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Abstract: We propose an asynchronous acoustic chirp slope keying to map bit sequences on single1

or multiple bands without preamble or error correction coding on the physical layer. Details of the2

implementation are disclosed and discussed, the performance verified on laboratory scale in a3

pool measurement, as well as simulated for a channel containing Rayleigh fading and Additive4

White Gaussian Noise. For time-bandwidth products of 50 in single band mode, a raw data rate of5

100 bit/s is simulated to achieve bit error rates below 0.001 for signal-to-noise ratios above -6 dB.6

In dual-band mode and a data rate of 200 bit/s, this bit error level was achieved for signal-to-noise7

ratios above 0 dB for time-bandwidth product of 25. The packet error rates follow this behavior8

with an offset of 1 dB.9

Keywords: Underwater Communication; Wireless Communication; Acoustic Communication;10

Ultrasound Acoustics; Digital Signal Processing; Chirp Modulation; Chirp Slope Keying; Chirp11

Spread Spectrum;12

1. Introduction13

Shallow water still challenges communication attempts after over a hundred years14

of research [1–3] due to the strongly selective frequency fading, high phase noise and15

fast echoes and for moving nodes, due to a strong Doppler effect [4–9]. The shallower16

the channel, the more pronounced this inhibitions become. Previous investigations into17

the field of acoustic underwater communications have shown promising results [10–12],18

but concentrated on deeper bodies of water over longer distances of several kilometer in19

audible or sub-audible frequencies[13,14]. While high-bandwidth communication with20

large spectral efficiencies will be prone to upset the natural habitat if performed in the21

audible range of the maritime fauna [15,16], narrow-band methods are vulnerable the22

fading effects discussed before. The ongoing interest is a result of the strong attenuation23

of radio signals underwater and the long distances that require to be covered. Applica-24

tion examples, where underwater acoustic communication is crucial are diver tracking25

[17,18], robot/AUV telemetry [19–22], and underwater sensor networks [23,24].26

1.1. Related Work27

The general idea to sweep the frequency of a carrier to transmit information may be28

as old as (breathing) life on earth, but the first modern record we found is E. Hüttmann’s29

patent for a distance measurement method from 1940 [25]. The idea to use chirps for30

modulating a signal, e.g., as Chirp Slope Keying (CSK) is often attributed to M. R. Win-31

kler’s work in the early 1960s [26], and also sometimes refered to as Linear Frequency32

Modulation or Linear FM [27]. After the application in satellite radio transmission33

during the Cold War era [28,29], the interest in chirp modulations mostly vanished due34
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to the low achievable data rates. For radio communications, this changed in 2013 with35

the establishment of the LoRa protocol as a low-power long range radio modulation for36

small consumer applications [30,31]. Chirp modulation of acoustic signals under water37

have gathered attention since the early 2000s [32], and is researched continuously by38

groups around the world ever since [18,33–37]. While the achievable data rate is severely39

limited compared to narrow-band schemes [5], CSK will be especially of interest, when40

the data amount is low and the channel inhibitions are strong. The performance of our41

approach in this work has partially been reported in [38]. The scope of this contribution42

is to report on the details of our system’s inner structure and underlying algorithms.43

This investigation zooms in on the modulation and demodulation part of typical basic44

elements of digital communication systems [39], hence, expects coded input and will45

return still coded output. Consequently, additional forward error correction coding will46

improve the estimation of the overall system [40], but is not part of this investigation.47

2. Materials and Methods48

2.1. Basic System Structure49

Our system is divided into functional blocks with the modulation and demodulation50

in focus, as shown in Fig.1; more details about the structure inside those two blocks is51

discussed in sec.2.2 and sec.2.4.52

{Nest}
yrx

{Nrx}

dest Demodulate

{N}
stx

{Ttx}

ytx

{Ntx}

Modulate DACd PA

AFADC
srx

{Trx}

Figure 1. Flow diagram of the basic communication chain: The data d is modulated, amplified
before transmission, filtered and amplified at reception, and demodulated as dest. The entire
analog domain is regarded as part of the communication channel.

The data d of length N is modulated into the digital sequence of linear up and53

down chirps ytx, now of length Ntx, as illustrated in Fig.1. The DAC then converts this54

into the the output stx, which is an analog continuous real-valued signal of length Ttx55

that is boosted by a power amplifier (PA) before it is turned into an acoustic wave by a56

piezoelectric transducer.57

The received signal is bandpass-filtered and amplified by an analog active filter (AF)58

into the continuous real-valued and band-limited received signal srx of length Trx. The59

ADC samples the received signal into the sequence yrx of length Nrx. The demodulation60

step estimates the originally sent sequence as dest given a small set of prior information61

about the original signal, e.g., the ideal chirp parameters.62

We consider exclusively time discrete signals throughout this work, sampled at
points

n = bt · fsc ∈ Z, (1)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 March 2021                   doi:10.20944/preprints202103.0750.v1

https://doi.org/10.20944/preprints202103.0750.v1


Version March 29, 2021 submitted to Sensors 3 of 19

where t is the time of observation and fs the sampling frequency. For simplicity we63

assume the sampling frequency of transmitter and receiver to be equal, save an oscillator64

frequency mismatch of ∆ fs and phase offset of ∆φs. In practical application, this is not65

required, but only the parameters that describe the used waveform sufficiently.66

2.2. Modulation67

Before transmission the data d is mapped onto the slope sign of chirps and up-68

converted into the transmission bands, see Fig.2.

dmux

{Nsym, Nlo}

yrbb
{Nref, 2} yref  {Nref, Nlo, 2}

{N} {Ntx}

MUX CSKd

Chirps 
(0, 1)

ytx

DUC

Figure 2. Modulator block in detail: The data input d is multiplexed onto Nlo sub-bands (MUX)
and modulated by the up-converted chirped symbols from the Digital Up-Converter (DUC). The
transmission sequence ytx is assembled by the Chirp Slope Keying (CSK) block, already in the
transmission band. Simple arrow lines indicate vectors, double lines arrays.

69

2.2.1. Linear Chirp Creation70

Initially, a reference chirp yrbb is generated through

yrbb[n] =

{
w[n] · sin(ϕ[n]), with, for 0 < n ≤ Nref

0, else.
(2)

For simplicity of calculation we normalize1 the angular frequencies

ω0 = 2π f0/ fs, and

ω1 = 2π f1/ fs
(3)

with the start frequency f0 and the stop frequency f1. This allows the definition of the
argument ϕ[n] for a linear chirp as

ω[n] = ω0 + n
ω1 −ω0

Nref
, (4)

and therefore
ϕ[n] = ϕ0 +

∫ n

0
ω[ν]dν. (5)

With (4) and (5), we can calculate the instantaneous phase for a linear sinusoidal chirp
according to

ϕ[n] = ϕ0 + n ·ω0 +
1
2 n2 · ω1 −ω0

Nref
. (6)

The modulation will become clearer if we substitute

ωc =
ω1 + ω0

2
, (7)

1 Note that implementations in MATLAB often use the Nyquist frequency fnyq = fs/2 for normalization instead.
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Bω = |ω1 −ω0|, (8)

and introduce
ζ = sign(ω1 −ω0). (9)

The instantaneous phase of the chirp from (6) then takes the form of

ϕ[n] =ϕ0 + n ·ωc + ζ
Bω

2
n
(

1 +
n

Nref

)
, (10)

where each bit of the data is mapped onto the sign ζ.71

The resulting chirp sequence is generated in the base-band frequencies according72

to (2) and up-converted to each channel. In Fig.3a an example for a base-band chirp is73

shown and the result of the up-conversion in Fig.3b.74

(a) (b) (c)
Figure 3. Resampling example for a linear chirp with fc = 3 kHz, Bf = 2.5 kHz, and T = 10 ms.
Left: Base band signal ytb at the transmitter, middle: Transmission band yib, right: Base band
signal ybb at the receiver. The transmission band’s center frequency is at 20 kHz for clarity. In the
experiments, the transmission band is around 62.5 kHz.

For a fixed transmission channel communication, the up-conversion through a75

DUC can be omitted and the reference chirps directly be calculated in the transmission76

band, but for the sake of flexibility, we added the up-conversion as a separate block.77

The resulting single chirp sequences yref for all Nlo transmission channels can be stored78

permanently and only requires to be recalculated, if the parameters, e.g., sampling79

frequency fs, chirp length Nref, side-band center frequency fch or bandwidth B change.80

While intuitively both chirp slope sequences may be pre-generated, we omit this redun-81

dancy on implementation as the inverse slope sign is equivalent to a time reversal of the82

entire chirp sequence.83

2.2.2. Shaping84

The amplitude shaping window w[n] restricts the sequence to be non-zero in the
interval between 0 and Nref only. While this can be achieved through different window
functions, the tapered cosine, i.e., Tukey window is used in this work, because it can
be varied easily between the rectangular, i.e., Dirichlet window and a sine, i.e., Hann
window, by changing the single tuning factor at to 0 or 1, respectively [41]. This sets the
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main lobe width between 4π/Nref and 8π/Nref, as well as the peak sidelobe between
−13 dB and −31 dB [42]. We define the Tukey window as

w[n] =



1
2

[
1− cos

(
π

Ntk
n
)]

, for 0 < n ≤ Ntk

1, for Ntk < n ≤ (Nref − Ntk)
1
2

[
1− cos

(
π

Ntk
(n− (Nref − Ntk))

)]
, for (Nref − Ntk) < n ≤ Nref

0, otherwise,

, (11)

where the threshold of the taper is set by

Ntk =
atNref

2
.

The amplitude shape of the chirp can thus be adapted to the channel, depending on85

the application, i.e., if a narrow autocorrelation peak width is required for spatial86

distinction of two close reverberations or wide smooth peaks are desired for more87

robust communication. A simplified comparison of a selection of window functions for88

a fast echo is shown in Fig.4 and Fig.5.

Figure 4. Autocorrelation magnitude comparison of a selection of shaping window functions. All
magnitudes are normalized by the Dirichlet shaped chirp power for comparison. Gaussian noise
was added to a SNR = 0 dB, as well as two echoes at n = 9 and n = 19.

89

Figure 5. Simulated spectrograms of the autocorrelations of a selection of shaping window
functions. All magnitudes are normalized by the Dirichlet shaped chirp power for comparison.
Gaussian noise was added to a signal-to-noise ratio of 0 dB, as well as two echoes at n = 9 and
n = 19.
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2.2.3. Input Multiplexing90

When data d of length N is submitted for transmission, the 1-D binary sequence is
first multiplexed onto Nlo channels through

dmux[k, l] = d[n], where

n = Nlo · (k− 1) + l,

k ∈
[
1, Nsym

]
,

l ∈ [1, Nlo].

(12)

The multiplexed sequence length Nsym is

Nsym =

⌊
N

Nlo

⌋
, (13)

therefore N needs to be an integer multiple of Nlo. To assert this, we use a simple91

zero-padding algorithm. If bits are added, they will remain in the data on reception and92

need to be removed on a higher level later on. This can be avoided, by matching the data93

length to the desired number of channels in advance, but for a more flexible and general94

approach, we implement the zero-padding approach and truncate to byte-sizes of 8.95

2.2.4. Chirp Slope Keying96

A fast way to modulate the binary sequence is to have a simple decision block,
that will output a chirp sequence of either upward or downward slope according to
the binary value at the input.The segments of the ouput sequence ytx are assembled by
filling each interval of length Nref with the normalized sum of the superposed channels’
sequences to

ytx[n] =
1

Nlo

Nlo

∑
l

yref[n, l, dmux[k, l]]. (14)

The output sequence is transferred into an analog signal stx, e.g., by a DAC, amplified97

by the PA and transmitted. Alternatively, this modulation can be calculated by zero-98

padding the multiplexed bit sequences dmux by length Nref and convolving the resulting99

sequence with the reference signal yref, but this approach is neither efficient in memory100

usage, nor the calculation steps required [43].101

2.3. Channel Model102

We adapted the simulation approach from [33] to estimate the performance of the
modulation and demodulation modules in a controlled fashion. The channel model in-
cludes simplified Rayleigh fading that multiplies the signal amplitude by the magnitude
of two independent, but identically distributed random processes

Ar = |σr · (randn{Nrx}+ i · randn{Nrx})|, where

i =
√
−1,

(15)

with a distribution parameter σr = 1. The random sequences are generated through
the randn function of MATLAB that generates a normally distributed random value. An
Additive White Gaussian Noise (AWGN) in the form of

εn = σg · randn{Nrx} (16)

is used to model the thermal noise of the receiver.103
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For simulations, we assume the receiver samples a combination (15) and (16) with
the transmitted signal, at a random packet reception time offset nτ , without additional
reverberations from multiple paths

yrx[n] = Ar · ytx[n + nτ ] + εn. (17)

2.4. Demodulation104

drmx

{Nfrm, Nsym, Nlo}
{Nest}{Nrx}

ysym

{Nfrm, Nsym, Nlo}

yjds

{Njds, Nlo, 2}

yfhx

{Nddc, Nlo, 2}

yddc

{Nddc, Nlo}

DDC FHX FDDSyrx

Chirps 
(0, 1)

JDS dest

yrbb  {Nref, 2}

Decide
De-

MUX

Figure 6. Demodulator block in detail: The received sequence yrx is processed by Digital Down-Coverter (DDC), Fast Hilbert
Cross-Correlator (FHX), Join & Downsample (JDS), Frame Detect & DownSample (FDDS), a binary Decide block, and a reverting
multiplexer (De-MUX) generating the estimated data output dest.

The digitized signal yrx is translated into the baseband for each of the Nlo chan-105

nels in the Digital Down-Converter (DDC) block, as shown in Fig.6. The Fast Hilbert106

Cross-Correlator (FHX) block compresses the signal further into arrays yfhx for additional107

dimensions for each of the reference chirps of both slope signs. The block Join & Down-108

sample (JDS) attempts coherent addition and subtraction of the 2 signal arrays for each109

channel. The resulting sum and difference signals in in yjds are analyzed by the Frame110

Detect & Downsample (FDDS) block and the input signal divided into separate frames111

ysym, now at symbol rate. The final decision block translates the symbols into binary112

values d and estimates the demodulation performance. Each block is described below in113

detail.114

2.4.1. Digital Down-Converter115

Before the signal is fed into the resource intensive compression algorithm, we
exploit the bandlimited nature of the signal and bring it down into the baseband, by
calculating

ytb[n, c] =BPF{yrx[n]},
yib[n, c] = ytb[n] · ylo,

ybb[n, c] =LPF{yib[n, c]},
(18)

where the functions LPF denotes an arbitrary lowpass filter, and BPF any suitable
bandpass filter. The signal content outside of the band is suppressed by the analog
bandpass filter of the receivers signal conditioning before the sampling. This is especially
important for undersampling a signal to limit the aliasing effect of noise. To achieve
the downconversion we first multiply the bandpass filtered raw signal ytb of each
transmission band with sine waves ylo of frequency flo to create the intermediate signal
yib. This operation shifts the content of each of the Nlo channels into the baseband, where
a lowpass filter removes the higher harmonics and produces the baseband sequence
ybb. In doing so, the memory consumption increases by the number of channels Nlo, a
one-dimensional real-valued input sequence of [Nrx, 1] gets mapped onto an [Nrx, Nlo]
output array. The sequence can be truncated in frequency domain to an interval around
the center, since most of the frequency bands ideally contain no information about
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the signal and one loses only information about noise and interference. We effectively
resample the sequence to

yddc = resample{ybb, fs, fs1}, where

fs1 =
fs

Nres1
.

(19)

As we use the single sideband approach, a minimal interval is limited by the center
frequency

fc =
1
2 ( f1 + f0) (20)

and half the bandwidth
Bf = ( f1 − f0). (21)

Assuming a sampling rate of, e.g., fs = 88 kHz, a bandwidth of Bf = 2.5 kHz and a
sub-band center frequency of fc = 3.0 kHz as used in the dual-band case, the minimal
one-sided base band is

Bfbbm = fc +
1
2 Bf, (22)

which is for the given example Bfbbm = 4.25 kHz. Considering the original sample band-116

width and unchanged frequency bin width, the computation is reduced to Bfbbm/ 1
2 fs,117

here by about 90 % at most. The minimal interval truncation also removes information118

about the noise, so a trade-off is feasible that implements a larger interval of several band-119

widths. Moreover, the whole band-shifting and resampling can effectively be done in120

the frequency domain with a shift and truncate operation. An example for this operation121

in shown in Fig.3b for the transmission band sequence and Fig.3c for the down-sampled122

result.123

2.4.2. Pulse Compression by Fast Hilbert Cross-Correlation124

If time and magnitude of a received chirp are of interest, the calculation of the
analytic signal after pulse compression through a matched filter is convenient. Hence,
the next signal processing step is to convolve (operator ~) the received signal with the
matched filter for both chirp slope signs

ymf↑ = yddc ~ yrbb↑,

ymf↓ = yddc ~ yrbb↓,
(23)

This increases the memory allocation to [Nrx, Nlo, 2] samples, as the downsampled
sequences are compressed by both, up and down chirps. In case more different chirps
are used, this increases the added dimension accordingly. The compressed pulse’s
envelope is then calculated as the analytic signal through the norm of the signal and its
Hilbert transform

yfhx =
√

y2
mf +H{ymf}2. (24)

The calculations, both, matched filtering and envelope extraction, are performed in the125

frequency domain for convenience. After the Fourier transformation of the raw signal,126

we perform a bin-wise multiplication against the complex conjugated reference signals127

to obtain the compressed signals for both up and down chirps.128

2.4.3. Join & Downsample129

Frame detection and symbol decision require information about the compressed
pulse peak positions in time, which are difficult to establish in one matched filter branch,
e.g., only the up chirp compression result, as there may be no peaks present, if the signal
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hypothetically only consists of down chirps. The Join & Downsample block first resamples
the sequence to an integer fraction by Nres2 to the sample rate

yres2 = resample{yfhx, fs1, fs2}, where

fs2 =
fs1

Nres2
,

Njds =

⌊
Nfhx
Nres2

⌋
,

(25)

then creates the sum and difference

ysum[n, c] = yfhx↑[n, c] + yfhx↓[n, c],

ydif[n, c] = yfhx↑[n, c]− yfhx↓[n, c].
(26)

This operation requires coherence, since a phase difference between the up and down130

chirp compressed sequences leads to sub-optimal symbol detection. This condition will131

be fulfilled only if no Doppler shift is present, so sender and receiver do not move relative132

to each other [44]. For this work, we exclusively considered stationary conditions. The133

sum and difference sequences are stored in a joint array yjds of size
{

Njds, Nlo, 2
}

.134

2.4.4. Frame Detect & Downsample135

The FDDS block first estimates the frame positions in half symbol space, then uses
this information to estimate the symbol phase of each frame and downsample it to full
symbol space. First, we assume a known symbol length Nch2 from the reference chirp
sequence and estimate it simply to

Nch2 = bT · fs2c =
⌊

Nref ·
fs2

fs1

⌋
. (27)

The mean magnitude of each of the MH half symbol frames of length NH, where

NH =

⌊
Nch2

2

⌋
, (28)

is then calculated by only regarding the superposed pulses of both channels, which
guarantees the presence of an autocorrelation peak in each symbol. Therefore, we
calculate

yms[m] =
NH

∑
n

ysum[n + NH · (m− 1)], where

m ∈[1, MH],

MH =

⌊Njds

NH

⌋
,

(29)

which reduces strong magnitude fluctuations before the data frame detection and resam-
ples the sequence to half symbol space. As the envelope detection is very sensitive to
non-steady slopes, we apply an additional 10th order lowpass filter

ymLP = LPF{yms}, (30)

with an estimated cutoff frequency

ωMLP =
mMLP

MH
, where

mMLP = arg max{|FFT{yms}|}.
(31)
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The frame detection algorithm has two parts. Initally, a threshold is calculated for the
whole received sequence of each channel, then a state machine iterates through it and
extracts frame start and end times. We estimate the threshold yth by a simple clustering,
that first calculates the mean amplitude of the lowpass filtered half symbol magnitude

ȳmLP = mean{ymLP}, (32)

then calculates the cluster means for both sides of the mean level,

ȳmS = mean{ymLP[ymLP > ȳmLP]},
ȳmN = mean{ymLP[ymLP < ȳmLP]},

(33)

where the lower mean value ȳmN is considered the noise level and the upper mean ȳmS
the signal level. The threshold is then simply the arithmetic mean of those two levels

ymTh =
(ȳmS + ȳmN)

2
. (34)

Subsequently, the state machine iterates through the sequence ymLP and records an
upwards slope if there are MHL of samples below the threshold ymTh followed by MHH
samples above it. We set both intervals MHL = MHH = 2, limiting the miminal frame
size to MHL + MHH − 1 = 3 samples. A state variable will keep track if the iteration is
inside a frame and stores start index m0[p] and end index m1[p] of each pth frame. The
frame limits are then reconstructed in sample space through scaling the indice by MH,

n0[p] = m0[p] · NH, andn1[p] = m1[p] · NH. (35)

The single frames in sample space are then defined as

yfSum[p, n] = ysum[n0[p] + n], where

yfDif[p, n] = ydif[n0[p] + n], where

n ∈ [1, Nfrm[p]],

(36)

where ysum and ydiv are the two sub-arrays of yjds and include all Nlo channels as an
additional dimension, respectively. The indexing of the channel dimensions has been
omitted for ease of reading. The number of samples in each frame is

Nfrm[p] = n1[p]− n0[p]. (37)

The last part of the block selects each data frame in the sample space, searches for the
optimal sample offset noff to maximize the symbol power and assembles a frame in
symbol space accordingly. We assemble the power matrix for each frame p and each
channel by iterating through the phase sample by sample

Ay[p, n] =
K[n]

∑
k
(yfSum[p, n + (k− 1) · Nch2])

2, where

K[n] =
⌊Njds − n

Nch2

⌋
.

(38)

The optimal sample offset noff is then estimated to

noff[p] = arg max
n

{
Ay[p, n]

}
. (39)
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This we use to assemble the block’s final 3-dimensional output sequences ysym, that span
the number of detected frames, in each of which the number of symbols, and a constant
number of channels. Hence, occupy memory of size

[
Nfrm, Nsym, Nlo

]
as we decimate

ysym[p, k] = yfDif[p, noff[p] + (k− 1) · Nch2], (40)

again the indexing for all channels is omitted.136

2.4.5. Symbol Decision137

The symbol decision iterates through each frame’s symbol space difference sequence
ysym similarly to (32) to (34) of sec.2.4.4, by separating each frame in two clusters split
by the mean symbol amplitude, and estimates the half distance between both clusters’
means as a threshold yfTh for symbol decision for each channel. The decision equation is,
therefore, simply

drmx[k] =

{
1, for ysym[k] > yfTh

0, otherwise,
(41)

for the kth symbol of each channel and frame.138

2.4.6. De-Multiplexing139

The last block of the demodulation chain re-assembles the Nlo-dimensional symbol
sequences of each frame into a one-dimensional bit sequence. The length of the received
bit sequence Nest is first truncated to multiples of 8, as the application is meant to send
and receive data byte-wise, hence

Nest = 8 ·
⌊

Nlo · Nsym

8

⌋
. (42)

The data is then de-multiplexed by reshaping the sequences drmx with n in the range
[1, Nest] to

dest[n] = drmx[k, l], where

k =
n

Nlo
,

l = n mod Nlo.

(43)

2.5. Experimental Set-up140

Transmitter

4.5 m

Receiver

(a) Schematic set-up (b) Photo of the pool set-up
Figure 7. Schematic experimental set-up in for the acoustic transmission inside a water tank.

We conducted two experimental runs to verify our approach. One of a single band141

transmission, the other of a dual-band transmission. The experiments were performed142

in a steel-walled pool as shown in Fig.7, which was assembled temporarily inside a143

building. The transmitter and receiver hardware are a modified version of the indoor144

localization system [45], as we published before [17,38].145
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2.5.1. Frequency Band Considerations146

Acoustic underwater communication influences the maritime habitat, hence system147

designs have to minimize the interruption of natural communication. As a simplified148

design rule, we regard that seals’ hearing is sensitive to sound frequencies below 80 kHz,149

with already increased sound pressure level thresholds, i.e., decreased hearing sensitivity150

above 60 kHz [46]. While this differs for other species of sea mammals, which can create151

and react to sound of up to 150 kHz [47–49], we assume a similar decreased sensitivity of152

frequencies above 60 kHz. Additionally, the attenuation of acoustic underwater waves153

exceeds 20 dB km−1 for those frequencies, limiting the spatial sphere of influence further.154

A limiting factor for coastal applications is natural and artificial noise, e.g., from the surf155

and ship traffic, which we regard as Brownian noise decaying at about 18 dB per decade156

[16,50]. For our system, we limit the communication band therefore as in Table 1.157

2.5.2. Experiment Parameters158

Table 1. Transmission Band Parameters

Parameter Value Description

fc 67.5 kHz Center frequency
B̂ 5.0 kHz Maximal available bandwidth

fs 88.0 kHz Receiver sampling frequency

Nres 4 Resampling factor after down-mixing
Nres2 2 Resampling factor after signal merge

fs1 22 kHz Sampling frequency after 1st downsampling
fs2 11 kHz Sampling frequency after 2nd downsampling

The sampling rate of our acquisition unit is limited to fs = 88 kHz. As a result, the159

received signal is undersampled, i.e., the Nyquist frequeny is below the transmission160

band. While this mixing operation generally results in a leakage of signal power, the161

band-limited nature of the chirp sequences and the low noise environment limit this162

aliasing effect. This band-limitation is ensured by an additional analog bandpass-filter.163

The chirp parameters are listed in Table 2 for the single band and dual-band transmission.164

Table 2. Experiment Waveform Parameters

Parameter Value Description
Single Dual

N 96 64 Transmitted bits
Nlo 1 2 Number of sub-channels
Nfrm 3 3 Number of packages sent

B 5.0 kHz 2.50 kHz Bandwidth per channel
T 10 ms 10 ms Length of a single chirp in time
fc 67.5 kHz [66.25, 68.75] kHz Frequency offset to band center

T · B 50 25 Time-bandwidth product

The symbol rate and occupied bandwidth of both transmissions is kept constant.
Therefore, the single band signal has twice the time-bandwidth product compared to the
dual-band one. This implicates the ratio of symbol energy to noise energy to double as
well [51],

Esym

En
= T · B · γ, (44)
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where γ is the signal-to-noise ratio of the received signal. The expected data rate on the165

other hand is halved, as each symbol only contains half the bits.166

3. Results167

3.1. Channel Frequency Response168

The transmitted and received signals are shown in Fig.8 as spectrograms over169

frequency and time. The undersampling introduces harmonic interference outside of the170

transmission band of the recorded signal, which are not physically present in the medium171

itself. Those phantom bands are removed on downsampling, by narrow bandpass filters.172

(a) (b)

(c) (d)
Figure 8. Spectrograms of parts of the signal. Top: After the up-conversion in the transmitter;
Bottom: Before down-conversion on the receiver side. Left: Plots of the single band communica-
tion; Right: Plots of the dual-band communication. Each package is transmitted three times in the
experiment.

The power levels are more clearly visible in the averaged plots of Fig.9. The173

noise floor confirms the assumption of AWGN outside of the transmission, with an174

approximate SNR of 65 dB. The interference caused by the transmission itself raises the175

average power outside of the transmission band for about 30 dB.176

4. Bit Error Rate and Packet Error Rate Simulations177

The bit error rate (BER) and packet error rate (PER) of the proposed algorithms are
estimated through simulation for an idealized channel as described in sec.2.3. We define
the BER in two ways: By comparing each bit in the order of demodulation through the
exclusive or operation

rBE = ∑
n
(dest ⊕ d) + |Nest − N|, (45)

and by convolution, which returns the maximum match between the transmitted se-
quence d and demodulated sequence dest

rBExc = max
n
{dest ~ d}+ |Nest − N|, (46)
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(a) (b)
Figure 9. Averaged spectral power plots of the raw received signals. Left: Single band commu-
nication; Right: Dual-band communication. The colored area marks the ± 1 σ region of each
frequency bin.

(a) (b)
Figure 10. Time domain plot of the detected frames (red) and estimated symbols (blue crossed
circles). Left: Single band communication; Right: Dual-band communication. The symbol
difference is not optimally detected, as the amplitude of the signal exceeds the amplitude of the
estimated symbols. The histograms to the right of each time plot are normalized by the total
number of samples (red) and symbols(blue) in each frame.

both of which include differences in the number of bits to account for additional or178

missing bits. The former (XOR) we regard for data transmission, where the content179

of the sequence is not known at the receiver, while the latter (XCorr) indicates the180

performance, if a known set of codes is expected. The PER is defined through the relative181

number of erroneous packets compared to the total number of sent packets, where a182

packet error is any packet that includes at least one bit error. For the PER we consider bit183

errors according to (45).184

The probability of errors approximately follows the error function (erfc) over the
SNR [52]. While there are closed-form approximations for LoRa [51,53], to ease compar-
isons we approximate those through superposed error functions

Pbe|pe(γ) = ∑
q

(
Aq · erfc

{(
Bq · 10γ/10

)1/2q})
, (47)

which were fitted manually for the coefficients in Table 3 and Table 4 for the BER and185

PER simulation, respectively.186
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Table 3. Single band BER fit coefficients

q -1 0 1 2

rBE
Aq 0.95 -0.85 0.8 0.5
Bq 26 50 22 140

rBExc
Aq 1.3 -0.5 0.8 0.02
Bq 27 50 22 140

rPE
Aq 0 24 2.1 2.0
Bq 0 50 25 140

Table 4. Dual-band fit coefficients

q -1 0 1 2

Aq 0.60 -0.65 0.65 0.65
Bq 9.5 50 6.8 43

Aq 1.00 -0.65 0.15 1.00
Bq 10 22 10 65

Aq 4.0 6.0 1.8 1.2
Bq 25 13 7.1 43

(a) (b)
Figure 11. Plots of the simulated bit error rate (BER) and packet error rate (PER) for both single
band (left) and dual-band transmission (right).

The dual-band transmission is shifted by approximately 6 dB, which confirms the187

assumptions from (44). Error rates above 1 indicate that more bits or packets were188

demodulated than initially sent.189

5. Conclusions190

The proposed preamble-free Chirp Slope Keying was simulated and tested inside a191

measurement pool in a laboratory scale experiment for transmission rates of 100 bit/s192

for single band communications, as well as 200 bit/s for dual-band communication. The193

bandwidth and symbol length was kept constant. The achieved bit error rate estimated194

through the bitwise xor operation was simulated to drop below 0.001 for SNR above -6 dB195

for a time-bandwidth product of 50 in the single band mode and for SNR above 0 dB for196

a time-bandwidth product of 25 in dual-band mode. The correct detection of packages197

and the demodulation was successfully implemented, verified and simulated as well.198

The packet error rate follows the bit error rate with an SNR offset of approximately 1 dB.199

The simulated channel contained Rayleigh fading and set the SNR through Additive200

White Gaussian Noise.201
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Abbreviations214

The following abbreviations are used in this manuscript:215

AF Active Filter
ALSA Advanced Linux Sound Architecture
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BPF Bandpass Filter
CSS Chirp-Spread Sequence
CSP Chirp Slope Keying
DDC Digital Down-Converter
DUC Digital Up-Converter
FDDS Frame Detect & Downsample

FHX Fast Hilbert Cross-Correlator
JDS Join & Downsample
LPF Lowpass Filter
MUX Multiplexer
PA Power Amplifier
PER Packet Error Rate
RX Received or Receiver
SNR Signal-to-Noise Ratio
TB Time-Bandwidth Product
TX Transmitted or Transmitter
UAV Underwater Autonomous Vehicle

216
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