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Abstract: White matter hyperintensity (WMH) has been considered the primary biomarker from1

small-vessel cerebrovascular disease to Alzheimer’s disease (AD) and has been reported for its2

correlation of brain structural changes. To perform WMH related analysis with brain structure, both3

T1-weighted (T1w) and (Fluid Attenuated Inversion Recovery(FLAIR) are required. However, in a4

clinical situation, it is limited to obtain 3D T1w and FLAIR images simultaneously. Also, the most of5

brain segmentation technique supports 3D T1w only. Therefore, we introduced the semi-supervised6

learning method that can perform brain segmentation using FLAIR image only. Our method achieved7

a dice overlap score of 0.86 for brain tissue segmentation on FLAIR, with the relative volume difference8

between T1w and FLAIR segmentation under 4.8%, which is just as reliable as the segmentation9

done by its paired T1w image. We believe our semi-supervised learning method has a great potential10

to be used to other MRI sequences and provide encouragement to people who seek brain tissue11

segmentation from a non-T1w image.12

Keywords: segmentation; deep-learning; FLAIR; T1w; white matter hyperintensity13

1. Introduction14

Automated quantification of structural MRI, such as cortical volume or thickness, has been15

commonly used as an objective indicator of neurodegeneration related to aging, stroke, and dementia.16
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Recently, combining other MRI-based biomarkers such as white matter hyperintensities (WMH) and17

susceptibility-weighted images have been tried in AD or aging [1,2] research.18

Among them, WMH indicates that bright area appear in the white matter on T2 fluid-attenuated19

inversion recovery sequences (T2-FLAIR). The etiologies of WMH are diverse and considered primarily20

markers of small-vessel cerebrovascular disease. The WMH may represent increased blood-brain21

barrier permeability, plasma leakage, and degeneration of axons and myelin [3].22

Larger WMH are associated with an accelerated cognitive decline and increased risk for AD [4].23

Recent studies suggest that WMH may play a role in AD’s clinical symptoms and a synergistic24

contribution of both medial temporal lobe atrophy (MTA) and WMH on cognitive impairment25

and dementia severity in AD [5]. Patients with mild cognitive impairment (MCI) or early AD had26

concurrent WMH, which shows more significant cognitive dysfunction than those with a low WMH27

burden [5]. WMH may predict conversion from MCI to AD [6]. Besides cognitive impairment, WMH28

has reported a relationship with structural changes and cognitive performance, specially in processing29

speed, even in cognitively unimpaired participants [7].30

In clinical practices, WMH burden is usually estimated by visual scale such as Fazekas’ rating31

scale, but it is difficult to use as an objective indicator. Quantification of WMH is essential to evaluate32

the association of WMH burden with cognitive dysfunction and longitudinal change of WMH volume.33

So, a reliable automated method for measuring WMH and cortical volume is helpful in clinical34

practices. Recently, it is reported that WMH progression is associated with more rapid cortical thinning.35

Therefore, the automated WMH burden and cortical volume measurement method on FLAIR is36

clinically valuable for trace the longitudinal change in patients with cognitive impairment [8].37

Thus, brain structural analysis, specially volumetric analysis, combined WMH could provide more38

descriptive information to reveal the the relationship between cognitive performance and MRI-based39

biomarkers.40

There are various brain tissue segmentation tools in 3D T1-weighted (T1w) images, such as41

FreeSurfer [9], SPM [10], and FSL [11]. However, the other MR sequence (Fluid Attenuated Inversion42

Recovery(FLAIR), Susceptibility weighted imaging(SWI), Gradient echo sequence(GRE), etc.) rarely43

developed brain tissue segmentation because it does not intend to measure brain volume or analyze44

brain morphology precisely. In reality, it is rare for clinicians to obtain both 3D T1w and FLAIR images45

due to the Burden of scanning time. Ultimately, this fact hinders the approach of performing brain46

tissue segmentation on non-T1w sequences.47

In this study, we propose a brain tissue segmentation method to obtain a trainable brain label48

on FLAIR. With given T1w and FLAIR paired datasets, we initially generate brain labels on FLAIR49

images. Then, improved the label quality using the semi-supervised learning method. Finally, we train50

a deep neural network-based brain segmentation model for FLAIR MRI data. The proposed method51

could be applied in SWI, GRE, and T2, which is hard to obtain brain segmentation labels by itself, to52

generate a trainable dataset.53

2. Materials and Methods54

2.1. Subjects55

The following study was approved by Institutional Review Board(IRB). As shown in Table 1, Our56

dataset was supported by Catholic Aging Brain Imaging (CABI) database, which holds brain MRI57
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scans of outpatients at the Catholic Brain Health Center, Yeouido St Mary’s Hospital and Eunpyeong58

St. Mary’s Hospital, the Catholic University of Korea.59

Table 1. Summary of the datasets used for train and validation.

Dataset MRI No. of Subjects Matrix Size Pixel Spacing (mm) Purpose
CABI T1w 68 256 x 256 x 256 1.0 x 1.0 x 1.0 Brain tissue segmentation
CABI FLAIR 68 348 x 384 x 28 0.57 x 0.57 x 6 Brain tissue segmentation
CABI FLAIR 308 768 x 768 x 32 0.27 x 0.27 x 5 WMH segmentation

For Brain tissue segmentation, a total of 68 subjects with paired T1w image and FLAIR image60

were obtained from Yeouido St Mary’s Hospital and Eunpyeong St. Mary’s Hospital, the Catholic61

University of Korea, from 2017 to 2019. The images had a consistent matrix size of 256 x 256 x 256,62

along with its pixel spacing of 1.0mm x 1.0mm x 1.0mm.63

For WMH segmentation, initially, a total of 396 FLAIR images with its clinically confirmed WMH64

label were obtained from Eunpyeong St. Mary’s Hospital, the Catholic University of Korea, from 202065

to 2021. The images had a consistent matrix size of 348 x 384 x 28, along with its pixel spacing of66

0.57mm x 0.57mm x 5mm. However, due to the various spectrum of WMH in the dataset, we excluded67

the FLAIR images with neglectable WMH regions, along with mislabeled cases, which ended up a68

total of 308 FLAIR images at the end.69

2.2. Overview of Proposed Method70

Figure 1. The pipeline of the proposed method. Blue box: input or output data; Green box: computation
process.

Our goal is to produce a brain tissue and WMH segmentation on the FLAIR image exclusively.71

Since the FLAIR image itself lacks the structural information and give the hardship to create the72
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ground-truth label, we will proceed with the following process shown in Figure 1: A. Brain Tissue73

Segmentation from FLAIR, B. Brain Tissue Segmentation Enhancement, and C. Brain with WMH74

Segmentation.75

2.3. Brain Tissue Segmentation from FLAIR76

2.3.1. Segmentation77

In this study, each tissue (brain tissue and WMH) was labeled T1w and FLAIR image78

separately. For the T1w image, we used FreeSurfer (6.0, Boston, USA) reconstruction(recon-all),79

then extracted brain labels consisting of cerebral gray matter (CblGM), cerebral white matter (CblWM),80

cerebellum gray matter (CbrGM), cerebellum white matter(CbrWM), and lateral ventricle (Vent) from81

aseg+aparc.mgz [9].82

Reference segmentation of WMH were performed by manual outlining on the FLAIR images.83

A total of 308 datasets were manually segmented on FLAIR images, producing binary masks with84

the value of 0 (non-WMH class) or 1 (WMH class). The manual segmentation process was performed85

through a consensus among four certified radiologists (JY Kim, SW Oh, MK Lee), who did not have86

access to T1w images for subjects. Chronic infarcts were hypointense with a hyperintense rim (probably87

cystic) lesions on the FLAIR image and were excluded in WMH.88

Figure 2. The example of image and segmentation label of T1w and FLAIR image.

2.3.2. Co-registration89

Co-registration is a method to align two individual MRIs obtained from the same subject. This90

process is required when especially alignment needs to be made with MRIs with a different modality91

from the same subject. In our case, this is used to align the T1w image to the FLAIR image. Since92

the primary purpose of the Brain tissue segmentation from FLAIR is to generate initial brain tissue93

labels on FLAIR images, we calculated the transform matrix from T1-weighted (T1w) MRI to FLAIR94

MRI using the spatial co-registration method with SimpleITK [12]. Then we segmented T1w brain95

tissue using T1w brain segmentation tools. We performed the brain tissue label registration on the96

T1w image and the transform matrix based on FLAIR images’ brain tissue label. The co-registrated97

brain tissue label is on FLAIR images. However, due to differences in image spacing and dimension, it98

did not delineate brain tissue structure accurately. Therefore, we iteratively enhanced the brain tissue99

segmentation labels of FLAIR images.100
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2.4. Brain Tissue Segmentation Enhancement101

For brain tissue segmentation enhancement, we trained a convolutional neural network(CNN)102

and segmented brain tissue from FLAIR. As for the initial segmentation model, we used U-Net [13]103

with EvoNorm layer [14]. Histogram Equalization, Rescale-Intensity, and Z Normalization were used104

for the pre-processing, and we set the input shape as 196 x 196.105

With the following process, the CNN was able to learn the geometrical representation of brain106

morphology. Thus, the delineation was more precise afterward than the brain tissue label obtained107

T1w brain segmentation label. However, a small region distant from the brain could miss-labeled,108

or the peri-ventricular area could be assigned as none tissue due to the initial brain tissue label’s109

impreciseness. Therefore, we performed a morphological correction (removing isolated label) to110

generate the final brain tissue label.111

2.4.1. Morphological label correction112

After training brain tissue segmentation in FLAIR image, segmentation rather delineates brain113

tissue clearly than the brain tissue label obtained from T1w images. However, there some noise114

that incomplete training label data could influence. Thus, we perform a simple morphological115

correction method based on brain structure characteristics to enhance brain tissue label. All brain tissue116

(including ventricles) must be connected 26 ways in 3 dimensions. Thus we performed connected117

component-based noise reduction. Furthermore, the ventricles label could be miss-labeled as none118

tissue due to the similarity between ventricles and none-tissue. Thus we use the fill-hole method to119

compensate it [15]. The morphological refined brain tissue does not have any tissue label isolated and120

a hole in the ventricles.121

2.5. Brain with WMH Segmentation122

The following study aims to design a deep learning-based segmentation learning framework123

instead of proposing a novel segmentation network. Therefore, we used three well-known124

segmentation architectures for Brain tissue segmentation: U-Net [13], U-Net++ [13], and125

HighRes3DNet [16]. For WMH segmentation, we only used U-Net architecture with fine-tuning126

[17]. We used the same number of kernels size in each architecture in the original article. We set127

the input and output shape to 196 x 196 and used the EvoNorm layer [14] instead of the batch128

normalization and activation function. For U-Net, we did not use the deep-supervision method, and129

for HighRes3DNet, we did not use the Monte Carlo sampling strategy using the dropout layer for130

pure architecture comparison.131

2.5.1. Pre-Processing132

Even though Brain tissue segmentation and WMH are trained individually, we still had to133

resample the whole dataset into a 1mm isometric space, since our purpose is to merge the segmentation134

result of the brain tissue and WMH. For WMH segmentation, we used the skull-stripping method with135

HD-BET [18] on the FLAIR images of the WMH dataset to focus our train on the white-matter region.136

Also, to deal with the differences in MRI’s intensity variance, we used the min-max normalization137

technique with percentile cut-off of (0.05, 99.95), histogram normalization, and z-score normalization138

by using TorchIO [19]139
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2.5.2. Data Augmentation140

Data augmentation is an inevitable process to increase the robustness of segmentation. As the141

word itself describes, the input data gets augmented from the original dataset and added during the142

training. All of our data augmentations were applied by using TorchIO [19].143

• RandomAffine: a scale parameter in range of 0.85 1.15144

• RandomMotion: a degrees value to 10 with a translation value to 10 in millimeter145

• RandomBiasField: a magnitude coefficient parameter in range of -0.5 to 0.5146

• RandomNoise: a mean value of gaussian distribution in range of 0 to 0.025147

• RandomFlip: a spatial transform value to 2, which inverse the Z axis148

2.5.3. Experiment Setup149

All deep neural network learning were achieved using torch deep learning library [20] on a150

workstation with Intel i9-9900X 3.5Ghz CPU, 128G RAM, and two NVIDIA RTX 2080 11GB GPU.151

We used torchIO [19] medical deep learning library for pre-processing, augmentation, patch-based152

learning based on torch.153

For Brain Tissue Segmentation, we distributed 68 subjects with a split ratio of 0.8; 54 subjects for154

training and 14 subjects for validation. In the data pre-processing, we used the following normalization155

technique; min-max normalization with percentile cut-off (0.05, 99.95), histogram normalization, and156

z-score normalization. We used the medical image-based augmentation technique to improve the157

robustness of CNN segmentation architecture as mentioned above. After that, we used patch-based158

training, which crops 128 samples per FLAIR image at a random location4.. The size of cropped159

image is 128x128. Lastly, we train CNN segmentation network using cross entropy loss function160

[21] and adamW optimizer [22] with learning rate=0.001, betas=(0.9, 0.999), eps=1e-08, and weight161

decay=0.01. As for the training process, U-Net and U-Net++ was terminated at 500 epochs. But162

considering the different architecture that HighRes3DNet had, we gave twice more epochs to get its163

loss to be converged. After finish training architecture, we used grid-based sampling and aggregation164

to inference segmentation results.165

For WMH Segmentation, we distributed 308 subjects with a split ratio of 0.9; 277 subjects for166

training and 31 subjects for validation. We resampled the image spacing of X-axis and Y-axis of the167

FLAIR image and its paired ground-truth to 1.0 and 1.0. (Z space was excluded from this process168

since our training process requires the 2D Plane data) We skull-stripped the resampled MRI image169

using HD-BET [18], an open-source brain extraction tool to focus on the WM region. As for the data170

augmentation, we excluded the histogram normalization from the augmentation process to deal with171

FLAIR MRI images taken with different sequences, such as fat suppression. Instead, we used the172

normalization technique, min-max normalization with (0, 100) percentile and z-score normalization.173

No medical image-based augmentation technique was used on WMH image processing to avoid any174

confusion on the already sensitive object and the other experiment setup is the same as Brain tissue175

segmentation. For the loss function, we used DiceBCE loss function, which is a combination of Dice176

loss function [23] and Binary Cross Entropy loss function [21] to deal with the varying size that WMH177

has. Also, we used adamW optimizer [22] with learning rate=0.001, betas=(0.9, 0.999), eps=1e-08, and178

weight decay=0.01.179
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2.5.4. Metrics for Evaluation180

Our goal is to compare the segmentation done with the FLAIR image to the segmentation done181

with the T1w image and WMH. Therefore, our primary evaluation method is the dice overlap score182

[24], which measures the similarity between the ground-truth and the prediction. In our case, the183

ground-truth (A) is the original label and volume from the reference FLAIR, and the prediction (B) is184

the label and volume prediction made with our trained model with the FLAIR image.185

186

• Dice Overlap Score (A, B) =
2 |A ∩ B|
|A|+ |B|187

Since the dice overlap is the comparison between the reference FLAIR (ground-truth) and the188

predicted segmentation, we will need to measure the difference between the reference T1w and the189

predicted segmentation to see if the prediction would match the most fundamental ground-truth.190

• Relative Difference (X, Xre f erence) =
X− Xre f erence

Xre f erence
∗ 100191

3. Results192

In this section, we will compare each model’s detailed segmentation performance by comparing193

the average dice overlap score of individual brain tissues and comparing the relative difference of194

segmented volume with the reference T1 and the segmentation result of each model done with its195

paired FLAIR. Also, we will report the segmentation performance of WMH segmentation, which was196

done with an individual dataset.197

3.1. The Dice Overlap Score Comparison in Brain Segmentation198

Cerebrum
GM

Cerebrum
WM

Cerebellum
GM

Cerebellum
WM Ventricle Average

U-Net++ 0.76±0.02 0.87±0.01 0.91±0.01 0.83±0.03 0.89±0.03 0.85±0.06
U-Net 0.76±0.02 0.87±0.01 0.91±0.01 0.86±0.03 0.90±0.03 0.86±0.06
HighRes3DNet 0.69±0.02 0.84±0.01 0.87±0.02 0.79±0.04 0.87±0.05 0.81±0.08

Table 2. The comparison of the average dice overlap score of each model on individual brain tissues.

To evaluate the average dice overlap score, we demonstrate the following Table 2, which has199

the average dice overlap score of each model on each brain tissue. All the models exceeded the200

average dice overlap score of 0.80 as shown in Table 2. Also, HighRes3DNet, which had an entire 3D201

convolutional network, a different segmentation architecture than U-Net and U-Net++ could get a202

similar segmentation result of the U-Net series.203
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Figure 3. The comparison of the FLAIR reference and the predicted segmentation from each model
(U-Net++, U-Net, and HighRes3DNet)

Figure 3 shows the segmentation results of each model. By comparing each model’s predicted204

segmentation results to its ground-truth, we could observe that the results were similar to each other205

as the average dice overlap score, as it was demonstrated in Table 2. The U-Net based architectures206

had a similar prediction on their segmentation, which is hard to notice the difference visually. On the207

other hand, the predicted segmentation of HighRes3DNet had a noticeable difference in its Cerebrum208

GM. Even with visual comparison, HighRes3DNet had a lesser region in Cerebrum GM and labeled209

more in Cerebrum WM region instead.210

3.2. Measured Volume Comparisons between T1w and FLAIR Images211

Measurement Brain Tissue Reference (T1) Reference (FLAIR) U-Net++ U-Net HighRes3DNet

Volume
(ml, mean±SD)

Cerebellum GM 430.8±45.7 444.5±47.3 458.0±45.4 455.4±42.0 408.0±34.6
Cerebellum WM 499.3±55.8 516.3±57.5 510.4±52.7 519.5±54.4 559.3±56.4
Cerebrum GM 100.2±10.2 103.5±10.7 102.2±9.6 101.1±9.6 96.7±8.9
Cerebrum WM 23.2±3 24.0±3.1 22.5±3.1 23.7±2.8 22.9±3.6

Lateral Ventricles 41.2±20.8 42.5±21.6 39.1±20.6 39.9±20.7 41.5±21.3

Relative Difference
(%, mean±SD)

Cerebellum GM - 3.2±1.1 6.4±2.5 5.9±2.8 5.4±4.0
Cerebellum WM - 3.4±0.9 2.5±2.0 4.1±2.0 12.2±3.6
Cerebrum GM - 3.3±1.4 2.7±2,2 2.3±1.7 4.3±3.1
Cerebrum WM - 4.3±3.2 6.1±3.7 6.8±6.7 9.7±7.9

Lateral Ventricles - 3.1±1.4 6.1±4.3 4.7±4.3 5.4±6.0
Average Difference

(%, mean±SD) - - 3.4±0.5 4.8±2.0 4.8±1.7 7.4±3.4

Table 3. The volume of individual brain tissue of the reference T1, reference FLAIR, U-Net++, U-Net,
and HighRes3DNet with the relative difference between the reference T1 and the designated column.
GM, gray matter; SD, standard deviation; WM, white matter.

Table 3 shows the volume of segmentation (ml) and the relative difference between the segmented212

volume and the reference T1 (%). The volume of individual brain tissue shared the similarity in213

the U-Net and U-Net++ with the same average relative difference of 4.8%. On the other hand,214

HighRes3DNet shared a similar relative difference except for the Cerebellum WM (this is due to the215

overextended segmentation made on Cerebellum WM of HighRes3DNet, demonstrated in Figure 3)216

3.3. The Dice Overlap Score Comparison in WMH Segmentation217

Dice Overlap Score Precision Recall F1 Score
U-Net 0.81±0.07 0.86±0.06 0.84±0.08 0.84±0.04

Table 4. The average dice overlap score of WMH, along with precision, recall, and F1 score value.
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Figure 4. The comparison of WMH ground-truth and WMH prediction

The computation of the proposed WMH segmentation took about 18 hours total, and the DiceBCE218

losses of U-Net converged in 500 epochs. The dice overlap score of WMH was about 0.81, and the219

value of precision and recall were higher than the dice overlap score itself as shown in Table 4.220

4. Discussion221

In this study, we developed reliable automated segmentation method using FLAIR for WMH and222

cortical volume without 3D T1-weighted volume images. In clinical practices, it is not easy to get 3D223

T1-weighted volume images due to long scan time, MR machine performance, and patient’s condition.224

On the other hand, FLAIR images is more common and essential sequence to evaluate the gaining225

brain and easy to get in routine practices, so this method is applicable to more patients.226

The result of Brain Tissue Segmentation Enhancement suggests that semi-supervised learning227

enabled the direct training of brain tissue segmentation on FLAIR image only. By following the228
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procedure shown in Figure 1, the transformation between two different MRI modalities T1w and229

FLAIR could be made with improvement on labeling quality.230

For Brain segmentation, there was no comparable reference of dice overlap score with231

segmentation done with FLAIR only. However, the comparison of volumes from the reference T1w232

and the segmentation result could be made, which is less than 10% for all three models; 0.86 for233

U-Net and 0.85 for U-Net++, and 0.81 for HighRes3DNet. Considering the relative difference of 3.4%234

already existed from the reference FLAIR, we could consider that our method is sufficient except the235

HighRes3DNet. At the same time, we believe the architectural difference of HighRes3DNet caused236

this issue. With more given time on training, HighRes3DNet would have similar results to what U-Net237

and U-Net++ achieved.238

As we proposed, our method could measure the volume of brain tissue and WMH using only the239

FLAIR image. However, we did not evaluate the association of WMH burden with cortical volume or240

cognitive impairment. In a further study, the evaluation of the correlation WMH and cortical volume241

with cognitive decline dependency on age using FLAIR for clinical feasibility needs to be done.242

T2, SWI, and GRE are also known for the difficulty of getting their brain tissue labels because it is243

pretty much impossible to get their structural information without its paired T1w image. As mentioned244

before, there are tremendous medical segmentation researches done with deep learning-based, yet not245

that many considered getting structural information from a single modality except T1w MRI. However,246

with the proposed semi-supervised learning method, T2, SWI, and GRE should be applicable as well.247

5. Conclusions248

We introduced the semi-supervised learning method for brain tissue segmentation using only249

FLAIR image. With our brain segmentation results, we demonstrated that our FLAIR segmentation250

is just as reliable as the segmentation done with its paired T1w image and could perform the brain251

tissue segmentation and WMH segmentation from a single FLAIR image. Furthermore, the results252

have shown that our semi-supervised learning method may not be limited to FLAIR and could also be253

applied to T2, SWI, and GRE with the difficulty of getting brain tissue labels without its paired T1w254

image. We believe our semi-supervised learning method could impact those who seek brain tissue255

segmentation from non-T1w image sequences.256
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