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Abstract

Most smallscale farmers still use the traditional way of agricultural crop farming, and relay
mostly use of chemical fertilizers (CF). Recently CF have become expensive and could in some
way have a negative impact on soil quality after long term application. However, co-application
of biogas slurry (BGS) with CF could help reduce farming costs while improving dry matter
yields, grain yields, primary macronutrient uptake of (Nitrogen) N, (Phosphorus) P, (Potasium)
K, (Calcium) Ca and (Magnesium) Mg and soil concentration of pH, (organic carbon) OC, N,
P, K, Ca and Mg after crop harvest. The study was a field experiment conducted in 2016-2017
and 2017-2018 growing seasons. The field experiment was arranged in a randomized complete
block design with four replicates. The treatments were based on percentages of recommended
N rates of 120 kg N ha™! for maize production. The BGS/CF treatments were (i) 0/0, (ii) 0/120,
(iii) 24/96, (iv) 48/72, (v) 72/48, (vi) 96/24, (vii) 120/0 kg N hal. The spreading of the
combination of BGS/CF treatments was performed by hand and incorporated into the top soil
(0-10 cm) in each experimental plots. BGS/CF (48/72) treatment resulted into higher dry matter
yield in 2016-2017, which was higher than all other treatment combinations, while in the 2017-
2018 season, treatment of (0/120) resulted into higher dry matter than all other treatment
combinations. The 48/72 and 0/120 treatments resulted into similar grain yield in 2016-2017
season which were higher than all other treatments. Treatments of 48/72, 72/48 and 120/0 had
higher N, P, K, Ca and Mg uptake than 0/0, 0/120, 24/96 and 96/24 treatments in both seasons.
Soil pH, total N, K, and Mg were high from the treatment of (120/0) than all other treatments
in 2016-2017 while in the 2017-2018 season, treatment of (48/72) had higher OC, P and K after
maize harvest. The findings of his study show that co-application of BGS/CF at 48/72 and
72/48 have maize yield benefits compared to the two resources, BGS/CF (120/0) and BGS/CF
(0/120), applied separately in soil especially in the arid and semi-arid regions.
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Introduction

Global pressure on agriculture for higher food production [1] has increased agricultural
intensification, to maximize crop yields per unit area [2]. Intensification of agricultural
production without replenishment of soil nutrients reserves causes soil fertility declines and
poor soil quality [3], a major constraint for crop productivity [4-6]. Chemical fertilizers (CF)
have been used to supply essential soil nutrients and increase crop yields for many decades [7].
However, long-term excessive use of CF decrease organic soil carbon (C), microflora and fauna
and overall soil quality, increase greenhouse gas emissions [8;9] and could contaminate water
bodies [10;7]. In addition, each CF provides only particular essential nutrients to the crop [11].
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Smallholder farmers, including those in South Africa use CF for crop production, however they
do not apply sufficient quantities due to high cost of CF [11] and that could reduce potential
yields targets. However, co-application of CF with organic fertilizers could add extra nutrients
especially from the organic sources which would otherwise have to be disposed of, presenting
risks on the environment (e.g eutrophication of waters). [12] suggested that organic fertilizers
are believed to be beneficial in improving soil quality and while on the other side reducing
fertilizer costs for marginal farmers that can not afford expensive CF.

Research has shown a huge demand for eco-friendly practices to achieve sustainable food
production [12;13]. The use of locally available organic fertilizers could reduce dependence on
commercial fertilizers [14;10;15]. Some of the locally available organic fertilizers include
animal manures and biogas slurry (BGS) produced from biogas technology. The biogas
technology produces energy (methane) through anaerobic digestion of organic wastes, like
animal manures, thereby reducing environmental pollution [15]. Biogas slurry, a by-product
after anaerobic digestion of organic waste, contains large amounts of micro and macronutrients,
necessary for plant growth [16;2;11]. The slurry can act as a soil conditioner, while its
decomposition mineralises essential nutrients, increasing their availability in soil and crop
biomass accumulation and yield [17]. While the use of CF alone decreases soil quality, desired
crop yields are difficult to achieve by only supplying organic fertilizers [18]. High crop yields,
improved soil fertility levels and overall quality can be achievable through supplementing CF
with organic fertilizers, especially on smallholder farms [19;11]. Co-application of BGS with
CF has the potential to supply soil nutrients needed for crop growth. The combined application
of BGS with CF improves carbon-to-nitrogen (C:N) ratio and nutrient transformations and
could increase crop yields [11]. However, there are contradictory findings in the literature on
the effects of co-application of BGS with CF on soil quality, nutrient availability and crop
yields.

In a study done in southern China by [20] on an Ultisol, co-application of BGS (feedstock pig
manure and urine) with CF resulted in higher peanut grain yield than CF only, while the BGS
only treatment resulted into higher peanut yields than co-applicaton of BGS with CF and CF
only treatment. [7] reported in a study done in Pakistan an increased N content in plant parts
and total N uptake of okra (Hibiscus esculentus L.) plant after co-application of sun-dried BGS
(feedstock cattle dung) with CF. In contrast to the two studies, [11] reported in a study done in
India no significant increase in the number of leaves of fodder maize crop after co-application
of dry-BGS (feedstock cattle dung) with CF. [19] suggested that rice and wheat growth and
yield attributes differed significantly because of the different N sources and their combinations
and or ratios. In a study by [12] in India on inceptisols, addition of BGS (feedstock cattle dung)
with CF at 50/50 ratio gives 20% greater number of leaves, leaf area, plant biomass, and cob
yield of maize, compared to CF alone. Soil types, climatic and environmental conditions where
the studies of [7;11;12] and [20] were conducted differ from the common soils found in
Southern Africa and the nature of the feedstock used for production of biogas found in Southern
Africa. The effectiveness of organic fertilizers is dependent on conditions that affect
decomposition and mineralisation (i.e temperature, moisture, and composition of the organic
material). The effect of these factors on rate of decomposition and mineralisation of N will
determine the complementory effects when co-applied with CF. As such complementary
effects in Southern Africa could be different to other regions if all these factors are accounted
for. The contradictions in the literature could be a result of differences in the quality of the
BGS, which depends on feedstock, combinations of BGS-to-CF, and soils and crop types used
in the different studies. It is essential to find the optimal combination for co-applying BGS with
inorganic fertilizers to produce higher yields of crops commonly grown on smallholder farms
in Southern Africa.
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There are indications of declines in crop productivity in the sub-Saharan Africa region [4],
particularly cereal and legume crops, which are commonly grown on smallholder farms. The
decline in soil fertility, including low organic matter and nutrients, and climate change and
high cost of CF explain the low productivity of cereal and legume crops on marginal farms.
Most biogas plants in Southern Africa use cattle manure as a feedstock, and the BGS produced
could be a useful organic fertilizer. There is a paucity of literature on work done on co-
application of BGS with CF for increasing soil nutrient reserves and overall quality, of cereal
crop yields in South Africa. It was hypothesized that BGS produced from cattle manure when
co-applied with CF at equal ratios based on N, will result in the same maize dry matter, grain
yield and nutrient uptake as the compound CF only, with additional benefits of increasing soil
pH and organic C and available P, K, Ca and Mg under field conditions. The objective of this
study was to determine the effects of co-application ratio of BGS with CF on nutrient uptake,
dry matter and grain yields of maize and soil nutrient concentrations after harvest.

Materials and methods
Site description
The study site and details where the experiments were conducted is as described by [21].

Sampling of soils and biogas slurry and initial characterisation

Soil samples and biogas slurry sampled for the purpose of the experiments are as described by
[21]. Initial soil characterization also included analysis of extractable P (mg kg™'), 6.35+0.17;
exchangeable K (cmolc/kg), 0.20 + 0.03; exchangeable Ca (cmolc/kg), 3.32 = 0.04 and
exchangeable Mg (cmolc/kg) 2.21 £ 0.03.

Experimental set up and agronomic practices

The field experiment set up is as described by [21]. The treatments were combinations of BGS
and CF, with CF being a compound fertiliser N:P:K, 3:2:1 (28). The 3:2:1 represents the ratio
of N:P:K in the fertiliser while the 28 means that 28 % of fertiliser is made up of N, P and K.
The BGS/CF treatments were based on percentages of recommended N rate (120 kg Nha™)
were T1 = (0/0), T2 = (0/120), T3 = (24/96), T4 = (48/72), TS = (72/48), T6 = (96/24) and T7
=(120/0), kg Nha''. These amounts corresponded to the recommended rate for maize gain yield
potential of 5 t ha'l. The application of treatments was performed by hand and incorporated by
tillage. The P and K were corrected using single superphosphate and potassium chloride so that
N becomes the only limiting factor.

Trial monitoring

The water used for irrigation and irrigation schedules for the experiment conducted are as
described by [21]. Weeding was done mechanically every third week, methamidofos 585 SL
insecticide (AVIMA) was applied to control fall armyworm (Spodoptera frugiperda) in the
2016-2017 season only [21].

Plant sampling and analysis

Leaves in five randomly selected maize plants were sampled from each plot at the tasselling
stage. The stems of the sampled plants were kept and included to the plants used for the
determination of dry matter. All leaves samples were kept in well-labeled paper bags, and oven-
dried at 50°C to constant weight, ground to < 0.5 mm using Fritsch Pulverisette mortar grinder.
The ground plant samples were digested following nitric-perchloric acid digestion method [22].
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Briefly, 0.5 of dried plant material was digested with 7 ml nitric acid at 180°C, brought up to
volume in a 100 ml volumetric flask and analysed for P, K, Ca and Mg. Total N was determined
by dry combustion method [23] and analysed with flash 2000 organic elemental analyser
(CHNS-O analyser, Thermo Scientific, United States). Maize grain yield was only determined
in the 2016-2017 season. In the 2017-2018 season, monkeys only ate the cobs before maturity
and harvesting. Total uptake of N, P, K, Ca and Mg was calculated separately by the following
formula:

(N, P, K, Ca, Mg)% X dry matter (kg ha™?)
100

Uptake of N, P, K, Ca, Mg (kg ha 1) =

Selected physicochemical soil parameters after maize

Five soil samples were collected from the 0-20 cm depth of each plot using a bucket auger and
mixed thoroughly to make a composite sample. The samples were air-dried and sieved to pass
through 2 mm sieve, before analysis. Soil pH was measured in water at 1:2.5 (soil: water ratio)
[24]. Total N was determined using the Kjeldahl digestion method [25]. Plant available P was
extracted with Bray 1 extraction solution [26] followed by analysis on a Continuous Flow Auto
Analyser 3, SEAL Analytical, Australia. Exchangeable K was extracted with 1M Ammonium
acetate solution (NH4OAc¢) adjusted to a pH of 7.0 [27;28] and analysed with an ICP (ICPES-
9820, Plasma Atomic Emission Spectrometer, Shimadzu Corporation, Japan).

Statistical analysis

The data for maize dry matter, grain yield, uptake of N, P, K and soil concentration of N, P, K,
OC, pH were subjected to two-way analysis of variance (ANOVA) based on the randomised
complete block design, with seven combination of N levels, using Genstat statistical software
(18™ edition, VSN International, 2016). The data for the two seasons (2016-2017 and 2017-
2018) were analysed across seasons. Separation of means was done using Tukey's HSD at p <
0.05. Pearson’s correlation analysis was done to correlate with maize dry matter with uptake
of N, P, K and with soil concentrations of total N, available P, exchangeable K for each season
using Genstat statistical software (18" edition).

Results

Dry matter and grain vield

Maize dry mater and grain yields in treatments were significantly different (» < 0.05) in both
seasons (Table 1). In the 2016-2017 season, the highest dry matter was in the treatment (48/72)
followed by the 72/48 and 120/0. In the 2017-2018 season, the highest dry matter was in the
(0/120) treatment followed by the (120/0) treatment. In both seasons the control (0/0) had the
least dry matter yields. Ths 48/72 and 72/48 treatments had similar dry matter yields. The 72/48
and 96/24 treatments had similar dry matter yields in the 2017-2018 season. Maize dry matter
yield was higher in the 2017-2018 than the 2016-2017 season for most treatments except the
48/72 and 72/48 treatments, which had the same yields for both seasons. The highest grain
yield was in BGS/CF treatments of 0/120 (CF only) and 48/72 treatments and the least being
the 0/0 treatment. The other treatments were in the order 120/0 > 72/48 > 24/96 > 96/24 (Table

1.

Uptake of nitrogen, phosphorus, potassium, calcium and magnesium

In both seasons, the treatments showed significantly different (p < 0.05) N uptake by maize
(Table 1). In 2016-2017, the highest N uptake was from treatment of 72/48 followed by the
other treatments in the order 48/72 = 120/0 > 0/120 > 24/96 = 96/24 > 0/0. In 2017-2018, the
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highest N uptake was from the BDS only (120/0) treatment and the least being the cotrol
treatment (0/0). The other treatments were in the order of 48/72 = 72/48 > 96/24 > 24/96 > 0/0.
The 2017-18 season had higher uptake of N than the 2016-2017. However, the 48/72 and the
72/48 treatments were among the top three in both seasons.

The BGS/CF treatments showed significant differences (p < 0.05) in uptake of P, K, Ca and
Mg for both seasons. The 2017-2018 season had higher uptake of P, K, Ca and Mg for each
treatment than the 2016-2017 season, with the 48/72 and the 72/48 being among the top three
in both seasons. Phosphorus uptake in 2016-2017 was highest from 72/48 treatment followed
by BGS only (120/0) and the least was from the control treatment (0/0). The other treatments
were in the order 48/72 = 0/120 > 96/24 > 24/96. In 2017-2018, highest P uptake was from the
BGS only (120/0) treatment followed by 48/72 and 72/48 treatment and the least was from the
control treatment (0/0). The other treatments were in the order 24/96 > 96/24. In 2016-2017,
the highest K uptake was from 72/48 treatment followed by 120/0 and the least was from the
treatment of 0/0 in both seasons. The other treatments were in the order 48/72 = 0/120 > 24/96
= 96/24. In 2017/2018, the highest K uptake was from BGS only (120/0) treatment and the
least was from treatment of 0/0. The other treatments were in the order of 48/72 > 72/48 >
0/120 = 96/24 > 24/96.

The highest Ca uptake was from treatment of BGS only (120/0) followed by 48/72, while the
least was from the control treatment (0/0) in both seasons. The 96/24 treatment had similar Ca
uptake to the CF only (0/120) treatment in 2016-2017 season. The other treatments were in the
order 72/48 > 24/96. In the 2017-2018, the other treatments were in the order 48/72 > 72/48 >
24/96 = 96/24. In 2016-2017, Mg uptake was high from the treatment of BGS only (120/0)
followed by treatment of 72/48 and the least was from treatment of (0/0). The other treatments
were in the order 24/96 = 48/72 > 96/24 > 0/120. In 2017/2018, the highest Mg uptake was
from treatment of 72/48 followed by 48/72 and the least was from treatment of (0/0). The other
treatments were in order 24/96 = 120/0 > 96/24. Overall, the CF only treatment had the lowest
Ca and Mg uptake for both seasons than the other treatment combinations.
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Table 1: Effect of co-application of biogas slurry and chemical fertiliser on dry matter yield, grain yield and uptake of N, P, K, Ca and Mg by
maize for 2016-2017 and 2017-2018 planting season.

Dry matter yield  Grain yield N P K Ca Mg
Season Treatments ------------- x10° kg ha'! kg ha'!
T1 2.844 0.76* 5.554 3.784 15.88 8.548 8.404
2016-2017 T2 5.06<P 2.98F 62.4¢ 8.40P 39.1°P 14.4¢ 15.68
T3 4.565¢ 1.82¢ 45.98 5.128 30.9¢ 16.1° 21.88
T4 6.94" 2.95F 75.4P 8.75P 40.4P 19.0 21.08
TS 6.35% 2.24P 90.4F 10.9F 63.36 17.6" 29.5¢
T6 4418 1.418 38.08 6.08¢ 30.6¢ 14.7¢ 18.6¢
T7 6.31F 2.59% 79.1°P 9.87% 58.0F 19.99 31.8"
T1 3.18% - 3.08" 6.73¢ 8.844 3.374 19.8P
2017-2018 T2 10.18% - 99.3F 13.49 60.1% 16.1° 25.7
T3 5.28P - 1096 14.74 46.6" 25.51 39.6
T4 6.95" - 165 25.4% 68.6" 34.8! 49.2%
TS 6.43%F - 166" 21.5 64.1¢ 32.3 54.6"
T6 5.93F - 1474 18.7" 59.8F 2531 33.5
T7 8.036 - 236’ 31.1F 128! 44.0% 39.4!

Means with different letters in the same column are significantly different at p < 0.05. The treatments are BGS/CF ratios in terms of nitrogen
supplied, with T1 = (0/0), T2 = (0/120), T3 = (24/96), T4 = (48/72), TS = (72/48), T6 = (96/24) and T7 = (120/0).
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Soil nutrients after maize harvest

The BGS/CF treatments showed significant differences (p < 0.05) in soil pH, total N, organic
C, extractable phosphorus and exchangeable K, Ca and Mg (Table 2). The soil after harvest
had higher pH (except for 0/120 and 0/0 treatments), organic C, exchangeable Ca and Mg in
the 2017-2018 than in the 2016-2017 season. Soil pH increased with increase in the proportion
of BGS in both seasons, with the highest pH in the BGS only (120/0) treatment and the lowest
in 0/120 and 0/0 treatments. The highest soil C was in BGS only (120/0) treatment for both
seasons and 48/72 in 2017-2018 season while the least was in the 0/0 treatment in both seasons.
The other treatments were in the order 60/40 > 40/60 = 0/120 > 24/96 = 96/24 in the 2016-
2017 and 60/40 > 96/24 = 24/96 > 0/120 in the 2017-2018 season.

Total soil N was highest in the CF only (0/120) treatment with the least in the 0/0 in the 2016-
2017 season. The other treatments were in the order BGS only (120/0) > 48/72 = 72/48 > 24/96
=96/24. In the 2017-2018 season, the highest total N was in the 72/48 treatment and the least
in the 0/0 treatment. The other treatments were in the order 48/72 > 120/0 > 0/120 > 24/96 =
96/24. Where the proportion of BGS was higher than CF, the total soil N after harvest was
higher in the 2017-2018 than 2016-2017 season.

The highest soil extractable P was in 48/72 treatment followed by 72/48 in both seasons with
the least being in the control treatment (0/0) in both the 2016-2017 and 2017-2018 seasons.
The other treatments were in the order 120/0 > 96/24 > 0/120 > 24/96 in 2016-2017 and 0/120
>120/0 > 24/96 = 96/24 in the 2017-2018 season. Overall extractable P was lower in the 2017-
2018 than the 2016-2017 season, except the CF only (0/120) and 24/96 treatments. The
exchangeable K was highest in the BGS only (120/0) treatment in both seasons and least in the
the control (0/0) in both seasons. The other treatments were in the order 72/48 > 48/72 > 24/96
= 96/24 > 0/120 in 2016-2017, while in 2017-2018 the order was 72/48 > 48/72 > 0/120 >
24/96 = 96/24. Overall exchangeable K was lower in the 2017-2018 than the 2016-2017 season,
except the CF only (0/120) and BGS only (120/0) treatments.

In both the 2016-2017 and 2017-2018 seasons, the highest exchangeable Ca were in the CF
only (0/120) treatment and the least being the control (0/0). The other treatments were in the
order 48/72 > 120/0 > 72/48 > 24/96 > 96/24 in 2016-2017 while in 2017-2018 the order was
120/0 > 48/72 = 72/48 > 96/24 > 24/96. The highest exchangeable Mg were in the CF only
(0/120) treatment and the least being 0/0 in both 2016-2017 and 2017/2018 seasons. In 2016-
2017 season, the other treatments were in the order 48/72 = 72/48 > 120/0 > 24/96 > 96/24
while in the 2017-2018 season the order was120/0 > 72/48 > 48/72 > 96/24 > 24/96. Overall
exchangeable Ca and Mg were lower in the 2017/2018 than the 2016/2017 season for each
treatment.
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Table 2: Soil chemical properties after maize harvest for 2016-2017 and 2017-2018 planting season.

pH (H20) TN ocC Extractable P Exchangeable K Exchangeable Ca Exchangeable Mg
Season Treatments % ---- mg/kg ---- cmol(+)/kg
T1 5.834 0.026* 0.5328 3.528 0.120* 4.01¢ 3.048
T2 5.844 0.103’ 0.979PE 14.89E 0.224P 9.95¢ 5.58%
T3 6.26" 0.054¢ 0.955P 7.50¢ 0.263F 6.951 4.601
2016-2017 T4 6.41¢ 0.064PE 0.995EF 73.02% 0.3394 8.56% 4.84!
TS5 7.04E 0.061P 1.06° 49.29 0.350" 7.39! 4.85!
T6 6.67° 0.056¢ 0.955P 15.89% 0.268F 6.69¢ 4.31F
T7 7.09E 0.069F 1.10% 18.984 0.358’ 8.26’ 481!
T1 5.93A 0.0318 0.1184 2.544 0.1388 3.094 2.944
T2 5.834 0.074¢ 1.01% 17.279 0.228P 8.67% 5.05°
T3 6.54¢ 0.068EF 1.14 11.18P 0.191¢ 4.018 3.088
2017-2018 T4 7.03E 0.096! 1.23% 31.42! 0.239E 5.33E 3.60P
TS 7.55F 0.118% 1.19 17.56 0.325¢ 5.30F 4.03F
T6 6.78P 0.065PE 1.13H 10.59P 0.195¢ 4.70P 3.19¢
T7 7.756 0.086" 1.24% 15.375F 0.590% 6.32F 4.456

Means with different letters in the same column are significantly different at p < 0.05. The treatments are BGS/CF ratios in terms of nitrogen
supplied, with T1 = (0/0), T2 = (0/120), T3 = (24/96), T4 = (48/72), TS = (72/48), T6 = (96/24) and T7 = (120/0).
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Maize dry matter showed a strong positive correlation with uptake of N, P, K, Ca and Mg in
both seasons except for the 2017-2018 when a weak positive correlation with Mg uptake was
observed (Table 3). Soil parameters showed positive concentrations for the different elements
in both seasons. In 2016-2017 season, only exchangeable K showed a strong positive
correlation with drymatter, while in the 2017-2018 all measured soil parameters showed a
strong positive correlation with drymatter, except total N (Table 3).

Table 3: Correlation coefficients () for parameters affecting dry matter yield in the maize field

Parameter Plant uptake

Season 2016-2017 2017-2018
N Uptake 0.886 0.958
P Uptake 0.814 0.974
K Uptake 0.877 0.888
Ca Uptake 0.872 0.936
Mg Uptake 0.902 0.534

Soil parameters
Total N 0.336 0.296
Extractable P 0.390 0.859
Exchangeable K 0.822 0.899
Exchangeable Ca 0.349 0.649
Exchangeable Mg 0.227 0.771
Discussion

Dry matter yield was attributed to uptake of N, P, K, Ca, and Mg that supported plant growth
in both 2016-2017 and 2017-2018 seasons but to a lesser extent Mg in the 2017-2018 season.
This was supported by a strong positive correlation between dry matter and N, P, K, and Ca.
The BGS/CF treatments of 48/72 and 72/48 resulted in more readily available plant nutrients,
which supported nutrient uptake and plant growth in both seasons. Dry matter yield in BGS/CF
treatments of 48/72 and 72/48 resulted in 6.9 and 6.3 t ha™!, respectively, compared to 5.0 t ha"
! of CF only (0/120) and 2.8 t ha'! of (0/0) in the 2016-2017 season. These results were in
agreement with findings of [12], who indicated that plant biomass yield of baby corn was
higher in the BGS/CF treatment at 50/50% ratio than the other corresponding treatments,
especially CF only (100%) treatment. Farmers could apply BGS/CF at 48/72 to take advantage
of the reduced CF in the first season of planting. However, the advantage in terms of dry matter
yield is lost in the second season with BGS/CF treatments of 48/72 and 72/48 having 6.9 and
6.4 t ha'! respectively, compared to 10.1 t ha™! in CF (0/120).

The huge difference from the CF only (0/120) treatment compared to 48/72, 72/48 in the 2017-
2018 season can be attributed to the fact that the CF only (0/120) treatment provided nutrients
at a more available form than the treatemnts of 48/72 and 72/48. The lack of differences
between the two seasons for BGS/CF treatments 48/72 and 72/48, showed that the benefits of
the application of BGS with CF would help in sustaining crop production and subsequently
would lead to higher dry matter yields in a long term. The fact that BGS/CF treatments of 24/96
and 96/24 were among the lowest compared to other treatment combinations other than the
control (0/0) for all parameters measured, suggests that these ratios may not be the best for
BGS use, with limited variations as a result of seasonal differences.

The higher maize grain yield, particularly in the BGS/CF treatments of 0/120, (2.9 t ha™') and
48/72, (2.9 t ha!) in the 2016-2017 season, could be attributed to uptake of N, P, K, Ca and


https://doi.org/10.20944/preprints202103.0725.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 March 2021 d0i:10.20944/preprints202103.0725.v1

Mg. This view was supported by the increased dry matter yield and high correlation between
nutrient uptake and dry matter in the first season of planting. The higher dry matter yields and
plant nutrient uptake obtained from the BGS/CF treatments 48/72 and 0/120 translated to
higher grain yield. There is a significant benefit of co-applying the two resources at 48/72 than
BGS alone in terms of maize grain yield. The reduction of CF by 40%, (48/72), resulted in a
similar yield as CF alone, which could significantly reduce fertiliser costs while maintaining
grain yields. Higher grain yields from BGS/CF treatments of 48/72 and 120/0 than any other
treatment could be explained by higher N uptake from these particular treatments. However,
the higher grain yields from BGS/CF treatment of 0/120 in the first season could not be
explained by the lower N uptake observed from in that treatment. These results agreed with
[29] and [30], who reported that the application of BGS/CF at 50/50% ratio resulted into similar
cabbage yields when compared to CF only (100%) treatment. Contrary to these results, [12]
reported that the ratio of 50/50% (BGS/CF) in an Inceptisol yielded higher grain yield for baby
corn than CF only (100%) treatment, where BGS was from anaerobic digested cattle dung. The
differences between the results in the literature could be a result of the quality of the BGS used.

Higher N uptake from BGS/CF treatments of 48/72, 72/48 and 120/0 than the CF only (0/120)
and corntol (0/0) treatments in both seasons demonstrates the benefits of BGS. Higher N uptake
observed from these treatments especially in the 2016-2017 season translated into higher dry
matter yields. These results were in agreement with the findings by [12], who reported that the
application of BGS/CF at 50/50% ratio resulted in higher N uptake than CF only (100%)
treatment. The higher N uptake in the second season, than the first, could be attributed to
possible build-up of soil total N in the second season that resulted in higher N uptake and
increased dry matter yields. Higher soil total N after maize harvest in the 2017-2018 season
suggests that BGS results in build-up of soil N. The results of this study were contrary with
findings of [30], who reported that variation in rate of BGS/CF did not have any effect on the
amount of residual total N especially after cabbage harvest. [30], explained that because
cabbage in nature is a heavy feeder of N and P, therefore, the change in residual N is difficult
to monitor. [7], suggested that in a single season (one), the application of BGS/CF could not
result in major effects, which was the case in the first season of the current study.

Higher P uptake by maize from BGS only (120/0), 48/72 and 72/48 treatments than the CF
only treatment (0/120) and the treatment of (0/0) could be explained by the increase in soil pH,
which made P available for plant uptake. Soil pH observed in the first season from BGS/CF
treatments of 48/72 and 72/48 was 5.93 and 6.41, respectively, that resulted in increased P
availability. Most P becomes available at a pH range of 6.5 and 7.5 [31] and hence higher
extractable soil P was observed from these treatments. The pH was in the optimal range in these
two treatments than any other treatments with a higher and lower proportion of BGS. The
highest extractable P in the treatments of 48/72 and 72/48 supports the view that high P uptake
by maize in these treatments, was a result of greater availability. However, higher soil pH (pH
>7.0) observed in the second season from BGS/CF treatments of 120/0, 48/72 and 72/48 could
have decreased extractable P than the first season for these treatments, due to precipitation of
Ca phosphates [31].

Higher K uptake from BGS/CF treatments of 48/72 than 0/120 can be attributed to high K that
was contained in BGS, hence higher K uptake. The higher uptake of K, Ca and Mg in the
second season than the first, for all treatments suggested rapid accumulation of these elements
that subsequently led to higher dry matter. The higher Ca uptake from BGS only (120/0), 48/72
and 72/48 treatments than CF only (0/120) and (0/0) could be attributed to the total Ca supply
by the BGS resource. The higher exchangeable Ca and Mg in soil from the CF only treatment
in the 2016-2017 season could be explained by lower uptake by the maize. High Mg uptake
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from BGS/CF treatments of 48/72, 72/48 and 120/0 in both seasons could be attributed to Mg
supplied by BGS.

The higher OC, exchangeable Ca and Mg in the 2017-2018 season than 2016-2017 shows the
inclusion of BGS will result in the increase in these parameters, and improve soil quality, over
time. The higher soil organic C in maize from the treatment of BGS (120/0) than CF only
(0/120) and other treatment combinations can be attributed to higher organic C supplied BGS.
The addition of organic amendments enhances soil organic C concentration that is an important
indicator of soil quality and crop productivity [32]. [33] and [34] reported that an increase in
soil organic C occurs after a long-term application of organic fertiliser and that decomposition
of soil organic matter in soil depends on soil pH [35]. The relatively higher soil pH in treatment
that contained BGS was because of the liming effect of BGS that had pH 9.10 when compared
to CF only (0/120) treatment that was relatively lower in both seasons. The digestion process
during biogas production could have increased the production of ammonia, causing an increase
in pH of the BGS [36;37]. The lower pH from the treatments of CF only (0/120) and (0/0)
could be attributed to the nitrification process.

Conclusion

Co-application of BGS with CF at 48/72 and 72/48 ratios improved maize dry matter than the
two resources applied separately, while only the 48/72 had the highest grain yield, similar to
CF alone. In the first season, co-application at 48/72, 72/48 and BGS only (120/0) increased
maize uptake of N, P, K, Ca and Mg when compared with CF, and all treatments with BGS
resulted in greater uptake of these nutrients than CF and the control (0/0). There is no advantage
of co-application on uptake of other nutrients when compared to BGS alone. After maize
harvest, soil pH and total N increased with the proportion of BGS, and treatments with BGS,
particularly the BGS only, 72/48 and 48/72 had higher organic C, extractable P, and
exchangeable K with no benefit of co-application on exchangeable Ca and Mg. Smallholder
farmers could apply 40-60% of the recommended Nha™! of CF and supplement with BGS for
maximum dry matter and grain yields. Smallholder farmers could take advantage of using
BGS with the reduced CF fertiliser for higher maize yields and improved soil quality. Long-
term research is needed on the effect of co-application of BGS and CF on crop yields and soil
quality under dryland field conditions, as practised by smallholder farmers in Sub-Saharan
Africa.
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