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Abstract: A growing body of research aims at solving what is often referred to as the stimulus-percept
problem in olfactory perception. Although computational efforts have made it possible to predict
perceptual impressions from the physicochemical space of odors, studies with large psychophysical
data sets from non-experts remain scarce. Following previous approaches, we developed a physi-
cochemical odor space using 4,094 molecular descriptors of 1,389 odor molecules. For 20 of these
odors, we examined associations with perceived pleasantness, intensity, odor quality and detection
threshold, obtained from a dataset of 2,000 naive participants. Our results show significant differ-
ences in perceptual ratings, and we were able to replicate previous findings on the association be-
tween perceptual ratings and the first dimensions of the physicochemical odor space. However, the
present analyses also revealed striking interindividual variations in perceived pleasantness and in-
tensity. Additionally, interactions between pleasantness, intensity, and olfactory and trigeminal
qualitative dimensions were found. Our results support previous findings on the relation between
structure and perception on the group level in our sample of non-expert raters. Nevertheless, human
olfactory perception is no analytic process of molecule detection alone. Therefore, to gain an under-
standing of stimulus-percept relationship in the individual, future studies should shift towards a
more holistic view that takes into account the influences of context, experience and other interper-
sonal characteristics.
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1. Introduction

Although the sense of smell is the evolutionarily oldest sensory system and is capable
of discriminating more than a trillion olfactory stimuli ([1], but also see [2] on the dimen-
sionality of the odor space), many basic rules governing olfaction remain obscure to this
day. As a chemical sense, olfaction relies on the sensory detection and perceptual inter-
pretation of odorous molecules in the environment. A lot of research has tried to solve the
intriguing question of the so-called “stimulus-percept-problem": How does the molecular
structure of an odor map onto its olfactory perception (for an excellent overview see [3])?
Despite a steadily growing field of research on this topic, the underlying mechanisms of
whether and how an odor is perceived based on its structure are still incompletely under-
stood, in contrast, for example, to the visual or auditory domain.

There are some well-known relations between structure and odor perception. In or-
der to be perceived as odorous at all, a molecule must be volatile enough to evaporate and
have specific solubility characteristics to pass through the (hydrophilic) nasal mucosa and
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bind to the (hydrophobic) olfactory receptors in the olfactory epithelium [4]. In addition,
some functional groups are known to determine characteristics of odor quality. For exam-
ple, esters typically have a sweet or fruity odor and aldehydes are associated with the
scent of grass or leaves [3]. The physical and chemical properties of odors presumably also
influence the perceived intensity and concentration threshold at which an individual can
detect them. Intensity is positively associated with vapor pressure, i.e. how many mole-
cules are released into the air to reach olfactory receptors, and negatively relates to water
solubility (hydrophilicity) [5]. Interestingly, the ability to judge odor intensity remains in-
tact in humans with brain lesions, who are incapable of characterizing odorant qualities
[6, 7]. This suggests that intensity encoding may function independently of odor discrim-
ination. In addition, odor molecules with a high molecular weight were found to have
higher rates of specific anosmia, not being able to smell a specific odor, than lighter mol-
ecules [8].

Probably the most extensively investigated perceptual dimension of olfaction is its
hedonic valence, or pleasantness. Pleasantness has a special role in olfactory perception.
Unlike vision, where this dimension plays a rather subordinate role, naive subjects tend
to respond to hedonic properties of odors before thinking about their quality or intensity
[9]. Pleasantness was repeatedly found to be positively associated with molecular weight,
size or complexity [5, 10-12] and was highlighted as one of the most important dimensions
of odor description [10, 13-15].

However, direct relationships between specific physical or chemical characteristics
with odor perception are rare, and structurally similar odor molecules in some cases lead
to very different olfactory perceptions [3]. In addition, the understanding is complicated
by many other processes in the pathway of olfaction. For example, influences due to chem-
ical reactions during transport through the nasal mucosa or the interaction of odors in
odor mixtures [3, 4, 16, 17]. Thus, olfactory perception remains a "black box" in many re-
spects. Ways to bridge this problem emerged with the advance of complex computational
algorithms and modeling approaches.

As a first step, many studies have attempted to characterize a "physicochemical odor
space" [4, 5, 10, 18]. For this purpose, a large number (typically thousands or tens of thou-
sands) of chemical and physical molecular properties, so-called descriptors, are calculated
using special software or online databases. To deal with the resulting high-dimensional
property space, the most important dimensions are usually obtained using statistical de-
composition methods such as principal component analysis [e.g. 10, 19]. The resulting
physicochemical odor space can then be used to study odor similarity [19, 20], qualitative
or hedonic properties of odors [5, 10, 18]. For example, Khan et al. [10] were able to put
novel molecules into the correct ranking of pleasantness according to their variance in the
first component of the physicochemical odor space. This way, odorant pleasantness could
be predicted with r ~ .50 across three cultures [10]. Using sophisticated prediction algo-
rithms, such machine or deep learning approaches, increasingly high prediction accura-
cies can be achieved without having to capture the complexity of all underlying interac-
tions involved [21, 22]. Keller, Gerkin [18] even launched a crowd-sourced competition to
obtain high prediction accuracies for their dataset with 49 study participants who rated
perceptual dimensions of 476 odor molecules.

One striking caveat of most of these experiments is, however, that the perceptual
dimensions are obtained using ratings by olfaction experts, such as perfumers, wine tast-
ers etc. (e.g., see [9, 23-26]). This procedure has benefits in a presumed higher objectivity
and less interindividual variation in odor evaluation of the raters. Especially, when aim-
ing to unveil the rules of odor sensation at the molecular level, small deviations in the rat-
ings of the same odor are undoubtedly favorable.

Many studies, on the other hand, are not aiming at a detailed understanding of pro-
cesses on an atomic level, but focus on perceptual aspects of olfaction, i.e., finding reliable
predictions of whether an odor is pleasant, familiar, intense, ... etc. In this context, one
must ask to what extent expert ratings can be generalized to the population as a whole.
Measures of olfactory perception, such as hedonic valence, vary between individuals —
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amongst others - due to influences of context and experience [27-32]. Consequently, they
cannot be completely determined by structural composition alone. The question therefore
arises as to how valid expert evaluations are when examining perception. As an analogy
in the visual domain, one could compare this to asking art experts to judge the beauty of
visual impressions. Although this might lead to more similar ratings than in a normal
population sample, it can be asked, if these are representative results. To date, there is a
lack of studies that systematically address the relation between physicochemical structure
and olfactory perception of “naive” subjects. One of the few existing studies is the previ-
ously mentioned study by Keller et al. [5, 18], who investigated an impressively wide
range of chemically different odor molecules but on only 56 individuals.

The purpose of this study is to investigate the extent to which previous findings
about the relationship between odor structure and perception hold true in a sample of
non-expert raters. To this end, we study the role of physicochemical properties for the
detection threshold as well as for perceived pleasantness, intensity and quality of odors in a
large naive sample. We further examine the distribution and variance of the perceptual
ratings to identify evidence of interindividual differences in olfactory perception. For that
purpose, we reanalyze a dataset of 2,000 subjects that rated 20 odors in a study by Croy et
al. [8] and critically examine how perceptual ratings interact and vary between individu-
als. The findings intend to broaden the understanding of olfactory perception in relation
to the physicochemical odor space and point out perspectives and challenges in the field.

2. Materials and Methods

In order to investigate the relationship between odor properties and their corre-
sponding perceptual impression in a large non-expert sample, we performed three main
steps. At first, we followed previous approaches and developed our own physicochemical
odor space as introduced in Khan, Luk [10] (see section 2.1). As a second step, we retrieved
perceptual ratings [8] and investigated the distribution and differences in the ratings for
20 different odors (see 2.2 & 2.3). Thirdly, we correlated the results from the odor space
with the perceptual ratings from our dataset. The procedure is visualized in a schematic
overview in Figure 1.

2.1. Development of a Physicochemical Odor Space
2.1.1. Descriptor Calculation and Preprocessing

For the development of a physicochemical property space of odors we calculated
physical and chemical descriptors for 1,389 odors typically used in experiments and in-
dustry from a list provided by Khan et al. (2007). For those odors, we first identified the
corresponding molecule from its registry number or name using webchem package [33] in
RStudio® (version 1.2.5033, R version 3.6.2). Afterwards, we used the Online chemical da-
tabase [OCHEM, https://ochem.eu/; 34] to calculate a total of 21,609 physical and chemical
descriptors. For preprocessing, we removed all descriptors containing infinite or missing
values for one or more of the molecules as well as descriptors with zero values for more
than 80% of the molecules. Furthermore, to improve the quality of the principal compo-
nent analysis, we dropped all descriptors without noteworthy correlations (no correlation
of r > [0.3| with any other descriptor). This resulted in the final odor space with 4,094
descriptors for each of the 1,389 molecules. A more detailed report on the descriptor cal-
culation and a list of all odors used can be found in the supplementary material. All cor-
responding R and Python code and datasets for the analyses in this publication are avail-
able via https://osf.io/e67dn/.
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Figure 1. Overview of Methodology and Analyses. 1 Development of a physicochemical odor space. For 1,389
odor molecules, including 20 molecules for which we obtained perceptual ratings (see 3D molecule structure
images and 2), molecular descriptors were calculated using the Online chemical database (https://ochem.eu/).
After preprocessing of the dataset, dimension reduction was performed by the means of principal component
analysis. The resulting components were used for further analyses (see 3). 2 Perceptual ratings of odors. For 20
of the 1,389 odor molecules perceptual ratings were obtained from a dataset with n = 2,000 subjects that were
tested with one or more odors in groups of n ~ 200 (Croy et al., 2015, see Table 2). The detection threshold and
ratings of intensity, pleasantness and qualitative dimension were investigated for differences between the
odors. 3 Association between perception and odor space. Finally, the values of the first principal components of
the odor space for each odor were correlated with their corresponding perceptual dimensions of pleasantness,
intensity and detection threshold. For the qualitative ratings, individual plots were generated showing the fre-
quency of naming a specific qualitative descriptor for each odor molecule. Note: Plots show schematic visualiza-
tions.

2.1.2. Dimension Reduction

To get rid of redundancies in the variables and reduce the dimensionality of the odor
space, principal component analysis (PCA) was performed. PCA is a common method to
reduce the dimensionality of large and complex datasets with high redundancies between
variables. To achieve this, all data points are projected to new coordinates in a way that
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each dimension (= principal component) successively explains the largest amount of var-
iance in the data and all resulting dimensions are orthogonal (i.e. uncorrelated) to each
other. Usually, PCA requires more observations than variables in the dataset to yield ro-
bust estimates, which is not the case here since we have 4,094 variables but only 1,389
observations. A typical approach in cheminformatics, where this is a common problem, is
the usage of the non-linear iterative partial least squares (NIPALS) algorithm [35]. The
NIPALS method is based on finding linear combinations for each factor in an iterative
way, starting with a randomly chosen starting vector. The procedure generates more pre-
cise results than the normally used singular value decomposition, but may also be slower
if a large amount of components is calculated [35]. We performed PCA using the NIPALS
algorithm on the 4,094 molecular descriptors using statsmodels package as implemented
in Python 3.7 [36]. The statsmodels PCA function first normalizes the data and then per-
forms PCA on the desired number of components, ranging from one component to the
number of variables in the dataset. To establish a reasonable calculation time, we chose to
calculate 100 principal components. As a result, a matrix of factor scores was generated,
that reflects the position of each odor molecule in the odor space and the corresponding
factor loadings refer to the importance of each original descriptor for the principal com-
ponents. In a last step, the factor scores for each odor molecule were stored in a data frame
to be used for further analyses of associations between odor space and perceptual ratings
(see 2.2).

2.2. Materials and Measures

For the analysis of perceptual ratings of odors, a dataset from Croy et al. [8] with a
total of 2,000 participants was used. There, each participant had been tested for odor de-
tection threshold for one to seven out of twenty odorants (see Table 1 and Table 2) in nine
dilution steps from 0 = 1:10° to 9 = 1:10°. Based on the results for the individual detection
thresholds, the rate of specific anosmia was calculated, i.e. the percentage of participants
not being able to smell the odor as operationalized by the deviation from mean detection
threshold. CAS number, trivial name and an abbreviate code for better readability in suc-
cessive graphs for each molecule are provided in Table 1. For thirteen of the odors, partic-
ipants had been asked to rate their individual perceptions of the highest odor concentra-
tion with respect to intensity, pleasantness and for twelve odors for a qualitative impres-
sion. Pleasantness and intensity had been rated using a scale from 0 through 9 (intensity:
0 = not perceived, 9 = extremely intense; pleasantness: 0 = extremely unpleasant, 9 = ex-
tremely pleasant). Qualitative ratings had been collected by asking the participants to
choose two out of twelve verbal descriptors that, in their opinion, described the odorant
best. For further details on the procedures see Croy et al. [8].

2.3. Statistical Methods

All analyses were carried out in Jupyter notebook (see https://osf.io/e67dn/) using
different packages in Python 3.7, including Pandas, NumPy, Matplotlib, SciPy, statsmodel
and Pingouin. In order to detect significant differences between perceptual ratings for dif-
ferent odors, robust Welch one-way analyses of variance (ANOVA) were performed for
the factors pleasantness, intensity and detection threshold and Games-Howell post-hoc
comparisons were calculated. The ANOVAs and post-hoc tests were conducted using the
Pingouin package (version 0.3.9) as implemented in Python 3.7 [37]. For the investigation
of interindividual differences in the distributions of pleasantness and intensity ratings, the
mean, median and standard deviations were calculated and the results visualized in his-
tograms and boxplots. In addition, Pearson correlation coefficients were calculated for as-
sociations between the mean and standard deviations for the perceptual ratings. For the
qualitative ratings, the percentage of naming the different verbal descriptors were calcu-
lated and visualized. Associations of the qualitative descriptions with mean intensity and
pleasantness ratings were analyzed in an explorative fashion. Finally, Pearson correlation
coefficients were calculated to investigate associations between the first five principal



https://osf.io/e67dn/?view_only=c16dfab2bcca4ea4915047cfb0423f9e

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2021

components of the odor space (see section 2.1) with the perceptual ratings. For those cor-
relations, the rate of specific anosmia was added to compare the results to the previous
findings in Croy, Olgun [8]. The graphs and visualizations of the results were built using
the packages matplotlib and seaborn (Python 3.7.) in Jupyter notebook and were further
processed in Adobe Illustrator 2021.

Table 1. Overview of Odors. Listed are CAS registry number, trivial name and abbreviation used

in plots and graphs.
CAS number Trivial name Abbreviation

1 204-262-9 Salicylic ester Salicyl
2 99-49-0 I-Carvon Carvon
3 431-03-8 2,3-Butadione Buta
4 31906-04-4 Lyral Lyral
5 5146-66-7 Citralva Citra
6 106-24-1 Geraniol Gera
7 78-84-2 Isobutyraldehyde Isobut
8 503-74-2 Isovaleric acid Isoval
9 628-46-6 Isoamylacetate Isoamy
10 118-71-8 3-Hydroxy-2-methyl-4-pyrone  HMP
11 470-82-6 1,8-Cineol Cineol
12 956-82-1 Muscone Musc
13 6602-64-8 Galaxolide Gala
14 28219-61-61 Sandranol Sand
15 28219-61-61 Bacdanol Bacd
16 18829-56-6 Trans-2-nonenal Trans
17 19870-74-7 Cedrylmethylether CeMeEt
18 106-02-5 Pentadecanolide Penta
19 60-12-8 Phenylethylalcohol PEA
20 3391-86-4 1-Octen-3-one Octen

! Note: Sandranol and Bacdanol are listed with the same CAS registry number and therefore corre-
spond with the same structural descriptors in further analyses.

Table 2. Overview over Subject Groupings, Odorants and Perceptual Ratings obtained

Subjects Odorants used for testing Perceptual Ratings
thr int pl qual
1-200 Isoval  Trans - - - - - X X X X
201 - 400 HMP  Penta CeMeEt - - - - X X X X
401 - 600 Sand Bacd Buta - - - - X X X X
601 - 800 Lyral  Musc - - - - - X X X X
801 - 1000 Gera - - - - - - X X X
1001 - 1200 PEA Gera  Cineol - - - - X
1201 -1400 Carvon Isoamy Salicyl - - - - X
1401 - 1600 Citra Gala - - - - - X
1601-1800  Isobut  Octen - - - - - X X X X
1801 - 2000 PEA Citra  Cineol Isoamy Salicyl Gala Carvon X

Abbreviations: thr = threshold, int = intensity, pl = pleasantness, qual = quality

3. Results
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3.1. Physicochemical Odor Space
3.1.1. Factor Scores and Loadings

For dimension reduction, we calculated 100 principal components from the 4,116
original molecular descriptors (see Figure 2). Although a systematic analysis of the factor
loadings is challenging due to the large number of descriptors, some associations and
trends were explored, especially to check if previous results can be replicated. Similar to
previous studies (e.g., see [4, 5, 10]), the first component showed a clear association with
molecular weight (as shown by the shade of blue in Figure 2) and complexity (high loadings
of graph vertex complexity index and graph distance complexity index; both descriptors from
alvaDesc). Further exploration showed, that the second principal component shows high
loadings of descriptors related to descriptors with some relation to polarity or negativity,
such as the eta average electronegativity measure, mean atomic Sanderson electronegativity or
topological surface area (alvaDesc descriptors). The third principal component may be re-
lated to topological characteristics, e.g. there is a high factor loading of the ring complexity
index and distance or spanning indices from detour or Laplace matrix.
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Figure 2. Physicochemical Odor Space. The graph shows the values for the first two principal com-
ponents as obtained from dimension reduction of the physicochemical molecule properties for
1,389 odor molecules. The 20 odor molecules used in the further analyses are highlighted as ‘x".
The shade of blue indicates the molecular weight of the molecule (g/mol).

3.1.2. Explained Variance

80% of the variance in the physicochemical descriptors could be explained by the first
ten principal components. 90% were reached when 25 components are included. The first
principal component already accounted for around 36% of the total variance, together
with the second principal component, almost 50% of the variance could be explained.

3.2. Perceptual Ratings of Odors

In total, the dataset [8] contains perceptual ratings for n=2,000 subjects. All subjects
had been tested for detection threshold; a subset of participants additionally rated the
perceived pleasantness and intensity (n=1,176) as well as the qualitative dimension of the
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odors (n=976). The odors were presented in groups of 178 to 200 subjects (see Tables 2 &
3). The mean rating of pleasantness ranged from the lowest pleasantness of mean = 2.25
for Isovaleric acid (std = 1.66) and the highest ratings for Lyral (mean = 5.59, std = 1.65)
and Muscone (mean = 5.58, std = 1.69). The molecule with the highest rating of intensity
(mean = 6.26, std = 1.69) was 1-Octen-3-one, followed closely by Trans-2-Nonenal (mean =
6.22, std = 1.70); the lowest ratings were given for Bacdanol (mean = 3.13, std =1.76) and
Sandranol (mean = 3.18, std = 1.61). The detection threshold was tested in groups of 276 to
376 participants. The mean detection threshold ranged from 4.19 for Geraniol (std = 1.70),
which is equivalent to a dilution of 1:10* and 7.29 for Isobutyraldehyde (dilution of 1:107;
std = 1.04).

Table 3. Descriptive Statistics for Detection Threshold and Pleasantness and Intensity Ratings

Pleasantness Intensity Detection threshold

N  mean median std  mean median std N mean median std

Bacd 200 4.76 5 1.88 3.13 3 1.76 300 5.50 6 1.53

Sand 200 4.61 5 1.88 3.18 3 1.61 300 5.35 6 1.43

Musc 200 5.58 6 1.69 3.31 3 1.79 300 5.33 6 1.77

Lyral 200 5.59 6 1.65 3.44 3 1.86 300 5.44 6 1.64

Penta 200 4.67 4 1.87 442 4 1.89 300 6.19 7 1.18
HMP 200 5.55 6 1.88 4.58 5 1.88 300 5.88 6 1.30

Isoval 178 2.25 2 1.66 6.07 6 1.86 300 5.02 5 1.20
Buta 200 2.75 2 1.87 6.03 6 1.89 300 6.78 7 0.55

Octen 200 3.16 3 1.85 6.26 6 1.69 300 6.82 7 1.13
Isobut 200 3.57 3 197 6.04 6 1.72 300 7.29 7 1.04
Trans 178  3.69 4 2.07 6.22 6 1.70 300 5.32 5 1.26
CeMeEt 200 3.93 4 1.79 5.45 6 194 300 6.28 7 0.93
Gera 198 549 6 1.75 5.78 6 1.51 376 4.19 4 1.70

Cineol - - - - - - - 300 5.20 5 1.64
PEA - - - - - - - 300 3.94 4 1.55

Carvon - - - - - - - 300 5.17 5 1.37
Isoamy - - - - - - - 300 4.76 5 1.40
Salicyl - - - - - - - 300 4.77 5 1.74
Citra - - - - - - - 300 6.22 7 1.14

Gala - - - - - - - 300 5.40 6 1.50

3.2.1. Pleasantness Ratings

A robust one-way Welch ANOVA showed significant differences of pleasantness rat-
ings for the odor molecules in the dataset (F(12,983.25)=80.69; p<0.001, see Figure 3) with a
high effect size (partial n* = 0.26). Games-Howell post-hoc comparisons showed signifi-
cant differences for 56 out of 78 possible comparisons with mostly high or very high effect
sizes ranging from Cohen’s d = 0.45 (Bacdanol > Cedrylmethylether) to d = 2.02 (Lyral >
Isovaleric acid). No significant differences were found within the group of odors with the
highest ratings of pleasantness (median = 6): Lyral (5.59), Muscone (5.58), 3-Hydroxy-2-
Methyl-4-pyrone (5.5) and Geraniol (5.49). Similarly, no differences were found between
three of the four most unpleasant odors (median = [2; 3]) Isobutyraldehyde (3.57), 1-Octen-
3-one (3.16) and 2,3-Butadione (2.75). Similarly, no significant differences were found for
odors in the low to medium range (median = [4; 5]), and some odors neighboring the high
or low pleasantness group did not differ significantly (see Supplementary Table 4).
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3.2.2. Intensity Ratings

A robust one-way Welch ANOVA showed significant differences of intensity ratings
for the odor molecules in the dataset (F(12,983.40)=106.14; p<0.001, see Figure 4) with a
high effect size (partial n* = 0.33). Games-Howell post-hoc comparisons showed signifi-
cant differences for 51 out of 78 possible comparisons with effect sizes ranging from d =
0.44 (1-Octen-3-one > Cedrylmethylether) to d = 1.86 (1-Octen-3-one > Sandranol). Similar
to the pleasantness ratings, groups of high and low intensity odors without significant
differences can be found: The highest intensity ratings (median = 6) were given for Ce-
drylmethylether (5.45), Geraniol (5.78), 2,3-Butadione (6.03), Isobutyraldehyde (6.04), Iso-
valeric acid (6.07), Trans-2-Nonenal (6.22) and 1-Octen-3-one (6.26). For the low intensity
odors (median = 3), Bacdanol (3.13), Sandranol (3.18), Muscone (3.31) and Lyral (3.44)
showed no significant difference of intensity rating.

T T T T T
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Figure 4. Intensity Ratings. The figure shows boxplots for intensity ratings (from 0 = not perceived to 9 = ex-
tremely intense) of different odor molecules.

3.2.3. Detection Threshold

A robust one-way Welch ANOVA showed significant differences of detection thresh-
old for the odor molecules in the dataset (F(20,2096.42)=164.55; p<0.001, see Figure 5) with
a high effect size (partial n* =0.27). Games-Howell post-hoc comparisons showed signif-
icant differences for 139 out of 210 comparisons with effect sizes between d = 0.37 (Gera-
niol > Isoamylacetate) and d = 2.54 (Isobutyraldehyde > Phenyl ethyl alcohol). In analogy
to pleasantness and intensity, some homogenous groups with similar detection thresholds
can be found, e.g., Bacdanol (5.5), Sandranol (5.35), Muscone (5.33) and Lyral (5.44) again
form a group with similar values, alongside with 3-Hydroxy-2-Methyl-4-pyrone (5.88),
Trans-2-Nonenal (5.32), Geraniol (5.08), Galaxolide (5.40), Isovaleric acid (5.02), 1,8-Cineol
(5.20) and 1-Carvon (5.17). For all comparisons see Supplementary Table 4.
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Figure 5. Detection Threshold. The figure shows boxplots for detection thresholds (dilutions from 0 = 1:10° to
9 =1:10°) of different odor molecules.

3.2.4. Distribution of Pleasantness and Intensity Ratings.

Although large differences between perceptual ratings of pleasantness and intensity
were found on the group level, a closer look at the distribution of the values reveals inter-
individual differences between participants’ ratings (see Figure 6 and Tables 4 & 5). For
example, one of the most pleasant odors, 3-Hydroxy-2-methyl-4-pyrone shows a flat peak
and broad distribution. While the median value of 6 is above the mean of the scale (4.5)

for pleasantness, still 25% of the values fall in the range between 1 and 3, which cor-
responds to a quite unpleasant rating, and another 25% to the range of 4-6, i.e. neutral to
moderately pleasant. A similarly broad distribution with an IQR spanning at least 4 val-
ues, can also be seen for most of the low to medium pleasant odors: Trans-2-Nonenal,
Isobutyraldehyde, Pentadecanolide, Sandranol and Bacdanol. For those odors, the values
spread almost symmetrically around the median value 4 or 5. E.g., for Trans-2-Nonenal,
the density curve of pleasantness ratings is very flat, with 50% of the values falling in the
range of 0-4, the other 50% in the range of 4-9. Interestingly, the intensity ratings for those
odors generally show a narrower distribution and higher peaks, except for Pentadecan-
olide, which shows an almost identical (and equally broad) curve to the pleasantness rat-
ings. In comparison, the steepest curves for pleasantness can be found for the two most
unpleasant odors Isovaleric acid and 2,3-Butadione and for the three most pleasant odors
Geraniol, Lyral and Muscone.

Table 4. Interquartile Ranges for Pleasantness Ratings

Bacd Sand Musc  Lyral Penta HMP Isoval Buta Octen Isobut Trans CeMeEt Gera

+/-1.5 IQR
IQOR
median

[1,9]
3-6
5

[1,8] [L8] [28] [09 [191 [06] 1[06] [171 [08] [09] [0,8] [1,9]
3-6 4-7 5-7 3-6 4-7 1-3 1-3 2-4 2-5 2-5 3-5 4-7

5

6 6 4 6 2 2 3 3 4 4 6

Table 5. Interquartile Ranges for Intensity Ratings

Bacd Sand Musc  Lyral Penta HMP Isoval Buta Octen Isobut Trans CeMeEt Gera

+/-1.5 IQR
IQOR
median

[0,7]
2-4
3

07 071 [08] [09] [09] [29]1 [19] (29 [29] [29] [L9] [29]
24 24 25 36 36 57 58 58 57 57 47 57

3

3 3 4 5 6 6 6 6 6 6 6
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Figure 6. Distribution of Pleasantness and Intensity Ratings. The histogram plots illustrate the frequency (= to-
tal number of ratings) for perceptual ratings of pleasantness and intensity for each odor. The plots are ar-
ranged in subgroups according to low, medium and high values in pleasantness (ranging from 0 = extremely
unpleasant to 9 = extremely pleasant) and intensity (ranging from 0 = not perceived to 9 = extremely intense).
In order to give an idea of the qualitative impression of the odors, a semantic description is added for each.

3.2.5. Interaction of Pleasantness and Intensity Ratings

Noticeable in the visual inspection of the graphs is that there seems to be a negative
association between pleasantness and intensity ratings (correlation coefficients are dis-
cussed in the next paragraph). For the six low to medium pleasant odors Isovaleric acid,
1-Octen-3-one, Trans-2-Nonenal, 2,3-Butadione, Isobutyraldehyde and Cedryl-
methylether (first two rows in Figure 6), a low or medium pleasantness is accompanied by
a high intensity rating. For Sandranol, Bacdanol, Muscone and Lyral a medium to high
pleasantness is complemented by a low intensity rating. As mentioned above, for Penta-
decanolide, that has a medium or neutral pleasantness on average, the curves for pleas-
antness and intensity overlap almost completely. Somewhat inconsistently, two of the
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pleasant odors, 3-Hydroxy-2-Methyl-4-pyrone and Geraniol, show higher ratings for
pleasantness, but also for intensity.

3.2.6. Correlations among Perceptual Ratings

Pearson correlation coefficients show relations between the perceptual ratings of
pleasantness, intensity and detection threshold (see Figure 7). The strong negative associ-
ation (r =-0.83) that can be seen between the mean pleasantness and mean intensity ratings
substantiates the observation from the distribution plots. Additionally, the mean intensity
was positively related to the mean detection threshold (r=0.51), i.e. the odors were rated
as more intense if they were more easily detected (at a higher threshold). Interestingly,
the standard deviation of the detection threshold also showed a positive correlation with
the mean pleasantness (r=0.73) and a negative correlation with the mean intensity (r=-0.76)
and the mean detection threshold (r=-0.71). Or put differently: If there is a high variation
in the detection threshold, odors are harder to detect (=lower value for detection thresh-
old, i.e., a lower dilution is needed for detection) and they are rated as more pleasant and
less intense.

PLEASANTNESS
STD Figure 7. Correlation Matrix of Perceptual Rat-
rensirv [ ings. Pearson correlation coefficients for associa-
MEAN o tions between pleasantness (n=13 odor mole-
cules), intensity (n=13) and detection threshold
STD (n=20). Highlighted in bold and with asterisk are
THRESHOLD 1 significant correlations to the level of p <0.05
wveany R \ (two-tailed t-test, uncorrected).
* * *
STD NEM 034 BN -0.71
§ § g E g = Z 3.2.7. Associations with Qualitative Rat-
= = :
LZ_( E E ings
n b4 o< . . .
2 = T In order to gain more insight on why
o

some odors have more similar ratings of
pleasantness and intensity than others, we investigated the qualitative ratings for the
odors. The frequency of naming each of the 12 verbal descriptors (rotten, flowery, fruity,
resinous, burnt, spicy, irritating, pungent, soft, cool, warm, burning) are visualized in Figure 8.
The frequencies give an ambiguous picture. Some of the qualitative descriptors show a
more or less equally distributed frequency of mention for all odor molecules; for example,
"cool" and "spicy", and therefore don’t seem to discriminate easily between the odors. For
other descriptors there appears to be some trend of association with pleasantness and in-
tensity. In the olfactory descriptors, those odors that were more frequently named as
“flowery” were also rated as more pleasant. Interestingly, Isovaleric acid was named as
“rotten” by more than 20% of the subjects and this is also reflected in a low pleasantness
rating and a high intensity rating. Vice versa, the highest pleasantness ratings were ac-
companied by a low percentage of naming the odor as “rotten”. Another striking peak is
shown for “fruity” for the odor 3-Hydroxy-2-methyl-4-pyrone. In the trigeminal domain,
those descriptors that are unpleasant show an association with a high intensity rating:
Both “irritating” and “pungent” were named more frequently for those odors with a high
intensity and the two descriptors “soft” and “warm” were named more often for odors
with a low intensity. “Soft” and “warm” also show some relation to a higher pleasantness
rating. The results indicate that the olfactory descriptors are better represented in the re-
sults for pleasantness, whereas intensity is more prominent for the trigeminal descriptors.
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Figure 8. Qualitative Ratings. The figure shows the frequency (in %) of naming qualitative descriptors for
each odor. The participants were asked to name the two descriptors that, in their opinion, fit best to each
odor from a list of 12 qualitative descriptions (rotten, flowery, fruity, resinous, burnt, spicy, irritating, pun-
gent, soft, cool, warm, burning; for details see Croy et al., 2015). Each subplot represents one of the qualita-
tive descriptors, split into olfactory (a) and trigeminal (b) odor descriptions. To facility the discovery of as-
sociations between pleasantness, intensity and qualitative ratings, the median values for pleasantness and
intensity are drawn as yellow and green lines in the plots.

3.3 Associations between Perceptual Ratings and Physicochemical Odor Space

As a last step in our analysis, we calculated Pearson correlation coefficients for the
association between the first five principal components from the odor space and the per-
ceptual ratings of pleasantness, intensity, detection threshold and rate of specific anosmia
(see Figures 9 and 10). For the first principal component (PC) of the odor space, a positive
association was found for the mean pleasantness (r = 0.64) and a negative association with
mean intensity (r=-0.73). Therefore, the variation in PC1 accounts for some variation in
those variables — although the results must be taken with care due to the very small num-
ber of odor molecules in the correlation calculation (13 odors for pleasantness and inten-
sity ratings). The mean detection threshold showed no correlation with PC1. However, a
positive association was found with the standard deviation of detection threshold (r=0.53)
and with the rate of specific anosmia (r=0.46). Interestingly, the rate of specific anosmia
shows the same correlation “pattern” as PC1 with the means and standard deviations of
the perceptual ratings (compare third and fourth row from top in both correlation matri-
ces). For example, the rate of specific anosmia correlates positively (r = 0.7) with mean
pleasantness and negatively with mean intensity ratings (r = -0.73). Further associations
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were found between PC4 and the mean intensity (r=-0.54) and between PC5 and the stand-
ard deviation of intensity (r=0.60). Additionally, PC1 and PC3 showed a correlation of r =

0.62.
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Figure 9. Correlation Matrices. Pearson correlation coefficients for associations between principal components (PC1
to PC5) from physicochemical odor space and arithmetic mean (a) and standard deviation (b) of perceptual ratings
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with asterisk are significant correlations to the level of p <0.05 (two-tailed t-test, uncorrected).
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Figure 11. Associations between Physicochemical Odor Space and Perceptual Ratings. The figure shows correlations
between the mean values for pleasantness (a) and intensity (b) ratings, standard deviation of detection threshold (c)
as well as the rate (%) of specific anosmia (d) with the first principal component obtained from the odor space.

4. Discussion
4.1 Discussion of Results

Following the example of previous authors [5, 10, 18, 38] we examined more than
20,000 molecule properties to build our own physicochemical odor space. In our case,
more than 80% of the variance could be explained by the first ten principal components,
and almost 50% by the first two PCs alone. These values are very similar to previous ap-
proaches with usually smaller descriptor sets and therefore support the idea that there is
high redundancy between the descriptors and a much smaller set of descriptors is suffi-
cient to characterize olfactory stimuli. Also consistent with previous studies [4, 10], the
first principal component was associated with descriptors indicative of molecular weight,
size, or complexity. For the second principal components, different interpretations for the
“label” of the dimension have been found: Mainland [4] characterized the second dimen-
sion as the “linearity” of odor molecules, i.e. the chain-length of the molecule. In our odor
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space, the highest loadings were found for descriptors that are related to negativity or
polarity, indicating a dimension that differentiates more the “chemical behavior” than
topological characteristics. Some relation to length or ring complexity was found for the
third principal component in our odor space.

Although these findings help to explore the dimensions of olfaction, they can only
take us so far. The more descriptors are included in the calculation, the more difficult it
becomes to interpret the contribution of each descriptor to the different dimensions. In
our odor space, the 200 descriptors with the highest loadings for PC1 all showed very
similar values (less than +/- 2.5% from mean). This makes any interpretation of content
challenging and our conclusions about tentative labels for the dimensions may have to be
revised if all high factor loadings are taken into account. New hypotheses and further
analyses are needed to find the common content of these descriptors. Still, the odor space
is a helpful tool to relate the dimension of physicochemical properties with the perceptual
dimensions of olfaction.

With regard to the perceptual ratings, our dataset of 2,000 naive subjects showed
significant differences in perceived pleasantness and intensity on the group level with a
high association between both perceptual dimensions. Odors with a low intensity showed
higher pleasantness ratings, while a high intensity was perceived for unpleasant odors.
Although moderate to high effect sizes could be seen for the differences in pleasantness
and intensity ratings between the odors, these need to be treated more conservatively as
each group of participants rated several (but not all) odors. Therefore, similarities in rating
patterns may have occurred within the groups and between group differences may be
over-interpreted. For example, the musky odor Muscone and the flowery odor Lyral were
presented to the same participants and showed similar ratings in pleasantness and inten-
sity. The same may hold true for the two sandalwood odors Sandranol and Bacdanol,
although similar ratings also seem plausible as both are sandalwood odors.

The data for this study was originally collected in the context of investigating the
prevalence of specific anosmia and its role as a peripheral adaptive filtering mechanism
[8]. There, it has already been shown that odors with a higher molecular weight showed
higher rates of specific anosmia. In this study, we found that the extent of interindividual
difference (standard deviation) in detection threshold, is related to the first principal com-
ponent of the odor space. This shows that the first PC of the physicochemical odor space
is not indicative of the absolute value of the concentration threshold for detection, but of
the percentage of participants who deviated from this value, i.e., among others, those who
were anosmic for this specific odor. Interestingly, there were striking differences for the
rates of specific anosmia for the two sandalwood odors, Bacdanol (20.4%) and Sandranol
(3.1%), which have the same CAS registry number and are sometimes treated as syno-
nyms in databases such as PubChem. In practice, substances with the same CAS number
can have different distributions of isomers that can lead to different and distinguishable
olfactory percepts [39]. In our example, Sandranol shows a different distribution of enan-
tiomers (i.e., a form of isomer that is an exact mirror of the same chemical compound, but
cannot be brought into congruence) in the odor solution depending on the synthesis
method and odor concentration'. This makes Sandranol the “stronger” odor compared to
Bacdanol. However, since our calculation of the physicochemical descriptors does not dis-
tinguish between isomers, we cannot account for the perception difference in the two
odors. In summary, the typically unknown composition of odors in a solution provides
another source of uncertainty which contributes to variance in the perceptual ratings.

Further insight on why certain odors may have been rated similarly or differently
were found in the qualitative descriptions. Explorative analyses showed relations be-
tween odor quality and the perceived pleasantness, e.g. positive descriptions such as
"flowery" were given more often for those odors that were rated as pleasant and negative
descriptions (e.g. "rotten") were more likely associated with unpleasant odors. Similarly,
intensity ratings were also influenced by the trigeminal nature of an odor. Those odors

I private communication
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that were perceived as “pungent” or “irritating” were also rated as more intense than
other odors. However, each qualitative descriptor was named for each odor, sometimes
rather evenly distributed and the overall picture remains unclear. This may partly be at-
tributed to the study design, as each participant had to choose two out of twelve qualita-
tive descriptors that fit best, but not necessarily ruling out that more than those two de-
scriptors fit to the odor. This way, it is possible that an odor that is perceived as irritating
and pungent, could not (additionally) be rated as flowery if this seemed the less relevant
dimension.

While we were able to find significant differences on the group level, there were also
striking interindividual variations in the perceptual ratings of the different odors. Alt-
hough certain odors tend to be rated as pleasant or unpleasant more often, e.g. the flowery
odors Lyral and Geraniol, even for those odors there were notable percentages of partici-
pants who did not like the smell and vice versa for the most unpleasant odor there were
still pleasant ratings. This does not come as a surprise, considering that especially pleas-
antness can be seen as a somewhat ambiguous dimension. Olfactory perception is influ-
enced by (among other things) the familiarity of the odor [5], expectations about the odor
source [40], interoceptive sensations [41], perceptual or verbal abilities [29] and personal-
ity traits of the individual [27, 42]. This "noise" in the data must be taken into account,
when it comes to the association with the physicochemical odor space. A perfectly accu-
rate prediction of an olfactory percept from the molecular structure is unlikely to be found,
especially on the individual level. Still, our results support previous findings on the rela-
tion between odor pleasantness and intensity with molecular properties on the group
level [5, 10, 12, 18]. Additionally, we showed that the variation in detection threshold is
related to the first principal component of the odor space, supporting the previous finding
that the rate of specific anosmia is related to molecular weight [8]. Moreover, the rate of
specific anosmia was found to be similar to PC1 of the odor space, having a positive rela-
tion to pleasantness and negative association with intensity.

4.2 Limitations

Some limitations shall be discussed. As a first important aspect, the exploratory na-
ture of this study has to be pointed out. The main goal of this study was to focus on olfac-
tory perception of non-expert raters and test the validity of structure-percept associations
in this sample. As previous literature on naive samples is rare, the investigation of distri-
butions, as well as differences and interactions in perception of pleasantness, intensity,
detection threshold and qualitative ratings was carried out in an exploratory and hypoth-
esis generating manner. The results discussed here will need confirmation in another
study and with a larger set of chemically different odor molecules.

The number of odor molecules must be seen as a second limitation of our study. This
caveat results from the fact that our dataset was originally collected and investigated for
a different purpose (i.e. studying the prevalence and influencing factors of specific anos-
mia; see Croy et al., 2015). Although our results point to very similar directions as previous
associations between pleasantness, intensity and, for example, molecular weight, it has to
be stressed that with our sample of 13 to 20 molecules the study does not have sufficient
statistical power to draw reliable conclusions and results need to be taken with caution.
Additionally, the odors were presented in groups of participants that received the same
two or three odors. This may lead to an over interpretation of significant differences — or
missing differences — between perceptual ratings for those odors that were presented to-
gether in one group.

5. Conclusions

The development of a physicochemical odor space from molecular descriptors has
proven to be a reliable and helpful tool in the investigation of the stimulus-percept problem.
The odor space not only helps to narrow down the vast and high-dimensional nature of
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olfactory stimuli, but can also serve for choosing chemically diverse molecules for empir-
ical investigations that aim at relating structure to perception. Our study built heavily on
previous approaches and validates the method with a different and larger set of molecular
descriptors. The resulting odor space as well as the psychophysical data will be made
available on public platforms to push the further investigation of the central dimensions
of olfaction.

Regarding the relationship between odor space and perceptual ratings, we showed
that associations between odor structure and the corresponding perceptual ratings of
pleasantness and intensity, as well as their perceptibility, i.e., detection threshold, can also
be found in a sample of non-expert raters. In this respect, our data set contributes to the
enlargement of the pool of psychophysical data on olfactory perception encompassing a
large population of non-expert participants. While our study stands out with its large na-
ive sample and the results go in line with previous results, it is limited by the small set of
odor molecules for which we obtained perceptual ratings. Future studies should look at a
larger number of odor molecules to make profound conclusions about relationships be-
tween structure and perception. Furthermore, more information about influencing factors
on the part of the study participants should be taken into account, as implied by the large
interindividual variations found for perceived pleasantness and intensity of odors.

While advances in computational methods have made it possible to make increas-
ingly accurate predictions from physicochemical structure to percept it is noted that hu-
man olfactory perception is no analytical process of molecule detection, but is part of a
multisensory integration of visual, auditory, haptic and social information from our envi-
ronment. Moreover, the interpretation of sensory inputs is heavily influenced by top-
down processes that are steered by memory, experience, interoception and interpersonal
characteristics. The prediction of perception from odor stimulus structure can therefore
only work to a certain degree, and perhaps, physicochemical dimensions of individual
molecules can be seen as a necessary but not sufficient condition to determine the corre-
sponding percept of an individual.

To put it in a nutshell, broad knowledge is currently created by the ongoing research
on both the more sensoric part of olfaction, i.e., binding patterns on the receptor side, as
well as the perceptual interpretation of olfactory stimuli in the light of situation and expe-
rience. Both paths are facilitated by the emergence of more and more sophisticated com-
putational methods. Integrating the findings on these different levels of examination
seems a promising path to further demystifying the complex nature of human olfactory
perception and may have an impact on the development of electronic olfaction devices.

Supplementary Materials: All analyses, datasets and material for this study are available online via
https://osf.io/e67dn/).
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Appendix A

Descriptor calculation. For the development of a physicochemical property space,
we used a list of 1,565 odorants typically used in experiments and industry as provided
by Khan et al. (2007) listed by name and CAS registry number (CAS = Chemical Abstracts
Service) in their supplementary table 8. Additionally, we added 6 odors used in the da-
taset of perceptual ratings [8] that were not included in the list from Khan et al., resulting
in 1,571 odors in total. As a first step, we retrieved the Simplified Molecular Input Line
Entry Specification (SMILES) for each odorant using the webchem package in RStudio©
(version 1.2.5033, R version 3.6.2). webchem retrieves molecular properties from online
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chemical databases such as PubChem and ChemSpider via their CAS number, IUPAC or
trivial name, InChiKey or other ids such as PubChem’s individual identification number
[33]. For 1,389 odorants, webchem was able to identify SMILES from CAS number or name
(see supplementary spread 1). For the remaining 182 odors (mostly fragrance oils), no mol-
ecule could be clearly identified by the package. Therefore, we removed those odors from
our dataset. We then used the Online chemical database (OCHEM, https://ochem.eu/), which
allows the calculation of a large number of descriptors for the previously obtained
SMILES [34]. We chose to calculate the 16,251 PyDescriptor descriptors [43], the 5,305 al-
vaDesc descriptors [44] and a prediction of melting point and water solubility provided by
OCHEM (see supplemental table 2). In total, we calculated 21,609 descriptors.

Preprocessing. For the resulting 21,609 molecular descriptors, we identified and re-
moved all descriptors containing infinite or missing values for any molecule and de-
scriptors with zero values for more than 80% of the 1,389 molecules. Furthermore, we
dropped all descriptors without noteworthy correlations (no correlation r > 0.3 with any
other descriptor). This resulted in the final physicochemical odor space with 4,094 de-
scriptors for each of the 1,389 molecules.

— WIA_B(s):(alvaDesc)

- don_lipo_4B:(PyDescriptor)

—acc_don_1A:(PyDescriptor)

. | —0_don_9B:(PyDescriptor)
=2 - HATSSi:(alvaDesc)

—VE2sign_Dz(v):(alvaDesc)

— ipo_O_3A:(PyDescriptor)

- fCO7A:(PyDescriptor)

- acc_acc_6B:(PyDescriptor)

— SMO05_EA(dm):(alvaDesc)

.. —VE1sign_Dz(p):(alvaDesc)

_sw 1 — Eta_betaP_A:(alvaDesc)
: = fOlipo3B:(PyDescriptor)

i SM4_B(i):(alvaDesc)

- P_VSA_e_2:(alvaDesc)
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Figure A1: Clustered correlation matrix of all 4,094 molecular descriptors. From visual inspection
of the correlation matrix can be seen that there are large correlations between the descriptors,
forming clusters of different sizes. To get rid of redundancies in the large descriptor collection,
dimension reduction was performed using principal component analysis.
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