880 2
LUV 0.000532 0.020178 0.986733 0.964936 2
MAS 0.000680 0.020248 1.019500 0.984060 2
NOC 0.000740 0.013834 1.019146 0.947251 2
NSC 0.000618 0.016801 1.014521 0.964525 2

ODFL 0.001056 0.017740 1.116417 0.950527 2
PCAR 0.000295 0.016396 1.074364 0.986350 2

PH 0.000523 0.018614 0.968202 0.976833 2
PNR 0.000388 0.017448 1.044595 0.924451 2
PWR 0.000523 0.019236 0.945752 0.953866 2
RHI 0.000365 0.018797 0.971600 0.962834 2

ROK 0.000568 0.018245 0.959031 0.993951 2
ROL 0.000815 0.014646 0.979196 0.991513 2
ROP 0.000716 0.014215 0.935390 0.964640 2
RSG 0.000593 0.011185 0.925639 0.977828 2
SNA 0.000507 0.016137 0.944876 0.962180 2
TDY 0.000861 0.016373 1.002064 0.966281 2

TT 0.000704 0.017061 0.988580 0.965844 2
UNP 0.000661 0.015663 1.073618 0.996020 2
UPS 0.000453 0.012969 0.923857 0.967459 2
URI 0.000914 0.028867 1.027572 0.951293 2

WAB 0.000425 0.019372 0.976249 0.969278 2
XYL 0.000673 0.016063 1.013724 0.981268 2

Table 6: MLE estimates of a Skewed Exponential Power Distribution and the entropy
weighting clustering results – S&P500 data.
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Heterogeneity can be analysed also by means of the features’ weights that show at the
same time the relative importance of each estimated parameter in determining the cluster’s
composition. The optimal weights for this experiment are reported in the Tab. 7.

Location (w1) Scale (w2) Shape (w3) Skewness (w4)
Cluster 1 0.255808 0.255629 0.247364 0.241199
Cluster 2 0.258694 0.258503 0.229691 0.253112

Table 7: Distribution-based EWKM for S&P500 stocks: resulting weights

The weights in Tab. 7 highlight that the important information in determining clusters’
differences are the distribution’s shapes. Indeed, while the other parameters have almost
the same weights, very close to an equally weighting scheme, in the cluster 2 the shape
is less weighted. According to the weights interpretation we have seen so far, the lower
weight assigned to wp depends by the greater distances among the stocks within the second
cluster in terms of shape.
While in the previous experiment we compared the clusters obtained with the proposed
distribution-based approach with those obtained by a correlation-based one, in this case
this is not possible. Indeed, not all the clustering procedures can handle time series with
different lengths.
In the next Section, we propose a possible use of this clustering approach in the real world.
An immediate example is, once it is applied to financial data, represented by the portfolio
selection. Therefore, in the Section 4 we provide the results about the financial performance
of the portfolios build by means of the proposed clustering model.
In this context, since we will work only with time series of equal length, we will be able
to compare the proposed clustering approach with a correlation-based one also for the
S&P500 Industrial data.

4. Portfolio analysis

The clusters obtained in the previous Section by the proposed approach can be seen as
possible portfolios from an asset allocation perspective.
Financial literature provided various approaches to portfolio selection. In what follows,
we consider the Global Minimum Variance (GMV) strategy [52]. Assuming to have N time
series of stock returns collected into a matrix Rt, the portfolio problem can we written as
[53,54]:

min
w

w′Σw (14)

under the constraint:

N

∑
n=1

wm = 1 (15)

The optimal global minimum variance weights w, as solution of the minimization problem
(14), are:

w =
Σ−11N

1′NΣ−11N
(16)

Note that the elements of the vector w can be negative, so we allow for short sales. Then,
by replacing Σ−1 with Σ̂−1 we get the optimal estimated GMV portfolio weights that we
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call ŵ. In this paper, since we don’t have the problem of dimensionality3, we estimate the
covariance matrix Σ by means of the sample covariance estimator:

Σ̂ =
1

T − 1

T

∑
t=1

(Rt − µ̂)′(Rt − µ̂) (17)

with µ̂ is the vector containing the sample averages over the time of the stocks in Rt.
Nevertheless, [59] showed that empirically the naive or Talmudic4 diversification rule
returns the highest performances in out-of-sample analysis with respect most of alternatives.
This result highlights the relevance of the estimation error in portfolio selection, coming
from the fact that the investors estimates unknown quantities. Indeed, the equally weighted
strategy (1/N) is the only diversification strategy with zero estimation error, since nothing
is estimated.
In what follows we consider each cluster as a possible set of stock and we use both the
naive 1/N and the Global Minimum Variance (GMV) approaches to build C-th different
portfolios.
First of all, we use the first 5 years of observations to generate the clusters according to the
distribution-based procedure discussed above. Then, the proposed clustering approach is
compared from the point of view of asset allocation also with a correlation-based clustering,
commonly used in finance to form portfolio of stocks.
In order to evaluate the out-of-sample performances of each portfolio, we follow the
empirical procedure of [59], based on a “rolling-sample” approach.
Specifically, given a T daily observation of the securities returns, we choose an estimation
widow of one year, M = 252, to estimate the covariance structure across the asset needed
for the implementation of the GMV strategy.
Then, in order to avoid a costly daily portfolio rebalancing, we suppose a monthly rebalance,
such that with a window of M = 252 observations the investor update the portfolio
structure each m = 20 trading days.
This process is recursively repeated by adding the return for the next period in the dataset
and dropping the earliest one until the end of the dataset is reached. The result is, therefore,
a time series of length (T −M)/m of returns5.
Given the time series of monthly out-of-sample returns, we compute the out-of-sample
Sharpe ratio of the portfolio c, SRc, defined as the sample mean of out-of-sample portfolio
returns divided by its standard deviation:

SRc =
µ̂c

σ̂c
(18)

where µ̂c is the average of the (T − M)/m out of sample returns for the c-th portfolio
and σ̂c its standard deviation. Moreover, to account for the amount of trading required to
implement the GMV strategy, we compute the portfolio turnover, defined as follows:

TOVc =
1
T̃

T̃

∑
t=1

N

∑
n=1

(|ŵn,t+1 − ŵn,t|) (19)

with T̃ = (T −M)/m and ŵn,t be the portfolio GMV weight assigned to the n-th asset at
time t with the covariance matrix across the assets estimated with the last M observations.

3 In the large dimensional setting, where N > T, the sample covariance estimator results in an ill-conditioned covariance matrix that cannot be inverted
(for example see [55–58]). However in both the considered applications presented in this paper we have that T > N (actually M, the estimation
window, is always greater than the number of assets N).

4 The Talmud is the central text of Rabbinic Judaism that provides the following investment advice: "let every man divide his money into three parts,
and invest a third in land, a third in business and a third let him keep by him in reserve".

5 Supposing a daily portfolio rebalancing the final length would be T −M. In presence of trading costs, a daily rebalace is intuitively more expensive
than a monthly one.
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4.1. FTSE100

We consider first how the clustering approaches can be used to form portfolios of stocks
(e.g. [1,3]) in the case of the first analysed dataset containing the N = 25 stocks without
missing values included in the FTSE100 Index.
First of all, in order to backtest the profitability of the trading strategies based on the
clustering approaches, we consider only the first 5 years of daily observation as a dataset
to perform cluster analysis. Clearly, since we are using half of the sample of the analysis
conducted in the previous Section, we could expect different stocks’ classification.
As in the previous Section, we compare the proposed distribution-based clustering ap-
proach with another common clustering model used in finance to build portfolio of stocks.
The alternative clustering approach uses the assets’ correlations instead of their distribution
to build the clusters (e.g. [1,2]).
As shown by Fig. 10, according to the SEPD-based EWKM algorithm we select C = 2
clusters with an high average silhouette, that is equal to 0,8.

Figure 10. SWC for the first 5-year observations (distribution-based clustering) – FTSE100 data.

On the other hand, following the same approach, the correlation-based clustering approach
suggests the presence of C = 6 clusters (see Fig. 11) and an average silhouette equal to 0,08,
ten times lower than the one shown in Fig. 10.

Figure 11. SWC for the first 5-year observations (correlation-based clustering) – FTSE100 data.

In other words, on the basis of some in-sample arguments we can argue that the clustering
resulting from the application of a distribution-based approach is much more accurate than
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another one based on correlation. The clusters composition for both approaches is shown
in Tab. 8.

SEPD-based clustering Correlation-based clustering
AAL 2 1

ADM 2 1
AHT 2 1

AUTO 2 2
AZN 2 1
BHP 2 3
BME 2 1
CPG 2 3
CRH 2 1
DGE 1 1
EVR 2 1

FERG 2 4
GSK 1 1
IAG 2 3
IHG 2 1

III 2 5
MNG 2 3
MRO 2 3
NWG 2 3

PRU 2 1
RIO 2 3
SVT 2 6

TSCO 2 1
VOD 1 1
WPP 1 1

Table 8: Final group assignment of the two alternative clustering approaches. The first
column shows the results of the distribution-based approach, while the second column
shows those of the correlation-based clustering (FTSE100 data).

Nevertheless, in this Section we are interested in the out-of-sample performances in terms
of portfolio selection. In the case of the distribution-based clustering, following [3], we
consider the two clusters as two possible different portfolios. As stated before, we consider
two alternative diversification rules, the naive (1/N) and the Global Minimum Variance
(GMV). Therefore we have four possible trading strategies.
In the case of the correlation-based clustering, from Tab. 8 it clearly appears that the stocks
AUTO, SVT, III and FERG from single clusters. Therefore, we exclude these stocks and
consider the clusters 1 and 3 as alternative portfolios, constructed with both naive and
GMV diversification rules.
We compare the resulting portfolio in terms of return-risk trade-off represented by the
Sharpe Ratio, the amount of risk in worst scenarios computed by means of the Value at
Risk (VaR) and the Expected Shortfall (ES) and the trading expenses trough the Turnover.
The results are shown in Tab. 9.
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Sharpe Ratio VaR ES Turnover
Naive (SEPD) - Cluster 1 0.262155 -0.014396 -0.018755
GMV (SEPD) - Cluster 1 0.278905 -0.012489 -0.016318 0.022555
Naive (SEPD) - Cluster 2 0.129284 -0.018028 -0.023003
GMV (SEPD) - Cluster 2 0.123989 -0.009490 -0.012100 0.013587
Naive (corr) - Cluster 1 0.216579 -0.016056 -0.020760
GMV (corr) - Cluster 1 0.290720 -0.010547 -0.013808 0.018170
Naive (corr) - Cluster 3 0.020610 -0.026068 -0.032775
GMV (corr) - Cluster 3 0.054591 -0.016854 -0.021284 0.026502

Table 9: Portfolio performance measures – experiment with FTSE100 data

In general, following a naive diversification approach, all the portfolios build with the
distribution-based clustering approach show much superior performances than those con-
structed with the alternative approach. Indeed, the two SEPD-based portfolios have a
Sharpe Ratio equal to 26,2% and 12,9% respectively while the alternative portfolios have
lower Sharpe Ratios equal to 21,6% and 2%.
In terms of VaR and Expected Shortfall the two SEPD-based portfolios build under naive
diversification rule show similar risk profiles with respect the Cluster 1 portfolio build
trogh the correlation-based clustering, while the Cluster 2 portfolio (correlation-based) has
a very high values compared to the others. Therefore, the SEPD-based clustered portfolios
show a better return-risk profile, also in adverse scenarios.
In the end, since the weights’ structure don’t change over time the turnover any naive
portfolio is set to be zero.
On the side of the GMV diversification rules, the benefit of the distribution-based clustered
portfolios are still evident. Indeed, despite the best portfolio in terms of Sharpe Ratio is the
first cluster obtained by the correlation-based approach (SR equal to 29%), the portfolio
build with the Cluster 3 (correlation-based) shows a very poor Sharpe Ratio performance
equal to 5%.
The GMV portfolio build on the Cluster 1 (SEPD-based) has a Sharpe Ratio equal to 27,8%,
while the one build on the Cluster 2 has a Sharpe Ratio of 12,3%. Clearly, once the cluster
analysis is conducted, the investor don’t know which portfolio will perform better in out-
of-sample. Therefore, let’s suppose that ex ante we invest equally across the two clustered
portfolios. The overall return of this investment strategy is higher if the investor chooses to
invest in the SEPD-based clustered portfolios than in the case of correlation-based.
In terms of VaR and Expected Shortfall the results are even better. Indeed, in both the cases
the two portfolios with the lowest VaR and ES are the SEPD-based clustered portfolios.
In terms of turnover, the SEPD-based Cluster 2 shows the lowest value among the alterna-
tive and in general the SEPD-based trading rules have a much lower cost in aggergate.
Therefore, we can conclude that the SEPD-based Entropy Weighted algorithm proposed
in the Section 2, that aims to cluster stocks according to their distribution, shows good
performances also from a portfolio selection perspective. The correlation-based algorithm,
that discard data distribution instead of correlations, performs poorer.

4.2. S&P500 industrials

In this sub-Section we provide the portfolio analysis for the second experiment with S&P500
Industrial real data. Nevetheless, in this case an important preliminary step to facilitate the
analysis under consideration is to exclude from the sample the S&P500 industrial stocks
showing missing values. Hence. from an initial sample of N = 74, we obtain a thinner
sample of N = 65 stocks.
As previously, we compare the distribution-based clustering approach presented in the
Section 2 with the correlation-based clustering, commonly used to form portfolio of stocks.
The Fig. 12 shows the SWC criterion according to different number of clusters C.
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Figure 12. SWC for the first 5-year observations (distribution-based clustering) – S&P500 data.

With a SWC greater than 0,8 we select C = 2. In the Fig. 13, instead, is reported the same
criterion in the case of the correlation-based clustering algorithm.

Figure 13. SWC for the first 5-year observations (correlation-based clustering) – S&P500 data.

In this second experiment, the correlation-based clustering model suggests the same groups
as the distribution-based one. However, the silhouette is again very low compared to the
one showed in Fig. 12, meaning that the quality of the resulting classification is much lower.
The different clustering results are reported in the Tab. 10
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SEPD-based clustering Correlation-based clustering
AAL 2 1
ALK 1 1
AME 2 2
AOS 2 2

BA 1 2
CAT 2 2

CHRW 2 2
CMI 2 2

CPRT 2 2
CSX 2 2

CTAS 2 2
DAL 1 1

DE 2 2
DOV 2 2
EFX 2 2

EMR 2 2
ETN 2 2

EXPD 2 2
FAST 2 2
FDX 2 2
GD 1 2
GE 2 2

GNRC 2 2
GWW 2 2
HON 2 2

HWM 2 2
IEX 2 2

ITW 2 2
J 2 2

JBHT 2 2
JCI 2 2

KSU 2 2
LDOS 2 2

LHX 2 2
LMT 1 2
LUV 1 1
MAS 2 2

MMM 2 2
NOC 1 2
NSC 2 2

ODFL 2 2
PCAR 2 2

PH 2 2
PNR 2 2
PWR 2 2
RHI 2 2

ROK 2 2
ROL 2 2
ROP 2 2
RSG 2 2
RTX 2 2
SNA 2 2
SWK 2 2
TDG 2 2
TDY 2 2

TT 2 2
TXT 2 2

UAL 1 1
UNP 1 2
UPS 2 2
URI 2 2

VRSK 2 2
WAB 2 2
WM 2 2

Table 10: Final group assignment of the two alternative clustering approaches. The first
column shows the results of the distribution-based approach, while the second column
shows those of the correlation-based clustering (S&P500 data).
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The portfolio performances of the proposed approaches, assuming both naive and GMV
diversification rules, are reported in the Tab. 11.

Sharpe Ratio VaR ES Turnover
Naive (SEPD) - Cluster 1 0.201330 -0.018444 -0.023791
GMV (SEPD) - Cluster 1 0.300182 -0.014314 -0.018771 0.027739
Naive (SEPD) - Cluster 2 0.147101 -0.019142 -0.024487
GMV (SEPD) - Cluster 2 0.098290 -0.009808 -0.012460 0.020254
Naive (corr) - Cluster 1 0.131469 -0.029350 -0.037461
GMV (corr) - Cluster 1 0.196732 -0.023842 -0.030730 0.037102
Naive (corr) - Cluster 2 0.155000 -0.018541 -0.023746
GMV (corr) - Cluster 2 0.097379 -0.009428 -0.011975 0.026502

Table 11: Portfolio performance measures – experiment with S&P500 data

In the case of naive diversification rule, the Tab. 11 shows that the best portfolio in terms of
out-of-sample Sharpe Ratio is the one based on the Cluster 1 resulting from the distribution-
based clustering approach, with a value of 20%. Moreover, in terms of VaR and ES the
two distribution-based clustered portfolios share similar risk than the correlation-based
Cluster 2 portfolio, while the correlation-based Cluster 1 portfolio shows much higher
values being, therefore, much more risky in adverse scenarios.
The construction of GMV portfolios starting from the identified clusters shows similarly
interesting results. In particular, the distribution-based Cluster 1 portfolio still is the most
performing with a Sharpe Ratio of 30%, while the correlation-based GMV Cluster 1 portfo-
lio has a peformance lower than 20%. On the other side, both portfolios constructed on
Cluster 2 shows similar Shape Ratio but still the distribution-based allows a little overper-
formance of 10 basis points.
In terms of risk, looking at the VaR and ES, the distribution-based Cluster 1 portfolio has
a much lower amount of risk compared to the correlation-based Cluster 1 portfolio and
at the same time has a much higher Sharpe Ratio. The other two portfolios constructed
according to the the Cluster 2 are again very similar.
In the end, we compare the portfolio performances with respect the turnover. The
distribution-based Cluster 2 portfolio has the lower turnover, while the correlation-based
Cluster 1 the highest. Moreover, the distribution-based Cluster 1 portfolio has a similar
turnover than the correlation-based Cluster 2 but with a Sharpe Ratio higher than 11%.
Therefore, also in this case we can conclude that the SEPD-based Entropy Weighted K-
means approach developed in the Section 2 allows the construction of high performance
clustered portfolios, regardless the diversification rule used for their construction.

5. Conclusions

In this paper, we propose a new model-based clustering approach for classifying skewed
and heavy tailed time series, by means of an entropy weighting clustering algorithm.
Clustering techniques are useful tools for exploratory data analysis in the way they identify
common structures in an unlabeled dataset.
For example, a possible application of financial time series clustering concerns the asset
allocation, where groups of similar stocks could be seen as portfolios of asset that shares
similar characteristics.
Many recent papers aim to improve the existing clustering techniques for time series data.
This article proposes a model clustering model that refers to data based on a very important
family of Asymmetric functions: the Skewed Exponential Power Distribution (SEPD) also
called in literature as the Skewed Generalized Error Distribution (SGED). This distribution
is very useful for classifying time series in presence of fat-tailed and asymmetric time
series.
The clustering algorithm, which represents the innovative aspect of this paper, applies the
idea of entropy weighting clustering of [7,45] to the parameters estimated by a flexible
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probability distribution as in [23].
The criterion is that time series with similar parameter estimates are placed in the same
group. Therefore, with a k-means clustering algorithm, the measure of dissimilarity is
determined on the basis of these estimates. In this paper we therefore propose to combine
all the information in an optimal way to form clusters.
Finally, to demonstrate the effectiveness of the proposed clustering approach, in this paper
we propose two different applications to stock market data. Financial market data lend
themselves well to adhering to our methodological proposal. In fact, the empirical densities
of daily stock returns time series are proved to be non-Gaussian, asymmetric and heavy.
Ours wants to be a fairly innovative research address and certainly many can be there
financial applications that benefit from modeling equity returns via exponential power
distribution and its extensions for skewness.
Indeed a final important result allows us to conclude that the new clustering algorithm
we described in the paper can be used to form equity portfolios. Indeed, we compared
the performances of the distribution-based clustering model proposed in this paper with a
correlation-based clustering algorithm that is commonly used by financial practitioners
to form portfolio of stocks. According to several measures, such as the Sharpe Ratio,
the Value at Risk, the Expected Shortfall and the Turnover we demonstrated the superior
performances of the proposed clustering approach also from an asset allocation perspective.
A first possible future research can be devoted to the application of the proposed underlying
idea to different probability distributions. For example, the Asymmetric Power Distribution
of [40] represents an interesting possibility for modeling situations where we suppose two
different behaviors in the distribution’s tails.
Moreover, another interesting research direction can be devoted to the developments of
a new distribution-based clustering approach where also the time varying parameters
estimated from the Skewed Exponential Power Distribution (or others) are considered.
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Appendix A List of stocks

ID Name Symbol Sector
1 3i III Financial Services
2 Admiral Group ADM Nonlife Insurance
3 Anglo American plc AAL Mining
5 Ashtead Group AHT Support Services
7 AstraZeneca AZN Pharmaceuticals & Biotechnology
8 Auto Trader Group AUTO Media

12 B&M BME Retailers
13 BAE Systems BA. Aerospace & Defence
17 BHP BHP Mining
25 Compass Group CPG Support Services
26 CRH plc CRH Construction & Materials
29 Diageo DGE Beverages
31 Evraz EVR Industrial Metals & Mining
33 Ferguson plc FERG Support Services
36 GlaxoSmithKline GSK Pharmaceuticals & Biotechnology
42 IHG Hotels & Resorts IHG Travel & Leisure
46 International Airlines Group IAG Travel & Leisure
56 M&G MNG Asset Managers
57 Melrose Industries MRO Automobiles & Parts
60 NatWest Group NWG Banks
68 Prudential plc PRU Life Insurance
74 Rio Tinto RIO Mining
83 Severn Trent SVT Gas, Water & Multi-utilities
94 Tesco TSCO Food & Drug Retailers
97 Vodafone Group VOD Mobile Telecommunications

100 WPP plc WPP Media

Table 12: List of stocks (FTSE100) considered in the application with real data
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ID Symbol Name
1 MMM 3M Company
2 AOS A.O. Smith Corp

16 ALK Alaska Air Group
21 ALLE Allegion
30 AAL American Airlines Group
38 AME Ametek
70 BA Boeing Company
79 CHRW C. H. Robinson Worldwide
88 CARR Carrier Global
90 CAT Caterpillar Inc.

107 CTAS Cintas Corporation
123 CPRT Copart Inc
128 CSX CSX Corp.
129 CMI Cummins Inc.
135 DE Deere & Co.
136 DAL Delta Air Lines Inc.
150 DOV Dover Corporation
158 ETN Eaton Corporation
164 EMR Emerson Electric Company
168 EFX Equifax Inc.
179 EXPD Expeditors
184 FAST Fastenal Co
186 FDX FedEx Corporation
197 FTV Fortive Corp
198 FBHS Fortune Brands Home & Security
206 GNRC Generac Holdings
207 GD General Dynamics
208 GE General Electric
216 GWW Grainger (W.W.) Inc.
230 HON Honeywell Int’l Inc.
233 HWM Howmet Aerospace
237 HII Huntington Ingalls Industries
238 IEX IDEX Corporation
240 INFO IHS Markit
241 ITW Illinois Tool Works
244 IR Ingersoll-Rand
257 JBHT J. B. Hunt Transport Services
259 J Jacobs Engineering Group
262 JCI Johnson Controls International
265 KSU Kansas City Southern
276 LHX L3Harris Technologies
282 LDOS Leidos Holdings
289 LMT Lockheed Martin Corp.
301 MAS Masco Corp.
333 NLSN Nielsen Holdings
336 NSC Norfolk Southern Corp.
338 NOC Northrop Grumman
349 ODFL Old Dominion Freight Line
353 OTIS Otis Worldwide
354 PCAR Paccar
356 PH Parker-Hannifin
361 PNR Pentair plc
387 PWR Quanta Services Inc.
391 RTX Raytheon Technologies
396 RSG Republic Services Inc
398 RHI Robert Half International
399 ROK Rockwell Automation Inc.
400 ROL Rollins Inc.
401 ROP Roper Technologies
415 SNA Snap-on
417 LUV Southwest Airlines
418 SWK Stanley Black & Decker
433 TDY Teledyne Technologies
438 TXT Textron Inc.
449 TT Trane Technologies plc
450 TDG TransDigm Group
461 UNP Union Pacific Corp
462 UAL United Airlines Holdings
463 UPS United Parcel Service
464 URI United Rentals Inc.
471 VRSK Verisk Analytics
483 WM Waste Management Inc.
491 WAB Westinghouse Air Brake Technologies Corp
500 XYL Xylem Inc.

Table 13: List of stocks (FTSE100) considered in the application with real data
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