

SARS-CoV2 Variants and Vaccines mRNA Spikes Fibonacci Numerical UA/CG Metastructures

Jean Claude Perez

Jean-Claude Perez, PhD Maths § Computer Science Bordeaux University, RETIRED interdisciplinary researcher (IBM Emeritus, IBM European Research Center on Artificial Intelligence Montpellier), Bordeaux metropole, France, jeanclaudeperez2@gmail.com

ABSTRACT.

In this paper, we suggest a biomathematical numerical method analysing mRNA nucleotides sequences based on UA/CG Fibonacci numbers proportions.

This method is used to evaluate then compare the spike genes related to the main SARS-CoV2 VARIANTS circulating presently within the world.

The 8 main results proposed to be reproduced by peers are:

- 1/ SARS-CoV2 genome and spike evolution in one year 2020-2021.
- 2/ SARS-CoV2 Origins.
- 3/ Comparing 11 reference variants spikes.
- 4/ analysing 32 CAL.20C California variant patients spikes.
- 5/ Toward a meta mRNA Fibonacci gene end message code.
- 6/ analysing S501 UK, S484 South Afrika and « 2 mutations » IINDIA variants.
- 7/ Suggesting a possible variants spike mRNA palindrome symmetry metastructure improving mRNA stability then infectuosity.
- 8/ Analysing Fibonacci Metastructures in the mRNA coding for the vaccines PFITZER and MODERNA.

Particularly, we suggest the following conjecture at mRNA folding level :

CONJECTURE of SARS-CoV2 VARIANTS:

The growth of long Fibonacci structures in the shape of "podiums" for almost all of the variants studied (UK, California, South Afrika, India, etc.) suggests the probable folding of the Spike mRNA in the form of a "hairpin", which can strengthen the cohesion and the lifespan of this mRNA.

Finally, we show that this kind of Fibonacci metastructures disappears TOTALLY analysing the published mRNA sequences of PFITZER and MODERNA vaccines.

I- INTRODUCTION.

30 years ago, after pioneering in A.I (Perez, 1988, 1991), we published in a paper entitled "chaos, dna, and neuro computers: the golden link" (Perez, 1991), a numerical method based on Fibonacci numbers to analyse dna sequences available at this time. In 2017 (Perez, 1997, 2017, 2019), we revisited this method to demonstrate application of this method in mtDNA mutations involved on Human cancers.

58 years ago, (Montagnier, Nature, 1963) Luc Montagnier had described the isolation of an infectious double helix RNA in cells infected with a picornavirus. It is perhaps likely that there is an

analogous form in the coronavirus, specifically on VARIANTS mRNA spikes. This structure is very stable, resistant to RNase, and can therefore retain the genetic information of the virus for a long time. The palindromic structures detected here could constitute a "hairpin" double stranded RNA form.

II- METHODS and DATA SOURCES.

2.1 - Computing FIBONACCI metastructures:

Consider the sequence of Fibonacci numbers

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 **987 1597 2584** 4181 6765 10946 17711
28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309
3524578 5702887...

Example of the SPIKE from WUHAN reference genome, this mRNA SPIKE is 3822 bases UCAG in length.

Recall WUHAN reference https://www.ncbi.nlm.nih.gov/nuccore/NC_045512

Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome NCBI Reference Sequence: NC_045512.2

the longest Fibonacci structures would therefore measure 2584 bases.

When looking for such structures, the first one found is in 1200 location:
therefore, the bases located between 1201 and 3784 (1200 + 2584):

These 2584 bases are broken down respectively into:

1597 bases UA
et 987 bases CG

Here are the first 20 basics that the reader can easily check:

SPIKREF[1200+1/20]
G U A A U U A G A G G U G A U G A A G U
0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1.../...
U A A U U A A U A U A A A U 1597 bases UA

G U A A U U A G A G G U G A U G A A G U
1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0.../...
G G G G G G G G 987 bases CG

The SPIKE analysis of this Wuhan-Hu-1 reference genome reports 63 metastructures of this type if we close the sequence on itself (as in mtDNA or bacteria) and 7 metastructures if we consider the mRNA sequence in its linear form, as will be the case throughout this study.

2.2 - Analysis of reference variants :

We analysed 5 tracks of variants:
UK variant N501Y
South Afrika variant E484K
Brazil variant N501Y + E484K
California variant L452R
India variant E484Q + L452R

Main data source : <https://covariants.org/>

==> VARIANT South Afrika MUTATIONS :

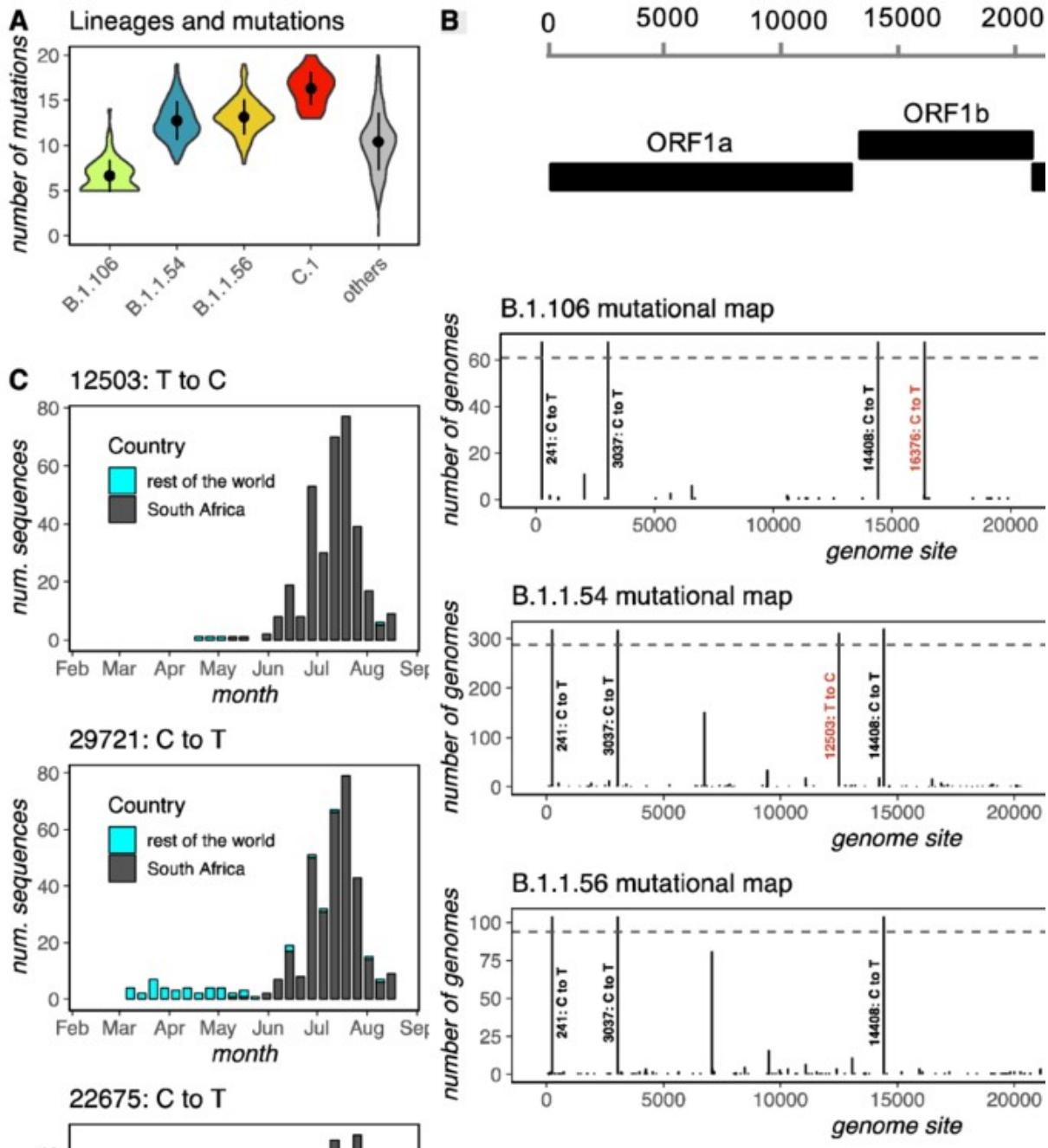


Figure 1- Mutations of the 4 reference variants from South Africa.

==> VARIANT U.K. MUTATIONS :

Source (Da Silva Filipe et al, 2020), <https://www.nature.com/articles/s41564-020-00838-z>

Table 1 - Mutations in U.K. variant.

gene	nucleotide	amino acid
ORF1ab	C3267T	T1001I
	C5388A	A1708D
	T6954C	I2230T
	11288-11296 deletion	SGF 3675-3677 deletion
spike	21765-21770 deletion	HV 69-70 deletion
	21991-21993 deletion	Y144 deletion
	A23063T	N501Y
	C23271A	A570D
	C23604A	P681H
	C23709T	T716I
	T24506G	S982A
	G24914C	D1118H
Orf8	C27972T	Q27stop
	G28048T	R52I
	A28111G	Y73C
N	28280 GAT->CTA	D3L
	C28977T	S235F

==> VARIANT BRAZIL MUTATIONS :

Sources

First reference :

VARIANTS BRAZIL JAPAN (Naveca F et al, 2021)

<https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/585>

Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein

second reference : (Gröhs Ferrareze P. A. , et al, 2021),

E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil.<https://www.biorxiv.org/content/10.1101/2021.01.27.426895v1>

Genomic Region	Nucleotide / Amino acid		
	B.1.1.28-AM-II	B.1.1.28(K417T/E484K/N501Y)	B.1.1.28(E484K)
ORF1a		T733C C2749T C3828T / ORF1a:S1188L A5648C / ORF1a:K1795Q	C100T
	A6319G A6613G	A6319G A6613G	
ORF1b		C12778T	T10667G / ORF1a:L3468V C11824T C12053T / ORF1a:L3930F
		C13860T G17259T / ORF1b:E1264D	
Spike		C21614T / S:L18F C21621A / S:T20N C21638T / S:P26S G21974T / S:D138Y G22132T / S:R190S	
		A22812C / S:K417T G23012A / S:E484K A23063T / S:N501Y C23525T / S:H655Y C24642T / S:T1027I	G23012A / S:E484K
ORF3a	G25088T / S:V1176F	T26149C / ORF3a:S253P G28167A / ORF8:E92K	G25088T / S:V1176F
			C28253T
N/ORF9b		C28512G / N:P80R, ORF9b:Q77E	
		A28877T / N:R203K G28878C / N:R203K	G28628T / N:A119S

Figure 2. Mutations of 3 Brazil variants.

==> VARIANT CAL.20C from California Mutations (L452) :

It is possible that S13I increases the efficiency of cleavage on the 12 amino-peptide terminal, which may increase the volume of S-protein on the host cell

CAL.20C has three unique amino acid substitutions in its spike protein. The spike protein is the part of the virus that interacts and locks into proteins from the human host cell, essentially the key to open the host to the virus. Among these are S13I and W152C in the N-terminal domain, and L452R in the receptor-binding domain.

Reference (Wenjuan Zhang et al, 2021)

<https://www.medrxiv.org/content/10.1101/2021.01.18.21249786v1.full.pdf+html>

ANALYSIS W152C Mutation :

Among these are S13I and W152C in the N-terminal domain, and L452R in the receptor-binding domain.

Other general source :

<https://www.forbes.com/sites/williamhaseltine/2021/02/03/concerns-grow-over-the-newly-discovered-southern-california-covid-19-variant/>

32 CALIFORNIAS patients genomes from GenBank :

CA1ID: [**MW433772.1**](#) California 5 January

CA3ID: [**MW433769.1**](#) California 5 January 2021

CA5ID: [**MW433764.1**](#) California 5 January 2021

CA6ID: [**MW433763.1**](#) California 5 January 2021

CA8ID: [**MW433758.1**](#) California 5 January 2021

CA10ID: [**MW433752.1**](#) California 5 January 2021

CA11ID: [**MW505197.1**](#) California 2 February 2021

CA17ID: [**MW505189.1**](#) California 22 January 2021

CA19ID: [**MW505187.1**](#) California 2February 2021

CA20ID: [**MW505186.1**](#) California 2February 2021

CA25ID: [**MW505149.1**](#) California 22 January 2021

CA27ID: [**MW505147.1**](#) California 22 January 2021

CA51ID: [**LR883179.1**](#) netherland 25 January 2021

CA52ID: [**MW525111.1**](#) California 26 January 2021

CA53ID: [**MW525040.1**](#) USA MO 26 January 2021

CA54ID: [**MW525020.1**](#) USA FL 26 January 2021

CA55ID: [**MW524999.1**](#) USA NY 26 January 2021

CA56ID: [**MW524976.1**](#) USA CA 26 January 2021

CA57ID: [**MW524942.1**](#) USA CA 26 January 2021

CA58ID: [**MW523875.1**](#) USA CA 26 January 2021

CA59ID: [**MW523873.1**](#) USA CA 26 January 2021

CA60ID: [**MW523867.1**](#) USA TX 26 January 2021

CA61ID: [**MW523795.1**](#) USA CA 26 January 2021

CA62ID: [**MW523792.1**](#) USA CA 26 January 2021

CA63ID: [**MW519791.1**](#) USA NV 25 January 2021

CA64ID: [MW519755.1](#) USA AZ 25 January 2021

CA65ID: [MW519751.1](#) USA AZ 25 January 2021

CA66ID: [MW519739.1](#) USA CA 25 January 2021

CA67ID: [MW519738.1](#) USA CA 25 January 2021

CA68ID: [MW519725.1](#) USA CA 25 January 2021

CA69ID: [MW519715.1](#) USA CA 25 January 2021

CA70ID: [MW519708.1](#) USA CA 25 January 2021

==> Indian « 2 mutations » variant :

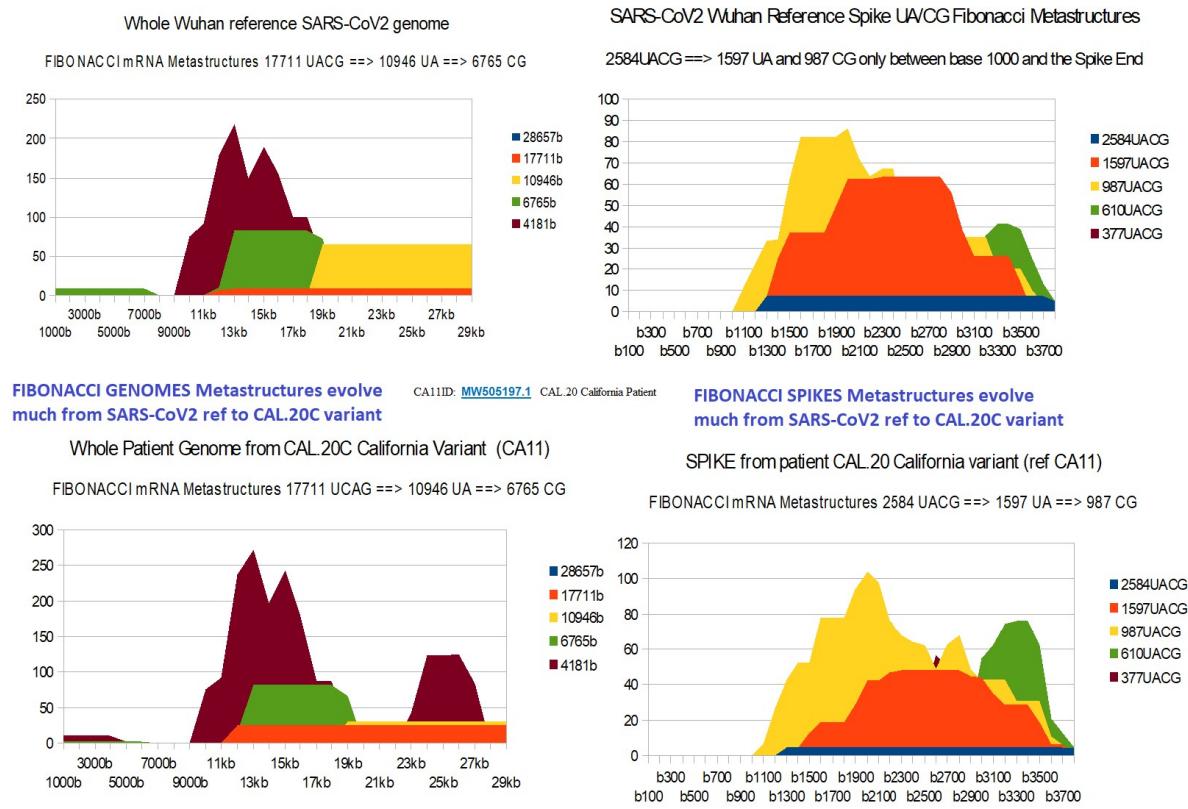
samples with the E484Q and L452R, soient South Afrika + califonia variants

Sources :

<https://www.bbc.com/news/world-asia-india-56507988>

and

<https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1707177>


We must note that variant is E484K while Indian variant is E484Q.

	U	C	A	G
G	Valine Val - V	Alanine Ala - A	Aspartic acid Asp - D Glutamic acid Glu - E	Glyc Gly
C	Leucine Leu - L	Proline Pro - P	Histidine His - H Glutamine Gln - Q	Argi Arg
A	Isoleucine Ile - I Methionine Met - M	Threonine Thr - T	Asparagine Asn - N Lysine Lys - K	Seri Ser Argi Arg
	Phenylalanine		Tyrosine	Cysti

Figure 3- Recall Universal Genetic Code Table.

III- RESULTS and DISCUSSION.

3.1- SARS-CoV2 genome and spike evolution in one year 2020-2021.

23 February 2021
J.C Perez
L. Montagnier

Comparing FIBONACCI mRNA Metastructures GENOMES§SPIKES between 2020 SARS-CoV2 ref. and 2021 California patient VARIANT

Figure 4 - comparing SARS-CoV2 genome and spike evolution between wuhan strain (January 2020) and CAL.20C variant (January 2021).

At the level of the genomes, the very long Fibonacci metastructures (17711nt) increase a lot, which means a reinforcement of the overall mRNA structure of the genome.

On the contrary, the overall metastructure of the spike seems to be reduced, although this variant has evolved at the level of amino acid mutations (mutations in CAL.20C California L452R, S13I, W152C).

3.2- SARS-CoV2 ORIGINS.

Fibonacci metastructures "shed a radically new light on" the relationships already recognized or suspected "between the 4 Sars-CoV2 Wuhan (1/2020), SARS-covZC45 (2017), SARS-covZXC21 (2015) and bat RATG13 genomes (2013). To this evidence of manipulation of CODONS synonymous with Spike of one or the other between SARS-CoV2 and bat RATG13, to the question "which of the 2 was manipulated?" (Perez, 2020), (Perez§Montagnier, 2020), (Castro-Chavez, 2020). We can assert that it is the SARS-CoV2 spike that has been manipulated to modify synonymous CODONS while retaining the functionality of the same amino acids. We believe that this manipulation will most certainly have attenuated the virulence and pathogenicity of SARS-CoV2 opposite bat RATG13 * (blue regions of the 2 images of their Spikes).

Moreover, if at the level of the 4 respective genomes, the strong neighborhoods between SARS-CoV2 and bat RATG13 on the one hand, and ZC45 and ZXC21 on the other hand are confirmed by these Fibonacci metastructures (vertical analogies in the image), a less expected bi-duality is highlighted at the level of their 4 respective spikes: on the one hand, this obvious neighborhood between ZXC21 and bat RATG13, and, on the other hand, although less obvious, this other neighbor

==> ZXC21

https://www.google.com/url?sa=t&source=web&rct=j&url=https://www.ncbi.nlm.nih.gov/nuccore/MG772934&ved=2ahUKEwi63MmXkIfvAhVPrxoKHc7rBkAQFjAAegQIBBAD&usg=AOvVaw2DaPGodhGxK_sv2JPdNU29

Bat SARS-like coronavirus isolate bat-SL-CoVZXC21, complete genome

GenBank: MG772934.1

```
/collection_date="Jul-2015"
21483..25220
    /note="S"
    /codon_start=1
    /product="spike"
```

==> Bat Ratg13

<https://www.google.com/url?sa=t&source=web&rct=j&url=https://www.ncbi.nlm.nih.gov/nuccore/MN996532&ved=2ahUKEwjO1KKqkIfvAhVlx4UKHYypB4oQFjABegQIARAC&usg=AOvVaw1NImUic0dN6Ke140Hf408t>

Bat coronavirus RaTG13, complete genome

GenBank: MN996532.2

Go to:

LOCUS MN996532 29855 bp RNA linear VRL 24-NOV-2020
 COMMENT On Oct 13, 2020 this sequence version replaced [MN996532.1](#).
 /isolation_source="fecal swab"

```
/collection_date="24-Jul-2013"
```

/gene="S"

CDS 21560..25369

/gene="S"

==> ZC45

https://www.google.com/url?sa=t&source=web&rct=j&url=https://www.ncbi.nlm.nih.gov/nuccore/MG772933&ved=2ahUKEwig_s_0j4fvAhUPKBoKHe_oD44QFjAAegQIBBAD&usg=AOvVaw0IPCwtlOcZJxs4SzfHzPu

Bat SARS-like coronavirus isolate bat-SL-CoVZC45, complete genome

GenBank: MG772933.1

```
/collection_date="Feb-2017"
```

SPIKE

CDS

21549..25289

```
/note="S"
/codon_start=1
```

The following SARS-CoV2 "quadrille", bat RATG13, ZC45 and ZXC21 is remarkable for its enigmatic nature over the actual origins of SARS-CoV2. Indeed, when the first 2 are supposed to be of natural origin, we have the certainty and the proofs that the last 2 were read to the point - and published - by military laboratories.

Fibonacci analysis of these 4 genomes and their Spike genes will reveal links, subfamilies and correlations 2 to 2 between these 4 key genomes in the history and genesis of the COVID-19 pandemic.

Genomes scale analysis :

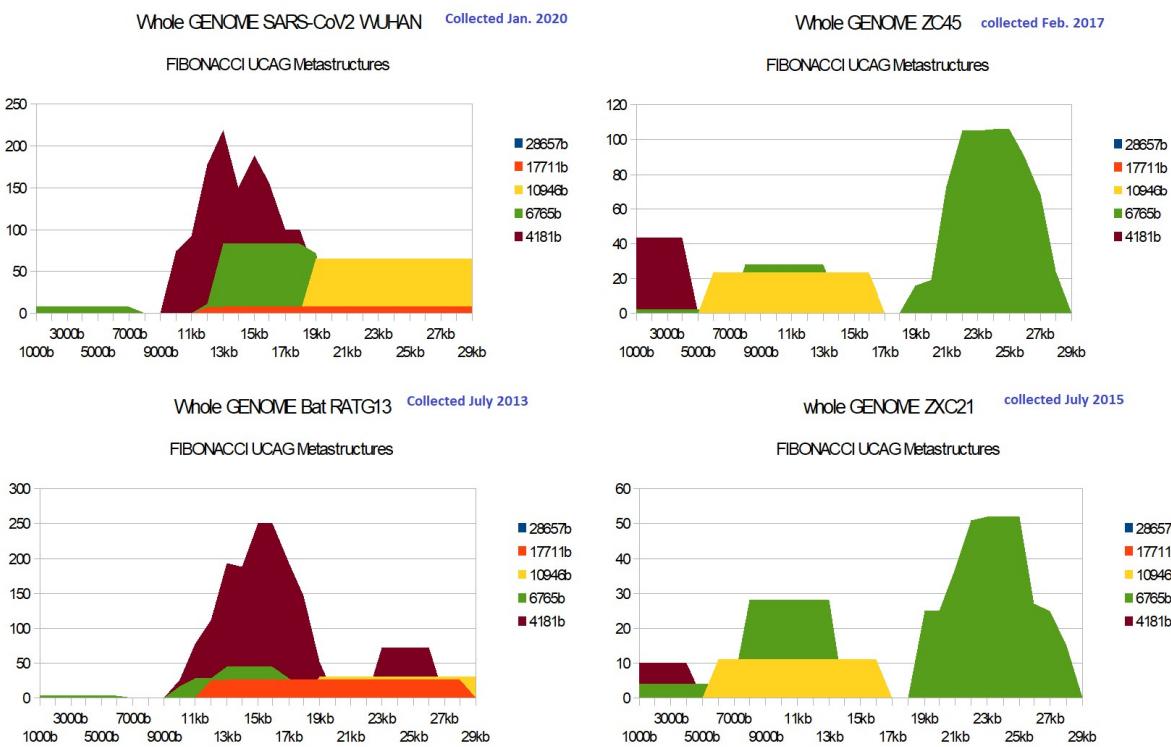
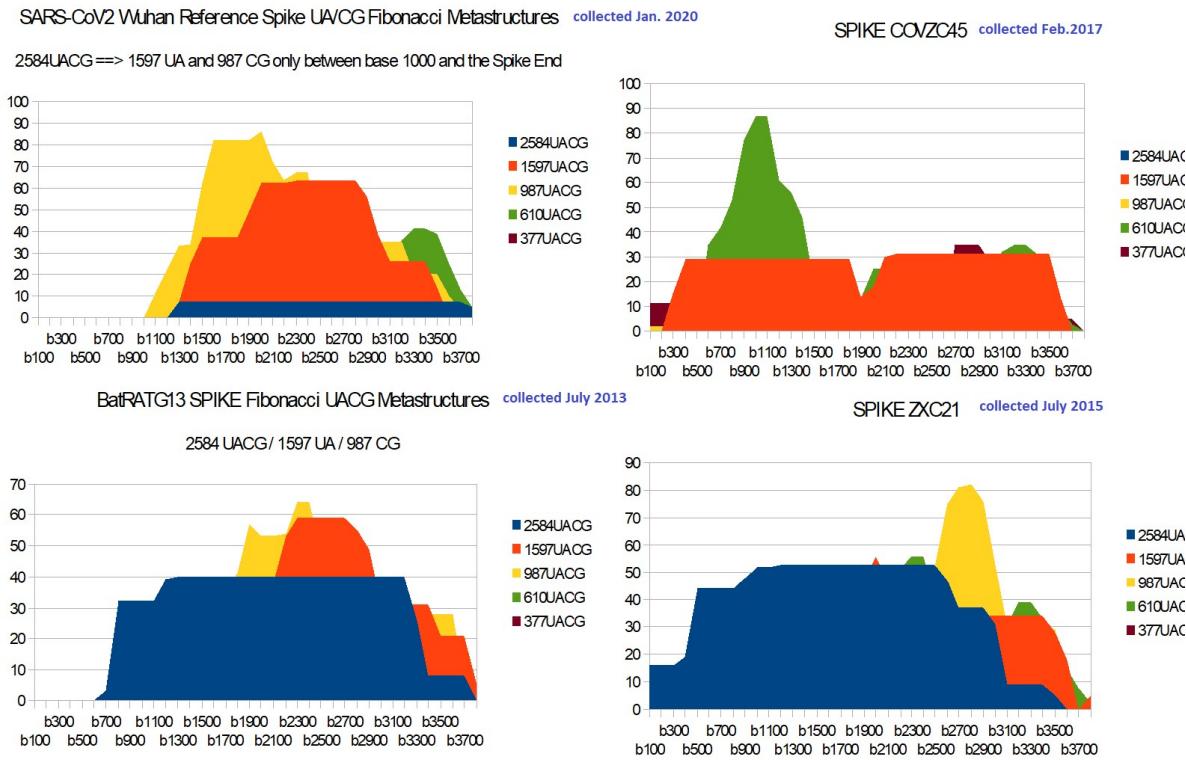



Figure 5 - remarkable vertical analogies (SARS-CoV2 vs bat RaTG13).

Spikes scale analysis :

Wuhan ref SARS-CoV2 and bat RATG13, sharing 96% nucleotides
 Homology? No! This comparative chart demonstrate a formal
 PROOF that both SPIKES mRNA sequences are radically different at
 FIBONACCI UA/CG Metastructures level...

22 February 2021
 JC Perez
 Luc Montagnier

Figure 6 – remarkable vertical analogies (Bat RATG13 vs ZXC21).

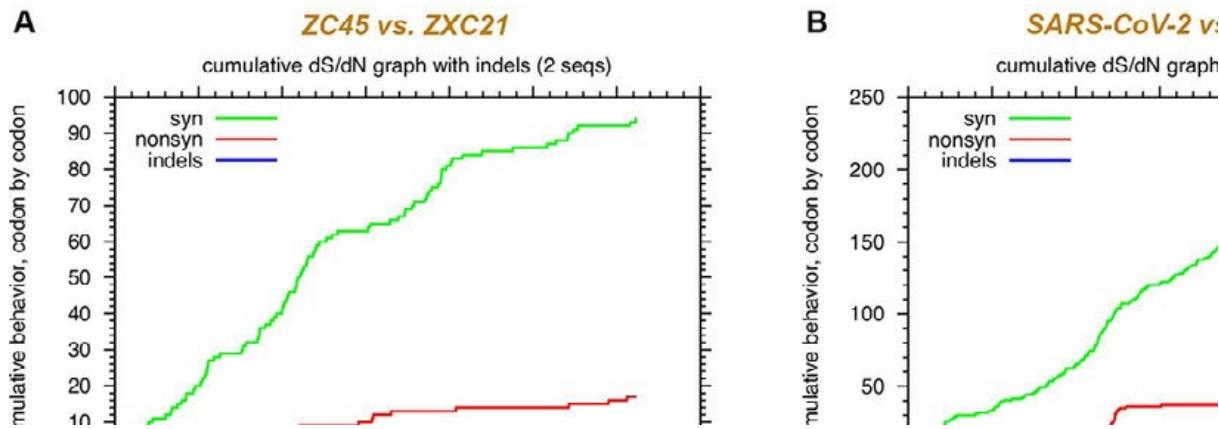


Figure 7 – Evidence of patterns analogies at Synonimes/non synonimes codons.

FIG. 7 concerning the abnormal number of synonymous codons between SARS-CoV2 and bat RATG13 on the one hand and ZXC21 and ZC45 on the other hand confirms and reinforces the dichotomy which has just been revealed here by the Fibonacci analyzes. Particularly, both bat RATG13 and ZXC21 Spikes provide a high level of Fibonacci long range UA/CG resonances (blue coloured in Fig7). For us, that is the proof of natural evolutionary contraints contrarily the 2 remaining spikes SARS-CoV2 and ZC45.

Let us summarize the respective results of figures 5, 6 and 7: figure 5 (genomes) confirms the above dichotomy natural versus laboratory. indeed, a double vertical analogy clearly classifies these 4 genomes into 2 + 2 by the clear graphic correlation of their Fibonacci images.

On the contrary (figure 6 spikes), the comparative analysis of the 4 spikes clearly shows a horizontal dichotomy between SARS-CoV2 and ZC45 on the one hand and bat RATG13 and ZXC21 on the other hand. Does this mean that ZC45 would have served as a "model" for SARS-CoV2 while ZXC21 would have "inspired" bat RATG13, or rather the reverse if we take into account the respective dates: bat RATG13 (2013/2020) ZXC21 (2015) ZC45 (2017) SARS-CoV2 (2019/2020).

SARS-CoV2 is directly linked to RaTG13 as ZC45 is linked to ZXC21 and the reduction or even disappearance of the 2584 UACG metastructures in SARS-CoV2 and ZC45 shows that practically ZC45 is "made from" ZXC21 like SARS-CoV2 from RaTG13.

3.3- Comparing 11 reference variants spikes.

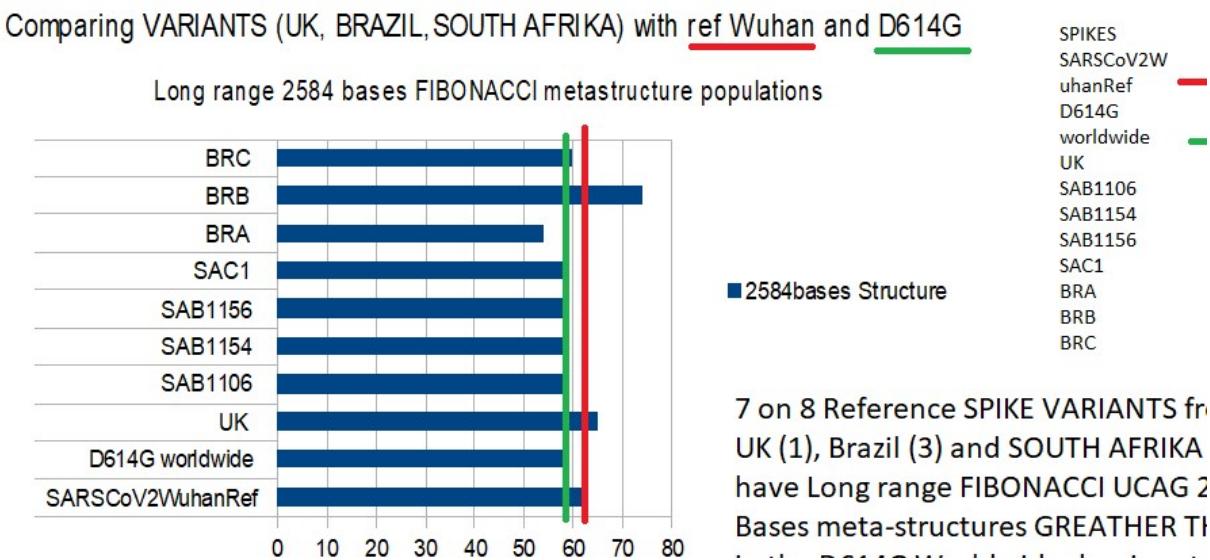


Figure 8- Comparing CIRCULAR Fibonacci metastructures between reference variants and Wuhan and D614G worldwide spikes.

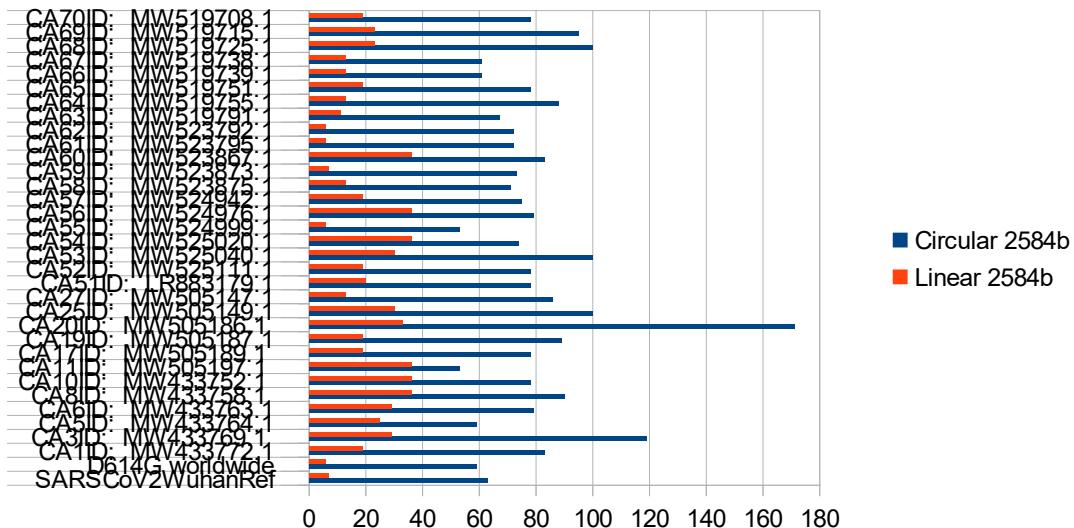


Figure 9- Comparing CIRCULAR and LINEAR Fibonacci metastructures between 32 CAL.20C Sample patients variants and Wuhan and D614G worldwide spikes.

Analysing Reference VARIANTS from UK, South Afrika, Brazil, California

Comparing SPIKES FIBONACCI UACG Metastructures with Wuhan and D614G

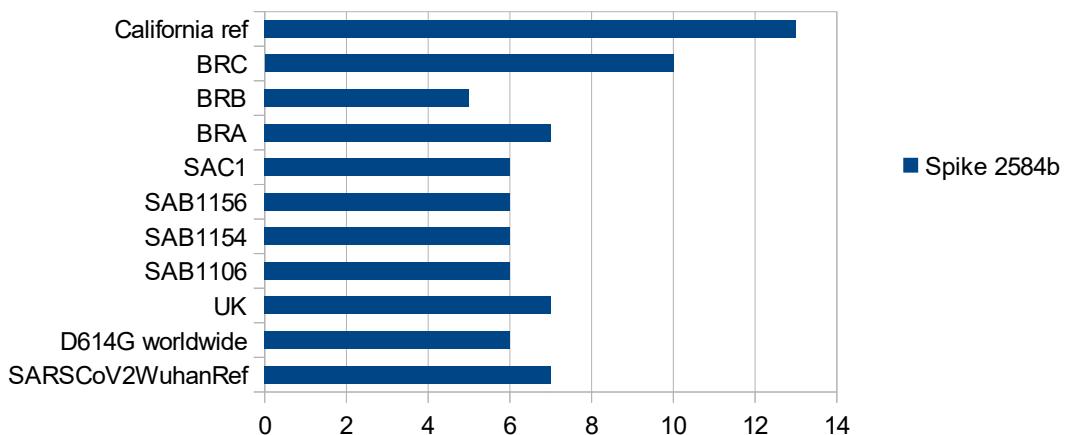
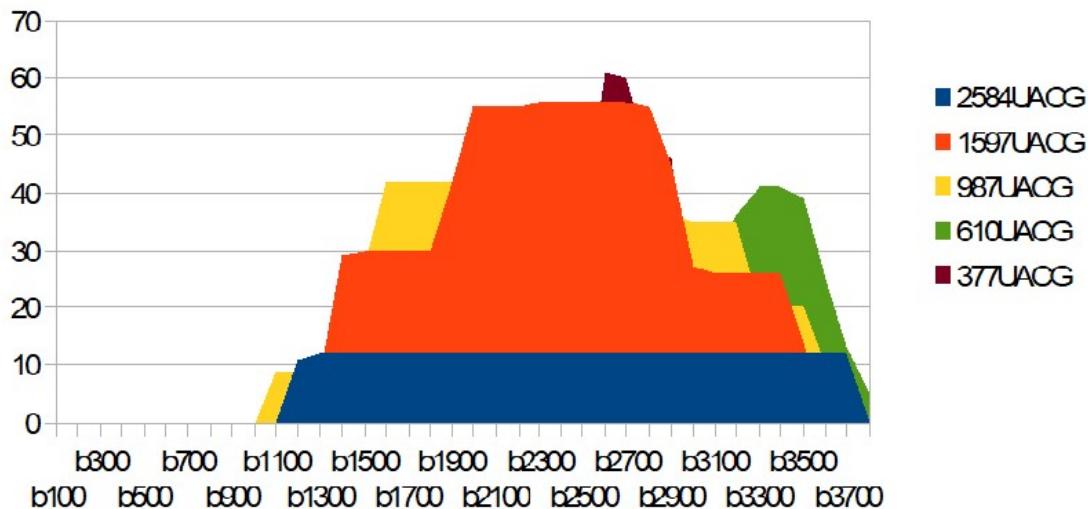


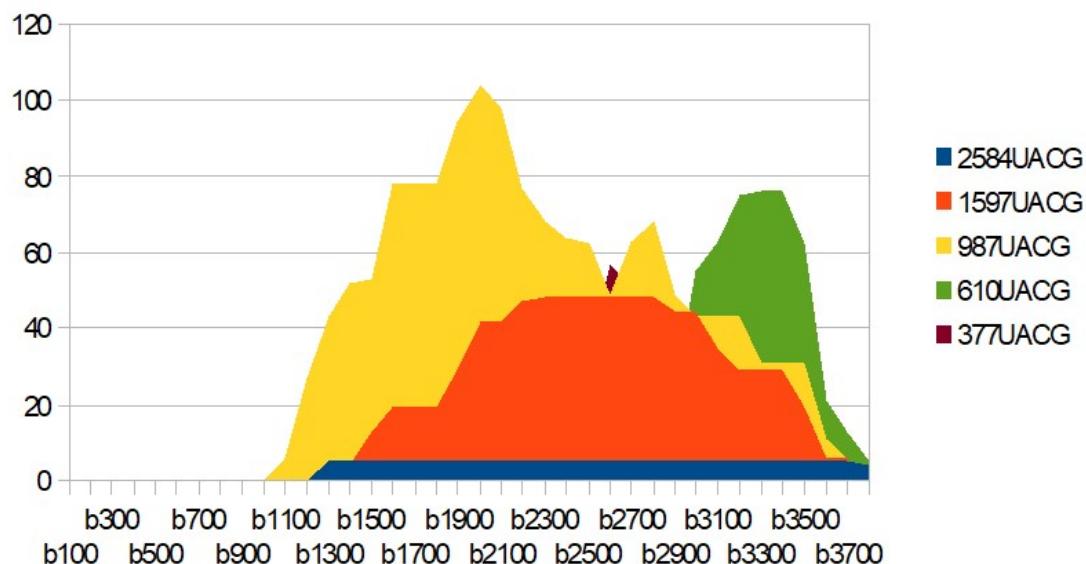
Figure 10- Comparing LINEAR Fibonacci metastructures between reference variants and Wuhan and D614G worldwide spikes.

Table 2 - Comparing LINEAR Fibonacci metastructures between reference variants and Wuhan and D614G worldwide spikes.

SPIKES	Spike 2584b
SARS-CoV2Wt	7
D614G worldw	6
UK	7
SAB1106	6
SAB1154	6
SAB1156	6
SAC1	6
BRA	7
BRB	5
BCR	10
California ref	13


In this & 3, we try to answer the question: "Do the variants strengthen or reduce the level of Fibonacci metastructures of the Spikes vis-à-vis the original Wuhan and worldwide D614G strains?".

We carry out 2 types of additional analyzes: on the one hand by considering the mRNA spike looped back on itself (ring like: figures 8 and 9), which is inaccurate here but nevertheless provides information which makes sense, which corresponds to the situation actual (figure 10 and table 2).


Globally, it appears a significant increase in Fibonacci structures for the variants, but these variants being only theoretical sequences, we will see in the following & that this increase in metastructure of the variant spikes is much more pronounced in the case of patients (see study of CAL.20C variant patients).

California CAL.20C reference Variant L452R/ S13I / W452C

Spike Fibonacci metastructures

SPIKE D614G reference

2584 UACG Long range FIBONACCI Metastructures are greater in California VARIANT than in D614G Worldwide SARS-CoV2 strain.

Figure 11 – Comparing reference variant CAL.20C Fibonacci metastructures with worldwide spike D614G.

3.4- analysing 32 CAL.20C california variant patients spikes.

This section analyzes the genomes and spikes of 32 patients with the California variant CAL.20C. Figure 11 and tables 4 to 6 summarize 2 major results:

- the very great diversity of the results.
- the very clear trend of an increase in the number of Fibonacci structures compared to the reference genome D614G.

But the new most remarkable is the one which will be the subject of the next & 5 ...

Data sources : GenBank.

Table 3 – Variant California CAL.20C : 32 individual patients spikes.

32 L452 R varian ts	S13I California variant mutation			W152C California variant mutation			2584 UCAG FIBONACCI circular matastructures population D614G spike: 59	2584 UCAG FIBONACCI linear matastructures population D614G spike: 5	"mRNA checksum natural law" SPIKE	17711 UCAG FIBONACCI linear matastructures population D614G genome : 8
	AGU regular (S13)	AUU variant (I13I)	Other (deletions)	UGG regular (W152)	UGU variant (152C)	Other (deletions)				
CA1		AUU			UGU		83	19	1597 1597	5
CA3		AUU				GCA	119	29	1597 1595	21
CA5			UAA			UGA	59	25	1597 1598	11
CA6			UAC			ACU	79	29	1597 1595	31
CA8		AUU				AUG	90	36	1597 1596	8
CA10			UAC			ACA	78	36	1597 1594	9
CA11		AUU				GGU	53 <=	36	1597 1594	25
CA17		AUU			UGU		78	19	1597 1597	9
CA19		AUU			UGU		89	19	1597 1597	39
CA20			UAG			CUU	171	33	1597 1597	39
CA25		AUU			UGU		100	30	1597 1596	28
CA27		AUU			UGU		86	27	1597 1598	28
CA51			UCA			UAU	78	20	1597 1598	47
CA52		AUU			UGU		78	19	1597 1597	8
CA53		AUU			UGU		100	30	1597 1596	29
CA54		AUU				AUU	74	36	1597 1592	9

CA55	AGU			UGG		53 <=	6	1597 1599	12
CA56		CUA			ACC	79	36	1597 1595	35
CA57		AUU		UGU		75	19	1597 1597	33
CA58	AGU		UGG			71	13	1597 1598	43
CA59		UCA			GAU	73	7	1597 1601	43
CA60		GCA			GAA	83	36	1597 1589	39
CA61		AUU		UGU		72	6	1597 1599	39
CA62		AUU		UGU		72	6	1597 1599	13
CA63		AUU		UGU		67	11	1597 1597	33
CA64		AUU		UGU		88	12	1597 1598	26
CA65		AUU		UGU		78	19	1597 1597	28
CA66		AUU		UGU		61	12	1597 1598	33
CA67		AUU		UGU		61	12	1597 1598	40
CA68		AUU			GAA	100	22	1597 1597	12
CA69		AUU			GAA	95	22	1597 1597	33
CA70		AUU		UGU		78	19	1597 1597	3

Table 4 - VARIANT L452R and variability S13I califonia CAL.20C vs HIV/SIV « EIE » (July 2020: Perez, J. C., & Montagnier, L. (2020). COVID-19, SARS AND BATS CORONAVIRUSES GENOMES PECULIAR HOMOLOGOUS RNA SEQUENCES. *International Journal of Research -GRANTHAALAYAH*, 8(7), 217-263. <https://zenodo.org/record/3975589>).

CALIFORNIA VARIANT S13I	AGU regular (S13)	AUU variant(I13I)	Other (deletions)	Total (L452R)
Number of strains	2	22	8	32
% of strains	6,00%	69,00%	25,00%	100,00 %
Nota		94% mutations or deletions where HIV/SIV « EIE » Perez§Montagnier article are involved		

Nota :For information, a first mutation is located in the HIV zone (S13I). 3 bases after kenya (1 in chart) and 8 bases before the second Hiv (2 in chart). See Perez§Montagnier 2020.

We analyzed here (table 3) the genomes and spikes of 32 patients with the California variant CAL.20C. The result is very interesting:

for the circular structures analysis of the spike, 30 out of 32 cases increase the metastructures 2584 AU / CG vis-à-vis the reference D614G (column 8).

For the linear structures analysis of the spike (column 9), the integrity of the 32 cases increases these same metastructures 2584 AU / CG.

At the level of whole genomes, the 17711 UA / CG metastructures (column 11) increase in 30 out of 32 cases with respect to the reference genome D614G.

We can only conclude that the reference variants are only textbook cases, much less rich in synonymous mutations than the genomes of real patients. We conclude that a large number of synonymous mutations specific to each patient reinforce the overall structure of genomes and spikes, it suffices to observe the diversity of the results for each of the 32 patients.

Another remark, if all 32 patient cases have the L452R, for the 2 remaining mutations characterizing CAL.20C, there is a large diversity of individual cases for mutations S13I and W152C: someones have one or other or none between these mutations. There are also cases with deletions overlapping these S13I or W152C crucial mutations. Finally, we must conclude that the key of variants evolution and pathogenicity knowledge provides more from individual patients sequences full analysis than from theoretical reference variants description.

Table 5 - VARIANT L452R and variability W152C califonia CAL.20C vs HIV/SIV « EIE » (July 2020: Perez, J. C., & Montagnier, L. (2020). COVID-19, SARS AND BATS CORONAVIRUSES GENOMES PECULIAR HOMOLOGOUS RNA SEQUENCES. *International Journal of Research -GRANTHAALAYAH*, 8(7), 217-263. <https://zenodo.org/record/3975589>).

W152C California variant mutation	UGG regular (W152)	UGU variant (152C)	Other (deletions)	Total (L452R)
Number of strains	2	16	14	32
% of strains	6,00%	50,00%	44,00%	100,00 %
Nota		94% mutations or deletions just after where HIV/SIV « EIE » Perez&Montagnier article are involved		

ANALYSING 32 CAL.20C PATIENTS VARIANTS from CALIFORNIA

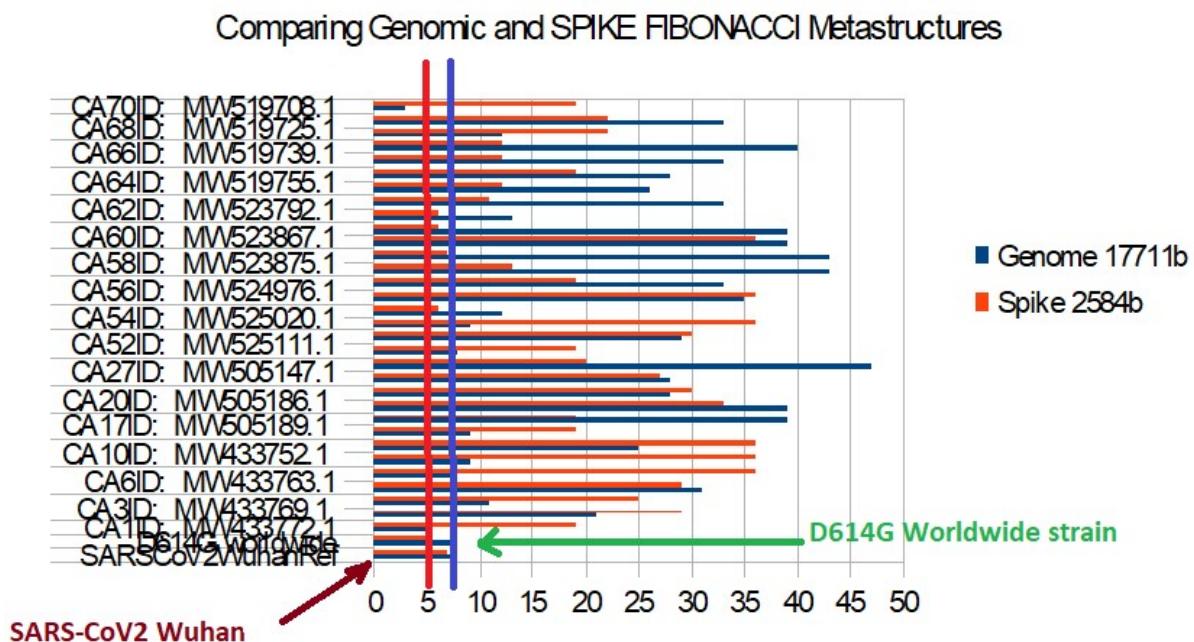


Figure 12 – Comparing genome and spike between 32 CAL.20C patients and ref Wuhan and D614G worldwide reference.

Table 6 - Comparing genome and spike between 32 CAL.20C patients and ref Wuhan and D614G worldwide reference.

SPIKES	Genome 1771	Spike 2584b
SARSCoV2WuhanRef	8	7
D614G worldwide	8	5
CA1ID: MW433772.1	5	19
CA3ID: MW433769.1	21	29
CA5ID: MW433764.1	11	25
CA6ID: MW433763.1	31	29
CA8ID: MW433758.1	8	36
CA10ID: MW433752.1	9	36
CA11ID: MW505197.1	25	36
CA17ID: MW505189.1	9	19
CA19ID: MW505187.1	39	19
CA20ID: MW505186.1	39	33
CA25ID: MW505149.1	28	30
CA27ID: MW505147.1	28	27
CA51ID: LR883179.1	47	20
CA52ID: MW525111.1	8	19
CA53ID: MW525040.1	29	30
CA54ID: MW525020.1	9	36
CA55ID: MW524999.1	12	6
CA56ID: MW524976.1	35	36
CA57ID: MW524942.1	33	19
CA58ID: MW523875.1	43	13
CA59ID: MW523873.1	43	7
CA60ID: MW523867.1	39	36
CA61ID: MW523795.1	39	6
CA62ID: MW523792.1	13	6
CA63ID: MW519791.1	33	11
CA64ID: MW519755.1	26	12
CA65ID: MW519751.1	28	19
CA66ID: MW519739.1	33	12
CA67ID: MW519738.1	40	12
CA68ID: MW519725.1	12	22
CA69ID: MW519715.1	33	22
CA70ID: MW519708.1	3	19

3.5- Toward a meta mRNA Fibonacci gene end message code.

This point is at a level of fundamental research of mechanisms unknown to biology. Indeed, we demonstrate how, beyond and above the STOP codon which commands the protein manufacturing machinery to end the process, there would exist a sort of "end of gene message", which would be addressed to, on the scale of messenger RNA, this "code" would be digital in nature, carried by the ultimate UA / CG metastructure of Fibonacci. We observe that this message would be of Nature GIGOGNE, constituted like the Russian dolls of a nesting of proportions all ending on one of the 3 bases of the STOP codon. This discovery is validated in this article on 43 Spikes from UK, South Afrika, BRAZIL and CALIFORNIA variants. Of these Spikes, 32 were from real patients.

In each box of the penultimate column of table 3, there are 2 very close numbers: the first number 1597 is the optimal number of UA bases with a final resonance of 2584 UACG which would end in the immediate vicinity of the codon stop UAA of the Spike. The second number (ie. 1598) is the real number of UA bases contained among these last 2584 bases of the spike. Remember that 2584 bases cover 2/3 of the spike which has about 3800 bases. It is therefore a strong meta-structure which would control the relative proportions of nucleotides in the spike.

Table 7 – Distributin of cases around the 3 bases of the UAA stop codon of the spike.

1597 UA base: Number cases	
1594	2
1595	3
1596	3
1597 A	11
1598 A	8
1599 T	8
1600	3
1601	2
1602	1
others	2

Analysing mRNA CHECKSUM from 42 SARS-CoV2 SPIKES

TAA Stop codon signal revealed by 1597 to 1599 UA in 2584 last FIBONACCI

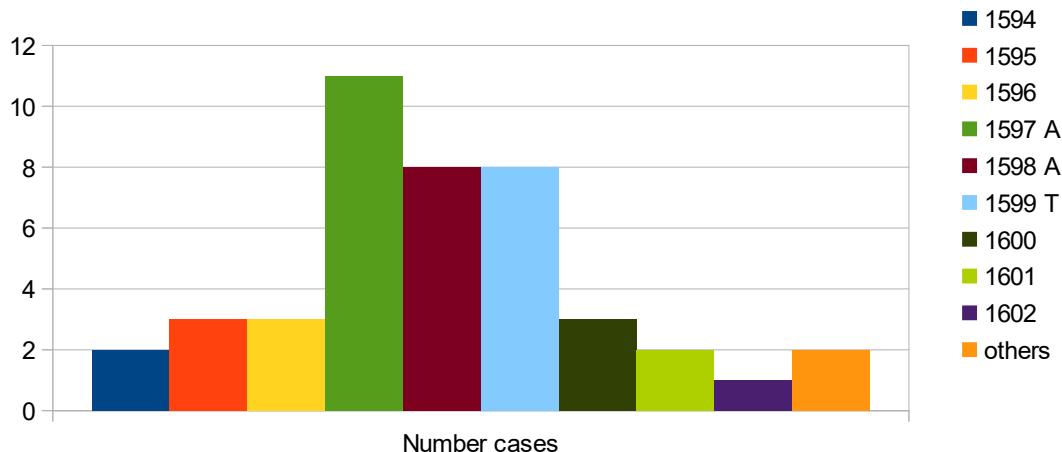
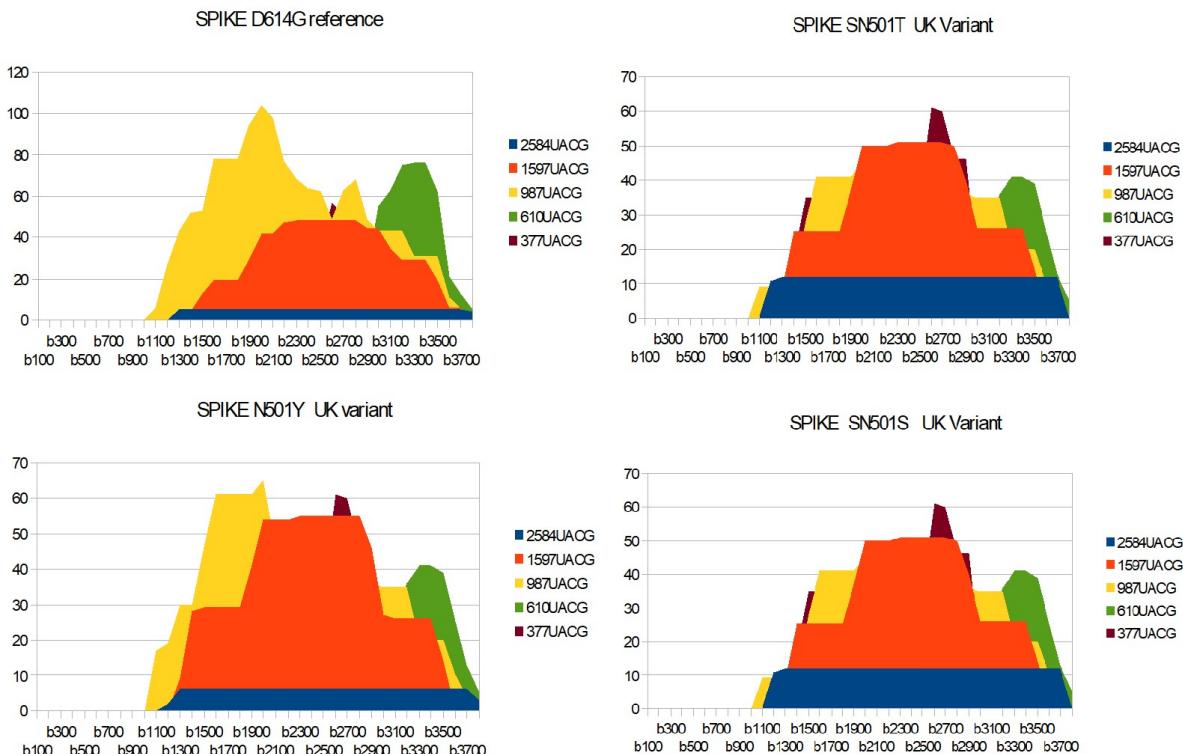


Figure 13 - histogram perfectly illustrating the "bell" concentration of cases around the 3 bases of the UAA stop codon of the spike.

Table 7 and the histogram of FIG. 13 illustrate this remarkable phenomenon of "end-of-gene meta-structure" generalized to the 32 spike strains of CAL.20C patients plus 11 spikes of reference variants, for a total of 43 cases. The histogram perfectly illustrates the "bell" concentration of cases around the 3 bases of the UAA stop codon of the spike.


3.6- analysing S501 UK, S484 South Afrika, and last "2 mutations" Indian variants.

N501 UK VARIANTS

Mutation Information

- **S:N501** has appeared multiple times independently: each can be associated with different accompanying mutations
- Amino-acid changes are **S:N501Y** (nucleotide mutation **A23063T**), **S:N501T** (nucleotide mutation **A23064C**), and **S:N501S** (nucleotide mutation **A23064G**)

1/2SN501Y,,SN501T,,SN501S,,SPIKD614G
3822
SN501Y[1500+ 1 2 3]
AAT
SN501Y[1500+ 1 2 3] ='TAT'
SN501T[1500+ 1 2 3] ='ACT'
SN501S[1500+ 1 2 3] ='AGT'

Comparing FIBONACCI mRNA SPIKES Metastructures between D614G worldwide ref. and the three U.K VARIANTS SN501Y, SN501T and SN501S: we note increasing 2584 UACG & 1597 UACG Metastructures. Suggesting they could be linked with mRNA SPIKE STABILITY & LIFE-TIME then INFECTUOSITY.

24 February 2021
J.C Perez
Luc Montagnier

Figure 14 - Comparing 3 UK variants Spike codon 501 mutations with reference D614G spike.

For the English variant (Figure 14), we see that at least 2 of the 3 mutations significantly increase the long metastructures of 2584 UACG bases (blue regions in Figure 14). This can generate better stability and life of the mRNA of the spine of these variants, and therefore correspond to the increase in infectivity and pathogenicity observed in patients who are victims of this English variant.

South Afrika VARIANT

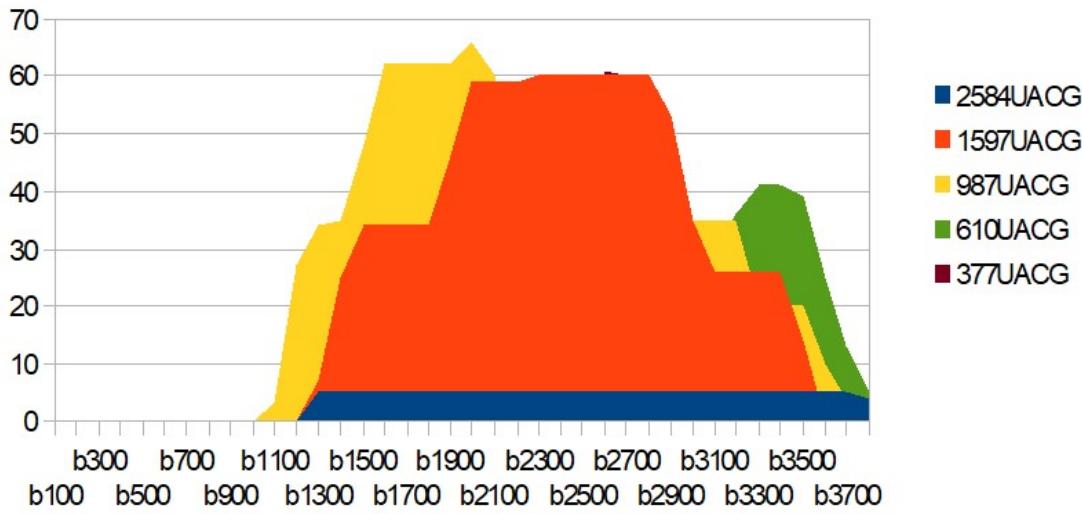
20H/501Y.V2

Also known as B.1.351
Announced in December 2020, 501Y.V2 originated and/or initially expanded in South Africa (Tegally et al., medRxiv).

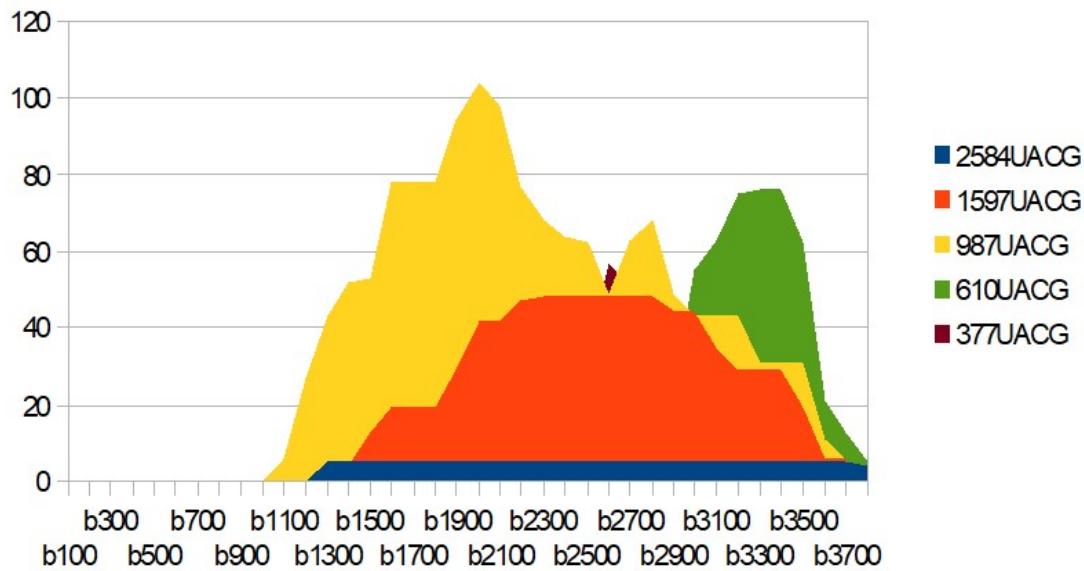
501Y.V2 is associated with multiple mutations in Spike, including: S:N501Y (see S:N501 page), S:E484K, S:K417N, and S:D80A.

Additionally, there is a deletion at 242-245.

There is also a mutation in Nucleocapsid: N:T205 and a deletion in ORF1a(Nsp6) at positions 3675-3677 (also seen in 501Y.V1 and 501Y.V3).


GAA ==> AAA E484K

AAG ==> AAU K417N


GAU ==> GCU D80A

SE484K[237+1 2 3] = 'GCT' SE484K[1248+1 2 3] = 'AAT' SE484K[1449+1 2 3] = 'AAA'

SOUTH AFRIKA VARIANT 20H/501Y.V2
E484K / N501Y / K417N / D80A
FIBONACCI long range SPIKE Metastuctures UACG

SPIKE D614G reference

**1597 UACG Long range FIBONACCI Metastructures are greater in
SOUTH AFRIKA VARIANT than in D614G Worldwide SARS-CoV2 strain.**

Figure 15- Comparing South Afrika variant spike with reference D614G spike.

For this South African variant (figure 15), we see above all a strong increase in metastructures 1597 UACG (orange in figure 15).

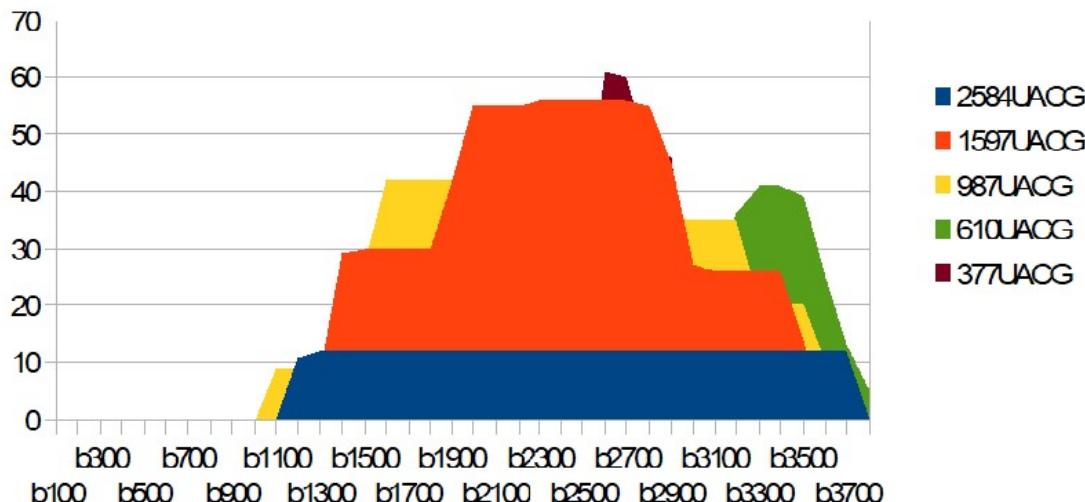
On the other hand, the "podium" shape, already observed for the English variant, becomes very clear here. This enigmatic form will be the subject of the next and last paragraph & 7 ...

Indian « 2 mutations » variant :

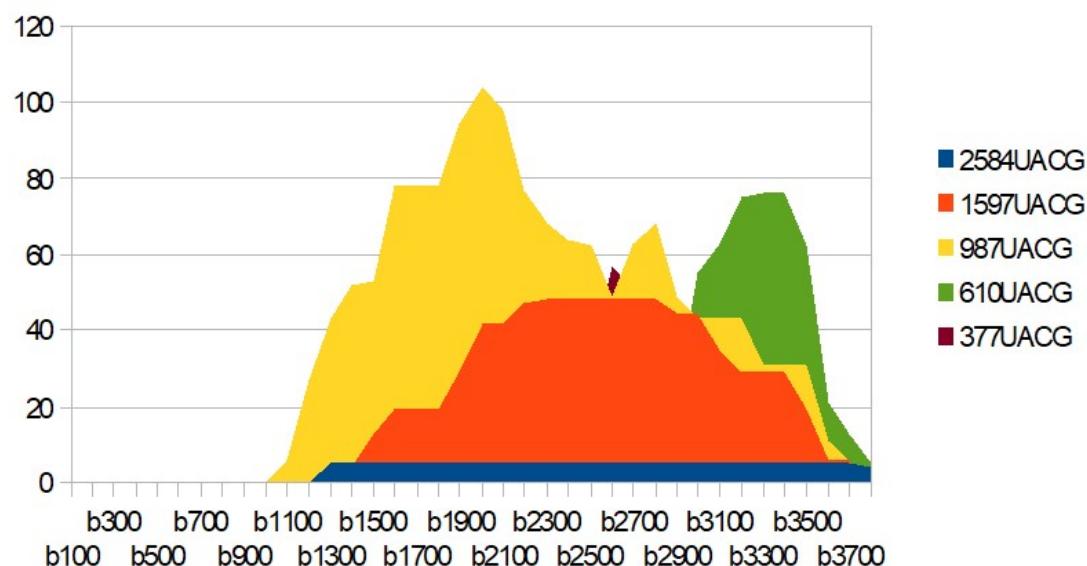
We analyse here 2 cases :

Basic variant

Full variant


In BASIC VARIANT, we modify spike D614G only with these 2 mutations: E484Q and L452R.

In FULL VARIANT, we manage the fusion between South Afrika variant, California variant and the small change vs. South Afrika variant doing E484Q.


SINDIABASIC

INDIAN "2 mutations" Variant Spike Fibonacci Metastructures

E484Q and L452R, then FUSION of south africa + california variants

SPIKE D614G reference

2584 UACG Long range FIBONACCI Metastructures are greater in INDIA E484Q+L452R VARIANT than in D614G Worldwide SARS-CoV2 strain.

Figure 16 – Analysing INDIAN variant Basic (only with 2 mutations E484Q and L452R

SINDIAFULL :

We run following process :

SINDIAFULL = SPIKD614G

Dim SE484K 3822 bases

Dim S614CALREF 3822 bases

Locations of differences in nucleotides between SINDIAFULL and S614CALREF :

38 456 1355

Values of mutations to do in SINDIAFULL :

TTG

SINDIAFULL[38 456 1355] = 'TTG'

Locations of differences in nucleotides between SE484K South Afrika and

S614CALREF :

239 1251 1450 1501

Values of mutations to do in SINDIAFULL :

CTAT

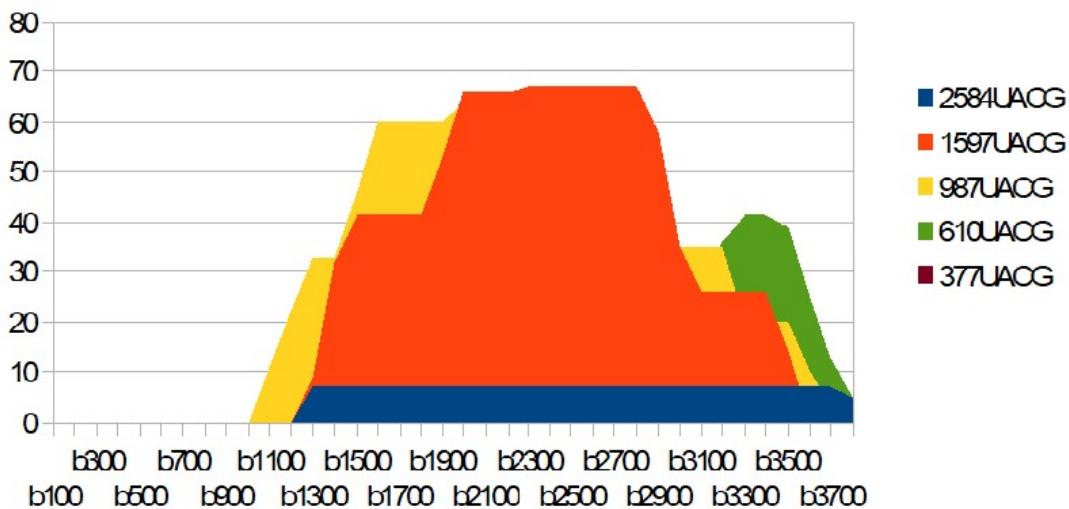
SINDIAFULL[239 1251 1450 1501] = 'CTAT'

Manage difference E484K to E484Q :

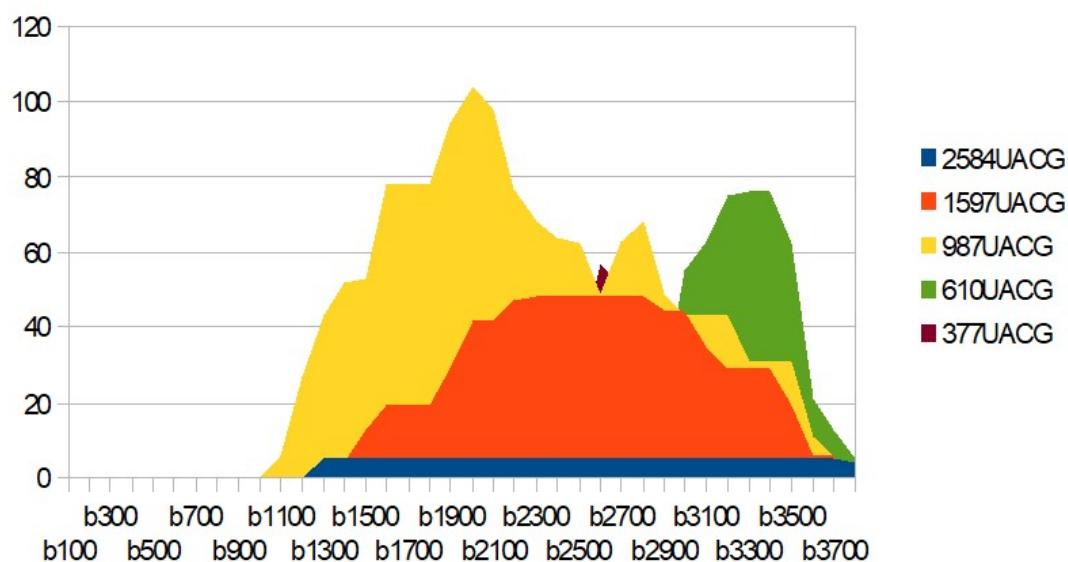
SINDIAFULL[1355] = 'G'

Control :

cumulate SINDIAFULL different SPIKD614G


7

cumulate SINDIAFULL different INDIABASIC


6

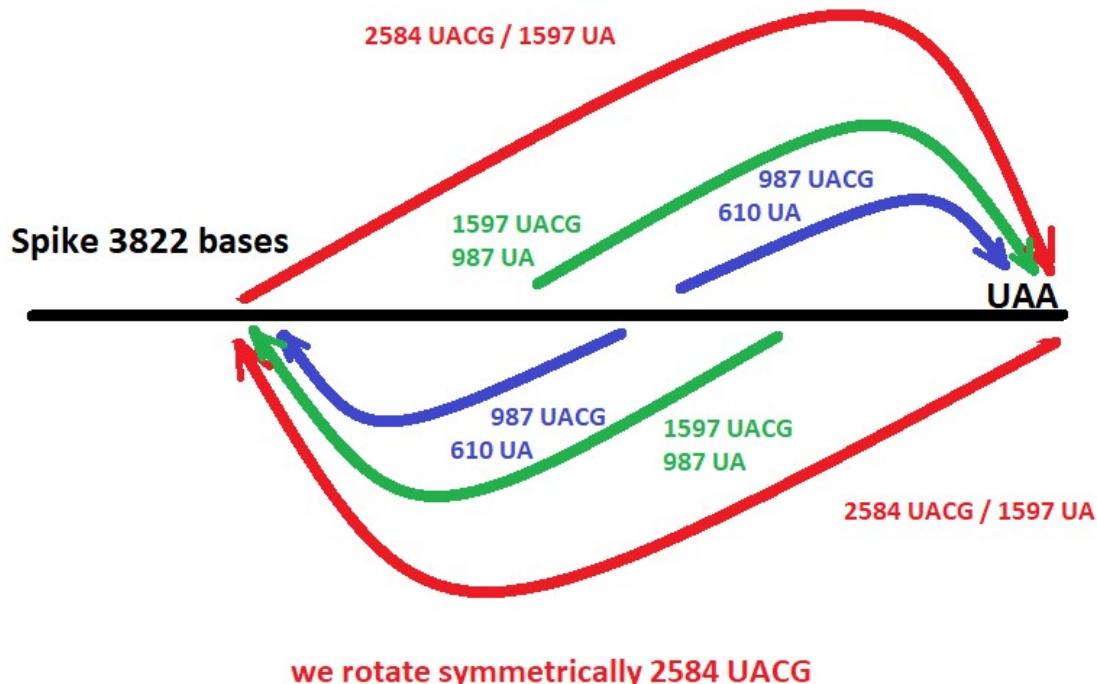
INDIAN "2 mutations" Variant Spike Fibonacci Metastructures

Full fusion South Afrika + CAL.20C Variants + E484Q

SPIKE D614G reference

2584 UACG Long range FIBONACCI Metastructures are greater in INDIA E484Q+L452R VARIANT than in D614G Worldwide SARS-CoV2 strain.

Figure 17 – Analysing INDIAN variant Full (fusion CAL.20C and South Afrika + difference with South Afrika E484Q)


Samples with the E484Q and L452R, then South Afrika + california variants

<https://www.bbc.com/news/world-asia-india-56507988>

<https://pib.gov.in/PressReleaselframePage.aspx?PRID=1707177>

3.7- Suggesting a possible variants spike mRNA palindrome symmetry metastructure improving mRNA stability then infectuosity.

Here, we have gathered several pieces of evidence showing that, as they evolve, the variants would constitute and reinforce a kind of Palindrome-type symmetry based on "Russian doll" interlocking of their mRNA, which could lead to a double strand. of the "hairpin" type, thus reinforcing the stability and the lifespan of the Spike mRNA, thus certainly the increasing contagiousness of the variant virus.

Fibonacci "GLOBAL PALINDROMES": mRNA Spike Checksum Symmetry

Figure 18 – « Fibonacci GLOBAL PALINDROMES » scenario test.

Clearly more pronounced "PODIUM-like" structures appear in these UK, South Afrika, India, California (figures 14 to 17) variants than in the strain D614G Spike.

The structures in orange 1597UACG form a curious "PODIUM" ...

Is this the sign of a PALINDROME TYPE SYMMETRY BETWEEN 2 STRUCTURES

FIBONACCI 1597 UACG?

FIBONACCI PALINDROMES EFFECT?

It would seem that in these UK variants, (especially Figure 14, the 2 on the right, particularly right, bottom : Spike UK SN501S variant), a kind of phenomenon FIBONACCI PALINDROMES (Symmetry) as presented and schematized in handwritten graph (part in orange STRUCTURES 1597 UACG)

Addresses first and last STRUCTURES of 1597UACG :

First : $1111+1597 = 2708$ end of the first 1597 structure.

Last : $1973+1597 = 3570$ end of the last 1597 structure.

Then, we consider now area between 1973 and 2708.

The first structure : $V1 = SN501S[1111 \text{ on } 1597]$

The last structure: $V2 = SN501S[1973 \text{ on } 1597]$

Building the symmetrical palindrome of $V2$: $V2 = \text{rotate } V2$

Now, we test « hypothetical global palindrome nature » matching on various dimensions :

Comparing matching between the 100 first bases of $V1$ and the 100 first bases of $V2$.

In fact, this is similar with comparing the 100 first bases of the first 1597 structure with the 100 last bases of the last 1507 structure...

100 bases test :

$V1[\text{ on } 100] = 'UA' \implies 66 \text{ bases}$

$V2[\text{on } 100] = 'UA' \implies 61 \text{ bases}$

Then, we continue :

200 bases test :

$V1[\text{ on } 200] = 'UA' \implies 129 \text{ bases}$

$V2[\text{on } 200] = 'UA' \implies 129 \text{ bases}$

Then, we continue :

300 bases test :

$V1[\text{ on } 300] = 'UA' \implies 198 \text{ bases}$

$V2[\text{on } 300] = 'UA' \implies 192 \text{ bases}$

Then, we continue :

400 bases test :

$V1[\text{ on } 400] = 'UA' \implies 258 \text{ bases}$

$V2[\text{on } 400] = 'UA' \implies 249 \text{ bases}$

Then, we continue :

500 bases test :

V1[on 500] = 'UA' ==> 324 bases

V2[on 500] = 'UA' ==> 308 bases

Then, we continue :

.../...

800 bases test :

V1[on 800] = 'UA' ==> 501 bases

V2[on 800] = 'UA' ==> 495 bases

Then, we continue :

1000 bases test :

V1[on 1000] = 'UA' ==> 613 bases

V2[on 1000] = 'UA' ==> 615 bases

Then, we continue :

1200 bases test :

V1[on 1200] = 'UA' ==> 743 bases

V2[on 1200] = 'UA' ==> 742 bases

Then, we continue :

.../...

1400 bases test :

V1[on 1400] = 'UA' ==> 877 bases

V2[on 1400] = 'UA' ==> 872 bases

Then, we continue :

1500 bases test :

V1[on 1500] = 'UA' ==> 934 bases

V2[on 1500] = 'UA' ==> 936 bases

Then, we continue :

FULL 1597 bases test :

V1[on 1597] = 'UA' ==> 987 bases

V2[on 1597] = 'UA' ==> 987 bases

Then 987 UA and 610 CG

Globally, the palindrome like mRNA folding is good...

Palindrome symmetry test on the first 80 bases of the first 1597 UACG and the first 80 bases of the symmetrical of the last 1597 UACG. They are superimposed face to face like Palindrome.

It does appear C <==> G relations on the hypothetical double strand of mRNA.

ON 80 BASES...

CC C C	CC C	C CC C	C C C	C C C
G	G G	GG G G	G	G

IDEML ON 100 BASES...

CC C C	CC C	C CC C	C C C	C C C	C
G	G G	GG G G	G	G	G G G

Nota : « » is a U or A nucleotide (space).

Paticularly, we suggest the following conjecture at mRNA folding level (Mengwen et al, 2006):

CONJECTURE of SARS-CoV2 VARIANTS:

The growth of long Fibonacci structures in the shape of "podiums" for almost all of the variants studied (UK, California, South Afrika, India, etc.) suggests the probable folding of the Spike mRNA in the form of a "hairpin", which can strengthen the cohesion and the lifespan of this mRNA.

3.8 – Analysing Fibonacci Metastructures in the mRNA coding for the vaccines PFITZER and MODERNA :

Stanford University team published and provide experimental sequence information for the RNA components of the initial Moderna (<https://pubmed.ncbi.nlm.nih.gov/32756549/>) and Pfizer/BioNTech (<https://pubmed.ncbi.nlm.nih.gov/33301246/>) COVID-19 vaccines (Dae Eun Jeong et al, 2021).

Then we analysed using the same method the hypothetic metastructure of this mRNA vaccine...

Here are the results :

Dim VACCINPFITZER = 4175 bases.

Dim VACCINMODERNA = 4004 bases.

Figure 1: Spike-encoding contig assembled from BioNTech/Pfizer BNT-162b2 vaccine.

GAGAATAAACTAGTATTCTCTGGTCCCCACAGACTCAGAGAGAACCCGCCACC **ATGTTCGTGTTCCTGGTCTGCTGCCTCTGGTGT**
CCA GCCAGTGTGTG AACCTGACCACCAAGAACACAGCTGCCCTCAGCCATACCCAACAGCTTACCAAGGGCTGTACTACCCGACAAGGTGTT
 CAGATCCAGCTGCTGCACTTACCCAGGACTCTGGCTCTCTTCAAGAACAGTGAACCTGGTCTGGTCCACGCCATCACGTGTCGGACCC
 AATGGCACCAGAGATTGACGACCCCTGCTGCTTCAACGACGGGGGTGTACTTGGCAGCACCGAGAAAGTCCAACATCATCAGAGGCT
 GGATCTTGGCAGCCACTGGACAGCAAGCCAGAGGCTGCTGATCGTGAACACGCCACCAACGTGGTCACTCAAAGTGTGCGAGTTCCA
 GTTCTGCAACGACCCCTTCTGGCGTCACTACCACAAGAACACAAGAGCTGGATGAAAGCGAGTTGGGTGACAGCAGGCCAAC
 AACCTGACCTTCTGAGTACGTCAGCTGGACCTGGCAAGGCAACTTCAGAAGAACCTGGTCACTGGTGTGTTCTGGTGTGTT
 AGAACATCGACGGCTACTTCAGATCTAACAGCACACCCCTTCAACCTCTGCGGATCTGCTCTGGGTTCTGCTGCTGGAAACC
 CCTGGTGGATCTGCCATCGCATCACATACCCGGTTTCAGACACTGCTGGCCCTGACAGAACGCTACCTGACACCTGGCGATAGCAGC
 AGCGGATGGACAGCTGGTGGCCGCTTACTATGGGCTACCTGACGGCTAGAACCTCTCTGCTGAAGTACACGAGAACGGCACCATCA
 CGACGCCGTTGGATTGTGCTGGACCTGGTGGAGCAGAACAGGCTGACCTGGTGGAAAGGGCATCTACAGGACACCG
 CAACTTCCGGTGGATTGTGCTGGTGGAGCAGAACAGGCTGACCTGGTGGAAAGGGCATCTACAGGACACCG
 TTGCGCTCTGTGACGGCTGGAAAGCGGATCAGCAATTGCGTGGCGACTACTCCGTGCTGACAACCTGGCCAGCTTCACT
 TCAAGTGTACGGCGTGTCCCTTACCAAGCTGAAAGCACCTGTCTTCAACAAAGCTGTAACGGCCAGCAGGGAGATGAAGT
 GCGGCAGATTGCCCTGGACAGACGGCAAGATGCCGACTACAACATACAAGCTGCCGACTTCAACGGCTGTTGATTGCCCTGGAAAC
 AGCAACACCTGGACTCCAAAGTGGCGCAACTACAATTACCTGTACCGGCTGTTCCGAAGTCCAACATCTGAAGGCCCTCGAGCGGGACA
 TCTCCACCGAGATCTACGCCGGCAGCACCCCTGTAACGGCGTGGAGGCTCAACTGCTACTTCCACTGCACTGCTTCAACGGCTTCA
 GCCCCACAAATGGCGTGGCTATCACGGCTTCAACGGCTGACAGGCTGCTGACAGAGAGAACAGAACAGAACAGAACAG
 AAAAGCACAATCTGTAAGAACAAATGCCGACTTCAACCTCAACGGCTGACGGGCTGCTGACAGAGAGAACAGAACAGAACAG
 TCCCTGCCATTCCAGCAGTTGGCGGGATATGCCGATACCAACAGGCCGTTAGAGATCCCGACAGACTGGAATCTGGACATCCCC
 TTGCACTTCCGGCGGAGTGTCTGATCACCCCTGGCACAACGCCGACATCAGGCTGCTGACAGGAGCTGAACGTGACCG
 GTGCCGGTGGCCATTGCCGCGTACAGCTGACACCTACATGGGGGTGTACTCCACGGCAGCAATGTTGACAGGAGGCCGGTGTG
 TGATCGGAGCGGAGCAGCTGAAACATAGCTACGAGTGCACATCCCCATGGCGCTGGAATCTGCCAGCTACCGAGCACAGAACAG
 CCCTCGGAGAGCCAGAACAGCATCATGCCACACAAATGTCCTGGCGCCAGAACAGCGTGGCTACTCCACAAAC
 TCTATCGTATCCCCACCAACTTACCATCAGCGTACCGAGATCTGCCGTGACTGACCAAGACCAGCGTGGACTGCACCATGT

ACATCTGCGGCATTCACCGAGTGTCTCAACCTGCTGAGTACGGCAGCTCTGACCCAGTGAATAGGCCGACAGGGATCGC
CGTGGAAACAGGAAAGAACACCCAAAGGAGTGTGTCGCCAAGTGAAGCAGATCTAACAGGCCCTCTTCAAGGACTCTGGCGGCCCTCAAT
TTCAGGCCGATTCTGGCCGATCTCTGGCAAGGCCAGAAGCGGAGCTCTAGCAGGGACTGTTCAACAAAGTACACTGGCCGACGCCG
GCTTCATCAAGCAGTATGCCGATGTCTGGCCGAGATTGGCCGAGGGATCTGTTCAACAAAGTACACTGGCCGACAGTGTGCC
TCTCTGCTGACCCGATGAGATGATGCCGAGTACACACTGCTCTGTGGCCGACAATACAAGGGCTGGACATTGGAGCAGGCCG
GCTCTGCGACCCCTTGTATGCCGAGTGGCTACGGCTAACGGCAGTGGAGTACCCAGATGTCTGAGAAGCAGAAGCTGA
TGCCCAACCGCTAACAGGCCGCTACGCCAAGATCAGGCCAGCTGGAGCAGCAGCACAGGCCCTGGGAAAGCTGCAAGGACTGGTCAA
CCAGAATGCCAGGCACTGAACACCTGGTCAAGCAGCTGCTCTAACCTGGCCCATCAGCTGTGTAACGATATCTGAGCAGA
CTGGACCTCTGAGGGCCAGGTGCAAGTGCAGACAGTACAGGCAAGACTGCAAGGCCTCCAGACATCGTGAACGCTGATCA
GAGGCCGAGGATAGGCCCTGCCAACAGATGCTGAGTGTGCTGGGCCAGAGCAAGAGGTGACTTTGCGG
CAAGGGCTACCACTGTAGCTTCTGAGTCTGGCTGAGCTGACATATGTCGGCTCAAGAGAAGAAT
TTCACCAACGGCTCCAGGCCATCTGCCAGCGCAAGGCCACTTCTAGAGAAGGGTGTGTCACGGCACCCATTGGCTGTGA
CACAGCGGAACCTTACGAGGCCAGATCATCACCCGCAACACCTCTGGCTGTCAGCTGGCACGCTGTGATCGCAGATTGAAACAA
TACCTGGTACGACCCCTCTGCCAGGCCAGGTGGACAGCTTCAAAGAGGAACGTGACAACTTAAGAACACACAAGGGCCAGCTGGAC
CTGGCGATATCAGGGAAATCAATGCCAGCGTGTGAACATCCAGAAAGAGATCAGCCGCTGAACGAGGTGGCCAAGAATCTGAAAGA
GCTCTGATCAGCTGCAAGAACCTGGGAAGTCAAGGAGCACTACATCAAGTGGCTCTGATACCTGGCTGGCTTATCAGCTGACTATTG
CATCGTGATGGTACAATCATGCTGTGATGCCAGCTGTGAAGGGCTGTTGATGCCAGCTGTCAGTC
GACGAGGAGCATTCTGAGGCCGCTGTAAGGGCTGTAAGGAAACTGCACTACACA **TGATG**ACTGAGCTGTACTGCATGCACGCAATGCTAGCT
GCCCTTCCGCTCTGGTACCCCGAGTCTCCCGAGCTCGGTCCAGGTATGCTCCACCTCCACCTGCCCCACTCACCCACTCTGC
TAGTTCCAGAACCTCCCAAGCACGCAATCAGCTAACAGCTTAGCCTAGGCCACACCCCAAGGGAAAACAGCAGTGAATACCTT
AGCAATAACGAAAGTTAACTAAGTACTAACCCCCAGGGTGGTCAATTCTGTCAGGCCAGCCACCCCTGGAGCTAGCA

Cyan: Putative 5' UTR Green: Start Codon Yellow: Signal Peptide Orange: Spike encoding region Red: Stop codon(s)
Purple: 3' UTR Blue: Start of polyA region (incomplete)

Figure 19: Spike-encoding contig assembled from BioNTech/Pfizer BNT-162b2 vaccine.

Figure 2: Spike-encoding contig assembled from Moderna mRNA-1273 vaccine

GGGAATAAGAGAGAAAAGAGTAAGAAGAAATAAGCCCCGGCGCGCCACC **ATGTCGTCTGGTGTGCTGCCCTGG**
TGACGAGCCAGTCGTG AACCTGACCACCCGGACCCAGCTGCCACCAAGCTACACCAACAGCTTACCCGGGGCGTCACTACCCCGACAAGG
T GTTCCGGAGCAGCTCTGCACAGCACCCAGGACCTGTCCTGCCTCTCAGCAAGCTGACCTGGTCCACGCCATCACCGTAGCGGG
ACCAACGGCACAAGGGTGCACAGCACCCGGTCTGCCCTCAACGAGGGCGTACTCTGCCAGCACGGAGAGAGCAACATCACCGGG
CTGGAGATCTTCGGCACACCCCTGGAGCAGCAAGGAGCTGATCTGTAATAACGCCACCAAGCTGGTGTACATGAGCTGCGAGTT
CCAGTCTGCAACGACCCCTCTGGCGTGTACTACCAAGAACAAAGAGCTGGATGGAGAGCGAGTCTCGGGTGTACAGCAGGCC
AACAACTGACCTCGAGTACGTGAGCCAGCCCTCTGATGGACCTGGAGGGCAAGCAGGGCACTTCAAGAACCTGCGGGAGTCTGT
TCAAGAACATCGACGGCTACTTCAGAATCTACAGAACACACCCAACTACCCGGTGTCTGCCCTGACCCGGAGTACCTGACCCCGACAGC
GCCCTGGTGGACCTGCCATCGGCATACACATACCCGGTGTCTGCCCTGACCCGGAGTACCTGACCCCGAGCAGC
AGCAGCGGGGGAGCAGCAGGCGGGCTGTTACAGTGGGCTACCTGCAAGCCCCGGACCTTCTGTGAAGTACAACGAGAACGGCACC
TCACCGACCCGCTGGACTGCGCCCTGGACCCCTGAGCGAGACCAAGTGCACCCCTGAAGAGCTTACCCGGAGAAGGGCATACCCAGAC
CAGCAACTTCCGGG TGACGCCACCGAGAGCAGCTGCGGTTCCAAACATACCAACCTGCTGCCCTTCCGGAGGGTGTCAACGCCACC
CGTCTGCCAGCTGTACCGCTGGAGACCGGGATCAGCAACTCTGCCGCGGACTACAGCTGCTGTACACAGCGGCCAGCTTCAGCA
CCTTCAAGTGTCTACGGCGTGTAGCCCCACCAAGCTGAAGCACCCTGTTACCAACAGTGTACGCCAGAGCTTCTGGTGTACCGTGGAGCAG
GGTGGCGGAGATCGACCCGGAGACAGGGCAAGTCCGGACTAAGTACAAAGCTGCCGAGACTTACCCGGCTGCTGTACGCCCTGG
AACAGAACAAACCTCGACAGCAAGGGGGCGCAACTAACATACCTGCTACCGCTGTTCCGGAGAGACACCTGAACTGAGCCCTTGAGCGGG
ACATCAGACCGAGATCTAACAGCCGGTCCACCCCTGCAACGGCGTGAGGGCTCAACTGTAACCTCCCTGTCAGAGCTACGGCTT
CCAGCCCACCAACGGCGTGGCTACAGCCCTACCGGGTGTGGTGTGAGCTCTGAGCTGCTGCACGCCCAAGCACCCTGGTGTGGCC
AAGAAGAGCACAACCTGGTGAAGAACAGTGCCTGAACTTCAACGCCCTAACGGGCTTACCGGGCAGGGCTGCTGACCGAGAGCAAAAGA
AATTCTGCCCTTCAGCAGTCCGGCGGACATCGGCCACACCCAGCGCTGCGGGATCCCCAGACCTGGAGATCTGGAGCATCAC
CCCTTGAGCTTCCGGCGGTGAGCGTGTACCCCCAGGACCAACACCAGCAACAGGTGGCGTGTGTAACAGGACGTGAACCTGCACC
GAGGTGCCCTGGCCATCACCGCCGACCAGCTGACACCCACCTGGGGTCTACAGCACCCGGAGCAACCTGGTCTTCAAGACCCGGGGT
GCCCTGATCGGCCGAGCAGCTGAACACAGTACAGTGGCTGACATCCCCATCGGCCGAGCTACCTGGGGAGATCTGTCAGCTACAGGCC
TTCACCCGGAGGGCAAGGGAGCTGGCAGGCCAGACGATCATCGCTTACACCATAGGCTGGGGAGAGACAGCTGGCTCACAGCAAC
AACAGCATGCCATCCCCACCAACTTACCATCAGCTGACCACCGAGATTCTGCCGTGAGCATGACCAAGACAGCGCTGGACTGCACCA
TGTACATCTGGCGGACAGCACCGAGTGCAGCACCTGCTGCTGACAGTCCGGACTCTTCTGACACCGAGTCAACCGGGCCTGACCGCC
CGCCGGAGGAGCAAAACCCAGGGAGTGTGCCCAAGTGAAGCAGTACAAAGCCCCCTTCAAGGACTTCTGGGGCTTACCGGG
AACTTCAAGCAGATCTGGCCACCCCGACAAGCCCGACAAGCGGAGCTTCATCGAGGACCTGCTGTAACAAAGTGACCCCTAGCGCAG
CGGGCTTCATCAAGCAGTACCGGAGCTGCTCTGGCAGACATAGCCGCCGGACCTGATCTGCCAGAGTCAACCGGCTGACCGTGT
GCCCTCCCTGCTGAGCAGAGATGATGCCCAAGTACACCCAGGCCCTGTAGCGGGAAACCATCACCGGGCTGACTTCTGGCTGTG
GCCGCTGCAAGATCCCCCTGCCATCGAGTGGCTCACCGGCTACCGGCAAGCAGCTGCTGAGAGAACAGAAGC
TGATGCCAACCAAGTCAACAGGCCATCGGAAGATCCAGGACAGCTGAGCAGCACCGCTAGGCCCTGGGAAGCTGAGGAGCTGGT
GAACCGAGAACGCCAGGGCTGAACACCTGGTGAAGCAGCTGAGCAGCAACTTCTGGGCCATCACGAGCTGCTGAACGACATCTGAGC
CGGCTGGACCCCTCCGGAGGGCGAGGTGAGCATGACCGGGCTGATCTGGCCGGTCAAGGCCAGACCTACGTGACCCAGCGACTG
TCCGGGGCCCGAGATCTGGGCCAGCGGCCAACCTGGGGCCATCACAGTGGAGCTGCTGGGGAGAGCAAGCGGGTGGACTCTG
CGGCAAGGGCTACCACTGTGAGCTTCCCCAGAGCGACCCAGGGAGTGGTGTCTGACCTGACCTACGTGCCGCCAGGAGAAG
AACTTCAACCCGCCGCCAGCCTGAGCAGGCCAAGGGCTACTTCCGGAGGGCTGTTCTGAGCAACGGCACCCACTGTTCTG
TGACCCAGGGAACTTCAAGGCCCAAGTACATCACCCAGGAACACCTCTGAGCGGCAACTGCGAGCTGCTGAGTCCGCACTGTGAA
CAACACCGTGTACGATCCCCCTGCAAGCCCGAGCTGGACAGCTTCAAGGAGGAGCTGAGCAAGTACTTCAAGAACATCACCCGCCAGCTG
GACCTGGGGACATCAGGGCATCAACGCCAGCTGTTGAGACATCCAGAAGGAGATGCTGAGCTGGCTGAACCGAGGGTGGCCAAGAAC
AGAGCGCTGATCGACCTGAGCAGGGTGGCAAGTACAGCAGGAGTACATCAAGTGGCTGGTACATCGGCTGGCTTACCGGGCTG
GCCGATCTGAGTGGTGGACCATCGTGTGCTGATGAGCAGGAGCTGCTGAGCTGCTGAGCTGCTGAGCTGCTGAG

Cyan: Putative 5' UTR Green: Start Codon Yellow: Signal Peptide Orange: Spike encoding region Red: Stop codon(s)
Purple: 3' UTR Blue: Start of polyA region (incomplete)

Figure 20: Spike-encoding contig assembled from Moderna mRNA-1273 vaccine.

It is interesting to note that the starting region of the Spike was modified in both vaccines. We show

i (Perez§Montagnier 2020) that this crucial region contains « EIE » HIV like inserts, particularly HIV1 Kenya.

Recall the 100 first bases of SARS-CoV2 Spike :

ATGTTGTTTCTTGTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCA
GAACTCAATTACCCCCCTGCATACACTAATTCTTCACAC

It is interesting comparing this region with the same areas in both vaccines (***bold***).

What should we conclude about this total absence of Fibonacci metastructures in the mRNAs of these 2 vaccines?

This means that, although functional, these mRNAs will have a short lifespan and their overall physical structure will be very weak. These mRNAs will be able to split rather quickly into separate fragments which will risk combining with other mRNAs present in their environment.

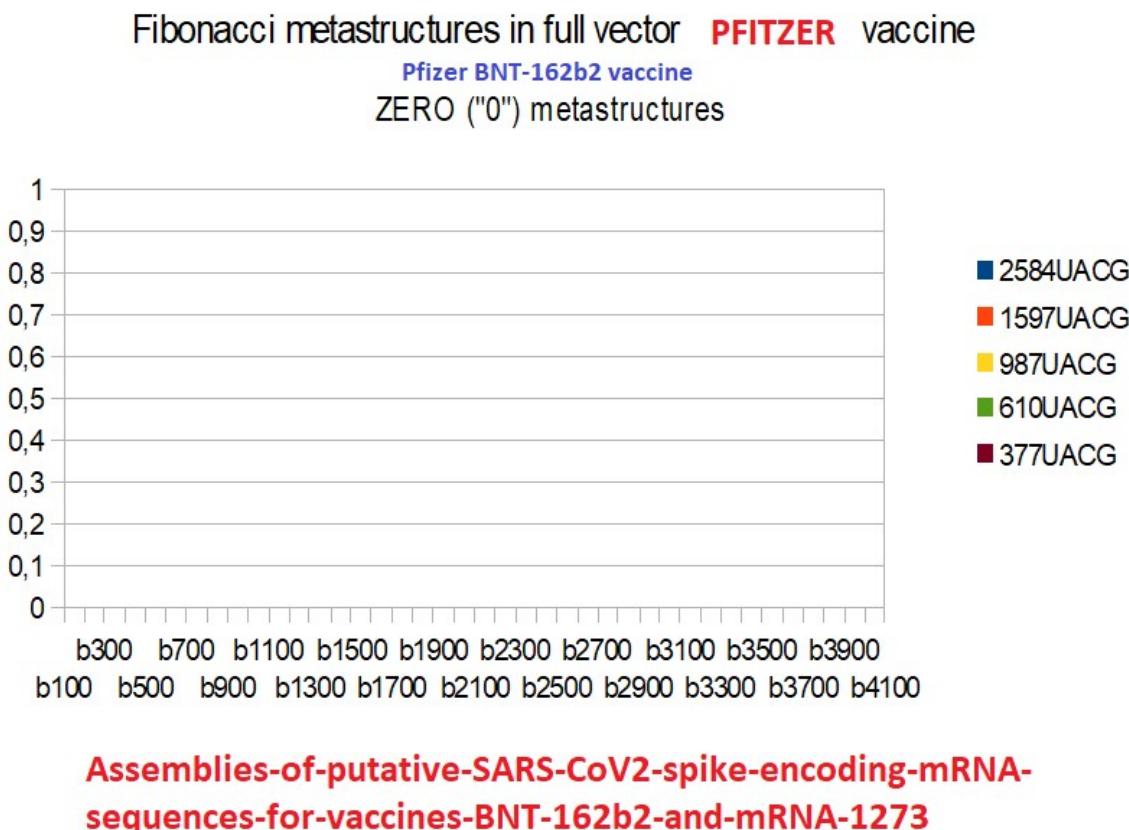
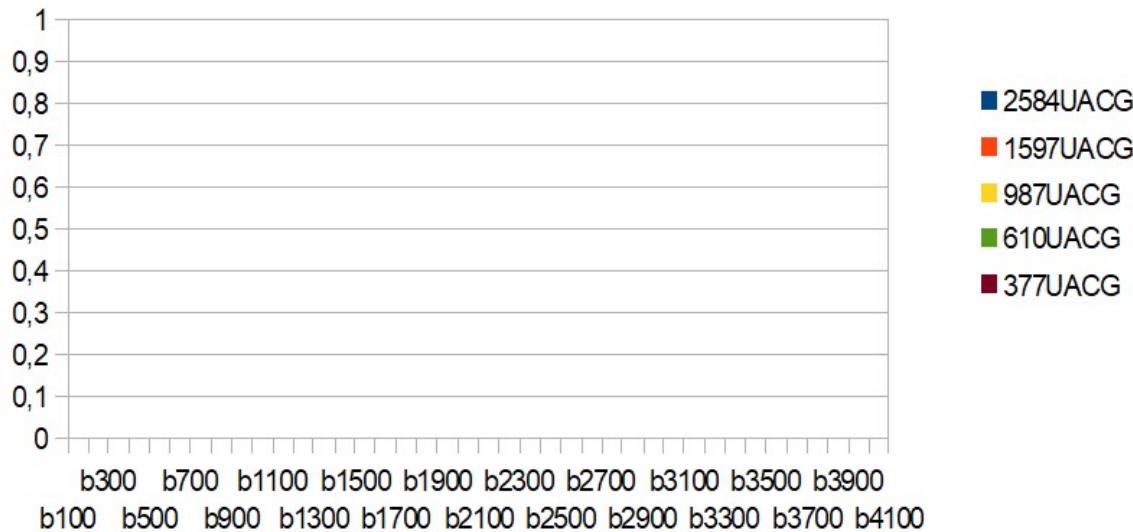



Figure 21 – Flat response for Fibonacci Metastructures from **BioNTech/Pfizer BNT-162b2 vaccine**.

Fibonacci metastructures in full vector **Moderna** vaccine

Moderna mRNA-1273 vaccine

ZERO ("0") metastructures

Assemblies-of-putative-SARS-CoV2-spike-encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-mRNA-1273

Figure 22 – Flat response for Fibonacci Metastructures from **Moderna mRNA-1273 vaccine**.

IV- CONCLUSIONS.

First, this study of Spikes by Fibonacci metastructures highlights 4 first conclusions:

- It presents a clarification by the image of links already suspected by multiple researchers between the spikes of bat RATG13, ZXC21, ZC45 and SARS-CoV2.
- As we had predicted and already verified (WA state USA) in (Perez & Montagnier 2020), some variants deleted as a priority our predicted « EIE » HIV-like fragments from the dense HIV region at the start of the spike. This is the case with the English variant but also with several patients of the California variant CAL.20C.
- Overall, the reference spikes of all the variants studied here have a reinforcement of the most significant Fibonacci structures (2584 bases). But this phenomenon is amplified and confirmed when we analyze the spikes of patients (32 CAL.20C patients).

- We note the total absence of Fibonacci metastructures in the mRNAs of both mRNA vaccines PFIZER and MODERNA. This means that, although functional, these mRNAs will have a short lifespan and their overall physical structure will be very weak. These mRNAs will be able to split rather quickly into separate fragments which will risk combining with other mRNAs present in their environment.

We will also conclude the tendency of the variant spikes to strengthen their overall structure, which may be correlated with their greater cohesion and lifespan of their mRNA spike, and probably the greater infectivity and pathogenicity of the variants.

Of the 7 clusters of results presented here, 3 will deserve to be revisited, reproduced and extended more deeply:

1 / point -II-

Fibonacci metastructures "shed a radically new light on" the relationships already recognized or suspected "between the 4 Sars-CoV2 Wuhan (1/2020), SARS-covZC44 (2017), SARS-covPZXC2P1 (2015) and bat RATG13 genomes (2013). To this evidence of manipulation of CODONS synonymous with Spike of one or the other between SARS-CoV2 and bat RATG13, to the question "which of the 2 was manipulated?". We can assert that it is the SARS-CoV2 spike that has been manipulated to modify synonymous CODONS while retaining the functionality of the same amino acids. We believe that this manipulation will most certainly have attenuated the virulence and pathogenicity of SARS-CoV2 opposite bat RATG13 * (blue regions of the 2 images of their Spikes).

Moreover, if at the level of the 4 respective genomes, the strong neighborhoods between SARS-CoV2 and bat RATG13 on the one hand, and ZC45 and ZXC21 on the other hand are confirmed by these Fibonacci metastructures (vertical analogies in the image), a less expected bi-duality is highlighted at the level of their 4 respective spikes: on the one hand, this obvious neighborhood between ZXC21 and bat RATG13, and, on the other hand, although less obvious, this other neighborhood between ZC45 and SARS-CoV2 (horizontal analogies in the image).

2 / the point -V-

This point is at a level of fundamental research of mechanisms unknown to biology. Indeed, we demonstrate how, beyond and above the STOP codon which commands the protein manufacturing machinery to end the process, there would exist a sort of "end of gene message", which would be addressed to, on the scale of messenger RNA, this "code" would be digital in nature, carried by the ultimate UA / CG metastructure of Fibonacci. We observe that this message would be of Nature GIGOGNE, constituted like the Russian dolls of a nesting of proportions all ending on one of the 3 bases of the STOP codon. This discovery is validated in this article on 43 Spikes from UK, South Afrika, BRAZIL and CALIFORNIA variants. Of these Spikes, 32 were from real patients.

3 / point -VII-

Here, we have gathered several pieces of evidence showing that, as they evolve, the variants would constitute and reinforce a kind of Palindrome-type symmetry based on "Russian doll" interlocking of their mRNA, which could lead to a double strand. of the "hairpin" type, thus reinforcing the stability and the lifespan of the Spike mRNA, thus certainly the increasing contagiousness of the variant virus.

In (Demongeot § Henrion-Caude, 2020), Alexandra Henrion-Caude and Jacques Demongeot proposed in 2020 a possible universel starting RNA 22 nucleotides sequence which could be a candidate bootstrap at origins of Life in a RNA primitive world.

Professor Luc Montagnier observes that these authors attribute an essential role in the origin of life to a circular RNA of 22 nucleotides. This is the length of our "EIE" (Exogenous Insertion Elements) in SARS-CoV2 genome published in <https://zenodo.org/record/3975578>

Particularly, this hyper constraint circular 22nt sequence codes for the 20 amino acids + codon stop + only one redundant amino acid (MET). We found this archaic mRNA sequence using BLASTn long (14nt) contiguous sequences in HIV mRNA genomes... and also in SARS-CoV2 Wuhan reference mRNA genome !

But consider the circular character of this primitive RNA 22 nucleotides long UCAG. So, here is our original result on its multiple and SYSTEMATIC Fibonacci proportions as soon as it is a CIRCULAR RNA sequence ...

```
5' AUGGUACUGCCAUUCAAGAUGA 3'
AUGGUACUGCCAUUCAAGAU G ==> A 13AU 8CG
AUGGUACUGCCAUUCAA G ==> AUGA 13AU 8CG
AUGGUACUGCCAUU C ==> AAGAUGA 13AU 8CG
AUGGUACUGC C ==> AUUCAAGAUGA 13AU 8CG
AUGGUACUG C ==> CAUUCAAGAUGA 13AU 8CG
AUGGUACU G ==> CCAUUCAAGAUGA 13AU 8CG
AUGGUA C ==> UGCCAUUCAAGAUGA 13AU 8CG
AUG G ==> UACUGCCAUUCAAGAUGA 13AU 8CG
AU G ==> GUACUGCCAUUCAAGAUGA 13AU 8CG
```

Seen from the point of view of the *autopoiesis* Francisco Varela theory (ref Varela), autonomy of Indoor vs. Outdoor systems) these results could be interpreted as the rest of the loop of 21 UACG (outdoor) "seen" from a base C or G (indoor). So the perceived signal is a kind of Fibonacci resonance ... By virtue of Francisco Varela's theory of *autopoiesis* (Varela § Maturana, 1980) that we applied to Artificial Intelligence in the 1980s by creating the "*fractal chaos*" artificial neural network (Perez 1988). Thus, the Fibonacci numbers, therefore the optimal proportion of the golden ratio would perhaps have already been present from the first moments of life on earth, a life for which they would have served as a "matrix" ...

"If I followed correctly, the circular RNA sequence obeys the Fibonacci rule. If we extrapolate, we can think that Life was formed (or was created, according to our religion) from this RNA according to a mathematical principle? "LM?

Actually, the RNA sequence proposed by the article by Alexandra Henrion-Caude, which seems to "spring" from nowhere can only intrigue the reader. Indeed, what is certain with this sequence is that God, or panspermia, or self-organization are indeed Mathematicians

...

Indeed : They already know how to count $4 + 5 + 6 + 7 = 22$.

I meant 4C, 5G, 6U, 7A

Let C + G = 9

U + A = 13

We are already very close to the $13/8 = \Phi$ ratio, the same one that we can verify in all SARSCOV2 genomes. But also, pyrimidine purines:

$$4C+6U=10UC$$

$$5G+7A=12AG$$

$$10=2\times 5$$

| 12=2x6

5 and 6 these 2 key numbers associated with the harmonious but unstable shape of the Pentagon (5) and the harmonious but stable form of the Hexagon (6).

It is no coincidence that Nature (flowers) or religions - also - have invented stars with 5 or 6 branches

And the structure of RNA and DNA are built around Pentagons and Hexagons ...And "Pollack's Water Fourth state" structure of WATER (<https://www.pollacklab.org/>), also built around the hexagon ...

So EVERYTHING seems to be potentially written in these 22 nucleotides ...

We also note $2 \times 6 = 12$ bases in primers of palindromes or mirror series:

AUGGUA mirror and UCAAGA quasi palindrome.

Finally, we will note cs 5 triplets of consecutive nucleotides:

GAA UGG GCC AUU CAA

Symmetries purines pyrimidines on 4 of the 5 TRIPLETS

UGG CAA

GCC AUU

Finally, we must recall this open question :

CONJECTURE of SARS-CoV2 VARIANTS:

The growth of long Fibonacci structures in the shape of "podiums" for almost all of the variants studied (UK, California, South Afrika, India, etc.) suggests the probable folding of the Spike mRNA in the form of a "hairpin", which can strengthen the cohesion and the lifespan of this mRNA.

Despite the immense progress of Biology, the RNA universe remains today still full of unexplained mysteries. However, it is said, as we will see, that it would have constituted the first crucible of life. This is why we will have to exercise the greatest caution, on the one hand in the face of an mRNA virus such as SARS-CoV2, but even more in the face of the unpredictable evolution of new vaccines, themselves based on RNA.

V- ACKNOWLEDGEMENTS.

Thanks for fructuous discussions about this article to Megawaty Tan (A private researcher based in South Sumatera, Indonesia), Alexandra Henrion-Caude (Future of Research Team, SimplissimA International Research Institute, 39 rue saint Louis, 11324 Port-Louis, Mauritius), Sami MacKenzie-Kerr private researcher in Indonesia ("The Matrix",

Particularly, this work is the result of multiple exchanges and advice, since the very beginning of the COVID-19 pandemic, for which I must thank Professor Luc Montagnier (Nobel prizewinner for his discovery of HIV, Fondation Luc Montagnier Quai Gustave-Ador 62 1207 Geneva, Switzerland).

VI- REFERENCES.

(Castro-Chavez, 2020), F. Castro-Chavez, (June 2020), Anticovidian v.2: COVID-19: Hypothesis of the Lab Origin versus a Zoonotic Event Which Can Also be of a Lab Origin, GJSFR, August 2020, <https://zenodo.org/record/3988139#.YGMa8zaM8>

(Dae Eun Jeong et al, 2021), Dae Eun Jeong et al, Assemblies-of-putative-SARS-CoV2-spike-encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-mRNA-1273, GitHub, March 2021, <https://github.com/NAalytics/Assemblies-of-putative-SARS-CoV2-spike-encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-mRNA-1273>

(Da Silva Filipe, 2020), da Silva Filipe, A., Shepherd, J.G., Williams, T. et al. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. *Nat Microbiol* 6, 112–122 (2021). <https://doi.org/10.1038/s41564-020-00838-z>

(Demongeot§Henrion-Caude, 2020), Demongeot J. § Henrion-Caude A. , Footprints of a Singular 22-Nucleotide RNA Ring at the Origin of Life, *Biology* 2020, 9(5), 88; <https://doi.org/10.3390/biology9050088>

(Gröhs Ferrareze P. A. , et al, 2021), Patrícia Aline Gröhs Ferrareze, et al, E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil
bioRxiv 2021.01.27.426895; doi: <https://doi.org/10.1101/2021.01.27.426895>

(Mengwen et al, 2006), Mengwen Jia, Liaofu Luo, The relation between mRNA folding and protein structure, *Biochemical and iophysical Research Communications*, Volume 343, Issue 1, 2006, Pages 177–182, ISSN 0006-291X, <https://doi.org/10.1016/j.bbrc.2006.02.135>. (<https://www.sciencedirect.com/science/article/pii/S0006291X06004451>)

(Montagnier, 1963), Montagnier L., 1963, NATURE

(Naveca Felipe et al, 2021), Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein, *Virological.org*, 2021, <https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/585>

(Perez, 1988), Perez J.C., De nouvelles voies vers l'Intelligence Artificielle, 1988, Ed. MASSON ELSEVIER, EAN 978-2225818158 ISBN 2225818150, <https://livre.fnac.com/a223887/Jean-Claude-Perez-De-Nouvelles-voies-vers-l-intelligence-artificielle>

(Perez, 1991), J.C. Perez (1991), "Chaos DNA and Neuro-computers: A Golden Link", in *Speculations in Science and Technology* vol. 14 no. 4, ISSN 0155-7785, January 1991
Speculations in Science and Cell Motility 14(4):155-7785

https://www.researchgate.net/publication/258439719_JC_Perez_1991_Chaos_DNA_and_Neuro-computers_A_Golden_Link_in_Speculations_in_Science_and_Technologyvol_14_no_4_ISSN_0155-7785

(Perez, 1997), Perez J.C, L'ADN décrypté, Ed. Marco Piétteur, ISBN : 2-87211-017-8

- EAN : 9782872110179, <https://www.editionsmarcopietteur.com/resurgence/91-adn-decrypte-9782872110179.html>

(Perez, 2009), Perez J.C, Codex biogenesis – Les 13 codes de l'ADN (French Edition) [Jean - Claude ... 2009];

Language: French; ISBN -10: 2874340448; ISBN -13: 978-2874340444

<https://www.amazon.fr/Codex-Biogenesis-13-codes-1ADN/dp/2874340448>

.

(Perez, 2017), J.C Perez, 2017, Sapiens Mitochondrial DNA Genome Circular Long Range Numerical Meta Structures are Highly Correlated with Cancers and Genetic Diseases mtDNA Mutations

January 2017 [Journal of Cancer Science and Therapy](#) 09(06) DOI: [10.4172/1948-5956.1000469](https://doi.org/10.4172/1948-5956.1000469)

(Perez, 2019) , Perez, J. Epigenetics Theoretical Limits of Synthetic Genomes: The Cases of Artificials *Caulobacter* (*C. eth-2.0*), *Mycoplasma Mycoides* (*JCVI-Syn 1.0*, *JCVI-Syn 3.0* and *JCVI_3A*), *E-coli* and *YEAST chr XII*. *Preprints* **2019**, 2019070120 (doi:

10.20944/preprints201907.0120.v1).

<https://www.preprints.org/manuscript/201907.0120/v1>

Perez J.C, (2020). “WUHAN COVID-19 SYNTHETIC ORIGINS AND EVOLUTION.” *International Journal of Research - Granthaalayah*, 8(2), 285-324. <https://doi.org/10.5281/zenodo.3724003>

(Perez&Montagnier, 2020a), Perez, j.c, & Montagnier, L. (2020, April 25). COVID-19, SARS and Bats Coronaviruses Genomes unexpected Exogeneous RNA Sequences.

<https://doi.org/10.31219/osf.io/d9e5g>

(Perez%Montagnier, 2020b), Jean claude Perez, & Luc Montagnier. (2020). COVID-19, SARS AND BATS CORONAVIRUSES GENOMES PECULIAR HOMOLOGOUS RNA SEQUENCES. *International Journal of Research -GRANTHAALAYAH* ISSN (print): 2394-3629 July 2020, Vol 8(07), 217 – 263 DOI: [Https://doi.org/10.29121/granthaalayah.v8.i7.2020.678](https://doi.org/10.29121/granthaalayah.v8.i7.2020.678), Vol 8(07), 217 – 263(Vol 8(07), 217 – 263), Vol 8(07), 217–Vol 8(07), 263. <http://doi.org/10.5281/zenodo.3975578>

(Rapoport § Perez, 2018),

Rapoport D. § Perez J.C, [Golden ratio and Klein bottle Logophysics: the Keys of the Codes of Life and Cognition.](#)

Quantum Biosystems. 9(2) 8-76. ; Vol. 9 – n.2 – 2018

(Varela § Maturana, 1980), Maturana H. & Varela F.J. (1980). *Autopoiesis and cognition : the realization of the living*. Reidel, Boston.