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Abstract: Intertidal seagrass plays a vital role in estimating the overall health and dynamics of
coastal environments due to its interaction with tidal changes. However, most seagrass habitats
around the globe have been in steady decline due to human impacts, disturbing the already deli-
cate balance in environmental conditions that sustain seagrass. Miniaturization of multi-spectral
sensors has facilitated very high resolution mapping of seagrass meadows, which significantly
improve the potential for ecologists to monitor changes. In this study, two analytical approaches
used for classifying intertidal seagrass habitats are compared: Object-based Image Analysis (OBIA)
and Fully Convolutional Neural Networks (FCNNs). Both methods produce pixel-wise classifi-
cations in order to create segmented maps, however FCNNs are an emerging set of algorithms
within Deep Learning with sparse application towards seagrass mapping. Conversely, OBIA
has been a prominent solution within this field, with many studies leveraging in-situ data and
multiscale segmentation to create habitat maps. This work demonstrates the utility of FCNN5s
in a semi-supervised setting to map seagrass and other coastal features from an optical drone
survey conducted at Budle Bay, Northumberland, England. Semi-supervision is also an emerging
field within Deep Learning that has practical benefits of achieving state of the art results using
only subsets of labelled data. This is especially beneficial for remote sensing applications where
in-situ data is an expensive commodity. For our results, we show that FCNNs have comparable
performance with standard OBIA method used by ecologists, while also noting an increase in
performance for mapping ecological features that are sparsely labelled across the study site.

Keywords: Deep learning; Computer vision; Remote sensing; Supervised learning; Semi-supervised
learning; Segmentation; Seagrass mapping

1. Introduction

Accurate and efficient mapping of seagrass extents is a critical task given the im-
portance of these ecosystems in coastal settings and their use as a metric for ecosystem
health. In particular, seagrass ecosystems play a key role for estimating and assessing the
health and dynamics of coastal ecosystems due to their sensitive response to tidal pro-
cesses ([1], [2], [3], [4]); or human-made artificial interference ([5], [6], [7]). Furthermore,
seagrass plays a vital part in sediment stabilization [8], pathogen reduction [9], carbon
sequestration ([10], [11]) and as a general indicator for water quality [12]. However,
there is evidence seagrass areas have been in steady decline due to human disturbance
for decades [13].

In coastal monitoring, Remote Sensing has provided a major platform for ecologists
to assess and monitor sites for a plethora of applications [14]. Traditionally, passive
remote sensing via satellite imagery was used to provide global to regional observations
at regular sampling intervals, however it often struggles to overcome problems such as

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://www.mdpi.com
https://orcid.org/0000-0002-4690-7439
https://orcid.org/0000-0002-8777-8880
https://doi.org/10.3390/rs1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://doi.org/10.20944/preprints202103.0780.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2021 d0i:10.20944/preprints202103.0780.v1

cloud contamination, oblique views and costs for data acquisition [15]. Another problem
with satellite imagery is its coarse resolution. The shift to remotely piloted aircraft
(RPAs), or drones, and commercially available cameras, resolves resolution by collecting
several overlapping very high resolution (VHR) images [16] and stitching the sensor
outputs together using Structure from Motion techniques to create orthomosaics [17].
The benefits for using these instruments are two-fold: firstly, the resolution of imagery
can be user controlled with respects to drone altitude; secondly, sampling intervals are
more accessible when compared with data acquisitions from satellite imagery. Advances
in passive remote sensing have allowed coastal monitoring of seagrass, intertidal macro-
algae and other species in study sites such as: Pembrokeshire, Wales [16]; Bay of Mont St
Michel, France [18]; a combined study of Giglio island and the coast of Lazio, Italy [19]
and Kilkieran Bay, Ireland [20] with the latter using a hyperspectral camera. The main
goal of these studies is to create a habitat map by classifying multi-spectral drone data
into sets of meaningful classes such that the spatial distribution of ecological features can
be assessed [21]. This work also aims to produce a habitat map of Budle Bay; a large (2
km?) square estuary on the North Sea in Northumberland, England (55.625°N, 1.745°W).
Two species of seagrass, namely Zostera noltii and Angustifolia, are of interest, however
this work will also consider all other coastal features of algae and sediment recorded in
an in-situ survey conducted by the Centre for Environment, Fisheries and Aquaculture
Science (CEFAS) and the Environment Agency.

Object Based Image Analysis (OBIA) [22] is an approach for habitat mapping that
starts by performing an initial segmentation that clusters pixels into image-objects by
maximising heterogeneity between said objects and homogeneity within them. The
image segmentation method used in OBIA is multiscale segmentation (MSS), a non-
supervised region-growing segmentation method that provides the grounds for extract-
ing textural, spatial and spectral features that can be used for subsequent semantic
modelling ([23], [24]). For habitat mapping in coastal environments, OBIA has found
successful applications by using auxiliary in-situ data, i.e. ground truth data via site
visit, for semantic modelling ([25], [26], [27], [28], [29], [20], [16]). A standard approach is
to overlay in-situ data on generated image-objects through MSS so that selected objects
are used to extract features that can create Machine Learning models. Tuned models are
then used to classify the remaining image-objects, thus creating a habitat map.

Developments in Computer Vision through the introduction of Fully Convolutional
Neural Networks (FCNNs) ([30], [31]) can provide an alternative approach to OBIA.
FCNNSs have been found to beat state of the art results on a number of established
datasets for semantic segmentation1 ([32], [33]) through the effective use of Graphical
Processing Units (GPUs) and data-driven approaches. However, the mentioned datasets
and challenges often suit these network architectures due to the abundant amount of
labelled data these provide. In coastal monitoring this is a costly endeavour possible
through in-situ surveying, and therefore this work will also investigate the use of semi-
supervision as an alternative approach to modelling without the need of a fully labelled
data set.

Whilst the main goal is to produce a reliable habitat map detailing areas of seagrass,
algae and sediment at Budle Bay, this work also assesses the difference in performance
between FCNNs and OBIA. In order to assess both methods, each algorithm uses the
same imagery and knowledge gathered from the mentioned in-situ survey. Furthermore,
the use of semi-supervised techniques is investigated due to the nature of the dataset
used for modelling FCNNs (section 2.4).

Section 2.4 will detail the data collection and pre-process necessary for FCNNSs,
both methods will be explained and tailored for the study site in sections 2.5 and 2.6,
results are presented in section 3 and an analysis of these results is in section 4. We will
answer the following research questions:

1 An equivalent output to habitat mapping.
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*  Can FCNNs model high resolution aerial imagery from a small set of geographically
referenced image shapes?

*  How does performance compare with standard OBIA /GIS frameworks?

*  How accurate is modeling Zostera noltii and Angustifolia along with all other relevant
coastal features within the study site?

2. Methods
2.1. Study site

The research was focused on Budle Bay, Northumberland, England (55.625°N,
1.745°W). The coastal site has one tidal inlet, with previous maps also detailing the same
inlet ([34], [35], [36]). Sinuous and dendritic tidal channels are present within the bay;,
and bordering the channels are areas of seagrass and various species of macro-algae.

2.2. Data collection

Figure 1 displays very high resolution orthomosaics of Budle Bay created using
Agisoft’'s MetaShape [37] and structure from motion (SfM). SfM techniques rely on
estimating intrinsic and extrinsic camera parameters from overlapping imagery [38]. A
combination of appropriate flight planning in terms of altitude and aircraft speed, and
the camera’s field of view were important for producing good quality orthomosaics. Two
sensors were used: a SONY ILCE-6000 camera with 3 wide banded filters for Red, Green
and Blue channels and a ground sampling distance of approximately 3 cm (Figure 1,
bottom right). And a MicaSense RedEdge3 camera with 5 narrow banded filters for Red
(655-680 nms), Green (540-580 nms), Blue (459-490 nms), Red Edge (705-730 nms) and
Near Infra-red (800-880 nms) channels and a ground sampling distance of approximately
8 cm (Figure 1, top right).

Each orthomosaic was orthorectified using respective GPS logs of camera positions
and ground markers that were spread out across the site. This process ensures that both
mosaics were well aligned with respect to each other, and also with ecological features
present within the coastal site.

A - MicaSense RedEdge3
0K Wm
—

Figure 1. Study site within the UK. (top-left). Ortho-registered images of Budle Bay using a SONY
ILCE-6000 and a MicaSense RedEdge 3 (right). For the display of the latter camera, we use the
Red, Green and Blue image bands.
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2.3. On-situ survey

CEFAS and the Environment Agency conducted ground and aerial surveys of
Budle Bay in September 2017 and noted 13 ecological targets that can be grouped into
background sediment, algae, seagrass and saltmarsh. Classes within the background
sediment were: rock, gravel, mud and wet sand. These features were modelled as one
single class and dry sand was added to further aid distinguishing sediment features.
Algal classes included Microphytobenthos, Enteromorpha spp. and other macroalgae (inc.
Fucus). Lastly, the remaining coastal vegetation classes were seagrass and saltmarsh.
Since the aim is to map the areas of seagrass in general, both species Zostera noltii and
Angustifolia were merged to a single class while saltmarsh remains as a single class
although two different species were noted. Thus, a total of 7 target classes can be listed.

*  Background sediment: dry sand and other bareground

*  Algae: Microphytobenthos, Enteromorpha and other macroalgae (including Fucus)
®  Seagrass: Zostera noltii and Angustifolin merged to a single class

Other plants: Saltmarsh

The in-situ survey recorded 108 geographically referenced tags with the percentage
cover of all ecological features previously listed within a 300mm radius. These were
dispersed mainly on the Western, Central and Southern portions of the site. Figure 2
displays the spatial distribution of recorded measurements by placing a point for each

tag over the orthophoto generated using the SONY camera.
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Figure 2. Distribution of recorded tags during the on-situ survey.

2.4. Data pre-process for FCNNs

The orthomosaic from the SONY camera was 87730x72328 pixels with 3 image
bands orthomosaic, while the RedEdge3 multispectral orthomosaic was 32647 x 26534
with 5 image bands. For ease of processing, each orthomosaic was split into non-
overlapping blocks of 6000 x 6000 images with each image containing geographic infor-
mation to be used for further processing. The SONY orthomosaic was split into 140 tiles
and the RedEdge3 into 24.

The recorded percentage covers were used to classify each point in Figure 2 to a
single ecological class listed in section 2.3 based on the highest estimated cover during the
in-situ survey. The classification for each point provides the basis to create geographically
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referenced polygon files through photo interpretation. The reasoning for using photo
interpretation instead of selecting segmented image-objects was to avoid bias from the
OBIA when generating segmentation maps used for FCNN training. The assessment of
both algorithms was done using a subset of polygons to compare with predicted habitat
maps from both methods. Figure 3 displays a gallery of images for each class with some
example polygons.

2.4.1. Polygons to segmentation masks for FCNNs

Each polygon contains a unique semantic value depending on the recorded class.
FCNNs were trained with segmentation maps that contain a one-to-one mapping of
pixels encoded with a semantic value, with the goal to optimise this mapping [30]. Seg-
mentation maps used for training FCNNs were created using the geographic coordinates
stored in each polygon and converting real-world coordinates for each vertice to image-
coordinates. If a polygon fits within an image, then the candidate image was sampled
into 256 X256 image tiles centered on labelled sections of the image. By cropping images
centered on polygons the edges of each image have a number of pixels that were not
labelled (Figure 5). The difference in spatial resolution for each camera results in a differ-
ence in labelled pixels, since each polygon covers the same area within the real-world.
This process generated 534 images with the RedEdge3 multispectral camera which were
split into 363 images for training, 102 images for testing and 69 images for validating
and hyper-parameter tuning. The SONY camera produced 1108 images, split into 770
images for training, 213 images for testing and 125 for validation. The split of images for
each camera is based off the associated split of polygons used for training/testing each
method.

2.4.2. Vegetation, soil and atmospheric indices for FCNNs

Vegetation, soil and atmospheric indices are derivations from standard Red, Green
and Blue and/or Near-infrared image bands that can aid discerning multiple vegetation
classes [39]. Near-infrared and red, green and blue bands from the RedEdge3 were used
to compute a variety of indices, adding 5 bands of data to each image. These extra bands
were: Normalised Difference Vegetation Index (NDVI) [40], Atmospheric Resistant Vege-
tation Index (IAVI) [41], Modified Soil Adjusted Vegetation Index (MSAVI) [42], Modified
Chlorophyll Absorption Ratio Index (MCARI) [43] and Green Normalised Difference
Vegetation Index (GNDVI) [44]. The red, green and blue channels for both cameras were
used to compute an extra 4 more indices, namely: Visible Atmospherically Resistant
Index (VARI) [45], Visible-band Difference Vegetation Index (VDVI) [46], Normalised
Green-Blue Difference Vegetation Index (NGBDI) [47] and Normalised Green-Red Dif-
ference Vegetation Index (NGRDI) [48]. The choice for these indices was mostly due to
how important the green channel was for measuring reflected vegetation spectra, while
also providing more data for FCNNs to start with before modelling complex one-to-one
mappings for each pixel.

Calculated indices are concatenated to each image, which results in images for the
RedEdge3 camera having 14 bands, whilst the SONY camera has 7. Furthermore, each
individual band of data was scaled to a value between 0 and 1.
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Figure 3. Gallery of images and polygons. OM - Other Macroalgae inc. Fucus; MB - Microphyto-
bentos; EM - Enteromorpha; SM - Saltmarsh; SG - Seagrass; DS - Dry Sand; OB - Other Bareground.
Images with white polygons are examples of polygons used for modelling.

2.5. Fully Convolutional Neural Networks

Fully Convolutional Neural Networks ([31], [30], [49]) are an extension of tradi-
tional CNN architectures ([50], [51]) adapted for semantic segmentation. CNNs are
generally comprised of a series of layers that perform feature learning through alternate
convolution and pooling operations and a final classification layer. Each convolution
and pooling layer transform the input image into higher level abstracted representations.
FCNNSs can be broken down into two networks: an encoder and a decoder network.
The encoder network is identical to a CNN, however the final classification layer is
removed. The decoder network applies alternate upsample and convolution operations
on feature maps created by the encoder network and a final classification layer with 1 x 1
convolution kernels and a softmax function. Network weights and biases are adjusted
through gradient descent by computing the crossentropy between network probabilities
and encoded values within an segmentation mask.

Figure 4 displays the architecture used for this work. The overall architecture is
a U-Net [31] and the encoder network is a ResNet101 [52] pre-trained on ImageNet.
Residual learning has proven to surpass very deep neural networks [52] and is a suitable
encoder network for the overall U-Net architecture. The decoder network applies a
transposed 2 x 2 convolution for upsampling while also concatenating feature maps
from the encoding stage at appropriate resolutions followed by a final 3 x 3 convolution.
The final 1 x 1 convolution condenses feature maps to have the same number of channels
as the total number of classes to be modelled before a softmax transfer function classifies
each pixel.
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Figure 4. U-Net architecture and loss calculation. The input channels are stacked and passed
through the network. The encoder network applies repeated convolution and max pooling
operations to extract feature maps, while in the decoder network upsamples these and stacks
features from the corresponding layer in the encoder path. The output is a segmented map,
which is compared with the mask using crossentropy loss. The computed loss is used to train the
network, through gradient descent optimisation

For semi-supervised training the Teacher-Student method was used [53]. This
approach requires two networks: a teacher and a student model with both models having
the same architecture as shown in Figure 4. The student network was updated through
gradient descent by adding two loss terms: a supervised loss calculated on labelled
pixels of each segmentation map and conversely an unsupervised loss calculated on
non-labelled pixels. The teacher network was updated through an exponential moving
average of weights within the student network.

2.5.1. Weighted training for FCNNs

Section 2.4 detailed the process to creating segmentation maps from polygons. Both
sets of images from each camera had an imbalanced target class distribution. Figure
5 displays the number of labelled pixels per class and also the number of non-labelled

pixels for each camera.
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Figure 5. Distribution of labelled pixels for each class and non-labelled pixels.
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The recorded distribution poses a challenge for classes such as other macro-algae
and Microphytobentos due to the relative number of labelled pixels in comparison with
the remaining target classes. The pixel counts shown in Figure 5 were used to calculate
the probability of each class occurring within the training set, and for each class a weight
was calculated by taking the inverse for each probability and scaling the weight with
respect to the total number of classes.

w; = (p;.K)™ 1)

Where, w; is i weight for a given class probability p; and K is the total number of

classes. During FCNN training the supervised loss was scaled with respect to the
weights generated in equation 1.

2.5.2. Supervised loss

For the supervised loss term, consider X € REXCxHxW and v € ZBXHXW 1o be
respectively, a mini-batch of images and corresponding segmentation maps; where
B, C, H and W are respectively, batch size, number of input channels, height and
width. Processing a mini-batch with the student network outputs per-pixel scores
Y € REXKXHXW. yhere K is the number of target classes. The softmax transfer function
converts network scores into probabilities by normalising all K scores for each pixel to
sum to one. R

Pk(x) — Kexp Yk(i‘)
Yo—1 exp Yy (x)
Where, x € ; Q C 72 is a pixel location and Pi(x) is the probability for the k" channel

at pixel location x, with X _, Pi/(x) = 1. The negative log-likelihood loss was calculated
between segmentation maps and network probabilities.

@

0, ifY(x)=-1
Ls(P,Y) = { — Tk Yi(x)log(Pr(x)), ®)
ifY(x) # -1

For each image, the supervised loss was the sum of all losses for each pixel using eq. 3
and averaged according to the number of labelled pixels within Y.

2.5.3. Unsupervised loss

Previous work in semi-supervised segmentation details using a Teacher-Student
model and advanced data augmentation methods in order to create two images for each
network to process ([54], [55]). While this work did not use data augmentation methods,
pairs of images were created by using labelled and non-labelled pixels within Y.

Similarly to the supervised loss term, a mini-batch of images was processed through
both the student and teacher network, respectively producing per-pixel scores Y and
Y. Again, pixel scores were converted to probabilities with softmax (eq. 2), P and P,
respectively for the student and teacher network. The maximum-likelihood of teacher
predictions was used to create pseudo segmentation maps to compute the loss for non-
labelled pixels of Y. Thus, the unsupervised loss was also calculated similarly to 3 but
the negative log-likelihood was computed between predictions from the student model
(P) and a pseudo map (Y?) of pixels that were initially labelled as -1.

0, ifY(x)#£ -1
L,(P,YP) =< — Zle Ylf(x) log(Pr(x)), 4)
ifY(x) = -1

For each image, the unsupervised loss was the sum of all losses for each pixel using
eq. 4 averaged according to the number of non-labelled pixels within Y. The latter loss
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was also scaled with respect to the confidence in predictions for the teacher network so
that initial optimisation steps focus more on the supervised loss term. Classes with low
labelled pixel count would benefit from the unsupervised loss term, as confident teacher
predictions can guide the decision boundaries of student models by adding pseudo
maps to consider.

2.5.4. Training parameters

Combining both loss terms yields the objective cost used for optimising FCNNs in
a semi-supervised setting.

Where, Ls and L, are respectively the supervised and unsupervised loss term, with the
former being scaled according to the weights computed in 1 and the latter to v which
was set to 0.1 for all experiments.

All networks were pre-trained on ImageNet. Networks for each camera were
trained for 150 epochs with a batch-size of 16 using Adam optimiser. The learning rate
was initially set to 0.001 and reduced by a factor of 10 every 70 epochs of training.

2.6. OBIA

The OBIA method for modelling multiple coastal features was done using eCog-
nition v9.3 [56]. This software has the tools to process the high volume orthomosaics
and shape file exports from GISs to create supervised models. Section 2.4 detailed a
number of methods used to pre-process the orthomosaics and shape polygons, however
the OBIA does not require this.

The first step in OBIA is to process each orthomosaic using a multiscale segmen-
tation to partition the image into segments, also known as image-objects. The segmen-
tation starts with individual pixels and clusters pixels to image-objects using one or
more criteria of homogeneity. The subsequent clustering of two adjacent image-objects
or image-objects that are a subset of each other were merged together on the following
criteria:

h=Y N(of' —0i) + M(o} - 07) ©6)
c

With, o!, 0% and o™ respectively representing the pixel values for object 1, 2 and a
candidate virtual merge m. N and M are, respectively, the number of total pixels for
object 1 and 2. This criteria evaluates the change in homogeneity during fusion of
image-objects. If this change exceeds a certain threshold value then the fusion is not
performed. In contrast, if the change in image-objects is lower then both candidates are
clustered to form a larger segment. The segmentation procedure stops when no further
fusions are possible without exceeding the threshold value. In eCognition, this threshold
value is a hyper-parameter defined at the start of the process, also known as the scale
parameter. The geometry of each shape is defined by two other hyper-parameters: shape
and compactness. For this work, the scale parameter is set to 200, the shape to 0.1 and the
compactness to 0.5. Figure 6 displays image objects overlaid on top of both orthomosaics.
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Figure 6. Segmented orthomosaics using the multiscale segmentation algorithm. The scale, shape
and compactness were respectively 200, 0.1 and 0.5.

Further to this, the polygons (Figure 3) were overlaid on top of image-objects to
select the candidate segments for extracting spectral features. Selected image-objects cre-
ate a database for the in-built Random Forest modeller within eCognition. The spectral
features for the RedEdge3 camera were: channel mean and standard deviation, vegeta-
tion and soil indices (NDVI, RVI, GNDVI, SAVI), ratios between red /blue, red /green
and blue/green image layers and the intensity and saturation components by changing
to the HSI colour space. The features for the SONY were the same but the vegetation
and soil indices were not added. Once the features and image-objects were selected, the
Random Forest modeller produced a number of Decision Trees [57] with each tree being
optimised on features using the GINI Index.

3. Results

The outputs for both the FCNNs and OBIA were compared with a subset of poly-
gons that were not used for training. Figures 7 and 8 display confusion matrices scoring
outputs from each method and camera. The reported accuracy measurements reflect
pixel accuracy which is the ratio between pixels that were classified correctly with the
total number of labelled pixels within the test set for a given class. A comparison of
FCNN models that were trained using only the supervised loss and with both loss terms
was also performed.

Overall results for each method and camera can be viewed in Table 1, where
precision, recall and F1-score were reported. Precision and recall are metrics that can
detail how a classifier performed for each specific class. For instance, low recall can
indicate underfit due to a high false negative rate, conversely low precision can indicate
overfit due to a high false positive rate. Fl-score is the harmonic mean of recall and
precision and is a good metric to quantify classifier performance.

TP
precision TP + FP ( )
TP
recall = TP—}——FZ\] (8)

recall x precision

F1= —
recall + precision

©)
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Table 1: Precision, recall and F1 scores for both algorithms on both cameras. DS - Dry
Sand; OB - Other bareground; EM - Enteromorpha; MB - Microphytobentos; OM - Other
macro-algae; SG - Seagrass; SM - Saltmarsh

P R F1 P R F1 P R Fl P R Fl

DS 0.99 0.62 0.76 097 099 0.98 1.0 1.0 1.0 099 1.0 0.99
OB 056 042 048 099 090 0.94 0.99 0.98 0.99 0.99 0.97 0.98
EM 0.73 095 0.83 091 091 0.91 0.25 0.97 0.40 0.18 0.57 0.27
MB 0.008 0.72 0.01 0.06 1.0 0.12 1.0 0.88 0.93 0.30 0.99 0.46
OM 0.25 049 0.33 069 073 0.71 0.02 0.83 0.05 0.66 0.55 0.60
SG 0.67 095 0.78 0.64 0.73 0.68 0.64 0.93 0.76 0.27 0.93 0.42
SM 099 096 0.98 097 099 0.98 0.99 0.73 0.84 0.97 0.81 0.88
MicaSense: OBIA MicaSense: FCNN SONY: OBIA SONY: FCNN

3.1. SONY ILCE-6000 results

FCNN: Supervised
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Figure 7. Confusion matrices for both methods using the SONY camera.
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Figure 8. Confusion matrices for both methods using the RedEdge3 multispectral camera.

3.3. Habitat maps

Figures 9, 10 and 11 are habitat maps of Budle Bay using each method previously
described.
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Figure 9. Segmented habitat maps for both cameras with OBIA. The top row of images are from
the RedEdge3 multispectral camera and the bottom row of images from the SONY camera. Legend:
OM - Other Macroalgae inc. Fucus; MB - Microphytobentos; EM - Enteromorpha; SM - Saltmarsh; SG -
Seagrass; DS - Dry Sand; OB - Other Bareground.


https://doi.org/10.20944/preprints202103.0780.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2021 d0i:10.20944/preprints202103.0780.v1

Ds-[] op- v BN e BN oM -EEEE
SG- s - I

Figure 10. Segmented habitat maps for both cameras with FCNNSs optimised using only the
supervised loss. The top row of images are from the RedEdge3 multispectral camera and the
bottom row of images from the SONY camera. Legend: OM - Other Macroalgae inc. Fucus; MB -
Microphytobentos; EM - Enteromorpha; SM - Saltmarsh; SG - Seagrass; DS - Dry Sand; OB - Other
Bareground.
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Figure 11. Segmented habitat maps for both cameras with FCNNs optimised with both the
supervised loss and unsupervised loss. The top row of images are from the RedEdge3 multispectral
camera and the bottom row of images from the SONY camera. Legend: OM - Other Macroalgae
inc. Fucus; MB - Microphytobentos; EM - Enteromorpha; SM - Saltmarsh; SG - Seagrass; DS - Dry
Sand; OB - Other Bareground.

4. Discussion

The initial analysis of results was done for each individual camera based off pixel
accuracy and an overall discussion for both cameras and methods was described using
precision, recall and F1-score.

4.1. SONY ILCE-6000 analysis

The results for the SONY camera in terms of average pixel accuracy across all classes
were better with OBIA than FCNN.

Predictions with the OBIA method had an average pixel accuracy of 90.6%. Classes
related to sediment had scores of 100% and 98.38%, respectively for dry sand and other
bareground. This method also performed well for all algal classes listed in 2.3 and in
particular predictions for other macro-algae scored considerably higher with OBIA than
with FCNNs. As mentioned previously, this class in particular had the least amount
of labelled pixels (Figure 5) which posed a challenge for FCNNs models. Algal classes
scored 97.6%, 88.09% and 83.18%, respectively for Enteromorpha, Microphytobentos and
other macro-algae (inc. Fucus). Seagrass predictions were found to score 93.67% and
saltmarsh was the worst performing class for the OBIA with 73.32%.

FCNNS s in either supervised and semi-supervised training yielded an average
class accuracy of 76.79% and 83.3%, respectively. Both approaches to training FCNN5s
had comparable scores to OBIA with the exception to Enteromorpha and other macro-
algae, which respectively scored 38.72% and 32.29% for supervised training and 57.05%
and 55.90% for semi-supervised training. Other macro-algae was often miss classified
as Enteromorpha another algal class within the dataset, while Enteromorpha was often
predicted as saltmarsh. The addition of the unsupervised loss term for semi-supervised
training helped increase the pixel accuracy for other macro-algae, supporting the initial
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premise that target classes with relatively low pixel label counts can benefit from the
semi-supervised approach described in section 2.5.

4.2. MicaSense RedEdge3 analysis

The results for the RedEdge3 camera in terms of average pixel accuracy across all
classes were mostly better with FCNNs in both training modes than OBIA.

The OBIA method had an average pixel accuracy of 73.44%. Sediment classes such
as dry sand and other bareground scored 63.18% and 42.80%, respectively, with Micro-
phytobentos being classified 56.49% as other bareground. Microphytobentos consists of a
unicellular eukaryotic algae and cyanobacteria that grow within the upper millimeters
of illuminated sediments, typically appearing only as a subtle greenish shading [58], and
since other bareground includes wet sand, both classes were interchangeably miss classi-
fied. Algal classes scored 93.42%, 72.54% and and 49.31%, respectively for Enteromorpha,
Microphytobentos and other macro-algae (inc. Fucus). The remaining vegetation classes of
seagrass and saltmarsh both presented high scores of 95.48% and 96.38, respectively, and
in particular seagrass predictions were more accurate with OBIA than FCNNSs. Figure 6
displays image-objects generated as a result of MSS with the number of image-objects
present for the RedEdge3 camera being greater than objects generated using the SONY
camera. This indicates that the scale parameter should be reduced for the multispectral
camera since Figure 7 suggests that OBIA with the SONY camera was a suitable method
for this work.

FCNN s in either supervised and semi-supervised training yielded an average
class accuracy of 85.27% and 88.44%, respectively. Both models had robust scores for
sediment scoring above 95% in pixel accuracy. Again, results between supervised and
semi-supervised models for algal classes note an increase in performance when the
unsupervised loss term was added to the training algorithm. This also supports the
premise that an unsupervised loss term aids FCNNs with target classes that had a low
number of labelled pixels relative to the remaining classes. This particularly holds true
for classes of Microphytobenthos and other macro-algae which benefited the most from
a semi-supervised training mode. Predictions for saltmarsh were comparably equal to
OBIA, but seagrass was often miss classified as saltmarsh and/or Enteromorpha.

4.3. Overall analysis

Results for both methods were collated for each camera in Table 1. Note that scores
for FCNNs depict models trained in semi-supervision.

Table 1 shows that F1-scores for the SONY camera favoured the OBIA approach.
While sediment classes had equal performance to FCNNSs, predictions for algal classes
of Enteromorpha and Microphytobentos scored better with OBIA. In particular, the latter
class was far better due to FCNNSs recording low precision which could suggest some
degree of overfit. This conclusion can be supported by large areas that were predicted as
Microphytobentos in Figures 10 and 11 for the SONY camera due to a high false-positive
rate. Other macro-algae was found to have a better F1-score with FCNNss than OBIA
which contradicts the initial analysis in Figure 7. While seagrass scores for pixel accuracy
were equal for both methods (Figure 7), the precision for FCNNs was lower than OBIA,
again suggesting a high false-positive rate for FCNNs.

F1-scores for the RedEdge3 camera show predictions with FCNNs were robust for
classes related to sediment, Enteromorpha and saltmarsh. The latter classes all scored
above 0.90 for Fl-score, suggesting that FCNNs avoid high false-positive and false-
negative rates for the latter classes. This was not the case for Microphtobentos predictions,
where Figure 8 suggests high accuracy but Table 1 noted low precision and high recall,
which suggests some degree of overfit. Again, this conclusion can be supported by large
areas that were predicted as Microphytobentos in Figures 10 and 11 for the RedEdge3.
Other macro-algae (inc. Fucus) was found to be a problematic class to model for OBIA
due to the small number of labelled pixels relative to the rest of the dataset. But this was
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not the case for FCNNs where a combination of weighted trained and semi-supervision
through an unsupervised loss helped to guide decision boundaries towards accurate
predictions. Lastly, seagrass predictions were found to be more accurate with OBIA
due to higher scores in recall, suggesting that FCNNs were more likely to miss classify
seagrass polygons. This can be loosely noted by comparing seagrass predictions in
Figure 9 with corresponding areas that were not predicted as seagrass in Figures 10 and
11.

Generally for seagrass mapping, both methods for both cameras exhibit confident
predictions for seagrass, with the worse combination of camera and approach being
FCNNs with the SONY camera. In fact, both cameras with FCNNs performed worse
with regards to seagrass, but the SONY camera was due to a high false-positive rate and
the RedEdge3 was due to a high false negative rate. Another final consideration was the
pre-process necessary to create segmentation maps for FCNN training, a process that is
not required in Geo-OBIA software such as eCognition.

Comparing the results of seagrass mapping through FCNNs with previous attempts
found use of the same metrics stated in section 3. However, most of these studies ([59],
[60], [61]) were mainly concerned with seagrass meadows instead of intertidal seagrass.
FCNNSs have been used for mapping intertidal macro-algae [62] with reported average
accuracies for a 5 class problem to be 91.19%. However, this work considers mapping
intertidal macro-algae, seagrass and sediment features at a coarser resolution. In fact,
it is to the authors knowledge that this is the first use of FCNNs for intertidal seagrass
mapping. Previous attempts with OBIA were found to be successful ([16], [19]) with the
former using the root mean-square error to quantify results for a 5 class problem and the
latter using accuracy in classified image-objects instead of per-pixel.

4.3.1. Habitat map discussion

The confusion matrices in Figures 7 and 8 and F1-scores in Table 1 detail objective
scores based off data from the in-situ survey, and while these polygons provide a form
of preliminary analysis for each method, correlations between confusion matrices and
predicted maps can be found.

For instance, the OBIA method using the multispectral camera for seagrass classi-
fications was found to be more accurate than FCNNSs; interestingly all FCNNs trained
and tested on the latter camera did not predict seagrass along the North Western part of
the site (area covered in Figure 6). While it is not possible to quantify which method was
correct without surveying the site again, the confidence in seagrass predictions for OBIA
along with FCNNs predicting bareground sediment instead of vegetation can lead to
users being more confident with OBIA for seagrass mapping.

Another key difference between each method were the areas to which Microphy-
tobentos was predicted while also maintaining confident scores with respect to pixel
accuracy. As mentioned, Microphytobentos consists of a unicellular algae specie that
grow within the upper millimeters of illuminated sediments, which could suggest that
the total area covered by Microphytobentos should not be as large as depicted in maps
processed by FCNNSs. Scores for precision shown in Table 1 support this claim due to low
precision indicating some degree of overfit which in turn explain large areas predicted
as Microphythobentos. The only exception to this being the OBIA with the SONY camera.

The remaining classes were similar in areas to which they covered within habitat
maps.

5. Conclusion

In this work we show that FCNNs can model high resolution aerial imagery from
a small set of polygons that were converted to segmentation maps for training. Each
FCNN was evaluated in two training modes, supervised and semi-supervised, with
results indicating that semi-supervision help models with target classes that have a small
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number of labelled pixels. A prospect that may be of benefit for studies where in-situ
surveying is an expensive effort to conduct.

This work also showed that OBIA continues to be a robust approach for monitoring
multiple coastal features in high resolution imagery. In particular, both cameras with the
OBIA were found to be more accurate over FCNNSs in predicting seagrass. However, as
noted in section 3 results with OBIA were highly dependant on the initial parameters
used for MSS, with the scale parameter being critical for image-object creation.

The study site and problem formation described in section 2.3 combined for a
complex problem. This in turn can make confidence in seagrass predictions decrease as
ambiguity over multiple vegetation classes increases. OBIA was found to overcome this
with both cameras accurately predicting seagrass polygons while maintaining relatively
high precision when compared to FCNNs. On the other hand, FCNNs were found
to be more accurate to classify algal classes, and in particular for other macro-algae
which had the least number of labelled pixels. Therefore, while this work shows that
OBIA is a suitable method for intertidal seagrass mapping, other applications within
remote sensing for coastal monitoring with restricted access to in-situ data can leverage
semi-supervision.
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