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Abstract: Ursolic and oleanolic acids are secondary plant metabolites that are known to be involved 

in the plant defence system against water loss and pathogens. Nowadays these triterpenoids are 

also regarded as potential pharmaceutical compounds and there is mounting experimental data that 

either purified compounds or triterpenoid-enriched plant extracts exert various beneficial effects, 

including anti-oxidative, anti-inflammatory and anticancer, on model systems of both human or 

animal origin. Some of those effects have been linked to the ability of ursolic and oleanolic acids to 

modulate intracellular antioxidant systems and also inflammation- and cell death-related pathways. 

Therefore, our aim was to review the current knowledge about the distribution of ursolic and 

oleanolic acids in plants, bioavailability and pharmacokinetic properties of these triterpenoids and 

their derivatives, and to discuss their neuromodulatory effects in vitro and in vivo. 

Keywords: ursolic acid; oleanolic acid; neuroprotection; ischaemia; neurodegeneration; Alz-

heimer’s disease; Parkinson’s disease; neuro-inflammation; cancer; glioblastoma 

 

1. Introduction 

The brain is an essential part of the human body, therefore neurological disorders 

such as neurodegenerative diseases (e.g., Alzheimer’s or Parkinson’s disease), stroke/is-

chaemia and brain cancer usually have a significant effect on vital functions. Noteworthy, 

oxidative stress has been recognized as a hallmark of the pathogenesis of these disorders. 

Moreover, the elevated levels of reactive oxygen (ROS) and nitrogen (RNS) species are 

implicated in the progression of pathological neuro-inflammation [1]. Therefore, the stim-

ulation of cellular antioxidant systems and quenching of ROS and RNS generation, mod-

ulation of cell death and anti-inflammatory pathways have proven to be promising neuro-

therapeutic approaches [2-4]. 

Over the last decades the attention to triterpene-enriched plant extracts and espe-

cially to purified triterpenoids as bioactive phytochemicals has been considerably in-

creased [5-8]. Pentacyclic triterpenoids are secondary plant metabolites that arise from 

cyclization of squalene, and are widespread in stem bark and leaves of a variety of plants, 

and are present in substantial amounts in apple peels [9-12]. Among various triterpenoids, 

naturally occurring and synthetic ursane and oleanane triterpenes have been immensely 

studied due to their wide ranging and promising anti-inflammatory and anticancer activ-

ities [13-16]. Therefore, in this review we will summarize the current knowledge about the 

chemistry, bioavailability and pharmacokinetic properties of ursolic and oleanolic acids 

and their derivatives, and we will also discuss the most recent findings related to their 
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modulatory effects in neurodegeneration, brain ischaemia and cancer in experimental 

models in vitro and in vivo. 

2. Chemistry, occurrence and isolation of ursolic and oleanolic acids 

2.1. Chemical structure of ursolic and oleanolic acids 

Triterpenes constitute a significant portion of all phytochemicals, and more than 

20,000 triterpenoids have been identified so far. Their biosynthesis is based on squalene 

cyclization, which involves chair-chair-chair-boat transition state, and results in com-

pounds, comprised of six isoprene units. Such structures are precursors to steroids in both 

plants and animals [17,18]. 

Ursolic acid (UA) (3𝛽-hydroxyurs-12-en-28-oic acid) and oleanolic acid (OA) (3b-hy-

droxyolean-12-en-28-oic acid) are pentacyclic triterpenoids which have therapeutic poten-

tial [19]. They are structural isomers differing in the position of one methyl group (see 

Figure 1) and having comparable physicochemical properties and pharmacologic activity 

[20,21]. UA and OA are ubiquitous in plants and may constitute several percent of the dry 

weight [17,18]. They occur as free acids or serve as aglycones for triterpene saponins [18]. 

 

 

Figure 1. Chemical structures of ursolic acid (UA) and oleanolic acid (OA). The structural differ-

ences between these two compounds are marked in red ovals. 

 

2. 2 Natural sources of oleanolic and ursolic acids 

The name of OA is derived from the name of the plant species Olea europaea, and that 

plant currently is the main source of commercial OA preparations [22]. OA co-occurs with 

UA in numerous plant species, including many food, aromatic and medicinal plants 

[10,17,18,23,24] and generally UA is usually more abundant than OA (Table 1). Both 

triterpenoids are often found in the epicuticular waxes and they perform important func-

tions, namely prevent water loss, serve as a first defence barrier against pathogens, and 

protect from herbivores [24–26]. For instance, OA is present as almost pure crystals on the 

surface of olive leaves and forms a physical barrier against fungal infection [27]. UA pos-

sesses surfactant properties and plays a role in the allelopathic effect of plants [28,29]. 
The synthesis of OA and UA is characteristic of plants of Araliaceae, Asteraceae, Er-

icaceae, Lamiaceae, Myrtaceae, Oleaceae, Rosaceae, Rubiaceae, Saxifragaceae, and Verbe-

naceae families. Woody or herbaceous plants that belong to these and some other families 

contain OA and UA in various parts [10,18,23,24]. It has been established that the compo-

sition and content of triterpenes may vary between different organs of the same plant. For 

example, leaves, bark and fruits of Olea europaea were found to accumulate different 

amounts of OA and UA (Table 1). Triterpenes have been shown to be more abundant in 

the leaves of Olea europaea than in the bark: 31 mg/g dry weight (DW) of OA and 3.8 mg/g 

DW of UA. The bark of olive trees also contained substantial amounts of OA (up to 9.8 

mg/g DW) [10]. In contrast, UA predominated over OA in the leaves and bark of Sambu-

cus nigra and in medicinal or aromatic herbs of Lamiaceae family (see Table 1). Moreover, 
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in some plants detectable amounts of OA and/or UA are synthesized in only one organ 

structure. For instance, OA was present only in the bark of Betula alba (up to 11 mg/g DW), 

and UA was detected only in dry leaves of Coffea arabica and Nerium oleander (up to 18 

mg/g and 12.7 mg/g, respectively) [10]. It is worth noting that the aboveground parts of 

herbaceous ornamental plant peony may be used as an alternative source of OA and UA 

for medicinal purposes. For example, the amount of OA and UA in fresh leaves of differ-

ent varieties of Paeonia lactiflora was 54.26–618.12 μg/g and 36.23–665.14 μg/g, respectively 

[30]. 

The quantity of triterpenes in the plant raw material may also depend on the age of 

the plant. It was shown that Ocimum basilicum accumulated 3.6 times more OA in the flow-

ers compared to the roots, and 1.8 to 3.5 times more in older leaves, than in the youngest 

leaves. Conversely, the level of UA was higher in the youngest leaves of Ocimum basilicum 

when compared to the older leaves. It was also determined that the concentration of UA 

was 2.7 times higher in the flowers than in the leaves of the plant [31]. 

As has been already mentioned, plant flowers are also a rich source of triterpenes. 

High levels of triterpenes, especially UA, were determined in flowers of Calendula offici-

nalis, which accumulated up to 20.5 mg/g DW of UA [23]. Different flower parts of Eri-

obotrya japonica were found to contain different amounts of OA and UA. For instance, dry 

sepals of E. japonica contained the highest amount of OA and UA (0.68 mg/g and 3.65 

mg/g), while the petals had the lowest contents of OA and UA (0.12 mg/g and 0.60 mg/g) 

[32]. 

High amount of triterpenes is characteristic of the fruit peel of the plants in the 

Rosaceae family. UA and OA have been found to predominate other triterpenes in the 

cuticular wax of quince, loquat, pear, peach, apple fruits, and UA content was higher than 

that of OA [24]. Sut et al. have recently revealed that UA and OA may constitute up to 79–

95% of the total amount of triterpene compounds in apple fruit. Modern commercial apple 

cultivars can be distinguished by higher amounts of OA (+174%) and UA (+175%) in peels, 

compared to those of ancient varieties [33]. It has also been shown that the dry peel of 

Malus domestica fruit on average had 9.4 mg/g, of Eriobotrya japonica - 8.0 mg/g, of Pyrus 

communis -7.25 mg/g, of Chaenomeles japonica up to 5.7 mg/g, and of Prunus persica up to 

2.97 mg/g of UA [24]. In addition, the amount of UA in the fruits of ancient apple cultivars 

has been found to range from 0.20 to 4.20 mg/g and that of OA from 0.24 to 0.87 mg/g. In 

contrast, the amount of UA in apple fruit of the modern cultivars grown in Lithuanian 

industrial orchards has been reported to range from 1.18 to 2.58 mg/g, and the amount of 

OA from 0.32 to 0.47 mg/g [34,35]. Noteworthy, the growth location of apple trees is also 

relevant to triterpene accumulation. Indeed, apples grown in northern regions were usu-

ally found to contain more UA and OA than those grown in the southern locations [36]. 

Unlike the fruits of Rosaceae plants, persimmon (Diospyros kaki) fruits have higher content 

of OA than UA – 88.57 μg/g fresh weight (FW) and 27.64 μg/g FW, respectively [37]. It is 

worth adding that berries of Vitis spp. and Vaccinium spp. can be also used as sources of 

triterpenes. Dried Vitis vinifera berries have been found to contain up to 79.0 mg/100 g of 

OA, meanwhile, dried cranberries or blueberries contained both OA and UA (17.8 and 

65.5 mg/100 g or 13.9 and 11.8 mg/100 g, respectively) [38]. 

Table 1. Natural sources of OA and UA mg/g DW (dry weight). 

Plant species Family Plant part OA mg/g DW* UA mg/g DW* Reference 

Betula alba Betulaceae bark 11.0  [10] 

Calendula officinalis Compositae flowers  20.5 [23] 

Chaenomeles japonica Rosaceae fruit peel  5.7 [24] 

Coffea arabica Rubiaceae leaves  18.0 [10] 

Crataegus pinnatifida Rosaceae leaves 1.0 5.2 [10] 

Eriobotrya japonica Rosaceae fruit peel  8.0 [24] 
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  flowers 0.9 3.6 [32] 

Lavandula angustifolia Lamiaceae herbs 4.5 15.9 [10] 

Ligustrum lucidum Oleaceae leaves 6.3 9.8 [39] 

Malus domestica Rosaceae fruit peel  9.4 [24] 

Melissa officinalis Lamiaceae herbs 1.6 6.7 [10] 

Nerium oleander Apocynaceae leaves 3.7 12.7 [10] 

Ocimum basilicum Lamiaceae herbs  3.0 [10] 

Olea europaea Oleaceae leaves 31.0 3.8 [10] 

  fruits 21.0  [10] 

  bark 9.8  [10] 

Origanum majorana Lamiaceae herbs 1.9 6.6 [10] 

Origanum vulgare Lamiaceae herbs  2.8 [10] 

Panax quinquefolium Araliaceae roots 3.1  [23] 

Prunus persica Rosaceae fruit peel  3.0 [24] 

Pyrus communis Rosaceae fruit peel  7.2 [24] 

Salvia officinalis Lamiaceae herbs 6.7 18 [10] 

Sambucus nigra Adoxaceae leaves 1.2 5.8 [10] 

  bark 0.8 3.2 [10] 

Satureja montana Lamiaceae herbs 1.4 4.9 [10] 

Silphium trifoliatum Asteraceae leaves 22.0 15.5 [23] 

Thymus vulgaris Lamiaceae herbs 3.7 9.4 [10] 

 

 

 

2.3. Extraction of ursolic and oleanolic acids from plants 

Methods for the extraction of UA and OA from plants range from the conventional 

techniques as stirring, maceration, heat reflux extraction, to microwave assisted extraction 

or ultrasound assisted extraction [39,40]. The most prevalent method of extraction of both 

pentacyclic triterpenes is extraction by immersion in organic solvent, with ethanol, n-bu-

tanol, acetone, chloroform or ethyl acetate as the most common solvents [41]. The selection 

of the most suitable solvent is regarded as the most important step in the preparation of 

extracts of biologically active compounds. Fu et al. [41] have established that the best UA 

and OA yields from pomegranate flowers can be obtained using chloroform or ethanol – 

up to 9.2 mg/g of UA and 5.9 mg/g of OA, although ethanol was preferred as a safer alter-

native. The use of ultrasound resulted in higher yields of UA and OA – 12.6 mg/g and 9.7 

mg/g, respectively. In addition, the extraction time was reduced to 50 min, compared to 

24 h when extraction was performed using stirring or maceration. Cargnin and Gnoatto 

[19] have found that the purest extract having the biggest concentration of UA can be 

obtained by Soxhlet extraction of apple pomace using ethyl acetate as solvent. In this case, 

UA yield reached up to 3.5% while the use of other solvents (cyclohexane, dichloro-

methane or methanol) resulted in much lower UA amount – only up to 1%. Recently, 

aqueous solutions of surface-active ionic substances have emerged as useful solvents for 

extraction of hydrophobic substances. Cláudio with colleagues [42] used 1-alkyl-3-me-

thylimidazolium-based ionic liquids combined with several anions for extraction of OA 

from olive leaves and established that up to 2.5 wt% of OA could be extracted at optimum 

conditions. 
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Another critical parameter is the duration of the extraction of UA and OA. Classical 

methods such as extraction by stirring or maceration usually take 24 h, therefore faster 

extraction methods, as microwave assisted extraction or ultrasound assisted extraction 

have been developed. The application of microwaves enabled to extract both UA and OA 

from the flowers of white dead nettle in 10–30 min, and the extraction efficiency reached 

99–100%. Moreover, the efficiency of ultrasound assisted extraction reached 83–91% after 

45 min [43]. Fan et al. [44] have established that the best UA extraction yield from apple 

pomace can be obtained after ultrasound assisted extraction for 60 min, without the in-

crease of extraction yield after longer extraction (120 min). Therefore, it can be stated that 

optimization of extraction process is crucial in the preparation of UA- and OA-enriched 

plant extracts. 

3. Bioavailability and pharmacokinetic properties of ursolic and oleanolic acids 

Pharmacokinetic and cell membrane permeability studies are crucial in clinical de-

velopment of new biologically active compounds with a view to understand their behav-

iour in vivo and to establish an optimal dosage regimen. Pentacyclic triterpenoids gener-

ally suffer from low oral bioavailability [45], in particular, UA and OA fall into class IV 

according to the Biopharmaceutical Classification System due to low aqueous solubility 

and poor intestinal permeability [46,47]. In line with that, there is large inter- and intra-

individual absorption variability which presents a challenge of achieving safe and effec-

tive drug concentration in the organism [46]. 

The primary factor affecting bioavailability is the physicochemical properties of the 

molecule [48]. UA and OA are low molecular weight compounds (456.68 g/mol) [47], con-

taining only three hydrogen bond acceptors and two hydrogen bond donors (see Figure 

1). These properties are in accordance with Lipinski’s rule, an estimate of drug likeness 

[49,50]. However, UA and OA have high lipophilicity (logPow 6.43 and 6.48, respectively 

[45]) as well as poor wettability [46,51]. Therefore, their absorption is hindered by poor 

dissolution and slow partitioning between the cell membrane and extracellular fluid 

[45,46,49]. It has been even hypothesized that UA may be embedded in phospholipid bi-

layer but not taken up by the cells [51]. Furthermore, aqueous solubility is aggravated by 

the crystalline structure of unprocessed UA and OA. Indeed, amorphous state and re-

duced particle size notably enhanced triterpenoid solubility and dissolution rate [52;53]. 

The second key factor is the ability of the drug to overcome biological barriers [48]. 

The evidence from in vitro permeability studies implies that passive diffusion is the major 

mechanism of UA and OA transport [45]. Apparent permeability coefficients, calculated 

using Caco-2 monolayers, were within the limits of moderate oral absorption [45], and it 

was suggested that immediate glucuronidation and sulfation in intestinal cells are highly 

unlikely [54]. However, it has been also reported that UA and OA are substrates of cyto-

chrome P450 enzymes and P-glycoprotein, thus their bioavailability may be restricted by 

biotransformation and active efflux [46,53,55]. 

Despite limited absorption, the recovery of intact OA and UA has been reported in 

animal [52,53,55–63] and human [64-66] plasma after oral and parenteral administration. 

Nonetheless, several pharmacokinetic studies revealed that maximal plasma concentra-

tion following oral administration of doses up to 300 mg/kg was low (at nanogram quan-

tities) and elimination half-life was relatively short (<1 h) [53,57,60,66]. This pharmacoki-

netic profile indicates rapid elimination or tissue distribution and suggests that pharma-

cological effects of UA and OA might not be directly related to plasma concentrations. In 

fact, it has been shown that UA and OA have wide tissue distribution, as they were de-

tected in the heart, liver, kidney, colon, bladder, brain, spleen, lung, stomach and testis of 

animals [56,57,67,68]. Liver was found to be the major organ of triterpene disposition 

[56,57,67], and that is in agreement with established hepatoprotective effects. On the other 

hand, this may lead to hepatotoxicity, as evidenced by cholestasis after repeated OA ad-

ministration in mice [69], and to liver-related dose-limiting toxicity in phase I clinical trial 
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of UA liposomes [70]. It is noteworthy that OA and UA are able to cross blood-brain bar-

rier, meaning they have the potential to exert neuroprotective effects [67,68]. 

High lipophilicity predisposes triterpenoids to liver metabolism. A tissue distribu-

tion study in mice has demonstrated that while the concentration of UA in plasma was 

steadily decreasing, the concentration in the liver was increasing (5-240 min) [56]. In ad-

dition, the plausibility of liver metabolism has been suggested by the dramatic decrease 

in OA concentration after the incubation of rat liver microsomes with OA [60]. Oxidation 

was proposed as a primary pathway of phase I metabolism because hydroxylated deriv-

atives and epoxides were tentatively identified as OA and UA metabolites, respectively 

[60,71]. When excretion was investigated, unaltered OA and UA were not detected in 

urine, suggesting non-renal elimination [60]. However, when urine was screened for pos-

sible phase II metabolites, renal excretion was confirmed. The metabolites were character-

ized as glucuronides and sulphates of OA [72] and glucuronic acid, glycine and glutathi-

one conjugates of UA [71]. Hydrophilic conjugates are generally pharmacologically inac-

tive, whereas oxidized metabolites of UA and OA are structurally similar to aromatase 

inhibitors, thus they could exert anti-estrogenic effects [71]. Overall, appropriate bi-

omarkers and sampling procedures should be selected to accurately evaluate the UA and 

OA bioavailability with respect to associated health benefits. 

4. Neuromodulatory effects of ursolic and oleanolic acids 

4.1. Neuroprotective effects of ursolic and oleanolic acids in neurodegeneration 

Neurological disorders can be regarded as impairments of the brain or nervous sys-

tem, resulting in physical and/or psychological symptoms. Cerebral ischaemia or brain 

trauma are examples of acute conditions, while gradual memory loss, neurodegenerative 

diseases or dementia are associated with aging [73]. Proper brain function is dependent 

on neuronal signal transduction and supportive activity of glial cells. Brain is also charac-

terised by the highest metabolic rate among all organs related to the intense ROS or RNS 

formation and consequently requiring an effective antioxidant system [73]. The main an-

tioxidative enzymes in the brain are glutathione peroxidase (GP), superoxide dismutase 

(SOD), catalase (CAT), peroxidase, haem oxygenase, quinone oxidoreductase 1 and γ‐glu‐

tamylcysteine ligase. The expression of various antioxidant enzymes is regulated by nu-

clear factor erythroid 2‐related factor 2 (Nrf2), an important transcription factor involved 

in the maintenance of redox and metabolic homeostasis. It is also known that non-enzy-

matic glutathione plays a critical role in ROS scavenging [73]. Therefore, antioxidant prop-

erties are important for potential therapeutic agents. UA has been shown to possess anti-

radical activity in vitro. Salau et al. [3] have found that UA was more potent than ascorbic 

acid as reflected by IC50 values obtained by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical 

scavenging potential (2.08 μg/ml and 7.64 μg/ml, respectively) and ferric reducing antiox‐

idant power (FRAP) (0.75 μg/ml and 20.17 μg/ml, respectively) assays. Moreover, the pre-

treatment with UA has abolished kainate-induced free radical generation in primary cul-

ture of hippocampal neurons [74]. Antioxidant effects of UA have been demonstrated in 

a wide range of experimental models (see Table 2), both in vitro and in vivo, with single or 

repeated administration. UA has been shown to increase the activity of CAT [75-77], SOD 

[3,73,74,76], glutathione (GSH) [3,75-77], GP [78] and activate the Nrf2-pathway [78,79]. 

The final result of the majority of experiments was the reduction of lipid peroxidation 

expressed as the decrease in the level of malondialdehyde (MDA) [3,75–79]. Ex vivo UA 

has been also able to decrease the activity of α-chymotrypsin, which is known as the 

marker of oxidative injury [3]. OA has been found to elicit antioxidant effects in a similar 

manner as UA. It induced the reduction of intracellular ROS levels in vitro [80], and it was 

demonstrated in vivo that OA activated GSH and SOD as well as decreased the level of 

MDA [16,81] (see Table 2). 

Neurodegenerative diseases (see also Table 2: Parkinson’s or multiple sclerosis ex‐

perimental models) are associated with neuro-inflammation – a complex process, regu-

lated by microglia and astrocytes [82]. These cells produce pro-inflammatory factors such 
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as tumour necrosis factor alpha (TNF-α) [83]. Under certain conditions TNF-α can pro‐

mote inflammation by activation of nuclear factor-κB (NFκB) and mitogen-activated pro-

tein kinase (MAPK) signalling pathways and induce apoptotic processes [84]. Therefore, 

cytokines and transcription factors are feasible targets for anti-inflammatory therapy and 

the effects of triterpenoids have received considerable attention. It has been shown that 

prolonged administration of UA can lead to downregulation of NFκB pathway [77,79,85] 

possibly resulting in decreased levels of interleukins IL-1β [85], IL-12 [77], IL-6 [85], inter-

feron gamma (IFN-γ) [77], matrix metalloproteinase-2 and 9 (MMP-2, MMP-9) [86]. More-

over, UA can promote the expression of genes encoding anti-inflammatory cytokines IL-

4 and IL-10 [77]. Anti-inflammatory potential of OA has been also demonstrated. For ex-

ample, OA could decrease the expression levels of TNF-α, IL-1β and IL-6 in BV2 cells [16]. 

As UA and OA are able to modulate various signalling pathways, they can also have 

neuroprotective effects. Indeed, it has been reported that UA increased myelinated area, 

oligodendrocyte count and myelin basic protein (MBP) content in a multiple sclerosis 

mouse model after administration for 6 weeks, as UA acted as an agonist of peroxisome 

proliferator activated receptor γ (PPARγ) [87,88]. It is known that PPAR-dependent tran-

scription factors play a crucial role in the inflammatory response of the CNS by inhibition 

of NF–κB [89] and downregulation of genes encoding for pro-inflammatory proteins such 

as cyclooxygenase-2 (COX-2), MMP-9 [86], scavenger receptor A, inducible nitric oxide 

synthase (iNOS), as well as the inhibition of the synthesis of pro-inflammatory cytokines 

[90–93]. It is well documented that NO in the brain is generated by neuronal nitric oxide 

synthase (nNOS), whereas inflammation triggers the activation of iNOS [82]. It has been 

shown that prolonged administration of UA resulted in the reduced activity of iNOS 

[73,84]. Similarly, OA reduced the level of NO in BV2 cells, and this was associated with 

the downregulation of the expression of iNOS encoding gene [16]. Given the multiple in-

terrelated molecular pathways described above, the protective effects of UA and OA can 

be ascribed to antioxidative and anti-inflammatory activity. Furthermore, the inhibition 

of apoptosis could also contribute to neuroprotection. Studies using different experi-

mental models indicated that UA could decrease the level of apoptosis effectors, such as 

caspase 3 [75,94] and caspase 9 [75]. The oxygen-glucose deprivation (OGD) experiments 

with organotypic hippocampus slices have also demonstrated the protective effect of UA 

evidenced by modulation of gene expression via AKT/mTOR/HIF-1α pathway, resulting 

in the increased level of Bcl-2 and the decreased level of Bad [94]. 

It is noteworthy that the underlying target of UA and OA might be mitochondria, 

organelles that are involved in both oxidative stress and neuro-inflammation [82]. Re-

cently it has been shown that prolonged administration of UA affected the functionality 

of mitochondrial electron transport chain. In brain mitochondria UA improved the enzy-

matic activity of mitochondrial complex I in rotenone-induced Parkinson’s disease model 

in vivo and increased the expression of mitochondrially encoded cytochrome c oxidase 1 

(MrCO1) [76]. Mitochondrial membrane potential has also been found to be sustained by 

UA (at 10 μM concentration for 10 min) in excitotoxicity model of hippocampal neurons 

[74]. In another study it has been revealed that after the treatment of PC12 cells with OA, 

H2O2-reduced mitochondrial membrane potential was restored and the activity of succin-

ate dehydrogenase (SDH) was improved [81]. It is worth mentioning that UA at 1-7 µM 

concentration had no effect on isolated mouse brain mitochondrial respiration at different 

metabolic states (O. Arandarcikaite, J. Liobikas, unpublished data). However, it was pre-

viously observed that UA had uncoupling and antioxidant effects on rat heart mitochon-

dria [95]. Thus, the relationship between the administration of UA or OA and the favour-

able effects on mitochondrial functions under oxidative stress, ischaemic damage or 

neuro-inflammation requires further investigation as observed outcomes might depend 

on experimental models. 

 
Table 2. Effects of UA and OA on experimental models of brain pathologies. 

Ursolic acid 
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Brain pa-

thology 

Experimental model Dosage Beneficial effects Reference 

Trauma/ 

ischaemic 

damage 

1 h MCAO with 24 h reperfu-

sion. Neonatal rat hippocam-

pal slices after oxygen-glu-

cose deprivation. 

10, 50, and 100 

mg/kg. 

Apoptosis ↓, 

Protection via 

AKT/mTOR/HIF-1α path‐

way, 

Bcl-2 ↑, Bad ↓ and Caspase 3↓ 

[94] 

 2 h MCAO and 48 h reperfu-

sion. 

Post-condition-

ing with 5, 10, or 

20 mg/kg. 

MMP-2 and MMP-9 ↓, 

TIMP1 ↑, 

PPARγ-positive cells ↑ 

[86] 

 MCAO rat model with 24 h 

reperfusion. 

Post-condition-

ing with 130 

mg/kg. 

Nrf2 pathway activation, 

TLR4 ↓ and NF-kB↓,  

MDA ↓ 

[79] 

 Mouse traumatic brain injury 

after 24 h. 

Pre-condition-

ing with 100 

mg/kg. 

GP ↑, SOD ↑ and MDA ↓, 

apoptosis ↓via Nrf2-ARE sig-

nalling pathway. 

[78] 

 Subarachnoid haemorrhage 

rat model by endovascular 

perforation. 

Post-treatment 

50 mg/kg. 

SOD ↑, CAT↑, GSH and 

GSSH ↑, MDA ↓, 

caspase-3 and -9 ↓ 

[75] 

Excitotox-

icity 

Primary neuronal cultures 

from the hippocampus of 7-

day-old rats were treated 

with 150 mM kainite for 2 h. 

Pre-treatment 

for 10 min with 

5, 10 or 15 μM. 

Non-NMDA receptor modu-

lation, 

intracellular ROS ↓, 

mitochondrial membrane po-

tential stabilisation. 

[74] 

Inflam-

mation 

To mimic NF-κB pathway 

mice were subcutaneously 

injected with D-galactose. 

10 mg/kg/day 

for 8 weeks. 

COX-2 ↓, iNOS ↓, IL-1β ↓, IL-

6 ↓, TNF-α ↓, ROS ↓, ad-

vanced glycation end prod-

ucts ↓ 

[85] 

Multiple 

sclerosis 

Multiple sclerosis mouse 

model. 

Prolonged oral 

administration 

of 25 mg/kg. 

MBP+ ↑, myelinated axons ↑, 

PPARγ pathway activation. 

[88] 

 Multiple sclerosis mouse 

model. 

Daily use of 

drinking water 

with 1 mg/ml 

for 6 weeks. 

myelinated area in corpus 

callosum ↑, MBP ↑ 

[87] 

Parkin-

son’s dis‐

ease 

Parkinson’s disease model 

established by rotenone infu-

sions 

30 day admin-

istration of 5 

and 10 mg/kg. 

CAT ↑, SOD↑, GSH ↑, MDA 

↓, TNF- α ↓, 

improved mitochondria com-

plex I enzymatic activity, 

MtCO1 gene expression ↑, 

tyrosine hydroxylase positive 

neurons ↑, 

glial fibrillary acidic protein 

↓ 

[76] 

 Parkinson’s disease rat 

model designed by intraperi-

toneal injections of 1-methyl-

4-phenyl-1,2,3,6-tetrahydro-

pyridine  

Orally 25 mg/kg 

for 21 days. 

CAT ↑, GSH ↑, MDA ↓, 

tyrosine hydroxylase-posi-

tive dopaminergic neurons ↑, 

NF-κB ↓, TNF-α ↓, 

IFN-γ ↓, IL-12 ↓, 

IL-10 ↑, IL-4↑ 

[77] 

 

Oleanolic acid 
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Brain pa-

thology 

Experimental model Dosage Beneficial effects Reference 

Inflam-

mation 

Mouse microglial BV2 cell 

line activated by lipopolysac-

charide. 

Pre-treatment 

with 0.5-25 µM. 

IL-1β ↓, IL-6 ↓, TNF-α ↓, NO 

↓, GSH ↑, iNOS↑ 

[16] 

 

Parkin-

son’s dis‐

ease 

PC12 cell culture treated 

with 6- 

Hydroxydopamine. 

Pre-treatment 

and post-treat-

ment with 100 

mg/kg. 

Dopamine ↑, intracellular 

ROS ↓, neuronal cell survival 

↑ 

[80] 

 

Ischaemic 

damage 

Wistar rat focal cortical hy-

poxia induced by cobalt chlo-

ride injection. 

Intraperitoneal 

injection with 6 

mg/kg/day for 7 

days. 

Neuronal survival ↑, den-

drite recovery ↑, astroglial 

and 

microglial reaction ↓. 

[96] 

 Bilateral common carotid ar-

tery ligation in mice, and 

PC12 cells pre-treated with 

H2O2 

Pre-administra-

tion of 50 and 25 

mg/kg, respec-

tively. 

Infarct zone size ↓, 

mitochondrial membrane po-

tential ↑and succinic dehy-

drogenase ↑, SOD ↑ and GP 

↑, MDA ↓ 

[81] 

↑ indicates stimulation of a process or an increased level of compound, ↓ indicates reduction of process activity or a 

decreased level of compound; MCAO – experimental middle cerebral artery occlusion, SOD – superoxide dismutase, 

CAT – catalase, GSH – glutathione, GSSH – oxidized glutathione, GP – glutathione peroxidase, Nrf2 – nuclear factor 

erythroid 2‐related factor 2, TLR4 – toll-like receptor 4, MDA – malondialdehyde, MBP – mielyn basic protein, IFN-γ 

– interferon gamma, IL – interleukin, TNF-α – tumour necrosis factor alpha, NO – nitric oxide, iNOS – inducible ni-

tric oxide synthase, MMP – matrix metalloproteinase, PPARγ - peroxisome proliferator activated receptor γ. 

 

4.2. Glioblastoma and ursolic/oleanolic acids 

Glioblastoma is the most common and the most aggressive type of primary brain 

tumour, accounting for approximately 55% of gliomas [97,98]. The survival of patients 

with glioblastoma that have undergone standard treatment encompassing surgical resec-

tion and radiation therapy followed by chemotherapy with temozolomide (TMZ) remains 

within 14–18 months [99,100]. More importantly, tumour relapse occurs in almost all pa-

tients, and in such cases glioblastoma often becomes resistant to chemotherapy [101]. 

Therefore, novel agents and therapies for the treatment of glioblastoma are needed, as 

newly developed agents have failed to outmatch TMZ so far [102]. 

Recently, in a number of reviews UA/OA-containing plant extracts, purified com-

pounds and their natural or chemically synthesized derivatives have been reported to 

possess anti-tumour activity in skin, breast, lung, gastric, liver, intestine, prostate and pan-

creatic cancer models in vitro and in vivo [103–107]. Moreover, new data about the poten-

tial of these pentacyclic triterpenoids against glioblastoma have also emerged [15]. Byun 

et al. [108] have recently isolated several C-27-carboxylated OA derivatives (C27OAs) 

from the dried roots of Astilbe rivularis, and showed that 3β-hydroxyolean-12-en-27-oic 

acid, 3β,6β,7α-trihydroxyolean-12-en-27-oic acid and 3β-trans-p-coumaroyloxy-olean-12-

en-27-oic acid at 10 µM concentration could exclusively sensitize the extrinsic apoptotic 

pathway via the p38 MAPK and CHOP-mediated DR5 expression without affecting the 

intrinsic pathway in human LN-428 and U-251 MG glioblastoma cell lines in vitro. The 

results suggest that certain C27OAs might be developed as specific TNF-related apopto-

sis-inducing ligand (TRAIL) sensitizers, and used as chemotherapy agents in glioblastoma 

patients with low levels of caspase-8 or p53 activity. In another study [109], synthetic OA 

derivatives, C-28 methyl ester (CDDO-Me) and C-28 imidazole (CDDO-Im) of 2-cyano-

3,12-dioxooleana-1,9(11)-dien-28-oic acid, have been shown to exhibit potent apoptosis-

inducing activity in human U-87 MG and U-251 MG glioblastoma cells. It is interesting 

that the tested compounds at 2.5–10 µM concentration induced apoptotic cell death 

through both extrinsic and intrinsic pathways, as the activation of pro-caspases-3, -8, and 

-9, mitochondrial depolarization and the release of cytochrome c from mitochondria were 
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observed. Moreover, CDDO-Me inhibited the expression of anti-apoptotic and pro-sur-

vival signalling molecules (p-Akt, p65 and Notch1) in the same cell lines. In addition, OA 

has been also investigated for its ability to affect metabolic activity, viability and cell cycle 

of U-87 cells in vitro [110]. It was found that after 24 h of treatment OA at 100 µg/ml (ap-

prox. 219 µM) induced both apoptosis and necrosis of cancer cells almost to the same ex-

tent, and the IC50 value was determined as 163.6 µg/ml (approx. 358 µM). In addition, 

OA-treated glioblastoma cells exhibited the increase in expression levels of proteins in-

volved in MAPK signalling, and cell cycle arrest at G1 phase. 

UA has been also found to exert a cytotoxic effect in human U-251 MG glioblastoma 

cells with an IC50 value as low as 20 µM [111]. The treatment induced JNK-dependent, 

caspase-independent and lysosomal associated mechanism of cell death that resulted in 

rapid mitochondrial membrane depolarisation. In addition, UA demonstrated greater cy-

totoxicity than conventional chemotherapeutics like TMZ in spite of inactivity towards O-

6-methylguanine-DNA methyltransferase (MGMT), which is a known player in TMZ-re-

sistant glioblastomas. UA (at 20 µM) has been also found to induce apoptosis in U-251 

cells by suppressing TGF-β1 signalling pathway, thus revealing an alternative mechanism 

of anti-cancer activity [112]. In other in vitro glioblastoma models, UA (at 17.5 µM) has 

been shown to induce necrosis in TMZ-resistant human DBTRG-05MG cells through mi-

tochondrial permeability transition pore opening and ATP level decline [113] or at 40 µM 

concentration UA treatment has led to cell cycle arrest at G1 phase, endoplasmic reticulum 

stress-induced JNK activation and autophagy in U-87 MG cells [114]. However, UA from 

Chamaenerion angustifolium at 50 µM concentration induced both apoptosis and necrosis 

in U-87 MG cells, and this effect was explained by UA interaction with the PI3K/Akt sig-

nalling pathway as predicted by molecular docking [115]. UA (at 12.5 µM) has also en-

hanced the cytotoxicity of TMZ in human LN-18 and T98G glioblastoma cells by down-

regulating MGMT expression, and at 50 mg/kg UA potentiated the efficacy of TMZ in 

BALB/c mice with LN-18 xenograft [116]. Furthermore, UA from Rosmarinus officinalis at 

20 µM has reduced IL-1β or TNF-α-induced rat C6 glioma cell invasion in transwell cham-

bers and inhibited the enzymatic activity and expression levels of MMP-9 via the blockage 

of NF-kB-dependent pathway [117]. UA from the methanolic extract of leaves of Sarauja 

roxburghii at 100 µM concentration has also exhibited the cytotoxicity against C6 cells in 

vitro [118]. Bergamin et al. [119] have found that UA at 15–20 µM increased the number 

of C6 glioma cells in sub-G1 phase, induced apoptotic cell death and also reduced the 

expression level and activity of protein kinase B (Akt) in vitro. However, 15 mg/kg/day 

(for 10 days) of UA did not affect the tumour size in an orthotopic glioma model in vivo 

[119]. In another study utilizing in vivo model of glioblastoma, the anti-tumour effects of 

triterpenoids have been established [120]. When C6 tumour-bearing rats were given OA 

solution by gavage (40 mg daily for 7 days) and underwent irradiation therapy, the com-

bined effect of OA and radiation was demonstrated, which resulted in the decreased 

growth rates of tumours and the prolonged survival period of tumour-bearing rats. 

It is noteworthy that our unpublished results (E. Gudoityte, J. Liobikas) indicated 

that UA (20–100 µM, 48 h of incubation) suppressed metabolic activity, decreased ATP 

content and increased the number of necrotic cells in both rat C6 glioma and primary 

mouse astrocyte cell cultures to the same extent. Thus, it is obvious that the observed OA 

and UA anti-tumour effects are rather controversial, and additional research is certainly 

needed to clarify the molecular mechanism of action and neuromodulatory potential of 

these pentacyclic triterpenes. 

5. Concluding remarks 

In conclusion, various parts of medicinal or aromatic plants, and also the pulps and 

peels of many fresh fruits are sources of structurally isomeric pentacyclic triterpenoids 

UA and OA. Moreover, within the last several years UA/OA-enriched extracts, purified 

compounds and their synthetic derivatives have become an object of increasing attention 

due to their potential anti-inflammatory and anticancer effects. Thus, the reviewed data 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2021                   doi:10.20944/preprints202103.0783.v1

https://doi.org/10.20944/preprints202103.0783.v1


 

 

suggest that neuromodulatory activity of UA/OA and their derivatives could be associ-

ated with their ability to stimulate the cellular antioxidant defence systems and to down-

regulate the pro-inflammatory pathways in neurodegeneration or ischaemic brain dam-

age models in vitro and in vivo. Moreover, UA/OA have also demonstrated anticancer ac-

tivity, which might be related to the potency of these pentacyclic triterpenoids to activate 

or sensitize intracellular pathways leading to cell death, and to suppress tumour cell 

growth, proliferation and migration. However, further research is certainly needed to clar-

ify the mechanism of action, since there is obvious variation in experimental data depend-

ing on the treatment regimen and applied models. In addition, the modification of UA 

and OA should be considered a valuable approach to improve the bioavailability and ef-

fectiveness of original compounds. 
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