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A proposal for a fundamental theory is described in which classical and quantum physics as a rep-
resentation of the universe as a gigantic dendrogram are unified. The latter is the explicate order 
structure corresponding to the purely number-theoretical implicate order structure given by p-adic 
numbers. This number field was zero-dimensional, totally disconnected, and disordered. Physical 
systems (such as electrons, photons) are sub-dendrograms of the universal dendrogram. Measure-
ment process is described as interactions among dendrograms; in particular, quantum measurement 
problems can be resolved using this process. The theory is realistic, but realism is expressed via 
the the Leibnitz principle of the Identity of Indiscernible. The classical-quantum interplay is based 
on the degree of indistinguishability between dendrograms (in which the ergodicity assumption is 
removed). Depending on this degree, some physical quantities behave more or less in a quantum 
manner (versus classic manner). Ideologically, our theory is very close to Smolin’s dynamics of 
difference and Rovelli’s relational quantum mechanics. The presence of classical behavior in na-
ture implies a finiteness of the Universe-dendrogram. (Infinite Universe is considered to be pure-
ly quantum.) Reconstruction of events in a four-dimensional space type is based on the holograph-
ic principle. Our model reproduces Bell-type correlations in the dendrogramic framework. By 
adjusting dendrogram complexity, violation of the Bell inequality can be made larger or smaller. 

1. Introduction
The last several years have been characterized by new 

attempts to analyze quantum mechanics from a realistic 
perspective [1–4]. Our theory, the Dendrographic Holo-
gram Representation of Physical Processes (DH theory), 
originates from the very natural foundational principle, 
namely, Leibnitz’s principle of the identity of the indis-
cernible [5,6].
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The consequences of endorsing this principle (or 
rather declining the Leibnitz principle of the assumption 
of identity in the micro/quantum world) are the rejec-
tion of ergodicity which is central in all of the current 
physical formulation [7]. In turn, this process will lead 
to the formulation of implicate and explicate orders and 
the holographic principle [8],which comes about very 
naturally. Moreover, we then come to the conclusion and 
understanding of the measurement problem as a simple 
apparent dynamic in which classicality suggests a bound 
universe. We note that Barbour’s and Smolin’s maximal 
variety paradigm [9] is a consequence of our results on 
the measurement process/apparent dynamics.

The DH-theory is closely related to Bohm’s paradigm 
[8] of implicate versus explicate orders and the holo-
graphic principle, which plays the main role in string 
theory and quantum gravity[10,11]. These approaches 
can be coupled to number theory, to p-adic numbers. 
In Bohm’s terminology, we start with pre-space given 
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by the p-adic manifold. This space is considered zero 
dimensional (as a topological space), and it is a total-
ly disconnected and disordered space (so, its structure 
matches with Bohm’s heuristic image of implicated order 
[12]). It was noted that p-adic numbers have already been 
widely used in physics, but as a batch of concrete models 
in string theory, gravity, cosmology, quantum physics, 
and complex disordered systems [13–17]. Our theory 
aimed for the reconstruction of the whole body of physics 
in the very general and consistent framework. The main 
distinguishing feature of our theory is solid coupling with 
experimental data. From the data, the implicate order be-
hind such data could be reconstructed. The latter resolves 
the basic mysteries of modern physics by explaining the 
origin of nonlocal quantum correlations and collapse 
of the wave function in a natural way and provided a 
solution for the measurement problem. At the same time, 
when keeping to the realistic description of nature, the 
points of p-adic pre-space can be treated as a kind of 
hidden variable. However, the transition from the zero-di-
mensional space of hidden variables to experimental data 
is not straightforward, and it includes a few steps (with 
growing dimension of structures at each step). 

Thus, starting in the number-theoretical framework 
[18], we proceed to experimental data. As indicated, 
the pathway from the implicate to explicate order is not 
straightforward. P-adic numbers have a tree-like forma-
tion (homogeneous tree with p edges leaving each vertex 
and one incoming edge). The first step toward explicate 
order is an association with each point of the p-adic 
space with respect to its expansion into the p-adic series. 
This process generates a one-dimensional string of digits 
such that aj=0,1,…,p-1 (for p = 2, binary strings), and 
geometrically, this string is a branch of the p-adic tree. 
The p-adic tree is the source of huge variety of dendro-
grams termed finite subtrees. These subtrees belong to the 
domain of explicate order. These subtrees are elementary 
structures of our theory (explicate order layer), and they 
play the role of elementary particles in quantum physics. 
It can be noted that these are two-dimensional structures. 
To describe interactions between dendrograms, a four-di-
mensional space is needed. Thus, our theory immediately 
determines the four-dimensional structure of physical 
processes. This way of representation of physical pro-
cesses can be considered a special realization of the 
holographic principle in the very special form in which 
the zero-dimensional p-adic horizon encodes dynamics in 
three-dimensional space through their dendrogram repre-
sentation, a dendrogramic hologram. 

Dendrograms can have different degree of complexity, 
and simpler dendrograms have higher degrees of cor-
relation. Correlations are generated not as expressions 

of causality, but because of repeatability of dendrograms 
of low complexity. At this stage, calculation of correla-
tions, dendrograms partially lose their individuality and 
are treated as partly indistinguishable structures. In our 
approach, indistinguishability is quantified, and it is 
not just a simple yes/no but up to some degree (which 
corresponds to all possible combinations of dendrogram 
structures that can be constructed from N edges). High-
er degrees of indistinguishability (or more accurately 
smaller size of phase space of all possible dendrograms 
constructed from N edges produces higher indistinguish-
ability) can generate stronger correlations. Bell correla-
tions are modeled in this way as correlation of indistin-
guishable dendrograms.

Planck’s constant can be coupled to this degree of in-
distinguishability. From this viewpoint, Planck’s constant 
can be introduced not only in quantum physics but in any 
sufficiently complex system as characteristics of indistin-
guishability between its subsystems (not only in physics, 
but also biology, economics, and social science). 

We finally comment on coupling to Bohm–Hiley’s [8] 
unification of mental and physical processes based on 
implicate–explicate orders. The neural networks of the 
brain have a treelike organization. In the simplest ideal 
model, the brain can be represented by p-adic numbers. 
Conscious information processing (explicate order) is de-
scribed by the quantum potential on pre-space [19]. This 
theoretical construction led to applications to medicine 
through dendrogram [20] representation of brain electro-
encephalographic (EEG)-signals and reconstruction of  
the Bohmian quantum potential.  

2. Reality is obscured by the assumption of ergodicity 
We now introduce the foundational principle of our 

theory, the Leibnitz principle (hereafter called the Princi-
ple): 

The identity of indiscernibles is usually formulated 
in a specific manner such that if, for every property F, 
object x has F if and only if object y has F, then x is 
identical to y, or in the notation of symbolic logic: 
∀F(Fx ↔ Fy) → x = y, namely: if x  and y  are distinct, 
at least one property that  x  has and  y  does not or vice 
versa can be found.

Ergodicity is an assumption that was introduced by sta-
tistical mechanics in order to understand the “Universe” 
macro-state from “undistinguished” or partially “undistin-
guished” collections of micro-states. This assumption of 
“indistinguishability” of micro-states is clearly wrong and 
was originally formed for the construction of an adequate 
model to describe the “Universe” with minimal under-
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standing of the micro-states [21] (see also Martineau et 
al. for a general discussion on coupling of ergodicity and 
indistinguishability [22]).

As we see, ergodicity is just a simplification of reality 
(or rather the consequence of intentionally using Leibnitz 

principle to make properties of the micro-states indis-
tinguishable) in which it is known that each micro-state 
in the universe has at least one attribute different from 
the other at a given time (space and time coordinates, 
momentum, angular momentum, energy, spin, among 
others). Thus, we have to reject this simplification/as-

figure 1: three steps produce 
quantum correlation

A

B

Fig. 1: The emergence of quantum correlations. Illustration of the three steps process (TSP) leading to quantum correlations. 
Two sets of raw data (black dots) are clustered into two dendrograms each containing 30 edges (B). The same data were 
clustered into two sets of six dendrograms each with five edges (A). Colored spheres represent the 2-adic values of an edge 
route in the dendrogram. 
When examining the correlation between the two sets of 2-adic values on the right, it can be seen that the correlations did not 
violate the Clauser–Horne–Shimony–Holt (CHSH) inequality. The same raw data, divided into groups of five datapoints and 
then clustered into a five-edge dendrogram produced pairs of 2-adic values that violate CHSH inequality.
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sumption. Otherwise, a very ambiguous way is used to 
describe nature, for example, at our convenience an apple 
on a tree will be identical to an apple on the ground based 
on features that ignore space and time (or a tennis ball 
will be identical to a planet based only on the scale-free 
geometrical features), but in another feature choice, they 
will be non-identical or if we simplify and “turn our 
head” from distinguishable features of two micro-states 
we face the non-realist consequence of  Leibnitz princi-
ple that an “apple” on a tree is the same “apple” on the 
ground and is indistinguishable (or we can make any X  
indistinguishable from Y even if X is a planet and Y is 
a tennis ball).In this sense, Bell’s experiment is flawed 
by the simplification assumption that we consider all 
photons indistinguishable in all properties but its spin 
and all same spin photons are completely indistinguish-
able.  Moreover, the application of ergodicity in science 
is flawed twice, not just in the simplification process. 
Basically, the process in science proceeds in the follow-
ing manner:

The three-step process (TSP): 
1. Detachment from contextuality all micro-states (in a 

more rigorous manner, a microstate from all or signifi-
cant portion of its relations to the “universe” is isolated).

2. Using the above process is assumed that the microstates 
are indistinguishable.

3. It is attempted to insert these indistinguishable mi-
cro-states back into the “Universe” in which they were 
before step 1 became clearly distinguishable.

So, in fact a different “Universe” exists in which a 
“universe” of distinguishable micro-states existed before 
the three steps. After the three steps, a “universe” of in-
distinguishable micro-states exists. These three steps are 
applied to quantum/statistical physics, economical mod-
els (indistinguishability of buyers/sellers), social science, 
and biological and medical sciences.

Regarding a very complex system (the “Universe”), if 
these three steps are followed, correlations are immedi-
ately introduced between the sub-systems. These cor-
relations are “side effects” of our assumption of indistin-
guishability and its immediate consequence of ergodicity. 

3. Correlation emergence: methods and results
As an example, we reproduced the Bell violations 

of correlations from a very classical double slit diffrac-
tion experiment was reproduced [23]. We first treated 
an instance frame as a random binary string of length 
512, which was called string S at time t. From each S, 
𝑙𝑜𝑔10(∏ 𝑓𝑖𝑛𝑑(𝑆 == 1)) was used. Thus, each frame was 
encoded with only one unique number 𝐴𝑓  in which f ∈ 
frame 1,2...n. From each number of consecutive frames, 

N, the pairwise distances between each of the N 𝐴𝑓 was 
calculated and a dendrogram using ward linkage was 
constructed. Each dendrogram was then represented in 
a matrix in which each row (r) represented the 2-adic 
expansion of the edge route in the dendrogram tree. Each 
2-adic expansion was converted to a rational number 
using the equation:

q= − find (r=1)
2∑ q∈[0,1] .

Following, for each edge 𝑖, 𝑖∈1,2..𝑁, in which 𝑁 is the 
number of edges in dendrogram, 𝑞𝑖 (this corresponds to 
step 1 and 2 in the three steps process described in section 
1 as each where the unit dendrogram with N edges is our 
very simple electron, photon, among others) was calcu-
lated and then repeated for all consecutive events (fig. 1). 
We next proceeded to step three in the TSP described in 
section 1 by inserting these unit dendrograms back into 
the “Universe” in a chronological manner. The first half 
of these 𝑞 2-adic values were then correlated after which 
they were correlated with the second half. The mean and 
standard deviation (std) of the ratio of correlation coeffi-
cient to 2-times the standard error (SE) of the confidence 
bound for N edges unit dendrogram (N = 3, 4.. 980) were 
2.4884±0.5775 (fig. 2C). The mean and std of the correla-
tion coefficient for N edges unit dendrogram (N = 3, 4.. 
980) were 0.1243±0.0299 (fig. 2D; first temporal half of 
the diffraction frames correlated to the second temporal 
half of the diffraction frames). 

Moreover, the p-adic quantum potential field of each 
such dendrogram was calculated and for each edge, its 
quantum potential value was calculated in the following 
manner: In order to extract the 2-adic quantum potential 
double slit diffraction experiment, the estimated proba-
bility distribution function (pdf) ρ(q) of 𝑞𝑖 with a kernel 
function of bandwidth was constructed: 
(max(𝑞𝑖) − min (𝑞𝑖))/𝑁

The quantum potential field (QP) was calculated ac-
cording to Holland [24] as shown below: 

Qp= 1
4ρ

( 1
2ρ

∂ρ
∂q

∂ρ
∂q

− ∂2ρ
∂q∂q

)

The quantum potential in this formulation is 
very trivial information measure of the dendrogram 
topology.  
Each edge was attributed with its Qp value. Qp values of 
the first half of the diffraction experiment to the second 
half figures were correlated. The mean and std of the 
correlation coefficient ratio to std of the cross correla-
tion sample and of the of the correlation coefficient for 
N edges unit dendrogram (N = 3 .. 980) were 1.8079 ± 
0.7727 and 0.0923 ± 0.0420, respectively (fig. 2A and B; 
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classicality is a
consequence of the TSP: A significance of correlation 
between two sets of quantum potential  values versus 
number of edges in unit dendrogram. Values were calculated 
for each unit dendrogram with fixed number of edges (N 
= 3,4,5….980) after which two temporal halves of quantum 
potential values were then cross-correlated . B correlation 
coefficients of the two sets of quantum potential values 
versus number of edges in unit dendrogram. C significance 
of correlation between two sets of p-adic values versus 
number of edges in unit dendrogram. Values were calculated 
for each edge route in unit dendrogram (as described in 
section 3). D correlation coefficients of the two sets of p-adic 
values versus number of edges in a unit dendrogram. , 
fraction of CHSH values versus CHSH values. CHSH values 
were calculated for each possible pair of p-adic values 
obtained from two halves of the diffraction data divided by 
unit dendrograms of size N = 5 .. 86. The proportion of CHSH 
values violating CHSH inequality versus number of edges in a 
unit dendrogram.

Definition: R=Correlation coefficient  
divided by 2 times standard errors  

of the confidence bounds 

figure 2:quantum correlations from classical data 
and the transition from quantum to classicality
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first temporal half of the diffraction frames correlated to 
the second temporal half of the diffraction frames). Both 
analyses described above resulted in very good correla-
tion when compared to the correlations with the detectors 
of a real bell experiment (fig. 2E).

In order to test the Bell violations present in the 
dendrogramic representation,the Clauser–Horne–Shimo-
ny–Holt (CHSH) inequality violations for each pair of 
the unique p-adic values (or rather p-adic features) that 
were produced from the two halves of the diffraction 
experiment upon the above-described transformation to 
dendrogramic units. 

When reviewing at all data representations with 
unit dendrograms of increasing number of edges 
(N=5,6,….86) combined, we found that although most 
(~80% of the unique p-adic pairs) showed classical 
correlations, ~20% of the unique p-adic pairs showed 
violation of bell inequality (fig. 2F). With increasing 
N of dendrogram edges, the fraction of frames in the 
diffraction experiment (represented as p-adic numbers) 
that violated the CHSH inequality decreased. Thus, upon 
dividing the data to very simple unit dendrograms (small 
number of edges) very well mixed quantum and classical 
correlation was produced. Progressively, when the data 
are divided into more complex unit dendrograms (high 
numbers of edges), a reduction of quantum correlations 
and the increase of classical correlations can be observed. 
Thus our model implies a mechanism for the transition 
from the quantum to the classical domain (fig. 2G).  

We note that the transition to the classical domain was 
a clear indication of the finite “universal” dendrogram, 
and upon reaching it, no quantum correlations were pres-
ent as each edge was uniquely determined and different 
from others. Thus, this analysis supports a finite explicate 
universe within a bounded implicate universe. This  para-
digm was partially advocated by Bohm [12], Smolin [25], 
and Barbour [26]. 

Our physical theory is supported by extended mathe-
matical modelling of the process of percolation [27]. Per-
colation is concerned with the study of random subgraphs 
of a given graph (G) and more specially, its infinite 
connected components, which are called clusters. The 
fundamental theorem of Lyons and Schramm [28] states 
that under some constraints, if several infinite clusters are 
produced, they all “look alike”. the rigorous formulation 
of this theorem is presented in this study without going 
into a deeper explanation of mathematical notions related 
to it:

Theorem (Cluster indistinguishability): Let G be a 

graph with a transitive unimodular closed automorphism 
group g, a subgroup of Aut(G). Every g-invariant, inser-
tion-tolerant, bond percolation process on G has indistin-
guishable infinite clusters.

In conclusion, by reproducing the Bell correlations 
from a “classical system”, showed emergent nonlocality 
as a side effect of the assumption of indistinguishability/
partial indistinguishability was demonstrated. It was also 
shown that the transition from the “quantum domain” 
of very small phase space of simple dendrograms to the 
“classical domain” of more complex and larger phase 
space of complex dendrogram occurred. 

4. Planck’s constant meaning
We claim that Planck’s constant is actually a measure 

of the indistinguishability of sub-systems (from photons 
 electrons  atoms heat baths), so Planck’s constant 
will emerge for any system that is divided into indistin-
guishable/partly indistinguishable sub-systems. 

5. Reflections on Relation to holographic principle 
and horizon 
Let the whole “Universe” be represented as a gi-

ant dendrogram in which all of the information in that 
universe is present at the circumference with no dynam-
ics, and inside the circle, the dynamics of information 
emerges (fig. 3). Now, it was suggested that Planck’s 
constant represents a fixed amount of information bits 
[29–31]. This complex dendrogram with all information 
is contained in the edge’s routes at which the edges are 
on the horizon (of the dendrogram). When coarse grain 
edges of the dendrogram are started or rather used in only 
a disconnected fashion, detached sub-dendrograms of the 
complex “Universal” dendrogram dynamics emerge. 

Results. The universal dendrogram was coarsely 
grained by joining fixed number (fig. 4A)/random number 
of edges (fig. 4B). The ratios between “p-adic order of edg-
es”/”sum of p-adic-expansion” was −4.0831±0.6331 and 
−4.1677±0.5071 for fixed number of edges and random 
number of edges, respectively, which was approximately 
the ratio of 2log (h)

2log (c)
 ≈ −𝟑.𝟗𝟏.

Please note that at relatively small N (N=5,6..15) com-
pared to the number of edges in the “Universal” dendro-
gram, the mean result was in agreement up to 0.6% of the 
𝒍𝒐𝒈𝟐(𝒉)/𝒍𝒐𝒈𝟐(𝒄) ratio (fig. 4A).

6. Implicate order present in the explicit order: 
Upon correlating the unit simple dendrogram (or its 

p-adic numbers representative of its edges) in terms of 
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Figure 3: explicite to implicite order  and the emergance of planck constant

Fig. 3: Abstract description of the implicate and extrinsic order along side the emergence of Planck’s constant as a measure 
of indistinguishability. The “Universal” dendrogram is shown at the center of the circle with its color spheres edges describing 
each edge 2-adic expansion values of edge route. The outer spheres circles describe the 2-adic values of each edge in the “unit” 
temporal dendrogram with decreasing edge numbers N = 20, 10, 5. Each unit dendrogram 2-adic values were best-matched to 
its corresponding edges in the smaller (higher edge number) circle compared to its non-corresponding edges (see for example 
5 spheres with rings in each circle). Planck’s constant is the measure of indistinguishability, which is a consequence of the 
ignorance of each dendrogram edge from the infinite sub dendrograms that continue from it (outer dotted circles).

Fig. 4: Ratio of log2(p-adic order of 
edge) to log2 (sum of edge p-adic-
expansion) corresponded to the ratio 
by dividing the data to fixed number 
of edges dendrograms (A) and by 
dividing the data to a dendrograms 
with random number of edges (B).

Definition: C=Mean of log2(padic 
order)/log2(∑padic expansion)
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figure 4: emergence of planck constant and speed of light
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cross-correlation coefficient, it was found to be best 
matched to all of its corresponding components in the 
“Universal” dendrogram or to its corresponding com-
ponents in the more complex and larger dendrograms 
(0.1425±0.1515) than if it was compared to the dendro-

gram’s non-corresponding edges in the universal dendro-
gram or non-corresponding edges in the more complex 
dendrogram (0.0108±0.0098). Hence, the holographic 
principle in terms of implicate and explicate orders by 
Bohm [12] was satisfied (fig. 5).

7. Wave function out of classical subsystems
Suppose a very large “Universe” of heat bath exists. 

Sufficiently equal sized large units of sub- heat baths are 
detached. Each heat bath state can be represented by a 
finite dendrogram. It can be claimed that if the sub-heat 
baths have the same N of particles, a finite set of dendro-
grams that can represent all of them and all of their possi-
ble states should exist. This finite set may be considered a 
“wave function” and upon measuring one particular unit 
of sub-heat bath, the structure of its dendrogram can be 
realized, and thus the collapse of the “wave function”will 
occur.

Notice, as already shown in section 6, that each sub-
heat bath dendrogram was very well correlated to its 
corresponding edges in the dendrogram of the “universal” 
heat bath.

8. Measurement process as dynamical process in 
our (based on Lee Smolin’s and Julian Barbour’s) 
maximal variety dynamics. 
Consider an ensemble of dendrograms. As was shown 

(section 6), each unique dendrogram in the ensemble 
correlated best to its corresponding edges in the “univer-
sal” dendrogram or in the more complex dendrograms 
containing these edges.

Thus, when one unique dendrogram in the ensemble 
interacts with the ensemble, it will measure a maximal 
different unique dendrogram (such as in the maximal 
variety principle); in doing so, this unique dendrogram 
will provide much more information on the structure of 
the whole “universal” dendrogram .

The dynamical change in our “Unit” dendrograms 
was quantified by cross-correlating their p-adic repre-
sentation first (fig. 7A, blue trace) to the “chronological” 
consecutive and next with median of the cross-correlation 
coefficients (0.1016). It was then cross-correlated (fig. 
7A, orange trace) between all non-chronological unit 

Figure 5: implicate order 
encoded in explicate order
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maximal  variety principal

Fig. 6: An abstract example of measurement of the wave 
function which is the ensemble of possible combinations of 
possible 2-adic values, which is illustrated as a collection of 
colored spheres between two dendrograms. The maximal 
variety principle suggest both dendrogram on each side of 
the “wave function” should be maximally different.
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dendrograms, with median of the cross-correlation coef-
ficients 0.2300, thirdly (fig. 7A, yellow trace) two pairs 
of random sets of N p-adic values (N as the number of 
edges in the unit dendrogram and each p-adic value is one 
value out of all possible of 2(maximal branch length of actual unit 
dendrogram) combinations) were correlated to each other, 
with median of the cross-correlation coefficients 0.4025. 
For all different sizes of unit dendrograms the results are 
shown (fig. 7A).

The chronological unit dendrograms “chose” to 
interact with much different other, much different unit 
dendrograms (fig. 7A; blue), while the non-chronological 
cross-correlation between “unit” dendrogram was much 
more similar (orange). Moreover, random dendrograms 
with same edge numbers were even more similar (yel-
low). This finding is in accordance to the maximal variety 
principle [9,32] alongside the proposition made in section 
7 on wave function of heat bath ensembles and the col-
lapse of such wave function upon measurement. 

When the universal dendrogram for each N frames in 
the “Universal” as one edge in a new dendrogram was 
coarse grained, it can be seen again that a clear distinc-
tion between differences in p-adic representation between 
consecutive chronological dendrograms compared to the 
p-adic representation of non-chronological dendrograms 
edges were found (figure 7B). Moreover, the coarse-

grained chronological p-adic representation differences 
resembled randomized data with median values for 
non-chronological of 8.4681, chronological of 9.2804, 
randomized data 9.5731, and random binary data of 
9.7620 (fig. 3B).

In conclusion, we demonstrated that the measurement 
process between two dendrograms occurs between two 
maximally different topologies in order for both topol-
ogies to experience different locations of the universal 
dendrogram; this process is in accordance with section 
6 in which the connection of the implicate order to the 
explicit order was shown. In more detail, a sub-system in 
the explicit order was best-fitted to itself in the implicate 
order (more complex dendrogram). Thus, as our results 
in this section show, only two very different sub-systems 
would interact/measure with each other, which in turn 
reflected interactions between two very different areas of 
the implicate order. We emphasize that the measurement 
process is in fact dynamic (more accurately, apparent-
ly dynamic). These statements are well supported with 
our analysis in this section and section 6 above and in 
accordance with Roveli’s (and Smolin’s) relational quan-
tum mechanics interpretation [33].Thus we modeled the 
measurement process as a linkage/relational property of 
two sub-systems in which, in fact, the apparent dynamics 
unfolds/reveals different areas of the “universal” dendro-
gram and the implicate order. Moreover, by using em-

Figure 7: CDF of correlation coefficients in the diffraction experiment between temporally ordered 2-adic representation of 
edges of dendrograms of different sizes N=5...980 (A, blue trace). CDF of correlation coefficients in the diffraction experiment 
between non-temporally ordered 2-adic representation of edges of dendrograms of different sizes N=5...980 (A, orange trace). 
CDF of correlation coefficients between randomly constructed, 2-adic representation of edges of dendrograms of different 
sizes N=5...980 (A, yellow trace). Coarse graining the universal dendrogram for each N=5...980 frames show differences in 
p-adic representation between consecutive chronological dendrograms coarse grained edges (B, blue trace) non chronological 
dendrograms coarse grained edges (B, orange trace) randomization of chronological sequence of dendrogram edges before 
coarse graining (B, yellow trace), random binary data (B, purple trace). 
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figure 7: wave function measurement and emergent dynamics from maximal veraity
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pirical data, the validity of the maximal variety principle 
suggested in past studies was confirmed [32,34].

9. Reconstruction of space time using the maximal 
variety least action principle.
In accordance with recent studies [6, 35], the least 

action principle, which is based on the maximal variety 
principle [9], is a very natural consequence of our anal-
ysis. Thus, how well the chronological “Universal” den-
drogram (edge by edge according to real chronological 
sequence) fits with the chronological time and position 
of detectors in the diffraction experiment that detected 
photons in each frame was examined.

The measure of distinguishability between all edges 
was encoded in the dendrogram and defined:

𝑉𝑖=2−𝑎𝑑𝑖𝑐 𝑝𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 is the 
measure of distinguishability of edge 𝑖 from all edges 𝑗≠𝑖  

The potential energy was taken to be proportional 
to the negative of the measure of distinguishability or 
variety in Lee Smolin’s and Julian Barbour’s terminology 
[6,34,35]:

RE
S =gV

𝑞𝑖𝑗= 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑟𝑜𝑚 𝑉𝑖 𝑡𝑜 𝑉𝑗  𝑖,𝑗∈1…𝑛=𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 
𝑖𝑛 𝑑𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 ,𝑖≠𝑗 is a measure of distinguishability between 
edges 𝑖 and 𝑗

The energy momentum relationships are shown below:

ij
2
q

2
= kineticE

As we showed in section 8, 𝑞𝑖𝑗 should be maximal 
through the chronological measurement/dynamic process. 
Thus:

iP = ijq − jkq  tend to be 0 in order that ijq
i=1, j=i+1

n
∑

will be maximal, and our version of the action is 
slightly different than in the above mentioned study [6]:

ECS
S + RE

S = !N ij
2
q

2i=1, j=i+1

n
∑ + i!z

i=1

n
∑ iP +gV

The variation by 𝑞𝑖𝑗 yielded:

0= !N ijq + i!z +g
∂ iV
∂ ijq

As shown previously [6], the spacetime intervals were 
represented by the Lagrange multiplier �̃�𝑖 after substitut-
ing 𝑞𝑖𝑗 and V𝑖 into the equation above. We calculated �̃�𝑖 
and correlated the result with real space and time in the 

diffraction experiment data [23] (Fig. 8). We evaluated 
the values of the correlation coefficients divided by 2 
times the standard error of the confidence bound, which 
yielded the value of the real chronological spacetime 
intervals. These values were correlated to the reconstruct-
ed intervals is in the upper 0.9922 and 0.9998 percentile 
of the values for randomized walk on dendrogram edges 
sequence correlated to the real chronological spacetime 
and to the real, but non-chronological, spacetime, respec-
tively.

10. Differences between our and Smolin’s theories
In our model, kinetic energy and momentum are 

consequences of measurement (that produce an apparent 
dynamic) between unit and unit dendrograms or edge and 
edge in the universal dendrogram (𝑞𝑖𝑗).

Potential energy (V) is defined as a measure of distin-
guishability, which is encoded in the Universal dendro-
gram or in the coarse-grained dendrogram.  

The quantum potential encodes the information con-
tained in the topology of the dendrogram. It is possible to 
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Figure 8: reconstruction of 
space-time intervals
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Fig. 8: Correlation coefficient divided by 2-times the 
standard errors (SE) of the confidence boundaries of 
reconstructed spacetime intervals from randomized walk 
on full dendrogram edges sequence correlated to its 
randomized real space time intervals (blue trace). cdf of 
correlation coefficiants of reconstructed spacetime intervals 
from randomized walk on full dendrogram edges sequence 
correlated to real chronological spacetime intervals (orange 
trace). Correlation coefficient value of the real chronological 
spacetime intervals correlated to the reconstructed intervals 
from chronological walk on full dendrogram edges (yellow 
vertical trace).

Definition: 
R=Correlation 
coefficient 
divided by 2 
times standard 
errors of the 
confidence 
bounds 
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compute the quantum potential for unit dendrogram or for 
the universal dendrogram.

In contrast to Smolin [1,2,6,34], we emphasize that 
all p-adic points are always present (this emphasis is 
more in accordance to Barbour’s [23,32] “always present 
events’’) and do not need to appear by a dynamic process. 
In contrast to Barbour, we did not require probabilities in 
phase space to produce the apparent dynamics. 

We note that we do not need to postulate the funda-
mentality of time momentum and energy as in Smolin’s 
study [6,34,35].

We note again that at the implicate order level, all di-
mensional points of the Universe already exist and are not 
dependent on referenced measurement (as the holograph-
ic principle clearly states for the horizon). Only upon the 
process of expansion into p-adic expansion strings does 
the p-adic points acquire a relational nature among them-
selves. So, in fact we grew from nonrelational dimen-
sionless p-adic numbers (points) to relational information 
between p-adic expansions (encoded as one-dimensional 
information string) to dendrograms (as two-dimensional 
information structure) and then to dynamics (relation-
ships) between points/dendrograms (coarse grained) that 
produce spacetime. It should be noted that the dimension-
ality of spacetime is produced by the sequence 2-∞  20  
 21  22. Thus, although our theory is relational, and 
at its core, it is a collection of non-referenced determined 
numbers and thus a purely number theory 

11. Concluding remarks
The presented DH-theory is an attempt to re-estab-

lish realism in physics (including quantum mechanics) 
by combining it with so popular nowadays information 
approach to physics starting with Wheeler’s [36] “it from 
bit” to modern quantum information reconstructions of 
quantum theory, such as found in a study by D’ Aria-
no [37]. We formalized the Bohmian implicate versus 
explicate order structuring of physics via p-adic number 
theoretic versus dendrogram representations. The latter is 
of the purely information nature. All observable physi-
cal processes are realized as interactions between “uni-
versal’’ dendrograms representing physical systems in 
which the “Universe” is modeled as a huge dendrogram; 
four-dimensional spacetime physics is reconstructed 
based on the holographic principle. Classical-quantum 
interplay was quantified through the degree of indistin-
guishability between dendrograms. Dendrograms can be 
considered special mathematical structures in Smolin’s 
views on events. His least action principle was used to 
connect dendrogramic model with processes in physical 
space-time.

We restricted matching of our theory with the real 
experiment to the data from diffraction experiment but 
in fact it can be applied to any classical or quantum. In 
the future, we plan to perform extended analysis of the 
experimental data both from quantum physics and statis-
tical mechanics to validate further data matching with our 
theory. 

Finally, we remark that creation of the DH-theory 
can be considered as the important step in coupling the 
mathematical models developed within p-adic theoretical 
physics [14–18] with real experimental data and cor-
relations produced in classical and quantum physics. We 
remark that p-adic theoretical physics was born within 
string theory. Heuristically theory of interacting den-
drograms has some similarity with theory of interacting 
strings. We also point to the monograph [19] in that the 
basic model with p-adic pre-space was presented in very 
detail although without any coupling to real experimental 
data (or even the method for such coupling).
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