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Abstract
Three computer algorithms are presented. One reduces a network N to its interior, I.

Another counts all the triangles in the network, and the last randomly generates networks similar
to N given just its interior I. But these algorithms are not the usual numeric programs that
manipulate a matrix representation of the network; they are set-based. Union and meet are
essential binary operators; contained in is the basic relational comparator.

The interior I is shown to have desirable formal properties and to provide an effective way
of revealing “communities” in social networks.

1 Introduction

The text book way of describing network structure is to represent a network, N , as two sets (N,L)
where N is a set of nodes, and L is a set of unordered pairs {x, y} ⊆ N , called links1 [1, 6].
But, although text book network theory is almost always set based, virtually all computer network
algorithms are algebraic [14, 15]. This is most understandable. Any network can be represented by
its adjacency matrix, An,n, where ai,j = 1 if {i, j} is a link and 0 otherwise. There is an abundance
of matrix algorithms one can use, in contrast to the dearth of practical set manipulation software.

To overcome this problem, we created our own C++ set management system [16]. In it, sets
are strongly typed; for example there are “sets of nodes” and “sets of links” which are completely
distinct. Invoking the subroutines that execute set operations can be awkward and takes time to
master; but one can faithfully duplicate all of the pseudocode presented in this paper.2

In Section 2, we develop the notion of a network’s “interior” and present a scalable algorithm
to compute it. This subset I ⊆ N captures almost all of the essential features of a network N as is
illustrated in Section 4. Moreover, I is an interesting mathematical structure in its own right. We
demonstrate that it is a system of chordless cycles which is a well-defined algebraic matroid. But,
we do not further develop this aspect.

1In graph theory these unordered pairs are called “edges”. This seems to be derived from the edges of the solid
“dodecahedron puzzle” of Sir William Hamilton (1857) and retained through inertia. However, since in social networks
they connect individuals, it seems more appropriate to call them “links”.

2C++ source code for all procedures of this paper can be obtained from the author.
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In Section 3, we explore a number of the network properties that have been discussed in the
literature. In particular, we present a rather simple algorithm to count the triangles in a network, and
show how I can reveal the “community” structure of a social network.

Section 4 is somewhat unusual. To support the claim that the interior, I, is a good descriptor of
N , we present a procedure expand which randomly generates networks “like”N , based solely on
I. Presumably, one network is “like” another if the properties discussed in Section 3 are similar.

2 The Interior

Let S be a set. An operator τ : 2S → 2S is an injective function which maps subsets of S into
subsets of S. We denote operators by greek letters and use postfix notation, as in Y.τ , where Y ⊆ S.
An operator ϕ said to be a closure operator if for all X,Y ⊆ S, (C1) Y ⊆ Y.ϕ (expansive), (C2)
X ⊆ Y implies X.ϕ ⊆ Y.ϕ (monotone), and (C3) Y.ϕ.ϕ = Y.ϕ (idempotent). Closure operators
are a staple of topological mathematics.

If we replace axiom C1 with an contractive axiom I1, so that for all X,Y ∈ S, (I1) Y.ι ⊆ Y
(contractive), (I2) X ⊆ Y implies X.ι ⊆ Y.ι (monotone), (I3) Y.ι.ι = Y.ι (idempotent), then
ι is said to be an interior operator. We use ι to denote interior operators and ϕ to denote closure
operators; they are similar, except that one is contractive while the other is expansive.

If one visualizes S as a polytope, then its closure might be the smallest sphere containing S
(often called its convex hull), while its interior could be the largest inscribed sphere, or ball. Alter-
natively, if one thinks of S as being a bit of irregular surface terrain with ridges and valleys, then
a closure operator fills in the valleys until the terrain is uniformly smooth. An interior operator, in
contrast, levels the peaks and ridges until a smooth terrain is obtained.

Let N be a network. For any Y ⊆ N , we say the neighborhood of Y is Y.η = {z|∃y ∈
Y, {y, z} ∈ L}∪Y . (In graph theory, Y.η is sometimes called the “closed neighborhood” of Y , and
denoted N [Y ], while N(Y ) = Y.η\Y is called the “open neighborhood” [1, 6]). Finally, since all
operators map sets into sets, even when we are talking about the neighborhood of a single node, for
example z in (1) below, we express it as {z}.η. A neighborhood closure operator, ϕη, on N can
be defined by

Y.ϕη = {z ∈ Y.η | {z}.η ⊆ Y.η}. (1)

Readily, Y ⊆ Y.ϕη ⊆ Y.η, so ϕη is expansive. It is not hard to see that ϕη is monotone. Finally,
since Y.ϕη ⊆ Y.η, Y.ϕη must be idempotent, implying ϕη is a closure operator.3 The neighborhood
closure operator, ϕη, will be fundamental to the development of following sections.

3C3, or idempotency, is normally the most difficult property to prove when establishing a closure, or interior, operator.
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2.1 The Network Interior

Consider any node y ∈ N , and suppose there exists z ∈ {y}.ϕη implying {z}.η ⊆ {y}.η. Such a
node, z whose “horizon” is contained in that of y, contributes very little to the information content
of the network so that its removal from {y}.η will result in little information loss. This node z ∈
{y}.ϕη can be reduced. The node y is irreducible if {y}.ϕη = {y}. A sub-network, I ⊆ N , of
irreducible nodes is called the network’s interior. In the remainder of this section we define an
operator, ω, which reduces any network to its irreducible core, and prove that it is almost an interor
operator.

If {y} is not closed, only elements z in {y}.η could possibly be in {y}.ϕη so only those need
be considered. If {z}.η ⊆ {y}.η so that z ∈ {y}.ϕη, we say z is subsumed by y, or z belongs to y.
We can remove z from N , together with all its connections, and add z to {y}.β, the set of all nodes
belonging to {y}. This set {y}.β is called its β-set. Of course, y ∈ {y}.β. The cardinality |{y}.β|
is called its β-count.

The pseudocode reduce of Figure 1 has been used to implement a process ω that reduces any
network N to its irreducible core, I = N .ω.

while there exist reduceable nodes {
reducible = 0
for_each {y} in N {

for_each {z} in {y}.nbhd - {y} {
if ({z}.nbhd contained_in {y}.nbhd {

// z is subsumed by y
remove z from network;
{y}.beta = {y}.beta union {z}.beta
reducible = 1 } } } }

Figure 1: Reduction code, implementing ω

Applied to N 1, the well-known “karate” network [24], this reduction code yields the interior
depicted by bolder links in Figure 2. In this figure, two nodes of the interior have been suffixed
by :n to denote their β-count. Only nodes 1 and 33 have non-trivial β-sets of 12 and 8 elements
respectively, which have been delimited by dotted lines. (The β-set of node 33 might equally well
have been the β-set of node 34; but 33 precedes 34 in the reduction process.)

Proposition 2.1 The process ω described above is (I1) contractive and (I3) idempotent.

Proof: Readily ω is contractive and it is idempotent because when I = N .ω is irreducible, the loop is not
executed, so N .ω.ω = I = N .ω. 2

One can show that N ⊂ N ′ need not imply that N .ω ⊂ N ′.ω, so ω is not an interior operator,
even though we call I = N .ω the “interior”.
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Figure 2: The interior I of N 1, the Karate network, is shown with bolder links

Proposition 2.2 Let I = N .ω and I ′ = N .ω′ be irreducible subsets of a finite network N , then
I ∼= I ′.

Proof: Let y0 ∈ I, y0 6∈ I ′. Then y0 belongs to some point y1 in I ′ and y1 6∈ I else because y0.η ⊆ y1.η

implies y0 ∈ {y1}.ϕ so I would not be irreducible.
Similarly, since y1 ∈ I ′ and y1 6∈ I, there exists y2 ∈ I such that y1 belongs to y2. Now we have two
possible cases; either y2 = y0, or not.
Suppose y2 = y0 (which is often the case), then y0.η ⊆ y1.η and y1.η ⊆ y0.η or y0.η = y1.η. Hence
i(y0) = y1 is part of the desired isometry, i.
Now suppose y2 6= y0. There exists y3 6= y1 ∈ I ′ such that y2.η ⊆ y3.η, and so forth. Since I is finite
this construction must halt with some yn. The points {y0, y1, y2, . . . yn} constitute a complete graph Yn with
{yi}.η = Yn.η, for i ∈ [0, n]. In any reduction all yi ∈ Yn reduce to a single point. All possibilities lead to
mutually isomorphic maps. 2

Proposition 2.2 assures us that, even though which nodes are preserved in I is completely de-
pendent on the order in ω that they are visited, the output must be effectively identical. For example,
in Figure 3, assume the nodes x and z are irreducible elements of I. In each case, if y0 ∈ I then, y1,

y
0

y
1 y

1
y

2

y
0

(a) (b)

x z x z

Figure 3: Equivalent nodes yi in an interior I.

or y2, could be as well. They are the equivalent nodes defining the isometry. Each set of equivalent
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nodes must be a “complete” subgraph of N .4

A sequence, ρ̇ = 〈y0, . . . , yn〉 of n + 1 nodes, where {yi−1, yi} ∈ L, or a set of n links
ρ̄ = 〈{y0, y1}, . . . , {yn−1, yn}〉 is called a path ρ(y0, yn) of length n.5 (It is often easier to describe
a path in terms of its nodes, ρ̇ rather than ρ̄ which is more precise.) By |ρ(x, z)| we mean the length
of the path independent of whether we are counting nodes or links.

A cycle Ċ = 〈y0, y1, . . . , yn〉, where yn = y0, of length n ≥ 4 is said to have a bridge if there
exists a path ρ̄(yi, yk) ∈ L where (k − i) mod(n) 6= 1 [6]. If the path consists of a single link, it is
called a chord. If C has no such chords it is said to be a chordless cycle.6

Proposition 2.3 The nodes of a chordless cycle are irreducible.

Proof: Let {yi−1, yi}, {yi, yi+1} ∈ L. Suppose yi ∈ yi−1.ϕη implying yi+1 ∈ {yi}.η ⊆ {yi−1}.η or
{yi+1, yi−1} ∈ L contradicting chordless assumption. 2

Proposition 2.4 Let N be a finite network with I = N .ω being an irreducible subset. If y ∈ I is
not an isolated point then either

(1) there exists a chordless k-cycle Ċ, k ≥ 4 such that y ∈ Ċ, or
(2) there exist chordless k-cycles Ċ1, Ċ2 each of length ≥ 4 with x ∈ Ċ1 z ∈ Ċ2 and y lies on a

path from x to z.

Proof: Let y1 ∈ I. Since y1 is not isolated, let y0 ∈ y1.η, so {y0, y1} ∈ L. ≥ 4. Since y1 is not subsumed
by y0, ∃y2 ∈ y1.η, y2 6∈ y0.η, and since y2 is not subsumed by y1, ∃y3 ∈ y2.η, y3 6∈ y1.η. Since y2 6∈ y0.η,
y3 6= y0.
Suppose y3 ∈ y0.η, then 〈y0, y1, y2, y3, y0〉 constitutes a k-cycle k ≥ 4, and we are done.
Suppose y3 6∈ y0.η. We repeat the same path extension. y3.η 6⊆ y2.η implies ∃y4 ∈ y3.η, y4 6∈ y2.η. If
y4 ∈ y0.η or y4 ∈ y1.η, we have the desired cycle. If not ∃ y5, . . . and so forth. BecauseN is finite, this path
extension must terminate with yk ∈ yi.η, where 0 ≤ i ≤ n− 3, n = |N |.
The preceding establishes that any link sequence in I terminates in a cycle of length ≥ 4. Since N is
symmetric, the link sequence could be extended in the opposite direction yielding (2).
So if (1) is not the case, (2) must be. 2

The condition that y not be an isolated point is significant. Any tree structured network reduces
to a single point, as do many networks consisting of triangles.

Corollary 2.5 N is connected if and only if I is connected.

A collection of chordless cycles constitutes a cycle system which is itself a matroid [23] with a
well defined rank [20]. If the network is projected onto a planar representation, then counting those
cycles without a bridge yields the rank.

4A graph, or network, K is said to be complete if for all x, y ∈ K, there is a link {x, y}. A complete graph on n
nodes is denoted by Kn.

5BecauseN is unidrected, some authors would call these a “walk” [1, 6].
6Graphs in which every cycle of length ≥ 4 must have a chord are called “chordal graphs” [9].
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Figure 4 illustrates the interior of a small network on 21 nodes. It is a cycle system of rank
5. Here, the links of the interior have been made bolder and again its nodes have their β-counts
appended. The β-sets, such as {e:2}.β, are suggested by dotted lines. Note that this process effec-

e:2
f:1

h:4

m:2

p:2

j:3

n:1

o:1

r:4

i:1

a b

c
d

k

g

q

s
t

u

l

Figure 4: A small network, N 2, of 21 nodes. Interior links are bolder. β-sets are dotted.

tively resolves the question of partitioning networks into disjoint communities [4, 12, 14], without
having to specify the number of communities in advance.

2.2 Reduction Performance

Technically, the ω process of Figure 1 is O(n2) since it can achieve a worst case performance on
the unbalanced network of Figure 5 provided the outer loop of the ω code of Figure 1 encounters

y
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y
9

y
8

y
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Figure 5: An unbalanced network.

the nodes in order of their subscripts. Then it will remove only one node on each iteration. But
in practice, ω appears to actually offer sub-linear performance. With networks of several thousand
nodes, ω has never required more than 7 iterations. For example, given the well-known Newman
co-authorship network [11] of 363 persons with 823 connecting links, 3 iterations of the outer loop
of the ω code of Figure 1 reduces the network to 65 individuals with 111 links constituting its
interior shown in Figure 6. (A 4th iteration is required to verify that there are no more reducible
nodes.) The node Stauffer, in the upper left, has a β-set of 23 elements for which it may be regarded
as a surrogate; and the lower left node Barabasi has a β-set of 41 elements! In the case of the
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Figure 6: The interior I of N 3, the 363 node co-authorship network of Newman[11].

Newman co-authorship network, the interior represents a significant reduction in the complexity of
the network,

3 Network Properties

There are a number of scalar properties associated with every networkN , they include: n nodes =
|N |, n links = |L| and density = |L|/|N |. The average node degree over all nodes is 2 · density,
since every link has two end nodes [1, 6]. These are trivial to calculate given N and L.

The number of triangles [22] embedded in N can be calculated by the count triangles

whose code is given in Figure 7. Here, the k count of a link denotes the number of triangles for

k_total = 0
for_each link {x, z} in L {

MEET = {x}.nbhd meet {z}.nbhd
{x, z}.k_count = cardinality_of(MEET)
k_total = k_total + {x, z}.k_count }

n_triangles = k_total/3

Figure 7: Code counting network triangles

which the link {x, z} is one “side”. Since that triangle has 3 links, n triangles = k total/3. The
computational cost of {x}.nbhd∩{z}.nbhd is essentially constant, so the cost of count triangles
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is linear, or O(L).
Other scalar properties are dependent on the concept of shortest paths. Let x, z be two nodes

in a connected network N . Because N is connected, there exists a path ρ(x, z) of length n. This
may, or may not, be the shortest path (of minimal length) between them. We let σ(x, z) denote the
(or all) shortest path(s) between x and z. The path length |σ(x, z)| is also known as the distance,
d(x, z), between x and y [1, 6]. The diameter(N ) of the network is the maximal distance, d(x, z)
for all x, z ∈ N . The eccentricity of a node x is e(x) = max(d(x, z)) for all z ∈ N . The radius,
r(N ), of the network is minimum eccentricity of any node y [6].

3.1 Communities

Many networks, especially those that represent social connections, are spotted with “clusters” of
more densely connected nodes. These clusters of triangular links, which are often called communi-
ties, arise from the social phenomenon called triadic closure [10]. It is known that in many social
contexts, if x is connected to y and y is connected to z then x is likely to be connected to z. Even
though triadic closure is not really a closure operator7, its principle has been identified on many
repeated occasions [5, 12].

However, we know of no formal definition as to what really constitutes a “community”.
There have been numerous efforts to identify communities in a network. Several work on the

principle of “bisection” in which removal of certain links separates the network into n distinct
communities [4]. A common problem is that usually n must be designated in advance.

A portion of the network that is dense with triangles may be regarded as a community. A
connected sub-network of triangles is called a k-truss [8]. A connected subset of triangles could
be tree-structured, so it is common to specify that a k-truss is a connected collection of links with a
k count > 1, where the k count of a link {x, z} is |{x}.η ∩ {z}.η| as in Figure 7. If k count = 2,
the Karate network of Figure 2 has just one 2-truss, consisting of links connecting the nodes {1, 2,
3, 4, 5, 6, 7, 8, 9, 11, 14, 30, 31, 33, 34} or just less than half the network. It has two 3-trusses
connecting the nodes {1, 2, 3, 4, 8, 14} and {9, 24, 33, 34}. The small network of Figure 4 has two
2-trusses of links connecting the nodes {a, e, d, g, h, l, m, p, q, r, s} and {b, f, j, k, o} and four small
3-trusses, which are {b, j}, {d, g, l, m}, {p, q} and {r, s}. There are 23 2-trusses in the Newman
network and each is large; but there are only three 8-trusses. They are {Arenas, Dido-Guilera},
{Mano, Occaletti}, and {Barabasi, Jeong, Oltavi, Raven, Schubert}.8

The larger values of the principle eigenvector of An×n (the adjacency matrix of the network)
can indicate well-connected nodes, and often communities [14]. Nodes 1, 3, 33 and 34 of N 1, the
Karate network of Figure 2, dominate its principle eigenvector. The principle eigenvector of N 2,
the small network of Figure 4, are given in Table 2. Here nodes d, e,m, r stand out. Higher values

7As normally encountered, triadic closure is not idempotent. Applied literally, the triadic closure of any network
would be the complete graph/network on its n nodes.

8Arenas, Mano, Oltavi, Raven, Schubert are not elements of the interior shown in Figure 6.
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in this eigenvector appear to correlate with higher node degree. The nodes Barabasi, Jeong, and
Oltvai (in {Jeong}.β) are most prominant in the eigenvector of the Newman network.

All of these methods have been proposed to denote “communities”. We would suggest that the
β-sets attached to I also denote “communities”.

3.2 Important Nodes

A fundamental quest in the analysis of many networks is the identification of its “important” nodes.
They may be a node of high degree in a community, but need not be. In social networks, “impor-
tance” may also be defined with respect to the path structure [3, 13]. Those nodes, Cd = {y ∈ N}
for which the eccentricity, e(y), or

∑
x 6=y d(x, y), is minimal, have traditionally been called the

center of N [1, 6], they are “closest” to all other nodes. It is well known that this subset of nodes
must be edge connected. One may assume that these nodes in the “center” of a network are “impor-
tant” nodes.

Alternatively, one may consider those nodes which “connect” many other nodes, or clusters
of nodes, to be the “important” ones. Let nspxz(y) denote the number of shortest paths σ(x, z)
containing y; then those nodes y for which nspxz(y) is maximal are those nodes that are involved
in the most connections. Let Cb = {y ∈ N}, for which nspxz(y) is locally maximal. This is
sometime called “betweenness centrality” [2, 3, 13].9

3.3 Network Properties Preserved by the Interior

The next 3 lemmas, culminating in Proposition 3.4 help clarify the interaction of β-sets with the
nodes of I. In these lemmas, we assume that x0, y0 and z0 ∈ I.

Lemma 3.1 Let yk ∈ {y0}.β. There exists a node sequence 〈y0, y1, . . . , yk〉 such that yi ∈ {y0}.β,
0 ≤ i ≤ k.

Proof: In the reduction process of Figure 1, if yi+1 is subsumed by yi, then {yi+1}.β ⊂ {yi}.β yielding the
chain of nested sets {yk}.β ⊂ {yk−1}.β ⊂ . . . ⊂ {y0}.β. 2

Note that even if yi ∈ {yi−1}.η belongs to yi−1, there may be other nodes xi ∈ {yi−1}.η such that
xi 6∈ {yi−1}.β.

Lemma 3.2 Let 〈y0, . . . , yk〉 ∈ {y0}.β and let {yk, z} ∈ L where z 6∈ {y0}.β. Then for all
yi, 0 ≤ i ≤ k, {yi, z} ∈ L.

Proof: By the reduction process ω, when yi is subsumed by yi−1, {yi}.η ⊆ {yi−1}.η. So if {yi, z} ∈ L
then z ∈ {yi−1}.η or {yi−1, z} ∈ L. 2

9In [13], Newman proposes the notion of “random walk betweenness” as an alternative to shortest path betweenness.
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Lemma 3.3 Let x ∈ {x0}.β, z ∈ {z0}.β where x0, z0 ∈ I. If {x, z} ∈ L, then there exists y ∈ I
such that {x, y}, {y, z} ∈ L.

Proof: By Lemma 3.2 we know ∃{x, z0}, {z, x0} ∈ L. If {x0, y0} ∈ L we are done. So suppose not. By
Prop. 2.4 we can assume ∃y ∈ I (or a sequence yi) such that {x0, y}, {y, z0} ∈ L. We claim {x, y} ∈
L, since otherwise 〈y, x0, . . . , x, . . . , z0, y〉 is a chordless cycle of length ≥ 4, and hence by Prop. 2.3 is
irreducible. Similarly {y, z0} ∈ L. 2

Two β-sets, {x0}.β, {y0}.β are said to be β-connected if there exists x, y 6= x0, y0 where
x ∈ {x0}.β, y ∈ {y0}.β and {x, y} ∈ L. The preceding lemmas describe links that must exist
if β-sets are connected. These are illustrated in Figure 8. In this figure, solid lines denote links

x
0

z
0

x
1

x
2

z
1

z
2

z
3

y

Figure 8: Links that can be inferred between connected β-sets.

that are “known” to exist for one reason or another. The dotted (. . . ) lines that enclose β-sets were
established by the reduction process. Each conforms to Lemma 3.1. Observe that the entire set of
nodes, {x1, x2, z1, z2, z3} could constitute either {x0}.β or {z0}.β depending solely on the order of
node reduction. This has been illustrated in N 1, Figure 2, where {33}.β could have been {34}.β.
Proposition 2.2 establishes that the structure of the interior, I, is independent of the order in which
nodes are encountered in the ω process; but the structure of β-sets produced by the code reduce

can be very dependent on this order.
The dashed links ( - - - ) denote links that can be inferred from Lemma 3.2. For instance, z1 can

not subsume z2 unless x1 ∈ {z1}.η because x1 ∈ {z2}.η. The ( - ·· - ) links connecting y to the
nodes x1, z1, z2 can be inferred from Proposition 2.3.

While in many networks the β-sets will be separated (as in Figure 4), they may be links between
them. It is not hard to imagine a link between a ∈ {e}.β and c ∈ {h}.β. The lemmas establish that
either such a link must introduce a new chordless cycle into I, or else there must be an abundance
of “triangles” surrounding the network interior.
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Proposition 3.4 Let ρ(x, z) be a path where {x, z} 6∈ L (i.e. |ρ(x, z)| ≥ 2) and x ∈ {x0}.β and
z 6∈ {x0}.β. Then there exists a path ρ′(x, y, z) where y ∈ I and |ρ′(x, y, z)| ≤ |ρ(x, z)|.

Proof: We may assume that ρ(x, z) ∪ I = ∅, else there is nothing to prove. So we may also assume
that ρ(x, z) lies entirely within connected β-sets. By Lemma 3.3, ∃y ∈ I such that {x, y}, {y, z} ∈ L, so
|ρ′(x, y, z)| = 2 ≤ |ρ(x, z)|. 2

3.4 Network Centrality

Proposition 3.5 If N is not unbalanced then the center Cd (in terms of distance) is an element of
(or intersects with) the interior I of N .

Proof: If x and z are in separated β-sets then σ(x, z) = 〈x = xk, xk−1, . . . , x0〉∪〈y1, . . . , ym〉∪〈z0, . . . , zn〉
where y1 = x0, ym = z0 and yi ∈ I. Since N is not unbalanced, we may assume k ≈ n, so the center of
σ(x, z) is one of the y1, . . . , ym.
If x and z are in connected β-sets and |ρ(x, z)| ≥ 2, then Prop. 3.4 establishes the existence of a shortest
path through I as well.
If x, z ∈ {x}.β then no shortest path involves I; but since N is not unbalanced, these constitute a small
number of cases and can be ignored. 2

In Figure 3(b), if y1 is in the center C, then so are y0 and y2, implying C ∩ I 6= ∅.
Proposition 3.5 requires that N not be too unbalanced. Figure 5 illustrates why. It is not hard

to show that y5 is the center with maximum distance over all x being d(x, y5) = 4. Our rule of
thumb is that a network is reasonably well-balanced if given any x ∈ {x0}.β then the probability
that a randomly chosen y is also in {x0}.β is small, that is pr(y ∈ {x0}.β|x ∈ {x0}.β) < ε where
ε < 0.20.

Proposition 3.6 If N is not unbalanced, then any center Cb of N (in terms of betweenness) is an
element of I.

Proof: This proof follows the line of Prop. 3.5 in which, unless x and z are in the same β-set, all shortest
paths σ(x, z) either involve I or have a path ρ′(x, y, z) of the same length through I. Hence a node y for
which σx,z(y) is maximal will be an element of I. 2

That I contains the betweenness center is evident in the Karate network of Figure 2 and the
small network of Figure 4.

Figure 9 illustrates a somewhat different “unbalanced” network in which x and z 6∈ I are
betweenness centers. One can calculate that nsp(x) = nsp(z) = 6 ∗ 6 + 4 ∗ 6 ∗ 6 + 4 ∗ 6 = 204
which are locally maximal.

Calculating betweenness centers is computationally expensive, even with improved algorithms
such as [2]. Knowing that they must exist in the interior I and restricting the calculation to just
those nodes can greatly improve performance, especially when betweenness is employed in other
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Figure 9: Another unbalanced network.

procedures such as [4]. Consequently, dwelling too much on unbalanced networks can be self
defeating since the majority, and possibly almost all, networks are well-balanced.

4 Network Generation by Expansion

The interior, I, of a network N represents its global structure. If the β-count is appended to each
node of I, how well does I representN as a whole? In effect, what is the information content of I,
so augumented?

One measure of the information content of any collection of network properities is the ability
to construct, or generate, similar networks based on those properties. For example, given a network
N = (N,L) one can construct many different networks N ′ = (N ′, L′) such that |N ′| = |N | and
|L′| = |L|. But they need not be at all similar to N . Here we are using “similar” in its colloquial
sense. A formal notion of “similarity” would require it to be an equivalence relation.10 One way
of determining the nature of networks with a given interior, I, and known β-counts is to randomly
generate some. Let I be given. Suppose the β-count of a node y is greater than one. New nodes can
be attached to replace those of the original β-set. Let y:n be the node to be expanded (n > 1), and
let z denote the new node.11 Besides the link {y, z}, we require {z}.η ⊆ {y}.η. A random number
determines how many of the other nodes in {y}.η will be linked to z, and which, if any, of those are
also randomly chosen.

In the reduction process, ω, nodes with considerable β-sets may be subsequently reduced them-
selves. In the re-expansion, a portion of the β-count of y may be transferred to the β-count of z.
Pseudocode for a procedure expand to implement an operator ε that generates new nodes relative
to the interior is given in Figure 10.12

As a test, the interior I of N 2, Figure 4, has been expanded 3 times (using different random
number seeds) to yield exp.1, exp.2 and exp.3 of Figure 11.

10It has been proposed that a formal definition of “similarity” must require the similar networks to have isomorphic
interiors [19].

11Our code generates artificial node names of the form ‘A0, B0, . . ., Z0, A1, . . .’. The last generated node in the
expansion of Figure 6 is M11.

12ε, as shown here is a round-robin procedure expanding one node in a β-set at a time. An alternative, and slightly
faster, process can be found in [18].
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while still_expanding {
still_expanding = 0
for_each y in NODES {

if (y.beta_count > 1)
{ z = new_node()
add new_node to NODES
chosen = choose_subset (y.nbhd)

// distribute some of y.beta_count to z
increment = y.beta_count/(n_chosen+1)
y.beta_count = y.beta_count - increment
z.beta_count = 1 + increment
add (y, z) to LINKS

// link z to chosen nodes in y.nbhd
for_each x in chosen {

add (x, z) to LINKS }
still_expanding = 1 } } }

Figure 10: Pseudocode for a procedure which generates similar networks.

e:2
f:1

h:4

m:2

p:2

j:3

n:1

o:1

r:4

i:3

e:2
f:1

h:4

m:2

p:2

j:3

n:1

o:1

r:4

i:3

e:2
f:1

h:4

m:2

p:2

j:3

n:1

o:1

r:4

i:3
C0

G0

B0

A0

K0

I0

F0

J0

H0

E0

D0

A0

C0

F0

H0

I0

G0

B0

J0

K0

D0

E0

A0

I0
F0

K0

C0

H0

G0

E0

D0

B0

J0

(3)(2)(1)

Figure 11: Three different expansions of I = N 2.ω, Figure 4.

Proposition 4.1 Let I be the interior of a network N , that is I = N .ω, then I.ε.ω = I.

Proof: The expansion procedure of Figure 10 was written to make this true. Consider zn, the last node
appended by ε. By construction, xn.η ⊆ yn.η for some yn; so zn can be subsumed into yn.β. A finite
induction zn, . . . , z1 completes the proof. 2

Considered as operators, ε is a left-inverse of ω since ε·ω = 1, where 1 denotes the identity operator.
However, ω · ε 6= 1, as shown by Figure 11.

To what extent are the network features of N enumerated in the preceding section preserved in
the randomly generated networks,N .ω.ε? Readily, the generation process ε has been constrained so
that |N .ω.ε| = |N | and N .ω.ε.ω = I = N .ω, so path based centers of Section 3.4 are preserved.
Some other network properties are illustrated in Table 1.

Table 2 presents the primary eigenvector associated with the nodes of N 2 in Figure 4 and for
the three expansions shown in Figure 10. (Note that, except for the ten nodes of I, node values for
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|N | |L| density triangles 2 trusses 3 trusses

N 2 21 44 2.095 21 2 4
exp.1 21 49 2.333 31 1 3
exp.2 21 46 2.190 25 2 3
exp.3 21 37 1.762 13 2 2

Table 1: Network properties of networks in Figure 11 generated from I = N 2.ω, Figure 4.

generated expansions are not comparable with node values of the original N .)

a b c d e f g h i j k
N 0.179 0.182 0.123 0.350 0.293 0.155 0.226 0.234 0.194 0.231 0.120

A0 B0 C0 D0 e f E0 h i j F0
exp.1 0.170 0.295 0.225 0.033 0.355 0.129 0.053 0.306 0.202 0.265 0.162
exp.2 0.048 0.095 0.203 0.021 0.262 0.183 0.026 0.192 0.254 0.285 0.303
exp.3 0.125 0.212 0.056 0.187 0.265 0.120 0.093 0.353 0.270 0.243 0.195

l m n o p q r s t u
N 0.291 0.293 0.159 0.174 0.271 0.220 0.280 0.187 0.104 0.022

G0 m n o p H0 r I0 J0 K0
exp.1 0.054 0.190 0.387 0.133 0.112 0.265 0.224 0.164 0.104 0.272
exp.2 0.192 0.118 0.379 0.271 0.142 0.253 0.325 0.307 0.017 0.115
exp.3 0.144 0.236 0.336 0.208 0.163 0.056 0.369 0.276 0.132 0.132

Table 2: Value of nodes in Figures 4 and 10 as expressed by the primary eigenvector.

This section began with the question “how well does I represent N as a whole?” Figure 11
and Tables 1 and 2 provide abundant evidence that given just I, with each node augmented with its
β-count, a random process can generate new networks whose properties are very similar to those of
N . It would seem to be a very good description of N .

5 Observations

This paper might have been titled “An Operator Approach to . . .” since the operators η, ϕη, ω
and ε play such an important role. This aspect is briefly suggested by Proposition 4.1, but not
enlarged. But surely, interesting networks are dynamic; they change over time which demands
an operator approach. So one might ask: “is a transformation τ : N → N ′ continuous?” [17].
The operators ω and ε are, in fact, “continuous” with respect to ϕη. Moreover, it appears that
N .ν = N\N .ω = N\I is a violator space in the sense of [7]. There could be a lot more here.

However, computability is such a dominant theme in current network analysis and understand-
ing that we thought focusing on the use of set-theoretic computer procedures such as reduce,
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count triangles and expand was more important. Programming with set operators is not
wide spread. Yet, these set-theoretic procedures appear to be quite scalable. (Execution of none
exceeded 1 second (the smallest unit on the timer we are using); only the calculation of the eigen-
vectors of Figure 6 exceeded 5 seconds.)

Only standard set-theoretic reasoning has been used to develop the reduction process, ω, that
leads to the concept of the “interior”, I, of a network, N , and its β-set. It is a powerful concept
that effectively captures the essence of many networks, as shown by Section 4 in which very similar
networks can be generated from I alone. Moreover, by reducing a network to its interior, one
effectively partitions the network into it constituent β-set communities.

But the reduction process has its limitations. Some networks are nearly irreducible to start with.
The sparse network of Norwegian corporate directors [21] is an example. And hierarchical networks
reduce to a single node.13 Other networks can be too dense. The complete network Kn also reduces
to a single node. Still, we believe that the easily computed interior is a most effective network
descriptor and possibly should be an automatic first step in network description and understanding.

Acknowledgment: The author would thank Christopher Taylor for coding the set manipulating
C++ code, and John Burkardt who made his eigenvector code available on the internet.
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