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1 Introduction

The self-simulation hypothesis (SSH) [1] posits that emergence is a core element in the engine of
reality, down to the underlying code − considering spacetime and particles as secondary or emergent
from this code. In 1938 Dirac [2] addressed the internal structure of the electron and how it affects the
spacetime structure itself. Feynman later evolved this thinking to point out that a point of spacetime is like
a computer, which lead Finkelstein to propose that reality is a code in action in his 1969 spacetime code
paper [3]. Wheeler later brought an interesting synthesis of this with ideas like the participatory universe as a
self-excited circuit, law without law and it from bit [4–6]. This information theoretic line of thinking can lead
to many directions to address the conundrum of quantum gravity and unification physics problems. We
focus here on the specific perspective that a notion of pre-spacetime code or language in action leads to the
physics and metaphysics idea of reality as a self-simulation [7–9] and require a new principle to drive the
evolution − the principle of efficient language (PEL) [1,7,9–11].

To address emergence of physical observables from an information theoretic framework governed by
the PEL we need to setup a concrete, constrained and rigorous mathematical substrate. We will consider the
3-Dimensional Penrose Tilings quasicrystal (3DPT) projected from the Z6 lattice [12,13] − a generalization
of the 2-dimensional Penrose tiling [14]. On this point set, and associated tilings we implement a state
sum model [15,16] where the states are given by objects inherent to the quasicrystalline geometry. We
consider geometric realism discussed in section 2 as a new paradigm for state sum models following
Einstein’s program of geometrization of physics [17]. As we will see, quasicrystals are a natural substrate
for geometric realism where self-referential geometrical symbols [1,18] are given from first principle
for both kinematics and dynamics. Details on quasicrystals will be presented in section 3. Essentially
quasicrystals [19–23] are structures that exhibits a new kind of order − aperiodic order − which lies
between disorder and periodicity. Statistical mechanics or quantum mechanics models defined in lattices
can be straightforward generalized to quasicrystals [24]. The choice of Z6 root lattice and its associated
3DPT quasicrystal provides a toy model for the conformal symmetry associated with the D6 root system
and for the grand unified gauge theory associated with the exceptional Lie algebra E8. Both D6 and E8 have
similar quasicrystals associated with them [25–27]. The gauge symmetry represented in the root system is
transformed in a quasicrystal network in 3D, working as a toy model for quasicrystalline pre-spacetime
code.

Quasicrystals come with a natural non-local structure called empires [28–31], which can be considered
as their defining property. The geometrical state sum model (GSS) proposed will make use of the concept

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2021                   doi:10.20944/preprints202104.0033.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-0637-1916
https://orcid.org/0000-0003-2490-877X
https://orcid.org/0000-0003-2523-237X
https://orcid.org/0000-0003-2938-3941
https://doi.org/10.20944/preprints202104.0033.v1
http://creativecommons.org/licenses/by/4.0/


of empire overlaps (called hits in this paper) built in the rules driving the dynamics, which we will discuss
in section 4. One element that implements the PEL is that an empire position can save resources in the GSS
evolution.

A simple implementation of GSS is given in section 4.1 with a new kind of cellular automaton game
of life, where different patterns emerge. Those patterns then act back in the more general GSS model in
form of observables discussed in section 4.2. In section 5 we conclude with some discussion about the
notion of emergence within a GSS model that implements the PEL.

2 Geometric Realism

The construction of general relativity (GR) marks a breakthrough for the so called program of
geometrization of physics [17], which basically says that one should start with geometry to understand the
physical world − there should be a one-to-one correspondence between physical quantities and geometric
objects. Modern physics, starting with Einstein himself, follows a path to apply that idea to generalize
GR by going beyond Riemannian manifolds − adding to the usual curvature variable, the torsion and
nonmetricity variables. This is in essence the Riemann’s program as an unified view of geometry. Some
variations of this approach includes elements from Klein’s program, which focus on symmetries and its
associated groups. But there is another path that we will consider in the light of recent developments
in theoretical physics, which brings the less known geometry program view of Fedorov/Delone that
can address both local and global geometry when considering discrete systems [20]. For example, a
problem that can be easily solved by this program is what shapes tile space and how. The idea is that
regular point systems are determined by local settings. Global regularity results from the structure of local
configurations.

Consider a clear route to quantization of GR that is given by loop quantum gravity (LQG) [32].
There the classical 4-dimensional manifold is foliated in 3-dimensional (3D) spacelike surfaces and the
metric field gµν is decomposed in terms of connections and tetrads, which in the 3D foliation reduces
to 3D-connection and the triad field. Then the connection and the triad are promoted to operators in a
Hilbert space. This quantization procedure leads to the results that the main kinematic objects are spin
network states spanning the Hilbert space. The dynamics can be achieved by the usual path integral
procedure and leads to spin foam transition amplitudes. These objects can be described graph-theoretic
with SU(2)-spin quantum numbers labeling the edges of the graphs and another group or algebraic SU(2)
data at the vertices. The spin foam path integral of quantum gravity can be understood as a sum over spin
network states. In summary, the main object after the path integral quantization of GR is a sum over states
of the quantum geometry. In fact, this formulation is a cornerstone in modern physics. Making use of the
similarity of the path integral in quantum field theory and the partition function in statistical mechanics
[33], many of concrete computations of physical observable with different models, from Ising models to
lattice gauge theory and condensed matter systems [34], to quantum gravity, is done with a state sum over
discrete lattices or graphs. So the other path to geometrization of physics is to address the geometry of
state sum models at the quantum or statistical mechanics regimes.

Geometric realism will dictate for us that the labels, for example a spin state ±1, that appears in those
graphs, quasicrystals or lattices, must have a one-to-one correspondence with the underlying discrete
geometry, in our case, the quasicrystal one. That is, the labels are directly related to geometrical building
block of tilings. To be more concrete, let us consider the state sum object

W4(sb) = N4∑
s

∏
e

Ae(s)∏
v

Av(s), (1)
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In spin foam models or some lattice gauge models W4(sb) is called the quantum transition amplitude,
or the partition function Z4 in some Ising like models where one sum also over the boundary states
sb. In (1) N4 is a normalization constant that depends on the discretization 4, and there is weight or
amplitude1 Ae for each edge of4 and weight or amplitude Av for each vertex. The sum goes over all the
allowed configurations of states s. Usually Ae and Av are built from the group and algebraic theoretic
implementation of symmetries involved in the specific problem. Geometric realism requires that Ae and
Av are built from geometry of4.

Let us consider some examples of standard state sum models:

• Ising models

The Ising model, constructed over a lattice4 can be described using only weights Ae given by

Ae = eβgs(e)g−1
t(e) (2)

with the sum over spin states s = ±1, gs(e) representing the spin at the starting vertex and gt(e) representing
the spin at the end vertex of every edge e. The β coupling constant is proportional to the inverse of
temperature. General Ising models can be achieved by allowing the states, s, to take values in a large range
of integers 0, 1, ..., n. Further generalization can be considered by allowing the edge weights to locally
varying as a general function of the states gs(e)g

−1
t(e), Ae = f (gs(e)g

−1
t(e)).

• Lattice gauge theory (LGT):

LGT gives a non-perturbative formulation of the path integral quantization of gauge theories such as the
standard model of particle physics. With LGT one gives up on Lorentz symmetry and works with gauge
symmetries at the vertices of the lattice4. Gauge invariant quantities are given by Wilson loops made up
of edges around a two dimensional face of4, g f = ∏e∈ f ge. For continuous groups of symmetry the sum
in equation (1) is converted on an integral that goes over the infinite of group elements (gauge) symmetry
ge and the products of amplitudes on edges and vertices are converted to a product over faces

A f = f (h f ) (3)

where the amplitude functions A f are class functions on the group of symmetry ( f (ghg−1) = f (h)). The
explicit form of the function f depends on the specific gauge symmetry model. For example, for Yang-Mills
theory is given by

A f = eβ ∑ f R(tr(U(h f ))) (4)

where U is a unitary finite dimensional matrix representation of the group, β here, is a coupling constant.
Another example is given by topological models where A f takes the simpler form

A f = δ(h f ) (5)

where the delta function δ is taken with respect to the group measure.

• Spin foam

In spin foam models 4 is a triangulation of spacetime manifold or its dual. Spin foam models also
have amplitudes associated with faces (or edges), usually give by equation (5), but also amplitudes Av

1 Weight if W4 is considered as a partition function or quantum amplitudes in a path integral picture.
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associated to vertices and constructed from more complicated group invariant objects. In LQG the group
of symmetry is given by the little group (SU(2)) of spacetime symmetries (SL(2, C)). A generalization
of spin foam for quantum gravity is to include color charge symmetry (SU(3)), within the weights Ae

and Av in equation (1). This can be done by defining the weights from invariants of SU(2)× SU(3) [16].
When W4(sb) depends only on the boundary states, the spin foam is topological and the amplitudes are
constructed from topological invariants [15].

As we see, state sum models are built from algebraic and group theoretic elements. Even the simple
Ising model can be understood as a discrete Z2 model. Underlying group and algebraic structure are
geometric structures. Geometric realism demands the values on the GSS to come from the geometry,
more concretely from tiling of 4, which for the specific model presented in next sections, will be a 3D
quasicrystal. The states, coupling constants, potentials, weights and amplitudes themselves, will be
determined by geometric objects as lengths, volumes and volumetric intersections.

3 Kinematics: The 3D Quasicrystal, Empire and Hits

The construction of the quasicrystal of interest here, the 3DPT, will make use of the canonical
cut-and-project method [12,20]. To construct the 3DPT,4, we consider the canonical hypercubic lattice Z6

in Euclidean R6. Let ε be an irrational 3-dimensional subspace of R6 and ε⊥ be its orthogonal complement.
Let P be the orthogonal projector onto ε and P⊥ onto ε⊥. Now we fix a compact subset K of ε⊥, called the
cut-window. The canonical choice for the cut-window is the projection of the Voronoi cell of Z6 to ε⊥. The
Voronoi cell contains one lattice point, which lies at its center. Unlike the unit cells of lattices, these cells are
unique and their symmetry groups are the stabilizer groups of the lattice points. The 3DPT quasicrystal4
is constructed by projecting points λ ∈ Z6 to ε, P(λ), such that P⊥(λ) lies inside K, the acceptance domain.
Z6 lattice points are connected by the unite length edges. If two points λ1 and λ2 are connected in Z6 and
P⊥(λ1) and P⊥(λ2) are accepted, then P(λ1) and P(λ2) are connected in4. A vertex vi can have different
numbers of neighbors, here denoted vij, with j variating from 1 to the valence of vi

2. The geometric lengths
of the connections are labeled as lij. A tiling T of4 is a set of possible points and connections given by
this procedure. Different tiling configurations can be generated by doing a shift on P⊥(λ) in ε⊥ before
checking if P⊥(λ) lies inside K, so called γ⊥. The shift γ⊥ can be used to generate different tilings and it is
a continuous parameter that can be used to make the quasicrystal dynamical. A specific 3D tiling T of4
has two different rhombohedral prototiles building blocks with 10 orientations each. Each vertex vi of one
T can be associated to different configurations of prototiles (up to 20 rhombohedral prototile around one
vertex vi). There are 24 possible different vertex types (VT), which appears with different frequencies and
valence in a tiling. Most of the 24 VT have valence 20, but those with lower valence appear with more
frequency in a tiling. See [12] for the explicit form of VT and its frequencies. A small tiling and 3 of the
3DPT VTs are shown in Figure (1).

The empire as an important property of quasicrystals arises in context of the empire problem [28–31].
A quasicrystal itself arises in context of the problem of tiling space in an aperiodic way, which is an ancient
problem. To clarify the use of the 3DPT, we can think of4 generate from K as a possibility point (tiling)
space (PS) where points (or VT) can be turned ON or OFF. Or we can think of4 as the selected points in
Z6 but not projected yet. We will be interested in project subsets of those points, the empires. The empire
problem asks what other vertices or VT of a quasicrystal tiling is forced to be ON if a specific vertex or VT

2 The possible valences for any vertex at some 3DPT are: 4, 6, 8, 10, 12, 14, 16, 20.
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Figure 1. 3DPT tiling and some VTs.

is chosen to be ON − it is projected or actualized. By defining the empire problem and its solutions, one
sets the kinematics of a given quasicrystal. For a specific vertex vi in4 there is associated a specific VT
(from the 24 possible ones). We can define a window E ⊂ K associated to any VT given at some vertex
vi, and so, the empire of a point P(λi) of 4 will be the sub-set of 4 such that P⊥(λ) lies also inside E.
The cut-window K can be volumetric partitioned in sub-windows E, which can overlap. The dynamical
quasicrystal can be generated by projecting empires. Empires capture the non-local aspect of quasicrystals
[35] in the sense that when a vertex vi is ON, its empire − the whole set of points defined by window Ei
− is also ON. An additional question can be asked now: if two vertices v1 and v2 and their empires are
projected, what is the empire overlap between them? The answer is that a measure of the overlap of point
set of different empires is given geometrically by the overlap of empire windows E1 and E2 inside the
cut-window K. We call this overlap the hit H12. Consider the empire given by E1 to be4E1 ⊂ 4 and for
E2 to be4E2 ⊂ 4, then H12 = 4E1 ∩4E2 or in terms of vertex window polytope intersection for any vi
and vj we can compute a normalized measure of overlap by

Hij =
IVol(E1, E2)

IVol(E1)
(6)

where IVol is a function that gives the volume of the intersection of different polytopes, computed here
numerically, and if it has only one polytope as input it returns the volume of that polytope. Computing
hits Hij between a VT at vi and different vj positions in one tiling and then changing vi gives a hit map
distribution for the specific tiling. One typical example is shown in Figure (2). In what follows we will
consider only nearest neighbors Hij.

With the main construction of the 3DPT presented, we can establish that the main kinematics variables
of interest are the hit Hij between vi and vj, the length lij of the connection between vi and vj and the
volume Vi of the VT polytope associated with vi. We can turn now to the implementation of the dynamics
aspects of the GSS W4(sb), equation (1), to be done in the next section.

4 Dynamics: Geometric State Sum Model and the PEL

To implement dynamics of the GSS we consider the state sum (1). Following the ideas from the
previous sections, the weights Ae for an edge linking vertices vi and vj will be given by

Ae = lijHij, (7)
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Figure 2. A typical hit map for 3D quasicrystals. We consider a list with 1000 points of a 3DPT tiling and
compute polytope overlap between them, equation (6).

where the states given at each edge sij = Hij are geometric quantities, specifically, volumetric polytope
intersections. The length lij plays the role of the coupling constant or inverse of temperature. We can group
these edge states by summing over nearest neighbors vij

Avi = ∑
j

lijHij. (8)

We will add an additional term to each vertex vi, called the hit potential Yi, which takes into account the
PEL. Consider a PS tiling T with only the central vertex vc and its empire being ON, which means that
the vertex window polytope Evc is being used to select the possible points of the Z6 that can be projected
to the cut-window K. Now we will probe the quasicrystal possibility space4 with random walks of the
vertex type at vc using rules based on Hij. So we start on step 1, with vc and its empire being ON. Then in
step 2, one of the neighbors vcj will be ON according to a non-deterministic rule R(Hij) and so on until
some step N. This defines one animation A1. Next, we repeat this procedure, getting a new animation A2,
and so on until an animation AM, so that we end with M animations, each with N steps. We call these
animations possibility space random walks (PRW). The hits potential Yi is defined at each vertex vi as the
number of PRWs that use that position. For consistency we will add a volume weight

Yi = ViYi, (9)

where Vi is the volume of the VT polytope at vi. It encodes the coupling lij there. The hit potential comes
from the idea of minimizing the cost of projection resources to turn ON points on 4. The vertices that
have more PRWs going over them have more potential to save projection steps to generate animations.
As there are more walks going over those positions they can be part of more possible emergent patterns.
It is interesting also to define the hit potential from weights of entire animations. We can count hits
and associate an integer to one animation Am by counting how many empire vertices the PRW of that
animation encounters. These vertices are already ON and don’t need to be turned ON on the PRW. The
hits Hij and hit potential Yi associated to a tiling Tk define one valid configuration of states given by

WTk = NTk ∏
i

Ak
vi
Y k

i , (10)
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where the index k means that the geometric quantities are computed on the specific tiling Tk. The defining
object of interest for the GSS is then, in a partition function form,

W4 = N4∑
Tk

WTk , (11)

where the sum goes over the different allowed configurations, implemented by finding new allowed
tilings. One way to find new tilings, which involves changing only Hij and Sij and not lij or Vi, is by
using the shift γ⊥. To change the couplings lij or Vi from quasicrystal first principles, one can use inflation
[26], which requires changing the size of the windows. The state sum can also be defined as a transition
function for state Hab that fixes a subset of4, where Hab can be two disjoint subsets so that maintaining
both fixed, and summing over the remaining part, would give the transition function between the states

W4(Hab) = N4 ∑
Tk(ij/ab)

WTk , (12)

where the notation (ij/ab) indicates that all tilings and their accompanying Hij are generated, but with
Hab remaining fixed. This implementation is given by finding values of the shift γ⊥ that generate new
tilings sharing a fixed configuration.

4.1 A New Kind of Game of Life in Quasicrystals

A concrete implementation of a dynamic GSS equation (12) is given in the form of a cellular automaton
game of life (GoL). In this case we let the quasicrystal tiling space4 evolve according to local rules, the
same R(Hij) we used to generate the hit potential.

Classical cellular automata are defined on regular lattices. The rules depend on the state of each
site and its neighbors. The neighbor structure looks the same across the lattice. For GoLs [36–40], which
have outer totalistic cellular automaton rules, the next state of a site depends only on its current state,
and the total number of neighbor sites in certain states. In 2-dimensional quasicrystal GoLs [41–43] the
neighborhoods are generalized and not the same for each site, but the dynamics are implemented with
similar rules to the original GoL. GoL rules on Penrose tilings still have complex behavior.

The generalization to 3D that implements the GSS model is given by a 5-tuplet G = (4, T, H, v,R)
with elements as follows. 4 is a 3DPT; T includes the initial tiling condition (where at least one VT is ON)
and the set of steps to update4 − we usually consider 1000 steps for 5000 3DPT point set; H is the set of
states generalized to be a real number between 0 and 1 according to equation (6); v = vij are the neighbors
of a vertex vi, which vary between 4 and 20 − we note that when a vertex is ON the whole VT associated
to it is considered to be ON, and also that sometimes we can consider the point set for evolution to have
only a specific VT instead of the full quasicrystal point set;R are the new local adapted rules for this kind
of GoL. The rules measure empire overlap: if there is too much overlap with ON neighbor VTs then it turns
or stays OFF (overpopulation condition); if there is too little overlap it also will be OFF (under-population
condition); but if there is the right value of overlap with the mean value of all vij, then the current vertex
will be ON. Good values for the normalized Avi , equation (8), are found to be between 0.7 and 0.9. We also
consider the information entropy associated to hits to drive the evolution as in equation (14) − in this case
the VT will be on if its information entropy is close enough of the mean of its neighbors3, which are ON.

3 One additional option with this kind of GoL is that due to the non-local properties of empires we can allow the rules to be
applied to the whole quasicrystal and not only with the connected vertices of a VT, which we will leave for future investigations.

page 7 of 15

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2021                   doi:10.20944/preprints202104.0033.v1

https://doi.org/10.20944/preprints202104.0033.v1


These dynamics lead to different emergent patterns, most of which are oscillation patterns as in
Figure (3). There are also different kinds of propagation as in Figure (4). But varying the rules opens up
possibilities of more complex dynamics, which are open for future systematic investigations. But which
may also encounter problems of optimization of image processing.

Figure 3. 3DPT GoL oscillation. Two frames are shown.

Figure 4. A recurrent pattern propagation for a 3DPT GoL made mainly from the VTs from Figure (3). Eight
frames are shown.

4.2 GSS Observables and Emergence

In light of more general dynamics, we can interpret Equation (12) as one observable on a GSS model.
It is a fixed pattern over the space of geometric states. The specific emergent pattern and its properties
can be addressed with Equation (12). The hit potential Yi can in fact be considered as derived from one
observable VT that is ON and that is following a family of PRWs. Let us consider the rules R(Hij) in this
context. The rules are used to guide the random walks to probe the possibility space and then define the
hit potential. What is moving in the quasicrystal or what are those VT, which are being turned ON or
OFF (being projected/actualized or not)? A GSS model aims to describe pre-spacetime physics − the
Planck scale quantum gravity regime. This regime is considered to have the concept of holographic matter
[44–46], which is proportional to information entropy

|Ivi − Ivj | = 4Iij = αm, (13)
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with α a constant of proportionality and m the mass crossing some horizon. In this Planck scale regime
picture, each connection is considered to be crossing a holographic horizon and information is the stuff
flowing between horizons and to be conserved. The local information entropy is given by

Ii = −∑
j

PijlogPij (14)

with Pij =
Hij
Ni

. Different rules can be implemented under I. The above motivation leads us to the notion
of local conservation of I. We simply let the PRW starting at the center of a tiling choose each successive
position from a local subset whose values of I are within some selected range of the current value of I.
The resultant hit potential Y(r) as a function of the distance from the center is given in Figure (5) for
1000 animations over 1000 steps. The specific form presented in Figure (5) has a mean value that drops

Figure 5. PRW hit potential.

with the inverse of distance away from the center but with a Gaussian contribution close to the center. In
general its form depends on the distribution of VTs on a specific tiling, the local rules and random walk
properties. We can also consider an additional second PRW starting at a different position and allow the
Y(r) to count overlap between the two walks− a synergistic effect [47] on the whole emergent hit potential
not accounted for on the underlying GoL. See Figure (6). Note that we can use the PRWs to evolve 4

Figure 6. PRW hit potential from two patterns evolution.

determining H, v and evenR of the GoL G. We can also allow local rules at site i to be determined from
the full weights AviYi. This generates a more sophisticated stratified recursive game

Gn+1 = G(Gn). (15)
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As a result of the GSS evolution, we consider a candidate for an order parameter, which is analogous
to magnetization in spin systems,

HT (l) =
1
NT ∑

i

1
Ni

∑
j

Hij(lij), (16)

where l represents the length inflation scale that defines lij. As the cut-window K gets smaller, the points in
the projected space P(λ) get farther way from each other and in the perpendicular space the points P⊥(λ)
get closer. lij and Vi get bigger but the intersection of vertex window polytopes in the perpendicular space
also gets bigger, approaching 1. As a result, over many inflations, we see that there are two dominant
regimes. One is “disordered”, where there is not much overlap of vertex window polytopes and there are
more local variations so that the information entropy rules depend on hits. The other regime is “ordered”,
where the overlaps approach 1 and so the information entropy rules should depend only on the vertex
valences and not on hits. See Figure (7).

Figure 7. Average hits HT (l) evolution under inflations.

Different emergent dynamics can be considered. For example, we can set a preferred direction to
follow the rules and also consider the central hit potential, which leads to interesting curving path patterns
as in Figure (8).

Figure 8. Evolution considering local information entropy conservation, initial preferred direction and the
central hit potential.

As a further result, we consider an oscillation pattern around the center of a tiling with the large
symmetric VT there. There are 12 of these same VTs around the center making the geometry of an
icosahedron. In each frame step only one of the 12 VTs is ON. This gives a notion of an emergent
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quasi-particle (the whole icosahedron) with internal structure (the 12 symmetric VTs). See Figure (9). With

Figure 9. Central icosahedron oscillating pattern.

this object we can consider a 4-dimensional dynamics by considering the influence of the empires of those
12 VTs at arbitrary 3D positions on4. The oscillation on the 12 VTs plays the role of emergent time. We
consider a vertex P(λ1) around the icosahedron. The VT associated to that position depends on the γ⊥
tiling Tk, VTk

1 = VT(P(λ1)). By shifting the projections by specific γ⊥ values, we can change tiling k and
VTk

1 , preserving the oscillating icosahedron pattern at the center. Figure (10) shows the cut-window K
(the large window), the empire vertex window for the icosahedron (the middle window), and the small
window limiting the available shifts. So for each P(λ1) we compute Hij, where i refers to one of the 12

Figure 10. Available points for shifts γ⊥ presented inside the small window.

central VTs and j to VTk
1 . We average this computation over a large number of tilings Tk and over 12 cycles

of the central icosahedron, getting H̄ij, and then we go to a new position. We define the observable of
interest to be

O(lij) = log(lijH̄ij), (17)

which gives a different notion of emergent potential as shown in Figure (11). This one grows with distance
while the hit potential drops.

As a last result we consider how information entropy grows with the number of steps for patterns
made of different VTs. We define the hit section (hs) to be a certain number of the same VTs within some
distance r from the center of some tiling. We compute Hij, where i refers to a certain VT at the center of
this tiling and j refers to the same VT at different position p on that tiling, p < r, with j ∈ hs,

Ii(r) = −
hs(r)

∑
j

PijlogPij. (18)
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Figure 11. Potential due to composite quasi-particle oscillating at the center of the tiling.

The result is that Ii(r) distinguishes the patterns made of different VTs, which should be proportional to
the frequency of appearance of the respective VTs, see Figure (12).

Figure 12. Information entropy order parameter for different VTn, where the integer n number the 3DPT
VTs and we show only 5 of the 24. hs grows different with distance for the different VTs.

5 Discussions and Outlook

In this paper we discussed state sum models under geometric realism. In the SSH paradigm we
are looking to understand the emergence of spacetime and matter from a pre-spacetime code that takes
into account stratification and recursion. GSS is discussed as a framework in this direction. State sum
models implement the principles of locality and superposition. GSS adds geometric realism at the state
level and the PEL for dynamics. With the GSS formulation we make concrete the idea that emergence
happens due to structure and not necessarily randomness. In the current implementation the structure is
given by a 3D quasicrystal projected from a 6-dimensional lattice − aperiodic order. By having dynamics
where different points can be projected or actualized at different steps with their empires, quasi-particle
patterns emerge already in a simple GoL simulation as presented in section 4.1. The patterns that emerge
are built from known quasicrystal structures, the VTs. A stratified recursive feedback loop can then be
established between, on the one hand, the quasicrystal level of projections, non-local empire overlaps and
local information entropy rules and, on the other hand, the emergent level of quasi-particle patterns made
of VTs. This is expressed as a potential derived from many evolutions of PRWs going over the underlying
quasicrystal points, generating an emergent pattern. Overlap of PRW positions or PRWs and empire
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vertices is understood as potential optimization; it gives an opportunity to economize resources, which in
this case are projections from 6 dimensions to 3 dimensions. This implements the PEL by allowing the
simulation to express more emergent patterns over less projection step resources. The PEL is implemented
on the structure of PRWs, which are considered here as virtual walks to probe the possibility space of
walks. It aims to create “cognitive” structure, as in artificial neural networks, so that the simulation itself
can decide the best sequence of movements for the emergent pattern. This kind of structure under the
emergence paradigm within complex systems is what is observed in general: the emergent structure, with
its new emergent properties, always occurs under the dynamics of a large underlying number of building
blocks that have structure governing their dynamical interactions. This is seen from atoms to DNA to
neurons to stars and galaxies.

In this work, we investigated some general code theoretic properties of general emergent patterns on
the GSS. For future investigations we aim to derive the physical emergent laws governing the dynamics of
the emergent patterns, making more concrete the emergence of spacetime and matter. An important hint in
this direction is that the cut-and-project method used to derive the quasicrystal makes clear the connection
with the higher dimensional lattices. The main quasicrystals of interest are derived from the so-called root
lattices of Lie algebras. Lie algebras and groups are the language of symmetry and so a core element in
fundamental physics, as in quantum mechanics. The dynamics derived in this paper can be thought of as
a dynamics that tails back to the root system of Lie algebras [16,26], suggesting a generalization from Z6 to
D6 and E8.

One different consideration to be addressed for GSS models is computational efficiency on current
classical computers. The values on usual state sum models come from algebraic or group theoretic objects.
There are more computational costs to obtain the values from the geometry.

Supplementary Materials: The code used in this paper can be provided on demand.

Acknowledgments: We acknowledge the many discussions had with David Chester, Raymond Aschheim and Richard
Clawson and we thank them for their generous feedback in editing discussions.

Abbreviations

The following abbreviations are used in this manuscript:

SSH Self-simulation hypothesis
PEL Principle of Efficient Language
3DPT 3-Dimensional Penrose Tiling quasicrystal
PEL Geometrical State Sum (GSS)
GR General Relativity
LQG Loop Quantum Gravity
3D 3-dimensional
LGT Lattice Gauge Theory
VT Vertex Type
PS Possibility Space
PRW Possibility Random Walk
GoL Game of Life
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