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Abstract: This paper proposes a definition of fractional line integral, generalising the concept of fractional1

definite integral. The proposal replicates the properties of the classic definite integral, namely the2

fundamental theorem of integral calculus. It is based on the concept of fractional anti-derivative used3

to generalise the Barrow formula. To define the fractional line integrals the Grünwald-Letnikov and4

Liouville directional derivatives are introduced and their properties described. The integral is defined5

first for broken line paths and afterwards to any regular curve.6
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1. Introduction10

It is no use to refer the great evolution that made Fractional Calculus invade many scientifical and11

technical areas [5,7–9,20]. Advances in various aspects of fractional calculus led to a question: why there12

are no fractional conterparts of some classic results? In fact and notwithstanding the progresses there are13

several singular situations. One of them was until recently the non existence of definition for “fractional14

definite integral”. This gap has been filled by Ortigueira and Machado [14]. Here, we will try to fill in15

another gap, by introducing a definition of fractional line integral. This generalization was motivated16

by the results presented in [19] where classic theorems of vectorial calculus were introduced but for17

integrations over rectangular lines. With the integral introduced here, the Green theorem, for example,18

can be generalised. To do it, we profit the results stated in [17] to propose a fractional line integral. We19

use directional derivatives. However, as not all the directional derivatives are suitable, according to the20

considerations done in [17] we opted for the directional derivatives resulting from the generalization of21

the Grünwald-Letnikov (GL) and Liouville (L). These are introduced and their main properties listed. It is22

important to refer the presentation of the Liouville directional regularised derivative. We consider the23

classic definite Riemann integral and list its properties that serve as guide to defining the fractional definite24

integral, since we require they have the same properties. The fractional definite integral is expressed in25

terms of the anti-derivative generalising the Barrow formula.26

For introducing the fractional line integral (FLI) we start by defining it on a segment of an oriented27

straight-line. This procedure is enlarged to broken-line paths formed by a sequence of connected28
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straight-line segments. Using a standard procedure consiting in approximating a curve by a sequence29

of broken-lines we introduce the integration over any simple rectifiable line. Its main properties are30

presented.31

The paper outlines as follows. In Section 2 we introduce the required background. In Section 3 we describe32

the GL and L directional derivatives that we will use in definition of the fractional line integral. The33

corresponding properties are also presented. In Section 4 we introduce the fractional line integral and34

main properties.35

2. Background36

2.1. Functional framework37

The theory we will develop below is expected to be useful in generalising the classic vectorial38

theorems suitable for dealing with fractionalisations of important equations of Physics as it is the case39

of Maxwell equations [12]. Therefore, we will need a framework involving functions f (t), t ∈ R, that40

are of exponential order (to have Laplace transform) or absolutely or square integrable (to have Fourier41

transform). In particular, we will assume also that they42

1. are almost everywhere continuous;43

2. have bounded variation;44

3. verify:

| f (x)| < A
1

|x|γ+1 , γ, A ∈ R+, for x < x∞.

In particular, we can have f (x) ≡ 0, x < x∞.45

Remark 1. If a given function has bounded support, we will extend it to R, with a null extrapolation. This keeps46

our framework with the maximum generality.47

2.2. Suitable fractional derivatives48

In [14] a discussion on the problem of fractional derivative (FD) definition was initiated and formalised
through the introduction of two defining criteria. In [16] it was shown that for applications we require
derivatives verifying the strict sense criterion that exiges functions defined on R in order to keep valid
some classic relations. In this line of thought, we used such derivatives to be the base of the introduction
of a definite fractional integral [17].They are the Grünwald-Letnikov (GL) and (regularised) Liouville (rL)
derivatives [6,10,16,21]. The forward Grünwald-Letnikov and Liouville derivatives are given by

Dα f (x) = lim
h→0+

∞
∑

n=0
(−1)n (−α)n

n! f (x− nh)

hα
, (1)

where (a)k represents the Pochhammer symbol for the raising factorial, and

Dα
L f (x) =

1
Γ(−α)

∫ ∞

0

[
f (x− τ)− u(α)

N

∑
n=0

(−1)n f (n)(x)
n!

τm

]
τ−α−1dτ, (2)
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where N is the integer part of α, so that α− 1 < N ≤ α, N ∈ N0. In spite of our work is based in the
derivatives GL and rL we include one version of directional derivative for the usual Liouville derivative
(L) [6,21]

RLDα
+ f (x) :=

1
Γ(m− α)

dm

dxm

∫ x

−∞
(x− ξ)m−α−1 f (ξ)dξ, (3)

and the Liouville-Caputo derivative (LC) [5]

LCDα
+ f (x) :=

1
Γ(m− α)

∫ x

−∞
(x− ξ)m−α−1 dm

dξm f (ξ)dξ, (4)

where m− 1 < α ≤ m, m ∈ Z+.49

The study of the equivalence of the two was done in [13]. It is a simple task to show that they are50

really equivalent for functions with LT or FT. Without intending to explore existence problems (see [13])51

we can say that f (x) must decrease to zero as x goes to −∞, in agreement with our assumption above 2.1.52

Remark 2. The concept of “forward” is tied here to the causality in the sense of “going from past to future.” This53

implies not only an order but also a direction on the real line.54

These derivatives enjoy relevant characteristics namely the index law (29) [10,13]. This means that
given a FD of order α > 0, there is a FD, of negative order, that we will call “anti-derivative” and verifying

DαD−α f (x) = D−αDα f (x) = f (x). (5)

It can be shown [14] that the GL, rL, or LC, FD of the constant function are identically null. The L derivative
of a constant function does not exist, since the integral is divergent. It must be stressed here that, for
negative order (anti-derivative), rL, L, and LC are equal:

Dα
L f (x) =

1
Γ(−α)

∫ ∞

0
f (x− τ)τ−α−1dτ = − 1

Γ(−α + 1)

∫ ∞

0
f (x− τ)dτ−α, α < 0. (6)

Remark 3. Everything what will be done here can be replicated for the backward derivatives. We will not do it,55

since it is not so interesting.56

2.3. Order 1 definite integral57

Consider a closed interval [a, b] ⊂ R where f (x) is continuous. There are several ways of introducing58

the definite integral [1,2]. Probably, the simplest is through the Riemann sum.59

Definition 1. Divide the interval [a, b] into N small intervals with lengths ∆i, i = 1, 2, · · · , N. Let ξi (i =

1, 2, · · · , N) be any point inside each small interval. We call the define integral of f (x) over [a, b] the limit [1]

S = lim
max(∆i)→0

N

∑
i=1

f (ξi)∆i (7)

The sum S will be represented by
∫ b

a f (ξ)dξ.60

Using the time scale approach, we can define a nabla derivative and its inverse [15]. This is given by

f (−1)(x) = lim
sup(∆i)→0

∞

∑
i=0

∆i f (x− hi)
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where hi = ∑i−1
k=0 ∆k. With this anti-derivative we can rewrite (7) as

∫ b

a
f (x)dx = f (−1)(b)− f (−1)(a) (8)

By simplicity, we can use equal length intervals ∆i =
b−a

N = h, i = 1, 2, · · · , N, h > 0, and ξi uniformly
spaced, so that we can set, for example, ξi = a + (i− 1)h = b− ih, i = 1, 2, · · · , N. We have, then

∫ b

a
f (x)dx = lim

h→0
h

N

∑
i=0

f (a + ih) = lim
h→0

h
N+1

∑
i=1

f (b− ih) (9)

2.4. Properties of a definite integral61

The integral defined in the previous sub-section has several interesting properties that we will require62

to be verified also by the fractional definite integral. They are63

1. Linearity

∫ b

a
[A f (x) + Bg(x)] dx = A

∫ b

a
f (x)dx + B

∫ b

a
g(x)dx (10)

for any A, B,∈ R.64

2. Limit reversion

∫ a

b
f (x)dx = −

∫ b

a
f (x)dx (11)

3. Domain partition
Let a < c < b. Then∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx = f (−1)(c)− f (−1)(a) + f (−1)(b)− f (−1)(c) (12)

4. Fundamental theorem of integral calculus (FTIC)65

Theorem 1. Define F(x) by

F(x) =
∫ x

a
f (t)dt, x ∈ [a, b] (13)

The function F(x) has three important properties: continuity on [a, b], differentiability on (a, b), and

F′(x) = DF(x) = f (x), x ∈ (a, b). (14)

This leads to the well-known Barrow formula∫ b

a
f (x)dx = F(b)− F(a). (15)

This result shows that the function F(x) is aside an additive constant the anti-derivative of f (x). This66

establishes the connection between anti-derivative and primitive. The anti-derivative is the left and right67

inverse of the derivative, while the primitive is only right inverse (see [18]).68
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2.5. Fractional definite integral69

A generalisation of the concept of definite integral must be conform with the properties described in70

the previous sub-section. The first approach to obtain a fractional definite integral was done in [17]. Here,71

we are going to present a slightly different definition.72

Definition 2. We define α-order fractional integral (FI) of f (x) ( f (−∞) = 0) over the interval (−∞, a) by

Iα f (−∞, a) =
1

Γ(α)

∫ ∞

0
f (a− τ)τα−1dτ =

1
Γ(α + 1)

∫ ∞

0
f (a− τ)dτα = f (−α)(a), (16)

For simplification, we will use the notation

Iα f (−∞, a) =
∫ a

−∞
f (x)dxα

Corollary 1. If b > a, then:

Iα f (a, b) =
∫ b

a
f (x)dxα = f (−α)(b)− f (−α)(a), (17)

In fact, this relation must be valid, in order to keep valid the formula (12). The relation (17) is nothing else than the73

fractional Barrow formula.74

The definition of fractional definite integral (17) is consistent with fractional fundamental theorem of75

integral calculus (integer order):76

Theorem 2.
IαDαg(a, x) = D−αDαg(x)− D−αDαg(a) = g(x)− g(a). (18)

and
Dα [Iαg(a, x)] = g(x) (19)

These results come immediately from the properties of the rL (or GL) derivative. In particular, the77

derivative of a constant is zero.78

3. The Grünwald-Letnikov and Liouville directional derivatives79

The usefulness, advantages, and properties of the GL and rL derivatives, introduced above, were80

studied in [12,13,16,18]. Here, we are going to present their directional formulations.81

Definition 3. Consider a function f (x), x ∈ Rn, and let v ∈ Rn be a unitary vector defining the direction of
derivative computation and the half straight-line

{
ξ : ξ = (x− khv) , h ∈ R+, x ∈ Rn k ∈ N0

}
. (20)

Consider a continuous function, f (x), such that | f (x− kv)| decreases at least as 1
k|α|+1 , when k → ∞ [12]. We

define the GL directional derivative as

Dα
v f (x) = lim

h→0
h−α

∞

∑
k=0

(−α)k
k!

f (x− khv), (21)
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where again (a)k represents the Pochhammer symbol for the raising factorial.82

The relation of the GL and Liouville derivatives studied in [13] leads us to introduce similar definition83

for the directional case, considering the general regularised case, not presented elsewhere.84

Definition 4. We define the Liouville directional integral (anti-derivative) by

Dα
v f (x) =

1
Γ(−α)

∫ ∞

0
v−α−1 f (x− vv) dv (22)

where α < 0.85

As well known, when α > 0, the above integral is singular. However, it can be regularised through
the procedure followed in [11,13] to get

Dα
v f (x) =

1
Γ(−α)

∫ ∞

0

(
f (x− vv)−

N

∑
m=0

1
m!

dm f (x− vv)
dvm

∣∣∣∣
v=0

vm

)
v−α−1 dv (23)

where integer part of α: N = bαc.86

Definition 5. We define the Liouville directional derivative (L) by

RLDα
v f (x) =

1
Γ(m− α)

Dm
v

∫ ∞

0
vm−α−1 f (x− vv) dv, (24)

where Dm
v means to apply m-times the usual directional derivative in the direction v, m− 1 < α ≤ m and m ∈ Z+ .87

Definition 6. We define the Liouville-Caputo derivative (LC) by

LCDα
v f (x) =

(−1)m

Γ(m− α)

∫ ∞

0
vm−α−1 dm

dvm f (x− vv) dv, (25)

where m− 1 < α ≤ m and m ∈ Z+ .88

To test the coherence of the result, take the exponential f (x) = es·x, x ∈ Rn, s ∈ Cn. Inserting f (x)
into (21) and (25), we obtain [21]

Dα
ves·x = (s · v)α es·x, Re(s) > 0. (26)

where the general integral representation for the Gamma function [4] was used. The expression Re(s) > 089

means that each component sj, j = 1, 2, · · · , n of s have positive real parts. Relation (26) is in agreement90

with similar results in [18,21] and means that91

1. The exponential is the eigenfunction of introduced derivatives,92

2. The (bilateral) Laplace transforms, F(s) of the derivatives of f (x) are given by

L [Dα
v f (x)] = (s · v)α F(s), Re(s) > 0. (27)

where F(s) = L [ f (x)] . With s = iω, we obtain the same result for the Fourier transform.93

The main properties of the above derivatives are easily deduced from (22) to (25), see, for example,94

[10].95
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1. Linearity
Dα

v [ f (x) + g(x)] = Dα
v f (x) + Dα

vg(x). (28)

2. Commutativity and additivity of the orders
If α, β ∈ R

Dα
v

[
Dβ

v f (x)
]
= Dβ

v [Dα
v f (x)] = Dα+β

v f (x). (29)

3. Neutral and inverse elements
In particular, α + β = 0; so the inverse derivative exists and can be obtained by using the same
formula.

Dα
v
[
D−α

v f (x)
]
= D0

v f (x) = f (x). (30)

4. Rotation
Suppose that exists a matrix A, invertible, such that we can perform the variable change Ax for x.
Then

Dα
v f (Ax) =

1
Γ(−α)

∫ ∞

0
u−α−1 f (A [x− uv]) du

=
1

Γ(−α)

∫ ∞

0
u−α−1 f (Ax− uAv) du.

(31)

As uAv = u ‖Av‖ Av
‖Av‖ , we introduce ¸ = ‖Av‖ u and w = Av

‖Av‖ to get96

Dα
v f (Ax) =

‖Av‖α

Γ(−α)

∫ ∞

0
w−α−1 f (Ax− ¸w)) d¸, (32)

which leads to
Dα

v f (Ax) = ‖Av‖α Dα
w f (x′)

∣∣
x′=Ax , (33)

that is also a generalisation of a classic result.97

4. On the fractional line integrals98

The introduction of the notion of fractional definite integral was done in [14] and reformulated above99

2.5. Here, we reproduce such definition, but with a vectorial representation.100

Let f (x), x ∈ Rn, such that exist its directional derivatives of any order. We will asume the canonical101

base ej, j = 1, 2, · · · , n. Let us denote their anti-derivatives along the x1 axis by f (−α)
e1 (x).102

Definition 7. Let α > 0. We define α-order fractional integral of f (x) over the interval (−∞, a) on the xe1 axis
through

Iα
e1

fx(−∞, a) =
∫ a

−∞
f (xe1)dxα = f (−α)

e1 (a), (34)

and

Iα
e1

fx(a, b) =
∫ b

a
f (xe1)dxα = f (−α)

e1 (b)− f (−α)
e1 (a), (35)

where (a, b) = (ae1, be1).103

Using the expression of the Liouville anti-derivative we can write

Iα
e1

fx(a, b) =
1

Γ(α)

∫ ∞

0
[ f (be1 − xe1)− f (ae1 − xe1)] dxα. (36)
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From the standard (integer order) Barrow formula
∫ b

a f ′(x)dx = f (b)− f (a) we obtain the expression

Iα
e1

fx(a, b) =
1

Γ(α)

∫ ∞

0

∫ b

a
D1

e1
f (ye1 − xe1)dydxα. (37)

Using (29) it comes

Iα
e1

fx(a, b) =
∫ b

a
f (−α+1)
e1 (xe1)dx. (38)

If the integration path is, instead of one base axis, any straight line, defined by a vector v, we need to104

generalize the above procedure. Consider a scalar field f : D ⊂ Rn → R and two points a, b ∈ D, defining105

the vector v = b−a
‖b−a‖ .106

Definition 8. We define the fractional integral over the straight line segment from a to b by

Iα
v fx(a, b) =

∫ b

a
f (xv)dxα = f (−α)

v (b)− f (−α)
v (a). (39)

Theorem 3. Suppose that the integration path γ is a sequence of N connected straight line segments flk, k =

0, 1, 2, · · · , N − 1 with initial and final points ak and ak+1 = bk, respectively (a0 = a, aN = b). Then

Iα
fl f =

N−1

∑
k=0

∫ ak+1

ak

f (xvk)dxα =
N−1

∑
k=0

[
f (−α)
vk (ak+1)− f (−α)

vk (ak)
]

, (40)

where vk =
ak+1−ak
‖ak+1−ak‖

.107

Proof. We only need to follow the Definition 8.108

In Figure 1 we illustrate the way how the directional derivative computations are done.109

Remark 4. We could be more general by letting the order vary from segment to segment.110

Figure 1. Broken line integration path.
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Theorem 4. Let γ be an rectifiable curve. Suppose that f (−α)(x) is differentiable in a domain D ⊂ Rn with γ ⊂ D.
Then

Iα
fl f =

∫
γ

f (xv)dxα = lim
N→∞

N−1

∑
k=0

f (−α+1)
vk (ak)hk =

∫
γ

f (−α+1)
v (fl) ‖dγ‖ . (41)

Proof. We construct a sequence of straight line segments γ̄ approximating the curve γ, such that the initial
and final points coincide (see Figure 2). For each segment, set bk = ak+1 = ak + hkvk, where hk > 0 is the
length of kth segment. If we consider several possible approximants, γ̄n, n = 1, 2, · · · for the curve and let
hmax the maximum length in each approximant, then we obtain the expression for fractional line integral

Iα
fl f =

∫
γ

f (xv)dxα = lim
hmax→0

N−1

∑
k=0

[
f (−α)
vk (ak + hkvk)− f (−α)

vk (ak)
]

= lim
hmax→0

N−1

∑
k=0

[
f (−α)
vk (bk)− f (−α)

vk (bk − hkvk)
]

.

(42)

As it is evident from the picture, the shorter the straight line segments the better is the approximation111

of the curve γ. In such situation, hi ≈ hj and vk is approximately tangent to γ. Define dfl as the tangent112

vector to γ at ak, such that ‖dfl‖ = hk. When the length of straight line segments tends to zero we obtain113

at each point of the curve a unitary tangent vector v = dγ/ ‖dγ‖, that assumes the role of vk in (42).114

Because f (−α) is differentiable in the curve γ, we obtain[
f (−α)
vk (bk)− f (−α)

vk (bk − hkvk)
]
= f (−α+1)

vk (bk)hk + η(hk),

with lim
hmax→0

η(hk) = 0. It follows the desired result.115

Figure 2. Rectifiable integration path.

Corollary 2. Let the curve γ be parametrized by r(u), a ≤ u ≤ b, then

Iα
fl f =

∫ b

a
f (−α+1)
v (r(u))

∥∥r′(u)
∥∥ du. (43)

where v = r′(u)/ ‖r′(u)‖ and the fractional derivative, f (−α+1)
v (r(u)), is taken in order to r, not to u.116
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Example 1. In the case when γ is a circumference of radius R, r(u) = (R cos u, R sin u), 0 ≤ u ≤ 2π, (43)
acquires the form

Iα
fl f = R

∫ 2π

0
f (−α+1)
v (R cos u, R sin u)du, (44)

with v = (− sin u, cos u). By the definition of directional derivative we obtain that

Iα
fl f =

R
Γ(α− 1)

∫ 2π

0

∫ ∞

0
vα f (R cos u + v sin u, R sin u− v cos u)dvdu

=
R

Γ(α− 1)

∫ ∞

0
vα
∫ 2π

0
f (R cos u + v sin u, R sin u− v cos u)dudv

(45)

If we define ζ(u) = (R cos u + v sin u, R sin u− v cos u), 0 ≤ u ≤ 2π, then

||ζ ′(u)|| = ||(−R sin u + v cos u, R cos u + v sin u)||

=
√
(−R sin u + v cos u)2 + (R cos u + v sin u)2

=
√

R2 + v2

(46)

So

Iα
fl f =

R
Γ(α− 1)

∫ ∞

0

vα

√
R2 + v2

[∫ 2π

0
f (ζ(u))||ζ ′(u)||du

]
dv. (47)

The integral between brackets is known as integral of line relative to arc length [3]. If f represents the mass of a thin
wire ζ(u) per unit length, then

∫ 2π
0 f (ζ(u))||ζ ′(u)||du is the total mass Mv of the wire. So that

Iα
fl f =

R
Γ(α− 1)

∫ ∞

0

vα Mv√
R2 + v2

dv. (48)

Suppose that the parametrization r(u) of γ can be written in terms of two distint parameters u and τ

and that u0 ≤ u ≤ u1 and τ0 ≤ τ ≤ τ1. Hence∫ u1

u0

f (−α+1)
v (r(u))

∥∥r′(u)
∥∥ du =

∫ τ1

τ0

f (−α+1)
v (r(τ))

∥∥r′(τ)
∥∥ dτ. (49)

It follows that the fractional line integral (43) does not depend of the parametric representation of γ.117

The line integral (49) has some interesting properties, easily deduced:118

1. Linearity
Iα
γ(c f + dg) = cIα

γ f + dIα
γg, (50)

with c and d are constants.119

2. Additivity120

Let γ1 and γ2 be two disjoint lines. If γ = γ1
⋃

γ2, then Iα
γ f = Iα

γ1
f + Iα

γ2
f .121

3. Orientation
Let γ be the curve r(u), a ≤ u ≤ b. The change in the orientation is obtained in the fractional
derivative computation by reversing the tangent vector and the integration limits. Hence

Iα
−γ f =

∫ a

b
f (−α+1)
−v (r(u))

∥∥r′(u)
∥∥ du. (51)

While in the α = 1 case, Iα
−γ f = −Iα

γ f this may not happen in the fractional case, since the direct and122

reverse fractional anti-derivatives may not be equal.123
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Next, we present an illustrative example.124

Example 2. Assume a two-dimensional problem where f (x) = ‖x‖−2, x ∈ R2 and r(u) a circle with radius ρ.
Suppose that α ∈ R. In this case,

f (r(u)) = ρ−2,

r(u) = ρ cos(u)e1 + ρ sin(u)e2, 0 ≤ u ≤ 2π,

and ∥∥r′(u)
∥∥ = ρ.

Now, v = (− sin u, cos u) and

f (−α+1)
v (r(u)) =

ρα−3

2Γ(α− 1)
B
(

1
2

α− 1
2

,−1
2

α +
3
2

)
, 1 < α < 3, (52)

where B is the beta function. Finally

Iα
r f =

πρα−3

Γ(α− 1)
B
(

1
2

α− 1
2

,−1
2

α +
3
2

)
=

πρα−3

Γ(α− 1)
Γ
(

1
2

α− 1
2

)
Γ
(
−1

2
α +

3
2

)
=

π2ρα−3

Γ(α− 1) sin
(

π
(

1
2 α− 1

2

)) ,

(53)

with 1 < α < 3.125
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