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ABSTRACT. The field of power harvesting has experienced significant growth over the past few years due to the 

ever-increasing desire to produce portable and wireless electronics with extended lifespans. The present work aims 

to introduce an approach to harvesting electrical energy from a mechanically excited piezoelectric element and 

investigates a power analytical model generated by a smart structure of type polyvinylidene fluoride(PVDF) that 

can be stuck onto fabrics and flexible substrates, although we report the effects of various substrates and 

investigates the sticking of these substrates on the characterization of the piezoelectric material. 

Keywords : Power harvesting, Wireless electronics, Piezoelectric energy, Technical textile, PVDF 

1. INTRODUCTION 

Over the past decade, the wireless sensors and portable electronics carried by the individual had 

a rapid increase [1,2]. Each of these devices is typically powered using a traditional 

electrochemical battery. However, the use of batteries involves drawbacks, such as limited 

energy storage capability, potential damage to environment, and and a limited life time, have 

limited further development and applications of wearable electronics. To overcome this 

issue,many efforts have been focused on wearable energy harvesters, allowing the conversion 

of ambient energy surrounding the system to usable electrical energy [3-4]. Such as the 

mechanical energy dissipated from human motion [5, 6], including electromagnetic [7-11], 

electrostatic [12-13], thermoelectric [14], and piezoelectric harvesters [15-19]. Compared with 

electromagnetic, electrostatic and thermoelectric methods, the piezoelectric approach to power 

harvesting provides several advantages including: higher energy density, and the ability to be 

fabricated in custom shapes and higher flexibility of being integrated into a system. 

The focus here is on piezoelectric materials, which accumulate electrical charge in response to 

applied mechanical stress. Representative piezoelectric materials can be categorized into 

piezoceramics and piezopolymers. However, PZT (lead zirconate-titanate) is a commonly used 

piezoelectric ceramic. On the other hand, piezopolymer commonly used is (polyvinylidene 

fluoride, PVDF). Compared with rigid, brittle, and heavy PZT [20,21], PVDF is particularly 

interesting due to their low cost, considerable flexibility, durable, good stability, and easy 

integration into elements such as clothes  and shoes [22- 30].   
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Recently, a great amount of researches have been conducted to develop simple and efficient 

energy harvesting devices from vibration by using piezoelectric materials based on smart 

textiles which harbor potential in various applications such as energy harvesting , sensing   and 

actuation [31-37]. Smart Textiles are defined as textile products, they may be divided into two 

classes : passive  and active smart textiles, such as fibers and filaments, yarns together with 

woven, knitted or non-woven structures , which able to sense and respond to changes in their 

environment [38,39]. 

furthermore Recent developments in the domain have led to the design of a number of 

mechanisms that can be used to harvesting electrical energy, from a variety of textiles substrats 

including textile plus interface layer, Kapton and alumina , and so on [40-42]. 

In addition, Almusallam. A, et al [43] presented an experimental study on  clamping Effect on 

the Piezoelectric Responses of Screen-printed Low Temperature PZT/Polymer Films on 

Flexible Substrates. Later,  Almusallam. A, et al [44] made a series of studies about the use of 

a flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. 

In this context, the study has shown a piezoelectric patch that could recharge a small device 

within few hours when excited by a kneepad located on the knee due to walking [45]. 

This paper has investigated the development of a novel energy harvesting systems, which are a 

clean and durable solution, based on the thin film PVDF sticking on flexible substrates such as 

fabrics. The smart structure shows greater piezoelectric and dielectric properties compared to 

our previou work [45]. These properties are explored and discussed in this paper. 

2. GENERAL THEORY OF KINETIC ENERGY HARVESTING  

 

2.1 Standard approach to energy harvesting          

The simplest method to recover energy is to directly connect the electrical circuit supplying the 

piezoelectric elements. This device is shown in Fig. 1(a) wherein the resistance 𝑅 represents 

the input impedance of the supplied electric circuit. In this case, the load voltage is alternative. 

The waveforms associated with this technique are shown in Fig. 1(b), and in this case, a 

permanent sinusoidal stress has been performed. 

 

 
 

Figure 1. Standard approach Alternating Current (AC) to energy harvesting : (a) standard network and (b) 
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standard waveforms. 

 

2.2 Analytical and modelling of power harvesting system 
 

As one of the important vibration-based energy harvesting methods, piezoelectric conversion 

has received much attention because of the simple structure of piezoelectric converter and ease 

of application characteristic of piezoelectric materials There are two types of piezoelectric 

effects that can be used for technological applications : the direct piezoelectric effect that 

describes the ability of a given material to convert mechanical strain into electricity. On the 

other hand, the converse effect, which is the ability to convert an applied electrical solicitation 

into mechanical energy.  

Two equations are used to depict the piezoelectric nature of a material and they have been 

considered from Jaffe and Cook [5]. Equations (1) and (2) are defined as the piezoelectric 

constitutive equations : 

                                               𝐒𝛂 = 𝐬𝛂𝛃. 𝐓𝛃 + 𝐝𝐢𝛂. 𝐄𝐢                                                               (1) 

𝐃𝐢 = 𝐝𝐢𝛂. 𝐓𝛂 + 𝜺𝐢𝐣. 𝐄𝐣                                                                 (2)                                                                                                                         

𝜶 = 𝜷 = 𝟏, 𝟐, … , 𝟔           𝒊, 𝒋 = 𝟏, 𝟐    

 

The first equation defines the mechanical response of the material, while the second equation 

defines the electrical response. Where 𝑆 is the strain, 𝑇 is the stress, 𝐸 is the electric field, 𝐷 is 

the electric displacement, 𝑑 is the piezoelectric electromechanical coupling coefficient, 𝑠 is the 

compliance, which relates stress and strain at constant electric field, 𝜀 is the dielectric 

permittivity, which indicates the charge stored in the capacitive element of the piezoelectric 

material at constant stress, and the subscripts represent the direction of each property. 

𝐒𝟏 = 𝐬𝟏𝟏. 𝐓𝟏 + 𝐬𝟏𝟐. 𝐓𝟐 + 𝐬𝟏𝟑. 𝐓𝟑 + 𝐝𝟑𝟏. 𝐄𝟑                      (3)                                                                                  

𝐒𝟑 = 𝐬𝟏𝟑. (𝐓𝟏 + 𝐓𝟐) + 𝐬𝟑𝟑. 𝐓𝟑 + 𝐝𝟑𝟑. 𝐄𝟑                    (4)                                                                                      

𝐃𝟑 = 𝐝𝟑𝟏. (𝐓𝟏 + 𝐓𝟐) + 𝐝𝟑𝟑. 𝐓𝟑 + 𝜺𝟑𝟑. 𝐄𝟑                                             (5)                                                                                      

When placed on an isotropic substrate (the fabric plus interface layer), the lateral strain is the 

same in each direction S1 = S2 and the stress T1 = T2 = 𝑇, equation (1) can be re-written as  

𝐒𝟏 = (𝐬𝟏𝟏 + 𝐬𝟏𝟐). 𝐓𝟐 + 𝐬𝟏𝟑. 𝐓𝟑 + 𝐝𝟑𝟏. 𝐄𝟑                                  (6)                                                                               

Thus, the value of S1 and S2 must be determined as a function of T3 using Hooke’s law 

𝐒𝟏 = 𝑺𝟑 = (− 
𝝊𝒔𝒖𝒃

𝜸𝒔𝒖𝒃
). 𝐓𝟑                                                   (7)                                                                                                    

Also, the mechanical compliance matrix parameters were calculated using the following 

equations 

𝒔𝟏𝟏 =
𝟏

𝜸𝒑𝒊𝒆𝒛
 ;      𝐬𝟏𝟐 = −

𝝊𝒑𝒊𝒆𝒛

𝜸𝒑𝒊𝒆𝒛
 ;       𝐬𝟏𝟑 = −

𝝊𝒑𝒊𝒆𝒛

𝜸𝒑𝒊𝒆𝒛
               (8) 

Relating the strain and the ratio of the generated charge to the applied force and combining 

with equations (4), (5) and (6) gives 

(− 
𝝊𝒔𝒖𝒃

𝜸𝒔𝒖𝒃
) . 𝐓𝟑 =

𝟏 − 𝝊𝒑𝒊𝒆𝒛

𝜸𝒑𝒊𝒆𝒛
. 𝐓 −

𝝊𝒑𝒊𝒆𝒛

𝜸𝒑𝒊𝒆𝒛
. 𝐓𝟑 + 𝐝𝟑𝟏. 𝐄𝟑 
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It is possible to express the T stress as a function T3 and E3 , given by 

𝐓 =
𝜸𝒑𝒊𝒆𝒛

𝟏−𝝊𝒑𝒊𝒆𝒛
.

𝝊𝒑𝒊𝒆𝒛.𝜸𝒔𝒖𝒃−𝝊𝒔𝒖𝒃.𝜸𝒑𝒊𝒆𝒛

𝜸𝒑𝒊𝒆𝒛 .𝜸𝒔𝒖𝒃
. 𝑻𝟑 −

𝜸𝒑𝒊𝒆𝒛

𝟏−𝝊𝒑𝒊𝒆𝒛
 𝐝𝟑𝟏. 𝐄𝟑       (9) 

Whence the expression of the electric displacement D ; Substituting equation 7 into 3 and 

rearranging it results in  

𝑫𝟑 = 𝒅𝟑𝟑 . (
−𝟐.𝜸𝒑𝒊𝒆𝒛

𝟏−𝝊𝒑𝒊𝒆𝒛
.

𝝊𝒑𝒊𝒆𝒛.𝜸𝒔𝒖𝒃−𝝊𝒔𝒖𝒃.𝜸𝒑𝒊𝒆𝒛

𝜸𝒑𝒊𝒆𝒛 .𝜸𝒔𝒖𝒃
+ 𝟏) . 𝑻𝟑 + (𝜺𝟑𝟑 −

𝟐 .𝜸𝒑𝒊𝒆𝒛.𝝊𝒑𝒊𝒆𝒛
𝟐 .𝒅𝟑𝟑

𝟐

𝟏−𝝊𝒑𝒊𝒆𝒛
 ). 𝐄𝟑          (10) 

 

The current supplied in the polymer in the case of transverse mechanical stress is expressed in 

the form 

           𝑰 = 𝑨.
𝝏𝑫

𝝏𝒕
= 𝑨. { 𝒅𝟑𝟑 . (

−𝟐.𝜸𝒑𝒊𝒆𝒛

𝟏−𝝊𝒑𝒊𝒆𝒛
.

𝝊𝒑𝒊𝒆𝒛.𝜸𝒔𝒖𝒃−𝝊𝒔𝒖𝒃.𝜸𝒑𝒊𝒆𝒛

𝜸𝒑𝒊𝒆𝒛 .𝜸𝒔𝒖𝒃
+ 𝟏) .

𝛛𝑻𝟑

𝛛𝐭
+ (𝜺𝟑𝟑 −

𝟐 .𝜸𝒑𝒊𝒆𝒛.𝝊𝒑𝒊𝒆𝒛
𝟐 .𝒅𝟑𝟑

𝟐

𝟏−𝝊𝒑𝒊𝒆𝒛
 ).

𝛛𝐄𝟑

𝛛𝐭
 }(11) 

A is the active surface of the polymer. 
∂𝑇3

∂t
  and  

∂E3

∂t
  are the time derivatives of the electrical field and strain, respectively. 

𝜶 = 𝒅𝟑𝟑 . (
−𝟐. 𝜸𝒑𝒊𝒆𝒛

𝟏 − 𝝊𝒑𝒊𝒆𝒛
.
𝝊𝒑𝒊𝒆𝒛. 𝜸𝒔𝒖𝒃 − 𝝊𝒔𝒖𝒃. 𝜸𝒑𝒊𝒆𝒛

𝜸𝒑𝒊𝒆𝒛 . 𝜸𝒔𝒖𝒃
+ 𝟏) 

𝜷 = 𝜺𝟑𝟑 −
𝟐 . 𝜸𝒑𝒊𝒆𝒛. 𝝊𝒑𝒊𝒆𝒛

𝟐 . 𝒅𝟑𝟑
𝟐

𝟏 − 𝝊𝒑𝒊𝒆𝒛
 

The electric field 𝐸 is equal to the alternating electric field  𝐸𝑅 across the resistor: 𝐸 =  𝐸𝑅. 

The voltage output of the system across the load resistance is defined by the term Fig. 1 

𝐄𝐑 = −
𝐑. 𝐈

𝐭𝐩
 

Where 𝐼 is the current which crosses the load 𝑅, e is the thickness of the polymer film. 

So : 

       𝐄 =  𝐄𝐑 = −
𝐑.𝐈

𝐭𝐩
                                                        (12) 

The general expression the current 𝐼 is 

    𝑰 = 𝑨. 𝜶.
𝛛𝑻𝟑

𝛛𝐭
−

𝐀.𝛃.𝐑

𝒕𝒑
.

𝛛𝐈

𝛛𝐭
                                                           (13) 

In the frequency domain, the current is expressed in the form  

𝑰 = 𝒋. 𝒘. 𝑨. (𝜶. 𝑻𝟑 −
𝛃.𝐑

𝒕𝒑
. 𝐈)                                       (14) 

𝑰 =
𝒋.𝒘.𝑨.𝜶.𝑻𝟑

𝟏+𝒋.𝒘.𝑨.
𝛃.𝐑

𝒕𝒑

                                                      (15)                           

In the case of a resistive load connected in series with the piezoelectric polymer working in 

piezoelectric mode, the objective is to take the expression of the power dissipated in the 
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resistive load, on the basis of the equation that links the power, current, and load  𝑃 = 𝑅 . 𝐼2 

The power dissipated in the resistor R is expressed by the equation  

 𝑷 =
𝑹.(𝒘.𝑨.𝜶.𝑻𝟑)𝟐

𝟏+(𝒘.𝑨.
𝛃.𝐑

𝒕𝒑
)

𝟐                                        (16) 

3. SIMULATION RESULTS AND DISCUSSION 

 

3.1  Flexible textile substrates  

A Smart structure of type PVDF was stucked on three different substrates, Kermel and  thick 

woven fabric (Polyester 65%–Cotton 35%) and Cotton 100%. The Kapton substrate  was used 

commonly as reference substrate material for investigating the dielectric and piezoelectric 

properties of the composite. However this material  is used as a substrate for flexible 

electronic devices. The PVDF polymer layer was sandwiched between two silver electrodes 

that were used to enable film poling and perform study of the differents parameters. The 

investigated textile substrates are polyester-cotton, cotton, and polyamide-imide (Kermel) 

were plain weave, 65% polyester with a warp and weft. 

 

3.2  Design mode study  
 

This section focuses on the effect of substrats parameters textiles in order to increase the 

power recovered by the PVDF polymer film. Optimization of these substrats is implemented 

in order to ensure good performance of this electroactive polymer for energy harvesting.    

The theoretical results are presented with an analysis of the 33-mode for the piezoelectric 

generator to verify the validity of the model developed for application in textile.   

 

                        Top electrod 

                           PVDF 

              bottom electrod 

 

   substract 

 

Fig.2.The smart structure stuck on woven fabric. 

 

3.3  Effet of substrats on energy harvesting under compressive force 

 

 
 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 April 2021                   



Fig.3. The power harvested as a function of resistive load for cotton, polyester-cotton and 

Kermel substrates when applying force F=80N at 6Hz. 

 

Figure 3 shows the theoretical results obtained with piezoelectric polymer PVDF film stucked 

on substrats (cotton; polyster-cotton;kermel) having a thickness of 500 μm, the frequency 

6 Hz, and the applied force 80 N. 

The theoretical results show that the harvested power increases while increasing the resistance 

load, up to a optimal value in which the power decreases. 

4. CONCLUSION 

Textile substrate bears one of the most promising form factors for future electronic applications 

due to its wide degree of freedom in shapes with flexible and stretchable characteristics. This 

work investigates the energy harvesting performance of PVDF polymer material stucked on 

woven-fabric substrates. Clearly the energy harvesting performance is fundamentally linked to 

the piezoelectric properties of the stucked film. 

The theoretical investigations confirmed a increase on the power harvesting values by 258mW, 

96mW and 95mW for the cotton, Polyester-cotton and kermel substrates, respectively. 
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