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Abstract: With the now available vaccination against Covid-19 it is quantitatively explored how
vaccination campaigns influence the mathematical modeling of epidemics. The standard susceptible-
infectious-recovered/removed (SIR) epidemic model is extended to the fourth compartment V of
vaccinated persons and the vaccination rate v(t) that regulates the relation between susceptible and
vaccinated persons. The vaccination rate v(t) competes with the infection (a(t)) and recovery (µ(t))
rates in determining the time evolution of epidemics. In order for a pandemic outburst with rising
rates of new infections it is required that k + b < 1− 2η, where k = µ0/a0 and b = v0/a0 denote
the initial ratios of the three rates, respectively, and η � 1 is the initial fraction of infected persons.
Exact analytical inverse solutions t(Q) for all relevant quantities Q = [S, I, R, V] of the resulting
SIRV-model in terms of Lambert functions are derived for the semi-time case with time-independent
ratios k and b between the recovery and vaccination rates to the infection rate, respectively. These
inverse solutions can be approximated with high accuracy yielding the explicit time-dependences
Q(t) by inverting the Lambert functions. The values of the three parameters k, b and η completely
determine the reduced time evolution the SIRV-quantities Q(τ). The influence of vaccinations on the
total cumulative number and the maximum rate of new infections in different countries is calculated
by comparing with monitored real time Covid-19 data. The reduction in the final cumulative fraction
of infected persons and in the maximum daily rate of new infections is quantitatively determined by
using the actual pandemic parameters in different countries. Moreover, a new criterion is developed
that decides on the occurrence of future Covid-19 waves in these countries. Apart from Israel this
can happen in all countries considered.

Keywords: coronavirus; statistical analysis; extrapolation; parameter estimation; pandemic spread-
ing

1. Introduction

In December 2020 the effective mRNA-based Covid-19 vaccine by the companies
Pfizer-BioNTech and Moderna became available. This has lead to intensive vaccination
campaigns in many countries over the world with different speeds. As two shots per person
are needed for nearly 100 percent protection as of February 10, 2021, Israel with a time
t-dependent vaccination rate of v(t) ' 7.0× 10−3 day−1 has the highest, followed by the
United Arab Emirates v(t) ' 4.7× 10−3 day−1, United Kingdom with v(t) ' 2.0× 10−3

day−1, whereas Germany’s vaccination rate v(t) ' 4.2× 10−4 day−1 is significantly smaller.
It is the purpose of the present manuscript to investigate analytically and quantita-

tively for a given ratio b(t) = v(t)/a(t) of the vaccination rate to infection rate a(t) the
effect on the time evolution of the ongoing epidemic waves. We base the analysis on the
susceptible-infectious-recovered/removed (SIR) epidemic model [1] augmented by the
appropriate vaccination rates leading to the susceptible-infectious-recovered/removed-
vaccinated (SIRV) epidemic model. This model is a dynamical system for time-dependent
quantities S(t), I(t), R(t) and V(t) denoting the relative fractions of currently susceptible
(S), infectious (I), recovered/removed (R) and vaccinated (V) persons in the considered
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Figure 1. The three time-dependent rates a(t), µ(t), and v(t) entering the SIRV equations for the
four compartments of susceptible (S), infectious (I), recovered (R), and vaccinated (V) population
fractions. Upon introducing reduced time τ, the model is characterized by the assumed constant
ratios k = µ(t)/a(t) and b = v(t)/a(t).

population of N persons as a function of time t (Fig. 1). In the case of negligible vaccination,
assuming a constant ratio between infection and recovery rate, considerable improvements
on the analytical modelling of epidemics with this compartment model has been achieved
citeks20,sk21. We make frequent use of these improvements in the following.

Application of this earlier work [2] to the monitored second waves in many countries
has indicated initial infection rates of the order of a(0) ∈ [0.1–1.0] day−1, considerably
greater than the above vaccination rates. However, it is important to emphasize an essential
difference: whereas the initial vaccination and the recovery rate can be directly used
to estimate the corresponding typical time scales Tv ' 1/v(0) and Tr ' 1/µ(0) for
vaccinations and recovery, respectively, the initial infection time scale Ti = 1/[a(0)I(0)]
additionally depends on the initial fraction I(0) of infected persons at the onset of the
2nd wave. With this, and depending on the country, the vaccination time scale Tv is often
comparable with the infection time scale Ti.

The inferred infection rates are slightly larger than the initial recovery rates µ(0) so
that the ratio of the two k = µ(0)/a(0) ∈ [0.8, 1). This is consistent with the result [3] that
for a pandemic outburst with a prominent peak at a later time the ratio k has to be smaller
than k < 1− 2η, where η = I(0) is used. For most second waves η � 1 is negligibly small,
so that the determined values of k less than unity are fully consistent. Then with the above
noted vaccination rates the ratio of the vaccination to initial recovery rates b = v(t)/µ(0)
is considerably smaller than the ratio k: we expect values of b ∈ [5× 10−4, 10−2] � k.
Consequently, the difference α = k− b is positive and only slightly smaller than k. We may
refer to α as the effective ratio as compared to the ratio k.

It is the purpose of this manuscript to determine quantitatively the influence of this
small reduction of the ratio k on the time evolution of the pandemic wave. As in earlier
work before our analytical calculations are based on the assumption that the ratios k and
b are constants; but they hold for arbitrary time dependent infection rates a(t), where,
however, the recovery and vaccination rate follow the very same time dependence as a(t).

Compartment models for epidemics with vaccinations have been considered before
[4–7] but they were more concerned with optimizing the control of the epidemics by
vaccination with limited resources. Our main goal of this study is to derive analytical
solutions for the dynamical SIRV to be presented in Eqs. (1)–(5). In order to keep the
analysis as simple and transparent as possible we ignore complicating issues such as age
grouping, vital dynamics and/or spatial spread effects that have been recently investigated
in the literature [8,9] with numerical solutions.

2. General SIRV equations

The SIRV-model is a dynamical system for time-dependent population fractions S(t),
I(t), R(t) and V(t) introduced above. The fractions add up to unity, S(t) + I(t) + R(t) +
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V(t) = 1 at all times (sum constraint). The SIRV differential equations accounting for
vaccinations of the susceptible persons with the vaccination rate v(t) read

Ṡ = −a(t)SI − v(t)S, (1)

İ = a(t)SI − µ(t)I, (2)

Ṙ = µ(t)I, (3)

V̇ = v(t)S, (4)

where the dot denotes a derivative with respect to time t. The SIRV equations are supple-
mented by semi-time initial conditions (defining t = 0)

S(0) = 1− η, I(0) = η, R(0) = V(0) = 0 (5)

with η ∈ (0, 1) denoting the fraction of infected persons at time t = 0. One of the four
dynamical equations can also be replaced by the sum constraint.

These initial conditions are sufficient to capture applications of the SIRV equations
with non-vanishing R(0) and V(0) as this is identical with the present initial condition
upon subtracting the nonvanishing ∆N = N[R(0) + V(0)] from N. The resulting SIRV
quantities are then fractions of the reduced, susceptible or currently infected population,
and the fractions S and I with respect to the total population N are obtained by multiplying
them both with 1− (∆N/N). Similarly, the total number of recovered and vaccinated
persons is (N − ∆N)R plus NR(0), same for V. More formally, if X̃ denotes one of the
SIRV quantities that fulfills initial condition X̃(0), the time-evolution of X̃ is given by the
time-evolution of X via X̃ = χX for X ∈ {S, I} and X̃ = X̃(0) + χX for X ∈ {R, V} with
χ = Ĩ(0) + S̃(0).

The initial conditions (5) are specified by η̃ = Ĩ(0)/χ, and the parameters to be
introduced next have to be adjusted as well, k̃ = χk and b̃ = χb.

The fractions S(t), I(t), and R(t) are usually not measurable with high confidence,
while the daily new number of infected persons, denoted by

J̇ = a(t)SI, (6)

and the fraction of vaccinated persons, V(t), are two quantities that can be more easily
measured, and are usually reported. Using Eqs. (1) and (4) the total cumulative number
fraction J of persons, that have been infected up to the time t, is related to the SIRV
quantities via

J(t) =
∫ t

−∞
J̇(ξ)dξ = 1− S(t)−V(t) (7)

or equivalently, upon making use of the sum constraint, by the sum of currently infected
and currently recovered, J(t) = I(t) + R(t).

Following previous works, and to make sure that the SIRV model has any predic-
tive power, we will allow for arbitrary time-dependent rate a(t) throughout this work,
but assume at the same time that the remaining rates µ(t) and v(t) exhibit the identi-
cal dependency with respect to time. This leaves us with two time-independent model
parameters,

k =
µ(t)
a(t)

, b =
v(t)
a(t)

(8)

As we will demonstrate the two parameters k and b together with the initial fraction of
infected persons η completely determine the temporal evolution of the pandemic wave in
the reduced time τ =

∫ t
0 dξa(ξ).
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2.1. Condition for pandemic outburst

It is instructive to calculate with the first two SIRV equations the initial variation of
the daily number of the newly infected population fraction,

J̈ = ȧSI + a(IṠ + Sİ)

= J̇[ȧ/a + a(S− I)− µ− v]
= J̇{ȧ/a + a[(S− I)− k− b]} (9)

where we have omitted the argument t for all functions, and used Eq. (8). In order for a
pandemic outburst with initially rising rates of new infections J̈(0) > 0 to occur the bracket
on the right-hand side of Eq. (9) has to be positive at the starting time t = 0, so that with
initially constant rate values ȧ(0) = 0 it is required that [(S(0)− I(0)]− k− b > 0. Making
use of the first two initial conditions (5) the outburst condition reads

k + b < 1− 2η (10)

As k and b have positive values the condition (10) implies:

(i) If initially more than 50 percent (η > 0.5) are infectious, no new pandemic outburst
will occur. However, such high values of η are unlikely and unrealistic.

(ii) For small given values of η � 0.5 and the ratio of recovered to infection rate k, new
emerging outbreaks can be fully prevented for values of the ratio of vaccination to
infection rate b > 1− k− 2η ' 1− k. The more pathogenic a virus mutation is, the
smaller and closer to zero is the value of the ratio k so that the lower limit for b has to
be close to unity to prevent a new outburst.

(iii) For any finite value of η for modeling epidemic outbreaks the relevant range of the
two parameters k and b is 0 ≤ b + k < 1.

(iv) As an aside we note that Eq. (10) demonstrates that in the SIR-model with b = 0 no
pandemic wave can occur if the parameter k = 1 equals unity. The SIR-model correctly
indicates that epidemic waves end in the case k = 1. Therefore the recent criticism [10]
on the SIR-model is inappropriate and misguided.

2.2. Reduced time

We consider the case where the ratios of the recovery to infection rate, µ(t)/a(t) = k,
and the vaccination to infection rate, v(t)/a(t) = b, are semipositive constants independent
of time. This assumption still allows us to account for any given time-dependence of the
infection rate with the caveat that the recovery and vaccination rate have exactly the
same time dependence as the infection rate apart from their different initial values. The
introduction of the reduced time scale

τ =
∫ t

0
dξ a(ξ) (11)

reduces the SIRV equations (1) - (4) to

dS
dτ

= −SI − bS, (12)

dI
dτ

= SI − kI, (13)

dR
dτ

= kI, (14)

dV
dτ

= bS, (15)

Eqs. (12) and (13) readily yield
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I = −[b + d ln S
dτ

], (16)

S = k +
d ln I

dτ
, (17)

providing for Eqs. (14) and (15)

d
dτ

[R + k ln S + bkτ] = 0, (18)

d
dτ

[V − b ln I − bkτ] = 0. (19)

Both equations integrate immediately to

R(τ) = −k ln S(τ) + k ln(1− η)− bkτ, (20)

V(τ) = b ln I(τ)− b ln η + bkτ, (21)

where the integration constants have been determined with the initial conditions (5) holding
now at τ = 0. In terms of the reduced time τ the differential new number of infected
persons j(τ) = dJ(τ)/dτ = J̇(t)/a(t) is

j(τ) =
dJ(τ)

dτ
= S(τ)I(τ) (22)

while the corresponding cumulative fraction is

J(τ) =
∫ τ

−∞
j(τ′)dτ′ = 1− S(τ)−V(τ) = I(τ) + R(τ) (23)

At τ = 0, the cumulative J(0) = I(0) + R(0) = η. In reduced time Eq. (9) corresponds to

1
j

dj
dτ

=
d ln j
dτ

= S(τ)− I(τ)− k− b (24)

We have so far expressed R, V, J, and j in terms of S and I. An additional relationship
between S and I is provided by the sum constraint, as shown next, and this will allow us
to come up with a closed equation for a single variable, to be developed in the next section.

Inserting Eqs. (16)–(17), (20) and (21) provides for the sum constraint

d ln I
dτ
− d ln S

dτ
+ b ln I − k ln S = 1 + b− k + b ln η − k ln(1− η) (25)

= 1 + (b− k)[1 + ln η(1− η)] + k ln η − b ln(1− η)

In the present manuscript we will derive analytical solutions of Eq. (25) for general non-zero
and different values of b 6= k. We will obtain an implicit analytic solution that expresses
the reduced τ in terms of a parameter ψ, while all SIRV-functions including j are expressed
in this parameter. We further present a highly accurate analytical approximation for all
SIRV-functions as a function of τ. Our new analytical solutions reduce in the appropriate
limit to the earlier [2,3,11] solutions for the non-vaccination case b = 0. We also consider as
special cases the non-recovery case k = 0 and the special case of equal values of k = b.

3. Dynamics of the epidemics
3.1. Summary of results

Because the following derivation of the solution of the SIRV equations (11)-(15) in
reduced time with parameters k and b, and subject to initial conditions I(0) = 1− S(0) = η
and R(0) = V(0) is rather lengthy, we begin by stating the final result. We are able to
derive an implicit exact solution τ = τ(ψ) parameterized by ψ, while all SIRV quantities
can be expressed in ψ as well. Provided the reduced vaccination rate b exceeds a critical bc,
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for which we provide the explicit expression (91), we show that the explicit solution of the
SIRV equation can be written as follows. With the help of ψ(τ) = ln[S(τ)/I(τ)],

ψ(τ) = ln
1− η

η
+ (k− b)τ − 1− e−bτ

b
(26)

we obtain

S(τ) =
e−bτ

1 + e−ψ(τ)
, I(τ) =

e−bτ

1 + eψ(τ)
(27)

R(τ) = J(τ)− I(τ), V(τ) = 1− S(τ)− J(τ) (28)

where the differential j and cumulative fractions J of infected persons are given by

j(τ) = S(τ)I(τ), (29)

J(τ) = η +
∫ τ

0
j(τ′)dτ′. (30)

If b is smaller than the critical bc, provided by Eq. (91), the SIRV model approaches the SIR
model that has been treated before, and the SIRV quantities are well captured by a simple
linear superposition of the SIR result with the above SIRV solution evaluated at b = bc.
Next we derive these expressions and provide additional features of the solution such as
the final values at t→ ∞, treat special cases such as k = b, and discuss the features of the
SIRV equations that gave rise to Eq. (26). The solution holds for any semipositive values of
k and b.

3.2. Two useful functions

We start the mathematical analysis by introducing the function

ψ(τ) = ln
S(τ)
I(τ)

, (31)

implying
I(τ) = S(τ)e−ψ(τ) (32)

with the usually positive (for initial fractions η < 0.5 of infected persons) initial value

ψ0 ≡ ψ(τ = 0) = ln
1− η

η
(33)

The first derivative of the ψ (31) is given by

dψ

dτ
=

I dS
dτ − S dI

dτ

IS
= α− (I + S), (34)

where we used Eqs. (12) and (13) and where the following abbreviation is introduced

α = k− b (35)

Consequently, the function

Φ(τ) = α− dψ

dτ
= I(τ) + S(τ), (36)

is always positive and has values Φ ∈ [0, 1] as I and S are positively valued fractions at all
times.

Equation (21) is identical to I(τ) = η exp[−kτ − (V(τ)/b)], and since k > 0 and with
V residing in the finite interval [0, 1] we find that after infinite time I∞ = I(τ = ∞) = 0.
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Similarly, Eq. (20) is identical with S(τ) = (1− η) exp[−bτ − R(τ)/k], so that with b > 0
and R residing in the finite interval [0, 1], one has S∞ = S(τ = ∞) = 0. Consequently,
Φ∞ = 0 ultimately vanishes as well. In this limit Eq. (36) says that dψ/dτ is reaching the
constant α, and thus ψ∞ = ψ(τ = ∞) = sign(α)∞ is infinitely large, while its sign is given
by the sign of α, as long as α 6= 0. For α = 0 the ψ∞ reaches a constant value.

The initial slope of dψ/dτ evaluates to

dψ

dτ

∣∣∣∣
τ=0

= −(1− α) (37)

and is thus negative for all α = k− b < 1 and positive for α > 1. This implies, that the
function ψ decreases initially, undergoes a minimum ψm at Φm = α before increasing to its
final value ψ∞ = ∞, when α ∈ (0, 1). For negative α, ψ monotonously decreases, while for
α > 1 the ψ monotonously increases.

For all non-zero values of k and b the function Φ = I + S, however, decreases at all
times from its initial maximum value Φ(0) = 1 as its derivative is always seminegative, i.e.

dΦ
dτ

=
dI
dτ

+
dS
dτ

= −(bS + kI), (38)

where we again used Eqs. (12) and (13).

3.3. Mathematical analysis

With Eq. (32) the two Eqs. (36) and (38) yield

Φ = S(1 + e−ψ),
dΦ
dτ

= −S(b + ke−ψ) (39)

The combination of these two Eqs. (39) then provides

dΦ
dτ

= −Φ
[

b + ke−ψ

1 + e−ψ

]
(40)

or equivalently,
d ln Φ

dτ
+ A(ψ) = 0 (41)

with the function

A(ψ) =
b

1 + e−ψ +
k

1 + eψ =
dB(ψ)

dψ
, (42)

which we prefer to write as the derivative of B given by

B(ψ) = b ln(1 + eψ)− k ln(1 + e−ψ) = kψ− α ln(1 + eψ) (43)

With the function (43) we obtain for Eq. (41) multiplied with (dψ/dτ) = α−Φ from
Eq. (36)

(Φ− α)
d ln Φ

dτ
− dψ

dτ

dB
dψ

= Φ
d ln Φ

dτ
− α

d ln Φ
dτ

− dB
dτ

=
dΦ
dτ
− α

d ln Φ
dτ

− dB
dτ

=
d

dτ
[Φ− α ln Φ− B] = 0 (44)

with the first integral
c0 = Φ− α ln Φ− B(ψ) = 1− B(0), (45)

where the integration constant c0 = 1− B(0) is fixed by the initial conditions Φ(0) = 1.
Equation (45) then becomes
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Φ− α ln Φ = 1 + k(ψ− ψ0)− α ln[η(1 + eψ)], (46)

which is the first important result of this study. Together with Eq. (36) we can identify
firstly, the relation to earlier obtained solutions for special values of b and k, and secondly
derive the general solution for the epidemic time evolution for general values of b and k.
When the time dependence of Φ(τ) and ψ(τ) according to Eqs. (46) with (36) has been
inferred, then acccording to Eqs. (32) and (39) we obtain

S(τ) =
Φ(τ)

1 + e−ψ =
α− dψ

dτ

1 + e−ψ , (47)

I(τ) =
Φ(τ)

1 + eψ =
α− dψ

dτ

1 + eψ (48)

while the remaining R(τ) and V(τ) were already expressed in terms of S(τ) and I(τ) in
Eqs. (20) - (21), so that

R(τ) = −bkτ − k ln Φ(τ) + k ln[(1− η)(1 + e−ψ)], (49)

V(τ) = bkτ + b ln Φ(τ)− b ln[η(1 + eψ)] (50)

3.4. Inverse solution for the general case

In the general case b 6= k the transcendental Eq. (46) is solved in terms of the real-
valued Lambert functions [11]. We discuss below which of the two existing real-valued
Lambert functions W0 (principal) and W−1 (non-principal), respectively, applies in different
parameter ranges. For the moment the notation W without an index represents both
alternatives.

As Φ ≤ 1 we set Φ = e−x with non-negative values of x to find for Eq. (46) the
so-called Lambert equation

e−x = −α(x− r), (51)

with

r =
1 + k(ψ− ψ0)

α
− ln[η(1 + eψ)] (52)

The transcendental Eq. (51) has the solution [11]

x = r + W(− e−r

α
), (53)

so that

Φ = e−r−W(− e−r
α ) = −αW

(
− e−r

α

)
, (54)

where we used the identity e−aW(z) = [W(z)/z]a with a = 1 here. Using r from Eq. (52) we
finally find the exact relationship between Φ and ψ as

Φ = −αW
(
−E(ψ)

α

)
, (55)

with the positive expression

E(ψ) = η(1 + eψ)e−
[1+k(ψ−ψ0)]

α ≥ 0, (56)

We emphasize that E is nonnegative irrespective of the sign of α. At time τ = 0, E evaluates
to E(ψ0) = e−1/α. We had already proven that ψ asymptotically reaches sign(α)∞. This
implies E∞ = limτ→∞ η[eψ(1−k)/α)]. Because α < k and k > 0 in general, the (1− k)/α has
the sign of −α, and E∞ = 0 for any α 6= 0. Further, because the derivative of E(ψ) with
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respect to ψ vanishes only at ψ = ln(−k/b), and thus nowhere for positive k and b, the
E(ψ) has no extremum with respect to ψ. For the same reason E has a local maximum with
respect to time τ, when ψ exhibits a corresponding minimum in time, which is the case
for α ∈ (0, 1). For all other α the E monotonically decreases with time from its initial value
E(ψ0).

Inserting the solution (55) provides for Eq. (36), dψ/dτ = α − Φ, the nonlinear
differential equation

dψ

dτ
= α

[
1 + W

(
−E(ψ)

α

)]
, (57)

with the function E from (56). Making use of the initial condition (33) this readily integrates
to

τ =
1
α

∫ ψ

ψ0

dx

1 + W
(
− E(x)

α

) (58)

We thus arrived at an exact analytical solution of the SIRV equations. We call this an inverse
solution, as we have expressed τ in terms of ψ and not vice versa. This is a remarkably
compact result, especially, as we know already that ψ(τ), for the relevant case of α ∈ [0, 1],
is not a monotonous function, while we should come up with a unique ψ for each τ.

The solution to this at first sight apparent contradiction is provided by the two real-
valued Lambert functions W0(x) and W−1(x), that have different values over a range of
negative x ∈ [−e−1, 0] values. For positive arguments x, only W0(x) is real-valued. The
range of application of the two Lambert functions will be discussed in Appendix A. Here
we state the main outcome of these considerations.

As long as ψ exhibits a minimum, which is the case for all α ∈ (0, 1), Eq. (58) must be
interpreted as

τ =


1
α

∫ ψ
ψ0

dx
1+W−1

(
− E(x)

α

) , ψ ≤ ψm,

τm + 1
α

∫ ψ
ψm

dx
1+W0

(
− E(x)

α

) , ψ ≥ ψm

(59)

or alternatively, in a more symmetric fashion, as

τ = τm +


1
α

∫ ψ
ψm

dx
1+W−1(z(x)) , ψ ≤ ψm

1
α

∫ ψ
ψm

dx
1+W0(z(x)) , ψ ≥ ψm

(60)

where the crossover is located at Φ = α, i.e., where ψ = ψm has reached its minimum, and
the time where this minimum occurs, is given by

τm =
1
α

∫ ψm

ψ0

dx

1 + W−1

(
− E(x)

α

) (61)

In the absence of a minimum of ψ, i.e., for α /∈ (0, 1), there is no crossover, the ψ is
monotonous, and one can use Eq. (58) throughout. For α < 0 the argument of the Lambert
function is positive, so that one has to use Eq. (58) with W = W0.

For α > 1, the minimum of ψ coincides with ψ0, hence τm = 0, so that only the
2nd term in the 2nd case of Eq. (60) survives, again involving the principal W0 only. The
non-principal Lambert function W−1 thus only plays a role in the case α = k− b ∈ (0, 1).

3.5. Determination of the minimum value ψm for α ∈ (0, 1)

To evaluate τ given by Eq. (60) for the case of α ∈ (0, 1) we need to specify ψm. We
have noted before (see Eq. (36)) that the function ψ attains its minimum value ψm at
Φm = α, and that a minimum exists for all α ∈ (0, 1). According to the solution (55) we
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find the minimum value ψm from Φm = α = −αW(−Em/α), where Em = E(ψm), yielding
W(−Em/α) = −1. Both, the principal and non-principal, Lambert functions have the same
value −1 at the argument (−e−1) so that Em = α/e. This yields with Eq. (54) the equation
that determines ψm,

e
k
α (ψm−ψ0)

1 + eψm
=

η

α
e1−(1/α) (62)

Because ψm is the value at the minimum, ψm ≤ ψ0 automatically holds. This nonlinear
equation for ψm cannot be solved analytically in general. For some special cases such as
b = k/2 one can still write down an analytical solution. An approximant for ψm will be
derived below.

4. Approximated reduction of the exact solution
4.1. Approximate inverse solution τ(ψ)

Here we derive an approximant for the exact inverse solution τ(ψ), that can be later
inverted exactly to obtain ψ(τ) in the next subsection. Upon introducing z = −E(x)/α
with E(x) given by Eq. (56) the previous inverse solutions (58) and (60) for τ, and also τm
defined by Eq. (61), are of the form

τ =
1
α

∫ ψ2

ψ1

dx

1 + Wµ(− E(x)
α )

=
1
α

∫ z(ψ2)

z(ψ1)

dz
(dz/dx)[1 + Wµ(z)]

(63)

where ψ1, ψ2 and µ = 0, or µ = −1 are treated as arbitrary coefficients for the time being,
as Wµ stands for any of the two Lambert functions, so that τ is of the form (63) for any
α /∈ {0, 1}. Evaluating the required derivative of z with respect to x gives

dz
dx

=

(
1

1 + e−x −
k
α

)
z (64)

The 1st term can be approximated by unity when x � 1 and thus e−x � 1, and k/α not too
close to unity, i.e., b not too small. The precise range of validity of this approximation will
be worked out in Appendix B and section 4.4, where we specify a critical bc below which
the current approximation need not be used. For α > 1 and α < 0 one has e−x < e−ψ0 so
that this approximation is applicable for any η � 1 when α /∈ [0, 1]. For α ∈ (0, 1) one
has e−x < e−τm so that the approximation is excellent as long as τm � 1. Under such
circumstances, i.e., for b > bc, Eq. (64) is well approximated as

dz
dx
'
(

1− k
α

)
z = − b

α
z (65)

with α = k− b. Hence Eq. (63) is well approximated by

τ ' 1
b

∫ z(ψ1)

z(ψ2)

dz
z[1 + Wµ(z)]

(66)

Then with the substitution z = wew, corresponding to w = Wµ(z), and dz/dw = (1 + w)ew

we can calculate the integral (66) in closed form as

τ =
1
b

∫ Wµ(z(ψ1))

Wµ(z(ψ2))

dw(1 + w)ew

wew(1 + w)
=

1
b

∫ Wµ(z(ψ1))

Wµ(z(ψ2))

dw
w

=
1
b

ln
[−Wµ(z(ψ1))

−Wµ(z(ψ2))

]
(67)

The minus sign is kept in nominator and denominator as the Wµ is typically negative.
For α ∈ (0, 1) the ψ initially decays with time, until it reaches its minimum ψm. At the
minimum Wµ(z(ψm)) = −1. Because Wµ(z) = 0 only for z = 0, and because E(x) is
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positive for all η > 0, Eq. (67) has removed the problem with the pole that occurs at z = e−1

in the starting Eq. (63).
Having arrived at Eq. (67) we can now identify placeholders ψ1, ψ2 and µ in the three

equations (58) with µ = 0, (60), and (61) to write down τ for the various cases, as well as
τm. We begin with the case of α ∈ (0, 1) and ψ ≤ ψm. Upon comparing the first line in Eq.
(60) with Eq. (63), we need to use ψ1 = ψm and ψ2 = ψ and µ = −1 for the regime ψ ≤ ψm.
Because α is positive, and z thus negative, using Eq. (67), this becomes immediately

τ = τm +
1
b

ln
[
−W−1(z(ψm))

−W−1(z(ψ))

]
, (α ∈ (0, 1), ψ ≤ ψm) (68)

Because z(ψm) = −1/e, Wµ(−1/e) = −1, the term ln[−Wµ(−1/e)] = ln(1) = 0 vanishes
for both µ. The nominator in Eq. (68) can thus be replaced by unity. Exactly the same
procedure, applied to the remaining cases yields our final expression for the approximate
inverse solution when α ∈ (0, 1),

τ =


τm − 1

b ln[−W−1(−E(ψ)/α)], 0 ≤ τ ≤ τm,

τm − 1
b ln[−W0(−E(ψ)/α)], τ ≥ τm

(69)

with E(ψ) given by Eq. (56). Similarly, the time τm can be read off from Eq. (67) by choosing
ψ1 = ψ0, ψ2 = ψm, and µ = −1. Hence

τm =
1
b

ln

[
−W−1

(
− e−1/α

α

)]
= − ln(α)

b
(70)

where we have used E(ψ0) = e−1/α and E(ψm)/α = 1/e and the identity−αW−1(z(ψ0)) =
1 (proof in Appendix C) to simplify the expression. Such time τm only exists for α ∈ (0, 1).

There is the remaining case of α /∈ [0, 1]. Equation (58) implies using ψ1 = ψ0, ψ2 = ψ,
and the principal Lambert function (µ = 0), as discussed already. Because z(ψ) and thus
W0(z(ψ)) have different signs for α < 0 and α > 1, we multiply both the nominator and
denominator in Eq. (67) by α to get rid of two different signs for positive and negative α.
At the same time, because of the identity −αW0(z(ψ0)) = 1 (proof in Appendix C) that
holds for all α /∈ (0, 1), the logarithm of this quantity vanishes, and we arrive at the final
expression for the approximate inverse solution valid for all τ ≥ 0 and all α /∈ [0, 1],

τ = −1
b

ln[−αW0(−E(ψ)/α)] (71)

Notice that the argument of the logarithm is positive for both α < 0 and α > 1.
It is important to realize that the value for ψm has completely disappeared within the

approximate case. Still, we can use a very similar approximation done here to obtain an
explicit expression for ψm, that might be helpful for the evaluation of the exact inverse
solution and the exact ψm as long as α ∈ (0, 1). If b is not too small, we can approximate
the 1 + eψm in the Eq. (62) determining ψm by eψm and solve for ψm analytically. This yields
(Fig. 2)

ψm ' ψ0 −
1− α + α ln α− α ln(1− η)

b
(72)

Note that this value has the feature W−1[−E(ψm)/α] = −1 for η = 0. In practise, for η � 1,
the ln(1− η) term can be safely neglected and we shall use

ψm ' ψ0 −
1− α + α ln α

b
(73)

while it possible to add this ln(1− η) correction throughout the rest of this document.
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Figure 2. Exact ψm versus k and b in the lower right triangle, and approximate ψm using Eq. (73)
above the diagonal (mirrored, to allow for a simple comparison with the exact ψm). All analytic
results for the SIRV functions in terms of reduced time τ are basically exact for those k and b for
which ψm is well described by its approximant. The white space in the lower left corner is the regime
of b < bc, where the SIRV model results are captured by linearly interpolating between the SIR model
and the SIRV model evaluated at the critical b = bc.

4.2. Approximate direct solution ψ(τ)

Next we invert the approximate inverse solution to come up with an approximate
direct solution of the SIRV equations. With Eqs. (69)–(71) we have provided approximate
expressions for τm, and τ as function of ψ, for any negative or positive α. Fortunately,
we can proceed and invert the relationships without any further assumption to come up
with the corresponding, much more convenient, explicit solution ψ(τ). Because we have
expressed all SIRV functions in terms of ψ, we then have access to all these quantities in
terms of reduced time τ.

We begin with an illustrative example. In Eq. (70) we have provided τm in terms of b
and α. We can invert the relationship to obtain α from τm and b as follows

e−1/α

α
= exp

(
bτm − ebτm

)
(74)

To prove the equivalence between Eq. (74) and Eq. (70), one has to just insert Eq. (74)
into Eq. (70) and to use the fact that the Lambert function W(x) is the inverse function
of x(W) = WeW . More specifically, consider y(ζ) = ln[−W(ζ)]. Its inverse is given by
ζ(y) = − exp[y− ey] because ζ(y) = − exp[ln(−W(ζ))− eln(−W(ζ))] = W(ζ)eW(ζ) = ζ. To
derive Eq. (74) we had thus identified ζ = −e−1/α/α and y(ζ) = bτm. The same procedure
can be applied to all expressions from the previous section using different choices for y and
ζ.

One more required ingredient is however an expression for ψ in terms of E. It can be
readily deduced using the existing assumption that lead to Eq. (73). To derive this Eq. (73)
we assumed that 1 + eψm ≈ eψm . Since the minimum ψm ≤ ψ at all times, the assumption
1 + eψ ≈ eψ is even more appropriate within all remaining times. With this replacement Eq.
(56) becomes

E(ψ) ' η exp
[

kψ0 − 1− bψ

α

]
(75)

and this can be solved for ψ to arrive at

ψ(τ) ' ψ0 −
1− α ln(1− η) + α ln[E(τ)]

b

= ψm −
α

b
ln

eE(τ)
α

(76)

with E(τ) = E(ψ(τ)) and where we used Eq. (72). We here introduced the symbol E
instead of E only to highlight the different argument and to avoid potential confusion.
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Figure 3. Comparison of the approximant Eq. (79) for ψ(τ)/ψ0 with the exact solution (black lines)
Eqs. (58) and (60) for three different α’s at η = 10−6 a relatively low b = 0.02. For the approximant
(green), the ψm and τm are given by Eqs. (73) and (70), respectively. For larger b the performance of
the approximant is even better.

Note that this generalization of Eq. (73) is compatible with the special case ψm = ψ(τm)
because E(τm) = E(ψm) = α/e. As before it is even more convenient to drop a term of O(η)
so that ψ(0) coincides with the exact value. Since E(0) = E(ψ0) = e−1/α, the correction
results in the simpler

ψ(τ) = ψ0 −
1 + α ln[E(τ)]

b
(77)

Having expressed ψ in terms of τ and ln[E(τ)], we are left to write down expressions
for ln[E(τ)]. With such expressions at hand, Eq. (77) is our explicit solution of the SIRV
equations. The ln[E(τ)] depends on the α range.

For α ∈ (0, 1), in view of Eq. (69), we need to use y(ζ) = b(τm − τ) and ζ = z(ψ) =
−E(ψ)/α to obtain the explicit ζ(y) = − exp[y− ey], or equivalently, ln[−ζ(y)] = y− ey.
Replacing y and ζ, we thus find for α ∈ (0, 1)

ln[E(τ)] = ln(α)− b(τ − τm)− e−b(τ−τm) (78)

Note that there is no need to consider two regimes before and after the peak anymore!
While the two Lambert functions W0 and W1 are very different, they share a common
inverse, and Eq. (78) is valid over the whole τ ≥ 0 range.

To summarize, upon inserting Eq. (78) into Eq. (77), we end up with a final expression
for ψ(τ) for all α ∈ (0, 1),

ψ(τ) = ψm + α(τ − τm)−
α

b

[
1− e−b(τ−τm)

]
= ψ0 + ατ − 1− e−bτ

b
(79)

where we have used τm and ψm from Eqs. (70) and (73) to arrive at the 2nd line. In Fig. 3
we compare the approximant Eq. (79) with the exact solution for two different α’s. For the
remaining cases of α /∈ [0, 1] we have to invert Eq. (71). Repeating the above procedure,
one has ln[E(τ)] = −bτ − α−1 exp(−bτ) for α /∈ [0, 1]. Upon inserting this term into Eq.
(77), one arrives at the explicit approximate solution of the SIRV equations for α /∈ (0, 1)

ψ(τ) = ψ0 + ατ − 1− e−bτ

b
(80)

Not only is this result exactly of the form we obtained for α ∈ (0, 1), it is moreover valid also
for the special values of α = 0 and α = 1, as all – at first glance problematic – divergencies
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have dropped out. From Eq. (80) we can see that ψ∞ = limτ→∞ ψ(τ) = sign(α)∞ except
for α = 0 or b = k, where ψ∞ = ψ0 − 1/k approaches a finite value. The full expression
valid for all α is thus

ψ∞ =

(
ψ0 −

1
k

)
δα,0 + (1− δα,0)sign(α)∞ (81)

in full accord with the exact SIRV solution.

4.3. Time-dependency of all remaining SIRV quantities

With ψ(τ) given by Eq. (80) and the corresponding

Φ(τ) = α− dψ

dτ
= e−bτ (82)

for all values of α at hand it is now straightforward to write down all remaining SIRV
quantities, as we have expressed them in terms of ψ above. It is perhaps interesting to note
that the approximant shares the most relevant features with the exact solution: ψ(τm) = ψm,
ψ(0) = ψ0, Φ(0) = 1, and ψ′(0) = α− 1 (as required by Eq. (37)) for all α. In the limit of
infinitely long times, Φ∞ = 0, according to Eq. (82) unless b = 0.

All remaining SIRV quantities are obtained using ψ(τ) and Φ(τ) from Eqs. (80) and
(82) via

S(τ) =
Φ(τ)

1 + e−ψ(τ)
(83)

I(τ) =
Φ(τ)

1 + eψ(τ)
(84)

j(τ) = S(τ)I(τ), (85)

J(τ) = η +
∫ τ

0
j(τ′)dτ′, (86)

R(τ) = J(τ)− I(τ), (87)

V(τ) = 1− S(τ)− J(τ) (88)

For α = 0, where we can use ψ(τ) from Eq. (80) with b = k, these expressions solve the
SIRV equations (12)–(14) exactly, as can be verified by direct insertion into Eqs. (12)–(15).
An alternative proof is provided in Appendix G.1. Otherwise they solve the SIRV equations
to within O(η). The version J(τ) given by Eq. (86) ensures that j = dJ/dτ holds exactly.

It is a rather tedious exercise to insert the ψ and Φ into Eqs. (84)–(88). In evaluating the
limiting values for τ → ∞ one has to carefully consider the qualitatively different regimes
α < 0, α = 0, α ∈ (0, 1) and α ≥ 1, as well as k = 0 when α = 0. This can be done but
we refrain from writing down all equations for the approximate explicit solution of the
SIRV equations. Instead, we provide in Appendix G exact solutions for special cases, and
compare the approximate explicit solution with the exact numerical solution for several
cases. To provide an example, inserting ψ (80) and Φ (82) into the expressions for S (83)
and I (84) yields

S(τ) =
e−bτ

2

{
1 + tanh

[
αbτ + bψ0 + e−bτ − 1

2b

]}
, (89)

I(τ) =
e−bτ

2

{
1− tanh

[
αbτ + bψ0 + e−bτ − 1

2b

]}
(90)

Next, we focus on the most relevant. measurable features of the SIRV model, that derive
from the analytic approximant.
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Figure 4. The critical bc versus k and η. The coloring scheme uses the decadic logarithm of bc, and
the vertical axis is also logarithmic. Shown is only a relevant range of k values.

4.4. Critical reduced vaccination rate b

As we will demonstrate below, the approximants (80) and (82) capture the exact
solution very well (or also exactly for some special cases like α = 0) except for the regime
where b stays below a critical bc. The limiting case of b = 0 is known as SIR model and
had been treated elsewhere so that the failure of our approximant does not seem to pose a
problem. It is however possible to quantify the range of validity of Eqs. (80) and (82). This
is done in Appendix B and leads to a critical value bc in terms of η and k

bc =
(

32πkη2
)3/5

exp
{

W0

[
6(1− k + k ln k)

5(32πkη2)3/5

]}
(91)

for the reduced vaccination rate, beyond which the approximant is very accurate. See Fig.
4 for a plot of bc versus k and η. The critical bc decreases with increasing k and decreasing
η, while it is quite sensitive to k for values close to unity. At k = 1, Eq. (91) evaluates to
(32πη2)3/5 ≈ 15.9× η6/5 and bc is thus roughly proportional to η in that case.

For the remaining range of b values below bc we can make use of the known solution
of the SIR model, that corresponds to the SIRV model with b = 0. To be specific, the
characteristics of time-evolution such as peak time and height of the differential rate, or
the final fraction of infected population are well captured by a simple linear interpolation
between SIRV values at b = bc and the SIR values. This will be worked out next to conclude
with approximants that are valid for any b.

4.5. Peak times and peak amplitudes

While S(τ) decreases monotonically with time, both I(τ) and j(τ) = S(τ)I(τ) exhibit
a maximum, whose position and amplitude we can calculate from Eqs. (89) and (90). While
the general case of arbitrary η is treated in Appendices E amd F, we here limit the analysis
to the relevant case of a small initially (and simultaneously) infected fraction η � 1 of the
population. In this limit we obtain to leading order for all α

I(τ) ' ηe
1−e−bτ

b −kτ +O(η2), (92)

S(τ) ' e−bτ +O(η), (93)

implying for the differential fraction of newly infected persons

j(τ) ' ηe
1−e−bτ

b −(k+b)τ + O(η2) (94)
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Figure 5. Reduced peak time τ
j
max of the newly infected population fraction j(τ) versus b for various

k at η = 10−6 (double-logarithmic). The exact numerical solution (solid black) is compared with
the approximant (97) within the regime of b > bc (thin colored), and by the corresponding linear
interpolant (thick colored) for the remaining regime of very small b < bc. The limiting value
τ

j
max(b→ 0) exactly coincides with the τSIR

max(k) of the SIR model (Appendix G.2).

The peak time of the maximum in I(τ) is thus

τ I
max = − ln(k)

b
+ O(η), (95)

so that a peak in I thus exists only if k < 1. For the fraction of currently infected persons at
peak time we have

Imax = I(τ I
max) ' ηe1/b

(
k
e

)k/b
+ O(η2) (96)

Likewise, the peak time of the maximum in j(τ) is at (thin colored lines in Fig. 5)

τ
j
max = − ln(k + b)

b
+ O(η), (97)

where j achieves the value

jmax(k, b) = ηe1/b
(

k + b
e

)(k+b)/b
(98)

or equivalently, as the following expression is much more conveniently evaluated at small
b (thin colored lines in Fig. 6)

ln jmax(k, b) = ln(η)− 1 +
1− k

b
+

k + b
b

ln(k + b) (99)

A peak in j thus occurs only for k + b < 1, in agreement with our earlier consideration
(see Eq. (10)), as we assume small η � 1 here. While the peak time τ

j
max increases with

increasing b in the regime of b < bc, it decays with b for b > bc.
The maximum rate (98) is not applicable for b < bc below a critical, very small bc,

given by Eq. (91). For small b < bc we can make use of the known [3] exact result jSIR
max of

the SIR model, reproduced in Eq. (A62), and linearly interpolate as (thick colored lines in
Fig. 6)

jmax(k, b) =
b
bc

jmax(k, bc) +
bc − b

bc
jSIR
max(k) (100)
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Figure 6. Peak value of the newly infected population fraction jmax versus reduced vaccination
rate b for various k at η = 10−6 (double-logarithmic). The exact numerical solution (solid black) is
compared with the approximant (98) within the regime of b > bc (thin colored), and by the interpolant
(100) (thick colored) for the remaining regime of very small b < bc. The limiting value jmax(b→ 0)
exactly coincides with the jSIR

max(k) of the SIR model (Appendix G.2).

where jmax(k, bc) and jSIR
max(k) are given by Eqs. (98) (evaluated at b = bc) and (A62),

respectively. The analytical expressions for time and amplitude of the daily number
of infected persons are two of the more important results of this study. They can be
immediately used to rate the effect of vaccination rate for all b, using Eq. (98) for b ≥ bc
and Eq. (100) for b < bc, where the critical rate bc is given by Eq. (91).

One should keep in mind that the maximum of the j(τ) is not located at τ = τm,
which marks the time of the minimum in ψ(τ). And there is also a remaining apparent
contradiction. While the initial slope of j(τ) is positive for k + b < 1− 2η and j(τ) thus
going through a peak at a future time in that case, and taking identical values at different
times, the ψ(τ) exhibits a minimum for all α ∈ (0, 1). Under such latter conditions, there
are at least two times that exhibit the same ψ value. The apparent contradiction finds
its explanation in the fact that j(τ) cannot be expressed in terms of ψ(τ) alone, but also
involves the derivative of ψ with respect to τ, which is contained in Φ. In other words,
both Lambert functions are sometimes (when k− b ∈ (0, 1) and k + b > 1− 2η) required
to describe a j(τ) that is monotonically decreasing, and a single Lambert function is
sometimes (when k− b /∈ [0, 1] and k + b < 1− 2η) sufficient to describe a j(τ) that exhibits
a maximum. Another way to understand this feature is the fact, that the expressions for
the SIRV quantities have the same form irrespective the value for α, i.e., irrespective the
occurrence of a minimum in ψ(τ).

4.6. Total fraction of infected persons

The differential j(τ) given by Eq. (94) can be integrated to obtain the cumulative
fraction J(τ) as shown in Appendix D. For J∞ we thus obtain (thin colored lines in Fig. 7)

J∞(k, b) = ηkb
b
k−1e

1
b γ

(
k
b

,
1
b

)
(101)

in terms of the lower incomplete gamma function γ [12]. For the special case of α = 0
(k = b), the Eq. (101) agrees with the exact result (A53) up to order O(η2). As for jmax, we
have to distinguish two regimes: (i) the regime of b > bc, where this expression (101) is
useful, (ii) the regime of small b < bc, for which we need, on one hand, the known exact
result of the SIR model, JSIR

∞ , and on the other, the value for J∞ given by Eq. (101), evaluated
at b = bc. Since bc is so very small, the direct insertion into (101) is numerically impossible.
We therefore derive in Eq. (A15) of Appendix D a limiting expression valid for small values

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 March 2021                   doi:10.20944/preprints202103.0718.v1

https://doi.org/10.20944/preprints202103.0718.v1


18 of 38

10
-6

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

Figure 7. Final fraction of infected persons J∞ versus reduced vaccination rate b for various k at
η = 10−6 (double-logarithmic). The exact numerical solution (solid black) is compared with the
approximant (101) within the regime of b > bc (thin colored), and by the interpolant (102) (thick
colored) for the remaining regime of very small b < bc. The limiting value J∞(b → 0) exactly
coincides with the JSIR

∞ (k) of the SIR model (Appendix G.2).

of b such as b = bc, that enters the following Eq. (102). Using exactly the same interpolation
approach as before for jmax, the J∞ within the regime of small b < bc is approximated with
the help of Eq. (101) by (thick colored lines in Fig. 7)

J∞(k, b) =
bη

bc

√
2πk
bc

e
1−k+k ln k

bc +
bc − b

bc
JSIR
∞ (k) (102)

where JSIR
∞ (k) is the known analytical expression for the SIR model, reproduced in Eq.

(A61), and bc is given by Eq. (91).

4.7. Differential rate

We next provide an analytical approximant for the time-dependent differential rate
j(τ), valid for any b, and small η � 1. For b exceeding the critical bc, we can just use the
expression (94). The comparison with the analytic result is excellent (Fig. 8a–c). For b < bc,
on the other hand, we have shown already that the peak time and peak amplitude are
well approximated analytically by a linear superposition between the SIRV approximant
evaluated at the critical bc, and the analytical SIR expression. The analytical expression for
the full time-dependency of j(τ) in this subcritical regime of b < bc is therefore not just a
linear superposition of the j(τ) for SIRV and SIR model, because such superposition would
not recover the already determined peak time and height. Instead, as we demonstrate with
Fig. 8(d–f), and inspired by the earlier observation that the Gauss model [13,14] captures
the differential rate very well, the j(τ) is well described for b < bc by the Gaussian

j(τ) = jmax exp

[
− (τ − τ

j
max)

2

w2

]
(103)

with a width w that is determined by [13]

w =
J∞√

π jmax
(104)

where jmax and J∞ are given by Eqs. (100) and (102), respectively.
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Figure 8. Differential rate j(τ) of infected population fraction versus reduced time τ for three different
k ∈ {0.85, 0.90, 0.95} and various reduced vaccination rates b/bc. For this plot η = 10−6. The panels
(a)–(c) show the regime b > bc, while (d)–(f) show results for b < bc including b = 0 (SIR model). To
rate the effect of the parameters, all three plots of each row are shown on identical scales. While the
peak time increases with increasing k and decreasing b, the peak height dramatically decreases with
increasing b. The critical bc depends on k and η, c.f., Eq. (91) and Fig. 4. The area under the curves is
the total cumulative fraction J∞ of infected persons. The black lines are exact numerical results, the
green lines are our analytical approximant, provided in Section 4.7.

4.8. Time scales

Summarizing our analysis here we emphasize that SIRV-pandemic waves in the case
0 < b � α < 1 exhibit a clear asymmetry with respect to peak time in reduced and real
time. The fraction of infected (I) and recovered (R) persons as well as the daily rate of new
infections (j) vary rapidly on the order of the recovery reduced time scale τr ' α−1 ' k−1,
corresponding to recovery real time scale Tr ' 1/µ(0). Alternatively, the fraction of
susceptible (S) and vaccinated (V) persons as well as the sum Φ = S + I vary slowly on
the order of the much greater vaccination reduced time scale τv ' b−1, corresponding
to the vaccination real time scale Tv ' 1/v(0). Thirdly, the cumulative fraction of newly
infected persons J(τ) exhibits an asymmetric time structure determined both by τr and
τv. These behaviors are clearly visible in Fig. 9(b-d) or alternatively Fig. 9(f-h), where we
show the time distribution of all SIRV quantities in one plot for different values of b at
k = 0.9. The behavior is qualitatively similar but quantitatively different for other values
of k. Comparing the asymmetric time distribution of J(τ) with empirical data then should
allow the determination of the two parameters b and k.

For comparison we show in Fig. 9(a,d) the SIR-time distributions. Here definitely no
enhanced asymmetry occurs. Apart from the absent V(τ) all SIR quantities vary on the
same recovery reduced time scale k−1. Moreover, the SIR S(τ) saturates at the finite value
given by SSIR

∞ = 1− JSIR
∞ , whereas the SIRV S(τ) approaches zero after infinite time.

5. Comparison of approximate with exact solutions

We have determined all model parameters such as η, k, and b, using currently available
public data [15,16] for the population amount, vaccination rate, daily number of newly
deceased persons. The parameters as well as the SIRV prediction are collected in Tab. 1 for
various countries.

The exact numerical solution of the SIRV model is compared with the approximant for
various typical choices of k and b in Fig. 8. To highlight the effect of reduced vaccination
rate b, we show three cases for each k: vanishing b (SIR model), b = bc/5, and b = bc/2.
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country k a µ b b/bc α ∆ tII
0 tv JI

∞ J(tv) Jb=0
∞ Jb=b

∞ Jb=2b
∞ J̇max t99%

α3 code [d−1] [d−1] 2020-

ARG 0.912 0.125 0.114 0.0022 0.039 0.910 0.07 08-17 20-12-28 0.069 0.228 0.282 0.277 0.274 129 21-10-17
AUT 0.905 0.520 0.471 0.0013 0.841 0.904 0.09 07-29 20-12-26 0.008 0.128 0.191 0.182 0.177 219 21-07-29
BEL 0.896 0.551 0.494 0.0011 0.271 0.895 0.10 09-06 20-12-27 0.162 0.313 0.332 0.330 0.329 244 21-05-26
BRA 0.790 0.046 0.037 0.0099 0.202 0.780 0.19 07-05 21-01-14 0.145 0.247 0.489 0.432 0.398 86 22-09-29
CAN 0.962 1.018 0.980 0.0004 0.692 0.962 0.04 09-26 20-12-13 0.049 0.069 0.121 0.106 0.099 68 21-06-05
CHE 0.894 0.458 0.409 0.0023 1.237 0.891 0.10 07-22 21-01-22 0.044 0.216 0.240 0.236 0.234 231 21-09-05
DEU 0.915 0.559 0.511 0.0012 1.077 0.913 0.08 08-16 20-12-26 0.019 0.069 0.182 0.158 0.143 180 21-08-06
ESP 0.876 0.175 0.153 0.0046 1.120 0.871 0.12 04-29 21-01-02 0.092 0.207 0.309 0.283 0.270 115 22-01-28
FIN 0.997 3.858 3.848 0.0002 2.181 0.997 0.00 12-21 20-12-30 0.007 0.008 0.019 0.012 0.011 17 21-02-21
FRA 0.886 0.228 0.202 0.0027 0.973 0.883 0.11 05-11 20-12-26 0.082 0.183 0.284 0.263 0.252 127 21-12-25
GBR 0.867 0.389 0.337 0.0053 1.741 0.862 0.13 09-09 20-12-12 0.120 0.151 0.343 0.257 0.223 200 21-06-16
ISR 0.855 0.050 0.042 0.1283 2.518 0.727 0.00 08-20 20-12-18 0.035 0.100 0.330 0.142 0.127 62 21-09-07
ITA 0.873 0.289 0.252 0.0022 0.982 0.871 0.12 05-27 20-12-26 0.114 0.233 0.329 0.315 0.306 189 21-11-04
MEX 0.712 0.038 0.027 0.0044 0.052 0.707 0.27 07-13 20-12-23 0.123 0.234 0.586 0.559 0.535 124 22-11-23
NLD 0.929 0.397 0.369 0.0022 2.039 0.927 0.07 06-11 21-01-15 0.072 0.149 0.201 0.186 0.179 89 21-11-18
RUS 0.933 0.337 0.314 0.0008 0.423 0.933 0.07 07-22 20-12-14 0.003 0.049 0.135 0.118 0.107 74 21-10-30
SWE 0.922 0.652 0.601 0.0010 0.540 0.921 0.08 10-11 20-12-26 0.126 0.167 0.260 0.240 0.229 162 21-06-04
USA 0.868 0.218 0.189 0.0081 0.948 0.860 0.12 09-03 20-12-19 0.094 0.167 0.326 0.263 0.238 156 21-07-28

Table 1: Analysis using data from 18 Mar 2021. For η, k and a we use the current values for the 2nd wave, that started
at tII

0 , all from an online resource, Ref. [16] The begin tv of the vaccination program and the mean daily fraction v of
vaccinated population since then we retrieve from Ref. [15], assuming that each person has to be vaccinated twice, and
that the vaccination is effective two weeks after the 2nd shot. The remaining quantities are derived from Eqs. (8) and
(35), i.e., via µ = ak, b = v/a, α = k− b, and ∆ = 1− 2η − k− b is positive if the outburst condition (10) is fulfilled. bc is
calculated via Eq. (91). Furthermore included are the infected population fraction at various times: (i) JI

∞ at the end of the
first wave, J∞(tv) at the onset of vaccinations, (iii) Jb=0

∞ assuming no vaccinations, (iv) Jb=b
∞ assuming ongoing vaccination

at the present rate, (v) Jb=2b
∞ assuming the vaccination rate had been twice as large. The t99% denotes the date at which

99% of the final J∞ has been reached, and J̇max = jmaxa× 105/N is the number of newly infected persons per 100,000
inhabitants within a single day, at peak time. The difference between Jb=b

∞ and Jb=0
∞ is the population fraction that profits

from the current vaccination program. For all countries η � 1, k ∈ [0.7, 1], α ∈ [0.7, 1], b� 1 hold. A daily updated, and
extended table containing more numbers such as η, v is part of the supplementary material.
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Figure 9. Suitable normalized SIRV quantities S, I/Imax, R/R∞, V, and J/J∞ versus τ for
four different reduced vaccination rates at k = 0.9 and η = 10−6. (a,e) b = 0 (SIR model),
(b,f) b = 0.1 bc, (c,g) b = bc, and (d,h) b = 10 bc. While the first row presents data on a
linear scale, the second row shows the same cases, but in a semilogarithmic fashion to
appreciate the two well separated time scales.

These three values capture the qualitative behavior for all b. For b � bc, vaccination is
basically ineffective in reducing the number of infections. For b � bc, the vaccination
program is highly effective. The crossover is at b = bc, where the reduction becomes
significant, and where it depends roughly linear on b. The critical bc as function of k and η
is shown in Fig. 4. While bc basically coincides with η for k→ 1, at smaller k the critical bc
behaves nonlinear with k and η, as shown.

The exact result (solid black lines) for J∞ versus b for various k is compared with the
approximant (colored lines) in Fig. 7. The gap in the colored curves marks the crossover
regime, b = bc. For any b, the exact solution is captured by the SIRV approximant. The
same is true for remaining quantities such as peak height jmax and peak time τ

j
max, as

demonstrated by Figs. 6 and 5.

6. Application to real data

To make predictions and draw conclusions from the SIRV model about the ongoing
pandemic and the vaccination efforts, we have collected current values of infection, vacci-
nation, and recovery rates, as well as population sizes, by making use of existing online
resources. We then applied the SIRV model to calculate the time evolution of all the SIRV
quantities, including final number of infected persons, or maximum daily number of newly
infected persons. Examples are shown by Tab. 1, while a corresponding, daily updated
table that includes even more characteristics of the 2nd pandemic wave is part of our
supplementary material.

Besides the input parameters of the SIRV model such as the rates the table offers the
dimensionless values for k, b, and α = k − b, the criterion ∆ = 1− 2η − k − b, the date
tv marking the beginning of the vaccination program, and various values for the final
population fraction that is getting infected before all population has been either recovered
or vaccinated. As long as ∆ has positive values, new pandemic waves can occur. Table
1 indicates that apart from Israel this can happen in all countries considered. Only Israel
has applied an high enough vaccination rate so that no further Covid-19 waves can occur.
The table lists the population fraction JI

∞ that had been infected up to the end of the first
pandemic wave, the cumulative fraction J∞(tv) at the time the first person got vaccinated,
the hypothetical cumulative fraction Jb=0

∞ assuming there was no vaccination program, the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 March 2021                   doi:10.20944/preprints202103.0718.v1

https://doi.org/10.20944/preprints202103.0718.v1


22 of 38

AUT

BRA

CAN

CHE

DEU

ESP

FRA

GBR

ISR

ITA

RUS

SWE

USA

ARGMEX

FIN

BEL

NLD

0.7 0.75 0.8 0.85 0.9 0.95 1

-6

-5

-4

-3

-2

-5

-4

-3

-2

-1

Figure 10. Same as Fig. 4 using another colormap, where countries have been added. The brightness
represents log10(bc), shown as function of k and η. Circles for countries have been placed at positions
k and η according to Tab. 1, and the brightness of a filled circle corresponds to the reduced vaccination
rate b, again from Tab. 1.

J∞ = Jb=b
∞ using the current value for the mean number of vaccinated persons that gave

rise to b, and the hypothetical Jb=2b
∞ assuming vaccinations could have been performed

at twice the actual speed. In addition, the table shows the maximum number of newly
infected persons per day and per 100,000 inhabitants ( J̇max), and the date t99% for which
99% of the ultimately infected population fraction has been reached. Note that Jb=2b

∞ is not
always much smaller than J∞ because the vaccination program eventually started after the
peak time, and because the first wave cumulative fraction JI

∞ sets already a lower limit.
Adding the data for all countries of Tab. 1 to Fig. 4, we end up with with Fig. 10, where

we have used another colormap for the purpose of this figure. The brightness represents
log10(bc), shown as function of k and η. Circles for countries have been placed at positions
k and η according to Tab. 1, and the brightness of a filled circle corresponds to the reduced
vaccination rate b, again from Tab. 1. If the brightness of a circle exceeds the one of the
background, the vaccination rate resides above the critical bc for that country. This is
the case for Israel (ISR) and Great Britain (GBR), and Finland (FIN), for example. Circles
darker than background, such as for Belgium (BEL), Mexico (MEX) and Argentina (ARG),
highlight cases where b < bc.

7. Summary and conclusions

With the now available vaccination against COVID-19 it is quantitatively explored
how vaccination campaigns influence the mathematical modeling of epidemics. For this
purpose the well-known susceptible-infectious-recovered/removed (SIR) epidemic model
is extended to the fourth compartment V of vaccinated persons and the vaccination rate v(t)
that regulates the relation between susceptible and vaccinated persons. The vaccination
rate v(t) competes with the infection (a(t)) and recovery (µ(t)) rates in determining the
time evolution of epidemics. In order for a pandemic outburst with rising rates of new
infections it is required that k + b < 1− 2η, where k = µ0/a0 and b = v0/a0 denote the
initial ratios of the three rates, respectively, and η � 1 is the initial fraction of infected
persons.

Apparently for the first time we derive analytical solutions for the time-dependence
of all relevant quantities Q ∈ [S, I, R, V, j, J] of the SIRV-model where j = J̇ and J are the
daily and cumulative fraction of new infections, respectively. As in our earlier analysis of
the SIR-model we eliminate one of the time-dependent rates by using the new reduced
time-variable τ defined with the infection rate by dτ/dt = a(t). Moreover, we adopt the
semi-time case with constant ratios k = µ(t)/a(t) and b = v(t)/a(t) between the infection,
recovery and vaccination rates. This assumption still allows us to account for any given
time-dependence of the infection rate with the caveat that the recovery and vaccination
rate have exactly the same time dependence as the infection rate apart from their different
initial values. Exact analytical inverse solutions t(Q) for all relevant quantities Q of the
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resulting SIRV-model in terms of Lambert functions are derived. The values of the three
parameters k, b and η completely determine the reduced time evolution the SIRV-quantities
Q(τ).

These inverse solutions can be approximated with high accuracy yielding the explicit
reduced time-dependences Q(τ) by inverting the Lambert functions. For a given time-
dependence of the infection rate a(t) the real time-dependence Q(t) can be inferred. The
inversion of the Lambert functions operates well for all ratios b exceeding a small but
finite critical value bc. In the range of b ∈ [0, bc] we interpolate the solution using the
exact SIR-solution derived before at b = 0 and the inverted SIRV-solution at bc. This
approach is remarkably accurate as the comparison with the exact numerical solutions of
the SIRV-equations indicates. The analytical solutions show that SIRV-pandemic waves in
the relevant case 0 < b� α < 1 exhibit a clear asymmetric distribution in reduced and real
time. The fractions of infected (I) and recovered (R) persons as well as the daily rate of new
infections (j) vary rapidly on the order of the recovery reduced time scale τr ' α−1 ' k−1.
Alternatively, the fractions of susceptible (S) and vaccinated (V) persons as well as the
sum Φ = S + I vary slowly on the order of the much greater vaccination reduced time
scale τv ' b−1. This asymmetric SIRV-time behavior is significantly different from the
SIR-time behavior, where no time asymmetry occurs, and, apart from the absent V(τ), all
SIR quantities vary on the same recovery reduced time scale k−1.

Clearly our analytical solutions are superior to all numerical ones in the literature
as they allow us to identify the main determining parameters of the epidemic waves
and to understand the correlations between various monitored observables. And indeed
as demonstrated the three parameters b, k and η fully control the evolution of the pan-
demic wave in reduced time. Also valuable is the use of our exact analytical solutions as
benchmark for solutions obtained by solving the SIRV-equations numerically.

The influence of vaccinations on the total cumulative number and the maximum rate of
new infections in different countries is calculated by comparing our results with monitored
real time Covid-19 data. The reduction in the final cumulative fraction of infected persons
and in the maximum daily rate of new infections is quantitatively determined by using
the actual pandemic parameters a(0), k and b in different countries. The corresponding
numbers for an hypothetical adopted doubled (as compared to the actual one) vaccination
rate are also given which allows to quantitively assess the total and maximum casualities
caused by the delayed and low-level vaccination coverage in many countries. Moreover,
a new criterion is developed that decides on the occurrence of future Covid-19 waves in
these countries. Apart from Israel this can happen in all countries considered. Only Israel
has applied an high enough vaccination rate so that no further Covid-19 waves can occur.
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Appendix A Range of application for the two Lambert functions

As discussed before in Appendix G of Ref. [11] there is a single real-valued solution
W0(y) of Lambert’s equation for arguments y ≥ 0, referred to as the principal. There
are two real valued solutions for y ∈ [−e−1, 0]: the principal one W0 ∈ [−1, 0] and the
non-principal solution W−1 ≤ −1. For arguments below y < −e−1 only complex-valued
solutions exist which are of no interest here because the function Φ is real-valued.

As the function Φ = I + S ∈ [0, 1] we require for the general solution (55) that

− αW
(
−E

α

)
∈ [0, 1] (A1)
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Figure A1. Values of the (a) non-principal and (b) principal Lambert functions determining Φ in Eq.
(55). The solid black line represents the upper limit E = α/e = 0.368α (for all α > 0), where Φ = α.
Only for the coloured region below this line real-valued solutions of Eq. (55) exist. The red line
represents the initial E(ψ0), which serves as a more restrictive upper limit for α > 1. In their coloured
areas the corresponding Lambert functions apply, while the white regions cannot be reached. Points
residing in (α, E)-space that are shared by both Lambert functions are visited at different times, as
exemplarily shown by the white arrows for α = 0.25. At early times the non-principal Lambert
function W−1 describes Φ, while W0 overtakes at later times. The crossover occurs at Φ = α. At this
moment, both Lambert function exhibit exactly the same value. For negative α < 0, the accessible E
span the huge range E ∈ [0, e−1/α] and are therefore not shown. For such α < 0, the colored region
exists only for W0.

with the always positive E > 0. While for α < 0 the only real-valued Lambert function is
W0, for values α > 0 of particular interest here the argument of the Lambert function is
always negative. For those α’s, real-valued solutions exist only if

E ≤ α

e
' 0.368α (A2)

In Fig. A1 we plot the two functions −αW0(−E/α) and −αW−1(−E/α) entering the con-
straint (A1). The black line represents the upper limit (A2) and the red line represents the
initial E(ψ0) = e−1/α. For α /∈ [0, 1] the initial value provides a more restrictive upper limit
for E, as E is monotonically decreasing in those cases, as we have proven already.

The lower bound of the constraint (A1) is automatically fulfilled for all negative
arguments of the Lambert function. The principal Lambert function applies for −1 ≤
W0(−E/α) ≤ 0, corresponding to the range

− αW0

(
−E

α

)
∈ [0, α] (A3)

which automatically fulfils the upper bound of the constraint (A1) when α < 1 is smaller
than unity. The coloured area in the Fig. A1b represents the constraint (53). When α > 1 or
α < 0, the constraint (A1) is still fulfilled as long as E ≤ e−1/α, as this value for E inserted
into Eq. (A1) gives unity. As we had already shown, ψ monotonically increases (decreases)
with time τ for α > 1 (α < 0), E(ψ) varies monotonically with ψ, and E∞ = 0. The E(ψ)
therefore monotonically decreases with time for both α > 1 and α < 0, and thus stays
below e−1/α at all times, since E(ψ0) = e−1/α. The constraint (A1) is therefore not only
fulfilled automatically for α ∈ (0, 1), but for all α. The only exception from this statement
are α = 0 and α = 1, as we have not discussed these special cases here.

Likewise, the non-principal Lambert function potentially applies for W−1(−E/α) <
−1, corresponding to the range −αW−1(−E/α) > α. Together with the right-hand side of
the constraint (A1) we find that the non-principal solution potentially applies as solution
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k log10(bfit
c ) log10(bc) log10(b†

c)

0.100 −1.18 −1.19 −1.18
0.300 −1.44 −1.44 −1.53
0.500 −1.75 −1.74 −1.88
0.650 −2.06 −2.05 −2.25
0.800 −2.51 −2.50 −2.77
0.850 −2.74 −2.73 −3.03
0.900 −3.05 −3.04 −3.39
0.950 −3.56 −3.57 −4.00
0.980 −4.21 −4.23 −4.80
0.990 −4.69 −4.70 −5.41
0.995 −5.13 −5.13 −6.01

Table 2: Critical value bc of the reduced vaccination rate b to be used in the interpolants (100)
and (102). Mentioned for comparison: The best fitted value bfit

c , the analytic expression (91)
for bc that is used throughout this work, and the rough estimate b†

c according to Eq. (A6).
This table is for η = 10−6, the analytic expression (91) works equally well for any η � 1.

in the range

− αW−1

(
−E

α

)
∈ [α, 1] (A4)

The coloured area in Fig. A1a represents the constraint (A4). It is not obvious at first
glance why there are regions in α–E-space that fulfill both inequalities (A3) and (A4). In
those regions only one of the two Lambert functions can lead to the true Φ. The transition
between the two Lambert functions is where they meet, i.e., when Φ = α. When α ∈ (0, 1),
the Φ at early times involves W−1. This continues until a point in time where Φ = α is
reached. From then on, Φ is determined by the principal solution W0.

Appendix B The critical vaccination rate bc

It is straightforward to estimate the value bc of the parameter b, below which the
approximations (80) and (82) break down. This occurs when the approximation in Eq. (65),
based on the assumption of values of ψ� 1 is no longer valid, i.e. when the minimum ψm
given by Eq. (73) exceeds a certain value of order unity. Consequently, the approximation
tends to break down if the following equation is fulfilled for bc

1 = ψ0 −
1− (k− bc) + (k− bc) ln(k− bc)

bc
(A5)

Introducing an abbreviation for k− bc this equation can be cast into the form of the Lambert
equation (51) with the solution

b†
c = k− e2−ψ0 exp

{
W0

[
− (1 + k− kψ0)

e2−ψ0

]}
(A6)

in terms of the principal Lambert function. The solution we have denoted here by b†, as
the bc to be used will be slightly different, as shown below. The non-principal Lambert
function would produce large bc values for which our approximants do not require any
special treatment. Using ψ0 = ln[(1− η)/η], the expression (A6) may be rewritten further.
Different choices of the left hand side of Eq. (A5) give slightly different values for b†

c . It is
important to note that our approximants for the regime b < bc cannot be evaluated anymore
for values well below b†

c , especially for k very close to unity. In Tab. 2 we therefore collect
best values for bc, that we obtained upon fitting the exact solution with our approximant,
and compare them with the formula (A6) as well as with another formula to be derived
next, that will actually be used as it captures the best bc with much higher accuracy than b†

c .
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Upon inspecting the fitted bc for various k and η we find that one has bc � 1,
J∞(k, bc) � η, and a constant proportionality between J∞ and b1/3

c . In light of Eq. (A15)
this translates into the following equation for bc√

k
bc

e
1−k+k ln k

bc =
b1/3

c

η
√

c
(A7)

with some coefficient c = 32π which we determine empirically (Fig. 2) upon comparing
the exact solution with the approximant. This Eq. (A7) is solved for bc as follows

bc =
(

32πkη2
)3/5

exp
{

W0

[
6(1− k + k ln k)

5(32πkη2)3/5

]}
(A8)

This final expression for bc is compared with the fitted bc and the above estimate b†
c in Tab.

2. The agreement between fitted and analytic bc is excellent for all η and k.

Appendix C Proof of Eq. (71)

Here we prove that W0(z(ψ0)) = −1/α for all α /∈ [0, 1), where we recall that z(ψ0) =
−e−1/α/α. This identity was used in the derivation of Eq. (71). Making use of the inverse
Lambert function W−1

0 (w) = wew, we can take the inverse on both sides

z(ψ0) = −
e−1/α

α
= W−1

0

(
− 1

α

)
= − 1

α
e−1/α (A9)

which completes the proof, but one has to be careful here. The identity holds only for those
α for which W0(z) resides on its real-valued regime, i.e., W0 ∈ [−1, ∞] for z ∈ [−e−1, ∞].
Because the argument −α−1 of the inverse Lambert function is ≥ −1 only for α < 0 and
α ≥ 1, the identity does not hold for α ∈ [0, 1). If W0 is replaced by W−1, the identity holds
for the opposite case of α ∈ (0, 1].

Appendix D Proofs of Eqs. (101) and (102)

With the approximate expression (94) that is useful up to order O(η2) we obtain for
corresponding cumulative number fraction with the substitution ξ = e−bτ′/b

J(τ) = J(0) +
∫ τ

0
j(τ′) dτ′

= η

{
1 + b

k
b e

1
b

∫ 1
b

e−bτ

b

ξ
k
b e−ξ dξ

}
(A10)

= η

{
1 + b

k
b e

1
b

[
γ

(
1 +

k
b

,
1
b

)
− γ

(
1 +

k
b

,
e−bτ

b

)]}

where we have inserted J(0) = η and used the lower incomplete gamma function [12]
defined by

γ(s, x) =
∫ x

0
ξs−1e−ξ dξ (A11)

After infinite time we readily obtain from (A10)

J∞(k, b) = η

[
1 + b

k
b e

1
b γ

(
1 +

k
b

,
1
b

)]
= ηkb

k
b−1e

1
b γ

(
k
b

,
1
b

)
,
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where in the last step we used the recurrence formula [12] γ(1+ s, x) = sγ(s, x)− xse−x for
s = k/b and x = 1/b. For the special case of k = b this expression (A12) indeed reproduces
Eq. (A53) up to order O(η2), i.e.

J∞(k, k) = ηk(e1/k − 1) (A12)

where we used γ(1, x) = 1− e−x. For the special case of k = 0, Eq. (A12) simplifies to

J∞(0, b) = e1/bη (A13)

As already discussed, the Eq. (A12) is useful when b does not exceed bc. This avoids that
the latter expression (A13) exceeds unity and thus fails when b is too small.

With the asymptotic behavior of the gamma function

γ(s, x � 1) ' Γ(s)− xs−1e−x ' Γ(s) (A14)

we obtain from Eq. (A12) for small values of b� 1

J∞(k, b� 1) ' ηkb
k
b−1e

1
b Γ
(

k
b

)
' η

√
2πk

b
e

1−k+k ln k
b (A15)

where we used Stirling’s formula Γ(s� 1) ' (2π)1/2ss− 1
2 e−s in the last step.

Appendix E Cumulative fraction of infected persons J(τ) for arbitrary η

Starting from our approximants for S(τ) and I(τ) given by Eq. (27), with ψ(τ) from
Eq. (26), i.e.,

ψ(τ) = ψ0 + ατ − 1− e−bτ

b
, α = k− b (A16)

the differential rate j(τ) = S(τ)I(τ) (29) is written as

j(τ) =
e−2bτ

4 cosh2 ψ
2

=
e−2bτ−ψ(τ)

(1 + e−ψ)2 =
eψ(τ)−2bτ

(1 + eψ)2 . (A17)

Here we are interested in an expression for the integrated j(τ) for arbitrary initial conditions
η, contained in ψ0 = ln[(1− η)/η], while a result valid for small η � 1 we have already
provided with Eq. (A10). To this end we calculate with Eqs. (30) and (A17)

J(τ) = η +
∫ τ

0
dτ′ j(τ′)

= η +
∫ τ

0
dτ′

e−2bτ′−ψ(τ′)

(1 + e−ψ(τ′))2

= η +
∫ τ

0
dτ′

e−[ψ0+(2b+α)τ′− 1−e−bτ′
b ]

(1 + e−[ψ0+ατ′− 1−e−bτ′
b ])2

(A18)

Substituting ξ = e−bτ′/b then yields

J(τ) = η +
∫ 1

b

e−bτ

b

dξ
(bξ)

α
b +1e

1
b−ψ0−ξ

[1 + (bξ)
α
b e

1
b−ψ0−ξ ]2

(A19)

To be able to calculate this integral we introduce yet another, but simpler integral U(c)
parameterized by c,

U(c) = cη + b
∫ 1

b

e−bτ

b

dξ

1 + e
1
b−ψ0(bξ)

α
b e−cξ

(A20)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 March 2021                   doi:10.20944/preprints202103.0718.v1

https://doi.org/10.20944/preprints202103.0718.v1


28 of 38

Because the derivative of U(c) with respect to c evaluates to

dU(c)
dc

= η +
∫ 1

b

e−bτ

b

dξ
e

1
b−ψ0(bξ)

α
b +1e−cξ

(1 + e
1
b−ψ0(bξ)

α
b e−cξ)2

(A21)

we can express the cumulative fraction (A19) in terms of U(c) as

J(τ) =
dU
dc

∣∣∣∣
c=1

(A22)

We are left to calculate the integral (A20). Using the identity

1
1 + e−x =

∞

∑
n=0

(−1)ne−nx (A23)

applied to Eq. (A20) provides

U(c) = cη +
∞

∑
n=0

(−1)ne
n
b−nψ0 b

nα
b +1

∫ 1
b

e−bτ

b

dξ ξ
nα
b e−cnξ

= cη + 1− e−bτ +
∞

∑
n=1

(−1)ne
n
b−nψ0

(
b
n

) nα
b +1 ∫ n

b

ne−bτ

b

dz z
nα
b e−cz,

(A24)

where we substituted z = nξ in the last step. Eq. (A24) readily yields, upon replacing τ0,
and using the Binomials Bm,n = m!/[n!(m− n)!],

J(τ) =
dU(c)

dc

∣∣∣∣
c=1

= η +
∞

∑
n=1

e−nψ0 Jn(τ)

= η +
∞

∑
n=1

(
η

1− η

)n
Jn(τ)

= η +
∞

∑
m=1

[
m

∑
n=1

Bm−1,n−1 Jn(τ)

]
ηm (A25)

with the coefficients

Jn(τ) = (−1)n+1e
n
b

(
b
n

) nα
b +1 ∫ n

b

ne−bτ

b

dz z
nα
b +1e−z (A26)

that all vanish for τ = 0. We have kept the exponential weight containing ψ0 in front of the
coefficient Jn(τ) in Eq. (A25) as this allowed us to see that we need to take into account the
first m terms of the sum, and the first m coefficients Jm to come up with J(τ) up to order
O(ηm). The integral in the coefficient can be expressed in terms of the lower incomplete
gamma function γ so that we finally have obtained J(τ) as infinite sum, whose summands
are given by

Jn(τ) = (−1)n+1e
n
b

(
b
n

) nα
b +1
×
[

γ
(nα

b
+ 2,

n
b

)
− γ

(
nα

b
+ 2,

ne−bτ

b

)]
(A27)
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To confirm that our general expression reduces to the one (A10) we had already
derived for small η � 1, we evaluate Eq. (A25) to first order in η. With B0,0 = 1 the Eq.
(A25) implies

J(τ) ' η + J1(τ)η

= η + ηe
1
b b

α
b +1

[
γ

(
α

b
+ 2,

1
b

)
− γ

(
α

b
+ 2,

e−bτ

b

)]

= η

{
1 + e

1
b b

k
b

[
γ

(
1 +

k
b

,
1
b

)
− γ

(
1 +

k
b

,
e−bτ

b

)]}
(A28)

where we have taken J1 from Eq. (A27), and replaced α by k− b. This Eq. (A28) is indeed
identical to Eq. (A10).

We can rewrite J(τ) further in a way that helps calculating J∞ = limτ→∞ J(τ) using
the recurrence formula for the lower incomplete gamma function,

γ(a + 1, x) = aγ(a, x)− xae−x (A29)

Using this recurrence in the first line of Eq. (A25), we end up with

J(τ) =
1

ebτ + eψ0+kτ− 1−e−bτ

b

+
∞

∑
n=1

(−1)n+1χne
n
b−nψ0

(
b
n

)χn

×
[

γ
(

χn,
n
b

)
− γ

(
χn,

ne−bτ

b

)]
(A30)

where we have used the abbreviation

χn = 1 +
nα

b
(A31)

only to shorten the expression. Note that χ1 = k/b. To derive this expression (A30) we
made use of the following identities,

∞

∑
n=1

(−1)ne−nx = − 1
1 + ex (A32)

as well as
∞

∑
n=1

(−1)n+1e−nψ0 =
∞

∑
n=1

(−1)n+1e−nψ0 =
1

1 + eψ0
= η (A33)

After infinite time the first term of Eq. (A30) vanishes, and γ(χn, 0) = 0 can be used. Hence

J∞ =
∞

∑
n=1

(−1)n+1χne
n
b−nψ0

(
b
n

)χn

γ
(

χn,
n
b

)
(A34)
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While this appears as a tractable expression, it cannot be directly evaluated numerically
for small b such as b = bc, because en/b poses a problem. To circumvent this problem, we
make use of Stirling’s formula and γ(χn, ∞) = Γ(χn). For small values of b we then obtain

Jb�1
∞ '

∞

∑
n=1

(−1)n+1χne
n
b−nψ0

(
b
n

)χn

Γ(χn)

=
∞

∑
n=1

(−1)n+1χne
n
b−nψ0

(nα

b

)( b
n

)χn

Γ
(nα

b

)
'
√

2πbα
∞

∑
n=1

(−1)n+1χnα
nα
b e−n[ψ0+

α−1
b ]

√
n

(A35)

where eventually we re-inserted χn from Eq. (A31). For small values of η � 1 we only take
the first term in this sum providing with α = k− b ' k

Jb�1,η�1
∞ ' η

√
2πbα

k
b

α
k
b−1e

1−α
b = η

√
2πk

b
e

1−k+k ln k
b (A36)

which agrees exactly with Eq. (A15). It is worthwhile noticing that for very small b� 1 the
higher order terms in the sum must be taken into account, even at small η, as they make
sure that J∞ stays below unity. We need to calculate J∞ only down to b = bc, while the
form (91) for bc ensures that J∞ < 1.

Appendix F Peak time and amplitude for b ≥ bc and arbitrary η

Our approximant j(τ), valid for b ≥ bc, and given by Eq. (A17) can be written as

j(τ) = eAb2F(x), F(x) =
x2+pe−x

(1 + eAxpe−x)2 (A37)

with p = α/b, eA = e−ψ0 e1/bbp = ηe1/bbp/(1− η), and x = e−bτ/b, so that F(x) contains
the dependency on time τ via x. Note that x is positive at all times, because b is positive.
Because x varies monotonically with τ, to find the peak time τ

j
max, and peak height jmax, we

need to determine the position and value of F(x) at its maximum, provided such maximum
exists. For the derivative of F(x) with respect to x one has

F′(x) =
exx1+p[(2 + p− x)ex + eAxp(2− p + x)

[e2 + eAxp]3
(A38)

The derivative hence vanishes at x = xmax, where xmax solves the highly nonlinear

exmax−A

xp
max

=
p− xmax − 2
p− xmax + 2

(A39)

or equivalently, and more suitable for any numerical implementation

xmax − A− p ln(xmax) = ln
(

p− xmax − 2
p− xmax + 2

)
(A40)

Inserting Eq. (A40) into Eq. (A37) then provides for the differential rate at peak time

jmax = j(xmax) =

(
bxmax

2

)2
[

1−
(

2
p− xmax

)2
]

(A41)

This is an expression valid for arbitrary η and b ≥ bc in terms of the solution xmax of Eq.
(A40), that can only be obtained numerically. For the special case of small b� k, we can
proceed analytically and provide an approximate solution for xmax.
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Appendix F.1 Special case of bc ≤ b� k

For this relevant case or small b� k, the above p becomes large and well approximated
by p ' k/b. At the same time does the right hand side of Eq. (A40) vanish. The remaining
equation for xmax,

xp
maxe−xmax = e−A (A42)

is solved with the help of Lambert’s principal function as

xmax = −α

b
W0

(
− e−A/p

p

)
= −α

b
W0

− e−
(1−bψ0)

α

α

 (A43)

where we have replaced p and used properties of the Lambert function. The corresponding
jmax is still given by Eq. (A41). Because ψ0 is of order unity, and if bψ0 � 1 holds as well,
the argument of W0 simplifies for b� k to −e−1/k/k. This latter argument equals −e−1 to
within 2.5% for all k ∈ [0.8, 1], so that xmax ' α/b = p, and equivalently, τmax ' − ln(α)/b
can be used under such circumstances.

Appendix G Exact solutions for special cases

Appendix G.1 The equal value case b = k corresponding to α = 0

Our general analysis above can also be used for a number of special cases to be
investigated in this and the next appendices. We start with the special case α = 0 the
general Eqs. (36) and (46) simplify to

Φ = −dψ

dτ
= 1 + k(ψ− ψ0) (A44)

With the initial condition ψ(0) = ψ0 Eq. (A44) immediately integrates to

ψ(τ) = ψ0 +
e−kτ − 1

k
, (A45)

implying

Φ(τ) = I(τ) + S(τ) = −dψ

dτ
= e−kτ (A46)

This proves that our Eq. (79) is actually exact, and not an approximant, for this special case
of α = 0. With Eqs. (A45)–(A46) we readily obtain for Eqs. (47)–(48)

I(τ) =
e−kτ

1 + eψ =
e−kτ

2

[
1− tanh

ψ

2

]
=

e−kτ

1 + exp[ψ0 − 1−e−kτ

k ]
, (A47)

S(τ) =
e−kτ

1 + e−ψ =
e−kτ

2

[
1 + tanh

ψ

2

]
=

e−kτ

1 + exp[ 1−e−kτ

k − ψ0]
(A48)

Consequently, the rate of new infections is then given by

j(τ) = S(τ)I(τ) =
e−2kτ+ψ(τ)

(1 + eψ)2 =
1

4e2kτ cosh2
(

1−e−kτ

2k − ψ0
2

) (A49)

Using Eq. (50) and Φ from Eq. (A46) the V(τ) is written in terms of ψ as

V(τ) = −k ln[η(1 + eψ)] (A50)

Because I(τ) + S(τ) = 1− R(τ)−V(τ) due to the sum constraint, the remaining R(τ) is
given by

R(τ) = 1− e−kτ + k ln[η(1 + eψ)] (A51)
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With J(τ) = I(τ) + R(τ) there is no need to integrate the j(τ) to come up with a final
expression for J(τ) using I(τ) and R(τ) from Eqs. (A47) and (A51).

At infinite time τ = ∞, we find from Eqs. (A45), (A47), and (A48)

ψ∞(k, k) = ψ0 −
1
k

, (A52)

as well as I∞ = S∞ = j∞ = 0, R∞ + V∞ = 1 and J∞ = R∞. The only nontrivial quantity is
thus J∞, which we obtain from Eq. (A52) inserted into Eq. (A51) as

J∞(k, k) = 1 + k ln
{

η
[
1 + eψ0−(1/k)

]}
= k ln η + kψ0 + k ln(1 + e

1
k−ψ0)

= k ln(1− η) + k ln(1 + e
1
k−ψ0) (A53)

For small values of k, J∞ ' 1 + k ln η which for k = 0 correctly provides J∞ = 1. All other
expressions can also be readily evaluated in this limit with the help of limk→0[1− e−kτ ]/k =
τ. For α = k = b = 0, we thus have ψ(τ) = ψ0− τ and Φ(τ) = 1 and all above expressions
simplify considerably. For example,

Jk=0(τ) =
1
2

[
1 + tanh

τ − ψ0

2

]
(A54)

This completes the analysis of the special case of equal values of b = k, or equivalently,
α = 0. The most noteworthy result is the significant reduction in the final cumulative
number of new infections with increasing values of k = b as compared to the SI-case with
k = b = 0, cf. Eq. (A61).

Appendix G.2 SIR-case b = 0, k > 0

For no vaccination campaigns (b = 0) the SIRV-model reduces to the SIR-model
analyzed before [2,3]. For b = 0 implying α = k ≥ 0 the Eq. (46) simplifies to

Φ− k ln Φ + k ln(1 + e−ψ) = 1− k ln(1− η), (A55)

or with Φ = I + S and Eq. (47)

I + S− k ln S = 1− k ln(1− η) (A56)

For b = 0 Eq. (16) simplifies to I = −d ln S/dτ, so that Eq. (A56) becomes

− d ln S
dτ

+ S− k ln S = 1− k ln(1− η) (A57)

In terms of the positively valued function G = − ln(S) the Eq. (A57) reads

dG
dτ

= 1− e−G − kG− k ln(1− η), (A58)

which agrees exactly with the integrable Eq. (24) in Ref. [3] yielding

I(τ) =
dG
dτ

, S(τ) = e−G (A59)

and for the rate of new infections j and the corresponding cumulative number J

j(τ) = SI =
de−G

dτ
, J(τ) = 1− e−G (A60)
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To summarize, one finds [3] for the SIR model, the special case of the SIRV model with
b = 0,

JSIR
∞ = 1 + kW0

(
1− η

ke
1
k

)
, (A61)

jSIR
max =

k2

4

([
1 + W−1

(
2(1− η)

ke
1
k +1

)]2

− 1

)
(A62)

Appendix G.2.1 Alternative inverse solution

For b = 0 one obtains α = k, so that Eq. (36) reads

dψ

dτ
= k−Φ (A63)

Likewise, the general solution (55) reduces to

Φ = −kW
(
−E0(ψ)

k

)
(A64)

with the positive expression

E0(ψ) = η(1 + e−ψ)eψ0− 1
k = (1− η)e−

1
k (1 + e−ψ) ≥ 0, (A65)

Inserting the solution (A64) then provides for Eq. (A63)

dψ

dτ
= k

[
1 + W

(
−E0(ψ)

k

)]
, (A66)

which with the initial condition (33) readily integrates to the inverse exact solution

τ =
1
k

∫ ψ

ψ0

dx

1 + W
(
− E0(x)

k

) (A67)

Hence practically all previous general results obtained in Sect. III and IV also hold here
with α replaced by k. For values of k ∈ (0, 1), Eq. (A67) yields

τ = τm +


1
k

∫ ψ
ψm

dx
1+W−1(−

E0(x)
k )

, ψ ≤ ψm

1
k

∫ ψ
ψm

dx
1+W0(−

E0(x)
k )

, ψ ≥ ψm

(A68)

where the time where the minimum ψm occurs, is given by

τm =
1
k

∫ ψm

ψ0

dx

1 + W−1

(
− E0(x)

k

) (A69)

The minimum value ψm for the case of k ∈ (0, 1) is determined by the condition E0,m =
E0(ψm) = k/e providing with Eq. (A65)

ψm = − ln

[
ke

1
k−1

1− η
− 1

]
(A70)

Following the Appendix G.3 we can further reduce the inverse solution (A67) written as

τ =
1
k

∫ ψ2

ψ1

dx

1 + Wµ(− E0(x)
k )

=
1
k

∫ z0(ψ2)

z0(ψ1)

dz0

(dz0/dx)[1 + Wµ(z0)]
(A71)
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with

z0(x) = −E0(x)/k = −A(1 + e−x)

k
,

A = (1− η)e−
1
k (A72)

Evaluating
dz0

dx
=

Ae−x

k
= −A + kz0

k
(A73)

then provides for Eq. (A71)

τ = −
∫ z0(ψ2)

z0(ψ1)

dz0

(A + kz0)[1 + Wµ(z0)]
(A74)

The substitution z0 = wew then yields

τ =
∫ Wµ(z0(ψ1))

Wµ(z0(ψ2))

dw
kw + Ae−w (A75)

which is still exact. With the substitution y = e−w the solution (A75) can be further
rewritten. Integrals of this form have been approximated in Kröger and Schlickeiser [11].

Appendix G.3 SIV-case b > 0, k = 0

In the case of a negligible recovery rate k = 0 implying α = −b the Eq. (46) simplifies
to

Φ + b ln Φ− b ln(1 + eψ) = Φ + b ln
Φ

1 + eψ = 1 + b ln η, (A76)

or with Φ = I0 + S0 (we use the index 0 to indicate that we consider the limit k = 0 here)
and Eq. (48)

I0 + S0 + b ln I0 = 1 + b ln ηb (A77)

Appendix G.3.1 Symmetry argument

By a simple symmetry argument the solution of Eq. (A77) can be expressed in terms
of the SIR-function [11] G obeying Eq. (A58). Setting

I0 = S, S0 = I, b = −k, ηb = 1− η, (A78)

Eq. (A77) becomes
I + S− k ln S = 1− k ln(1− η), (A79)

which is identical to Eq. (A56). Therefore we can use the SIR-function G(τ), obeying Eq.
(A58), but now with negative values of k, to obtain for the SIV-solutions

S0(τ) =
dG
dτ

, I0(τ) =
dG(τ)

dτ
,

j(τ) =
de−G

dτ
, J(τ) = 1− e−G (A80)

If one wants to follow this approach one has to calculate the function G for negative values
of k.

Appendix G.3.2 Alternative inverse solution

For k = 0 one obtains α = −b, so that Eq. (36) reads

dψ

dτ
= −(b + Φ) (A81)
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Likewise, the general solution (55) reduces to

Φ = bW0

(
Eb(ψ)

b

)
(A82)

with the positive expression

Eb(ψ) = ηe
1
b (1 + eψ) ≥ 0, (A83)

As its argument is positive it has to be the principal Lambert function in Eq. (A82). Inserting
the solution (A82) then provides for Eq. (A81)

dψ

dτ
= −b

[
1 + W0

(
Eb(ψ)

b

)]
, (A84)

which with the initial condition (33) readily integrates to the inverse exact solution

− bτ =
∫ ψ

ψ0

dx

1 + W0

(
Eb(x)

b

) (A85)

Here also nearly all previous general results obtained in Sect. III and IV hold with α
replaced by −b. With

zb(x) = Eb(x)/b =
1 + ex

D
, D =

b

ηe
1
b

, (A86)

implying

x = ln(Dzb − 1),
dx
dzb

=
D

Dzb − 1
(A87)

we find for Eq. (A85)

− bτ = D
∫ 1+eψ

D

1
ηD

dzb
(Dzb − 1)[1 + W0(zb)]

(A88)

The substitution zb = wew then yields

− bτ = D
∫ W0(

1+eψ

D )

W0(
1

ηD )

dw
Dw− e−w (A89)

which is still exact.
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Ausführliche deutsche Zusammenfassung

6000 deutsche Covid-19 Tote zuviel durch zu langsames Impfen. Quantitative Modellierung der
Covid-19 Epidemie mit Impfungen

Mit den seit Dezember 2020 verfügbaren und eingesetzten effektiven Impfstoffen gegen Covid-19-Infektion durch
die Firmen Pfizer-BioNTech, Moderna und AstraZeneca ist es von grossen Interesse, deren Einfluss auf die zeitliche En-
twicklung von Corona-Wellen quantitativ zu berechnen. Deshalb haben die Autoren das etablierte SIR-Schubladenmodell
mit den drei Schubladen ansteckbar(S)-infiziert (I)-gesundet/verstorben(R) um die vierte Schublade geimpft (V) erweit-
ert, und dabei die allgemein zeitabhängige Impfrate v(t) als Transferrate von ansteckbar-zu-geimpft eingeführt. Die
jeweiligen Werte von S, I, R und V in einer gegebenen homogenen Gesamtpopulation N bezeichnen die relativen Anteile
von ansteckbaren, infizierten, gesundet/verstorbenen und geimpften Personen. In unterschiedlichen Ländern variiert die
Impfrate deutlich: in Israel ist die Impfrate mit 0.007 pro Tag weltweit am höchsten, während sie in den EU-Ländern
deutlich kleiner ist (in Deutschland 0.00042 pro Tag).

Beim Einfluss auf den zeitlichen Verlauf der Epidemie konkurriert die Impfrate v mit der Ansteckungsrate a(t) ∈
[0.1− 1.0] pro Tag und der Gesundet-Verstorben-Rate µ(t) = ka0(t) pro Tag und k ∈ [0.7− 0.99], die insbesonders für die
zweiten Corona-Wellen deutlich grösser sind. Ausbruchswellen treten nur dann auf, wenn die Summe von k + b < 1− 2η
ist, wobei b = v(0)/a(0) das Verhältnis von Impfrate zu Ansteckungsrate und η den Anteil der anfänglich beim Start
der Welle infizierten und infizierenden Personen bezeichnen. Weil der Wert von η sehr klein gegen 1 ist, könnte man
Ausbruchswellen komplett vermeiden, wenn das Verhältnis b > 1− k ist, d.h. wenn genügend viel geimpft wird, sodass
die anfängliche Impfrate v(0) > a(0)− µ(0) grösser als die Differenz zwischen den anfänglichen Ansteckungs- und
Gesundungs-Rate ist, was allerdings in keinem Land der Welt erreicht wurde.

In dieser Arbeit ist es den Autoren erstmalig gelungen, analytische Lösungen für die zeitliche Entwicklung aller
relevanten Grössen Q(t) ∈ [S(t), I(t); R(t), V(t), J(t), J̇(t)] zu berechnen, wobei J̇(t) = a(t)S(t)I(t) und J(t) die täglichen
bzw. kumulativen Anteile von Neu-Infizierten angeben. Letztere Grössen sind medizinisch interessant, da sie den
täglichen Bedarf h(t) ' J̇(t)/100 an intensiv-medizinischer Behandlung und die Sterberate d(t) ' J̇(t)/200 bestimmen.
Bei der Berechnung der analytischen Lösungen wurde die zeitabhängige Infektionsrate a(t) durch Einführung einer neuen
reduzierten Zeitvariable τ eliminiert, die durch die Ableitung dτ/dt = a(t) definiert ist. Die analytischen Lösungen
gelten dann für den Fall zeitlich konstanter Verhältnisse k und b zwischen Gesundet/Verstorben- bzw. Impf-Rate
zur Infektionsrate. Analytische Lösungen haben wertvolle Vorteile gegenüber Lösungen in der Literatur, die durch
numerische Integration der SIRV-Gleichungen erhalten wurden: erstens erlauben sie die eindeutige Identifikation der
wichtigsten Parameter, die den Verlauf der Epidemiewelle bestimmen. Zweitens versteht man mit analytischen Lösungen
die Korrelationen und gegenseitigen Abhängigkeiten aller relevanter Grössen. Und drittens sind sie wichtig zum Test
eventueller zukünftiger numerischer Verfahren zur Epidemie-Entwicklung, die weitere komplizierende Effekte wie etwa
Altersgruppen und nichthomogene räumliche Virus-Ausbreitung beinhalten. Bezüglich des ersten Vorteils zeigt sich
in der Tat, dass die Werte der drei Parameter k, b und η komplett den Verlauf der Epidemiewelle in der reduzierten
Zeit τ bestimmen; der Verlauf in realer Zeit t hängt dann zusätzlich noch von der vorgegebenen Zeitabhängigkeit der
Infektionsrate a(t) ab.

Die Autoren berechnen zunächst exakt sogenannte inverse Lösungen τ(Q) mit Hilfe von Lambert-Funktionen.
Durch Invertierung der Lambert-Funktionen können mit hoher Genauigkeit die inversen Lösungen in die explizite
Abhängigkeiten Q(τ) umgerechnet werden. Die Invertierung der Lambert-Funktionen funktioniert sehr gut für alle
Werte von b ≥ bc, wobei bc ein kleiner, aber endlicher kritischer Wert des Verhältnisses von anfänglicher Impf- zu
Ansteckungsrate ist. Für kleine Werte von b ∈ [0, bc] werden die Lösungen durch lineare Interpolation der SIRV-Lösung
bei bc und der durch die Autoren in früheren Arbeiten berechneten exakten reinen SIR-Lösung mit b = 0 bestimmt. Diese
Approximation funktioniert sehr gut, wie der Vergleich mit den numerisch berechneten exakten SIRV-Lösungen zeigt.

Der Einfluss von Impfungen auf den totalen kumulativen Anteil und die Maximalrate von Neu-Infizierten wird mit
den aufgezeichneten Realdaten von Covid-19 während der zweiten Welle in verschiedenen Ländern untersucht. Dabei
wird mit der tatsächlichen Impfrate die Reduktion in der Gesamtzahl der Infizierten bestimmt. Es zeigt sich, dass in
Deutschland durch Impfungen insgesamt (aufsummiert über die Dauer der 2. Welle) 2.0 Millionen Personen weniger mit
Covid-19 infiziert werden, was etwa 10000 vermiedenen Todesfällen entspricht. Durch eine hypothetisch angenommene
verdoppelte Impfrate wird die Folge aus zu langsamer Impfrate abgeschätzt. In Deutschland hätte dies zu insgesamt
1.25 Millionen weniger infizierten Personen geführt, was etwa 6000 Todesfällen entspricht. Das zu langsame Impfen in
Deutschland ist die Ursache für 6000 vermeidbare Covid-19 Todesfälle.

Eine Motivation für diese drastische deutsche Zusammenfassung ist der Wunsch der Autoren, dass ihre bedeutenden
neuen Ergebnisse von den politisch Verantwortlichen in den Regierungen und den Medien erkannt und berücksichtigt
werden. Wie an anderem Ort diskutiert, bestehen Zweifel daran, ob es in Deutschland eine dritte Welle gibt, da
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die täglichen Todesraten auch bei Berücksichtigung einer zeitlichen Retardierung nicht den Anstieg der durch Tests
nachgewiesenen Neu-Infizierten wiedergeben. Die vorliegende Arbeit liefert eine Basis zur Beantwortung dieser Frage.
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