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Abstract: Dietary factors play an important role in shaping the gut microbiome which, in turn,
regulates the molecular events in colonic mucosa. The composition and resulting metabolism of the
gut microbiome have been implicated in the development of colorectal cancer (CRC). Diets low in
dietary fibers and phytomolecules as well as other lifestyle-related factors may predispose to CRC.
Emerging evidence demonstrates that the predominance of microbes, such as Fusobacterium nu-
cleatum, can predispose the colonic mucosa to malignant transformation. Dietary and lifestyle
modifications have been demonstrated to restrict the growth of potentially harmful opportunistic
organisms. In this study, we aim to present evidence regarding the relationship of dietary factors to
the gut microbiome and development of CRC.
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1. Introduction

The ‘gut microbiome” includes the collective genome and products of all the micro-
organisms residing in the gastrointestinal tract (GIT) [1]. In fact, there are over 100 trillion
microbes residing in the GIT, the majority of which, reside in the colon [2]. Metagenomic
studies demonstrate that there are approximately 1,952 uncultured bacterial species,
many of which remain unclassified to date, contributing to substantial diversity within
the microbial ecosystem [3]. The host-microbe relationship can be symbiotic or patho-
genic. Several external factors, such as diet, medications, and lifestyle changes heavily
influence the microbial ecosystem [4]. Symbiotic relationships with the microbes have a
plethora of effects on human physiology and overall health. Microorganisms provide
essential micronutrients, regulate the immune response, modulate enterocyte function,
influence metabolism, and most importantly prevent colonization by pathogenic micro-
organisms [5]. The gut ecosystem is highly dependent on the human diet as well as its
composition as the microbes thrive on and metabolize ‘what we consume’. Dietary fibers
or ‘microbiota accessible carbohydrates’ and certain plant-based proteins are metabo-
lized to short chain fatty acids (SCFAs) which exhibit anti-inflammatory properties,
maintain mucosal integrity, and retain microbial diversity [6,7]. Imbalances in ratios of
vital nutrients to dangerous toxins are implicated in a wide variety of diseases, including
cancer. Transformed microbial diversity, impaired immune response, and release of car-
cinogenic or genotoxic substances are the major microbiome-induced mechanisms im-
plicated for cancer pathogenesis [8]. In this study, we aim to present emerging evidence
on the dietary factors related to the development of CRC and how heathy dietary modi-
fications can restore functional colonic epithelium and prevent CRC.
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2. Gut Microbiome and Colorectal Cancer

The microbiome can influence the development of CRC in several ways. Microbial
dysbiosis exposes the GIT to the toxins and superimposes the effects of lifestyle factors
such as smoking, alcohol and obesity, thus increasing oncogenic transformations [1].
Figure 1 shows a diet-benefit model that incorporates the host-microbe relationship and
factors influencing their harmony. Primarily, the colon is the site which harbors most of
the microbial flora (70%) and constitutes the frontline defense against the invading
pathogenic strains [9]. Apart from the natural gut defenses, our own symbionts have an
important role in fighting pathogenic strains by stimulating the immune system. In turn,
the immune system responds by producing a host of inflammatory mediators such as
anti-microbial peptides, inflammasomes, and cytokines, such as IL (interleukin)-22, IL-17,
and IL-10 [10]. Importantly, persistent activation of the immune system has its own ad-
verse effects. Chronic inflammation can induce oxidative stress by producing reactive
oxygen species (ROS), which have both cytotoxic and genotoxic effects, resulting in det-
rimental effects on intestinal mucosal cells [11]. Inflammasomes produced by the innate
immune system secondary to inflammation induce colitis which increases the risk for
CRC development [12]. Moreover, inflammation-mediated persistent release of growth
factors, apoptosis suppression, and angiogenesis are additional factors which promote
tumorigenesis [13] Carcinogenic metabolites or oncotoxins resulting from the microbial
metabolism of altered nutritional constituents due to lifestyle factors work as key exter-
nal factors for promoting CRC [1]. Integrated metagenomic and metabolomic analysis
show that CRC-associated microbes are highly associated with production of polyamines
(i.e. cadaverine and putrescine) [14]. Diets lacking microbiota-accessible carbohydrates
(MAC) are responsible for the increasing incidence of CRC [15]. Healthy diet nurtures
microbial diversity by providing essential substrates such as dietary fibers which are
metabolized by the microbiome into metabolites like butyrate, which protects the colonic
mucosa by impeding inflammatory damage. The various mechanisms by which faulty
microbiome mediate CRC includes increased microbial adherence to colon cells, down-
regulation of tumor suppressor genes, activation of oncogenes, induction of genotoxic
effects on colonic enterocyte, and activation of angiogenesis [16]. Thus, external factors
can modulate the gut microbiome resulting in either stimulatory or regulatory roles in
priming the intestinal microenvironment towards or against tumorigenesis.

Poor microbial diversity is associated with increased risk for CRC [14,17]. Abun-
dance of Fusobacteria is observed in carcinomas of left colon, while colonization by Hel-
icobacter spp. Is observed in right-sided CRC [18]. In colonic adenomatous polyposis
(CAP), a precursor to CRC, there is an abundance of Bacteroides and Citrobacter taxa, as
compared to Weissella and Lactobacillus, which are disproportionally low. The chief
metabolite observed in the fecal samples of CAP patients is butyric acid while qPCR
analysis shows lower butyrate producing bacteria [19]. Even though butyrate has
pro-apoptotic and anti-proliferative role in CRC, it has paradoxically been shown to en-
hance polyp formation in APCmin/+MSH2—-/-(adenomatous polyposis colimin/+MutS
homolog 2-/-) mice having defective mismatch repair [20,21]. Certain pharmacological
agents have also been shown to modulate the colonic microbial diversity and alter the
course of CRC. For example, Ternak et al. demonstrated that antibiotic therapy may have
positive and negative correlation with development of different malignancies [22].
However, in certain European regions, overconsumption of antibiotics such as penicillin
and tetracyclines are associated with higher incidences of CRC, especially among fe-
males. Lee et al. reported that antibiotic therapy, either solitary or in cocktail combina-
tions, administered to murine colitis-associated cancer models decreased the bacterial
load, suppressed inflammation, and impeded tumorigenesis in a drug-specific manner
[23]. This suggests that abnormal bacterial colonies can increase tumorigenesis and may
be regulated by antibiotics.
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Figure 1. A host diet-benefit model showing the relation between host factors affecting the gut microbiome which can

induce oncogenic changes.

Abbreviations: EVOO: extra virgin olive oil; n-3 PUFA: omega-3 polyunsaturated fatty acid. Symbols: Positively asso-
ciated (+); Negatively associated (-)

Streptococcus gallolyticus subspecies gallolyticus is one such bacteria that is highly
implicated in CRC. This bacterial species produces a special protein coded within the
type VII secretion system and is noted for its attachment to HT29 colon cancer cells and
subsequently inducing proliferative changes. Deletion of the secretion system suppresses
the protein expression related to bacterial attachment to the HT29 cells in vitro and de-
creases Streptococcus gallolyticus subspecies gallolyticus colonization in murine in vivo
colon cancer models [24]. This suggests that bacterial proteins produced by selective
species can potentially exhibit pro-tumorigenic effects. Similar effects could be responsi-
ble for decreased CRC development among type 2 diabetics consuming metformin. This
observation is suggested by changes in the gut microbiome consisting of increased
number of colonies of Bacteroides, Prevotella, and Bifidobacterium, whereas decreased
number of colonies of Firmicutes and Lactobacillus, after starting metformin treatment
[25].

Five species of microbes are typically associated with CRC: Bacteroides, Strepto-
coccus, Achromobacter, Alistipes and Fusobacterium [26]. Fusobacterium, a passenger
strain from the oral cavity, has been identified with advanced and serrated forms of CRC,
mainly localized to the right colon [27]. The abundance of Fusobacterium nucleatum is
affected by a number of environmental factors including smoking, chronic periodontitis,
and uncontrolled type 2 diabetes [28]. Metformin treatment is associated with reduction
in Fusobacterium growth. In APCmin/+ colon cancer mice models, metformin sup-
pressed the tumor growth induced by F. nucleatum colonization [26]. Yu et al. reported
that Fusobacterium nucleatum directly targeted the TLR4-MYDS88 (toll-like receptor
4-myeloid differentiation primary response 88) axis of the innate immune system to ac-
tivate autophagy. Autophagic activity mediated by enhanced ULK1 (unc-51 like au-
tophagy activating kinase 1) and ATGY7 (autophagy related 7) expression supported cell
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survival and alleviated chemotherapy-induced cytotoxicity [29]. This suggests that
Fusobacterium is intricately involved in propagating and sustaining the growth of CRC.
Wang et al. in 75 CRC samples identified characteristic taxonomical variation in the tu-
mor niche which showed greater abundance of Eubacterium rectale as a potential ‘driver’
organism. Eubacterium rectale initiated chronic inflammation by activating downstream
NF-kB signaling, which imitates chemokine and cytokine production [30]. Upregulation
of NF-kB signaling pathway in CRC has shown to promote cancer growth by inducing
cell proliferation, angiogenesis, inflammation, metastasis, and drug resistance [13]. Col-
lectively, these mechanisms demonstrate that pathogenic microbe-induced inflammation
can trigger potential oncogenic pathways.

Certain pathogenic microbes present in the proximal colon of CRC patients can also
induce biofilm formation which is associated with pro-malignant potential [27]. In fa-
milial adenomatous polyposis (FAP), which is a precursor lesion to CRC, colonization
and invasion of the intestinal mucosa by carcinogenic toxin producing Escherichia coli
and Bacteroides fragilis were associated with the formation of biofilms. Cocolonization of
toxigenic Escherichia coli and Bacteroides fragilis into FAP model mice resulted in en-
hanced colonic inflammation and tumorigenesis. This suggests that toxigenic bacterial
strains can enhance the progression of benign colonic lesions to malignant CRC. There-
fore, this evolving evidence promotes the notions that gut microbial crosstalk with the
colon mucosa, restoration of a healthy microbiome, and maintenance of microbial rich-
ness are essential for CRC prevention.

3. The Influence of Diet on Gut Microbiome and Colorectal Cancer Development

The necessary ingredients in the diet fuel the bacterial metabolism which not only
aids in digestion, but also synthesizes the byproducts that have immense functional sig-
nificance to the host. However, when this balance is impaired, nutrition-mediated toxic
metabolites are generated by the gut microbes which have cytotoxic and genotoxic effects
with oncogenic potential. Moreover, a diet along with prebiotics and probiotics can in-
fluence the richness of microbiome by enhancing microbial diversity and nurturing the
exiting flora. Thus, the quality of diet delivered to the gut microbiota may be crucial for
optimum health benefits. In the current era of highly processed food consumption,
adulteration, and food contamination, the gut biodiversity and chemical composition is
profoundly affected, leading to chronic colonic inflammation which increases the risk for
CRC [31,32].

Dietary factors such as higher levels of red meat, processed meat, refined sugar, al-
cohol, and harmful fatty acids as well as lower levels of dietary fibers have been sug-
gested as contributing factors to unhealthy microbiome and their metabolites induce
mutagenic changes [33]. Both red meat and processed meat have been suggested as po-
tential risk factors for CRC because they alter the composition of gut microbiome [16].
Under the influence of fecal inoculum, in vitro studies demonstrated that pork cooked at
higher temperatures leads to carcinogenic O6-carboxy-methylguanine DNA adduct
formation which increase the risk of CRC.[34]. In experimental rats, the heme iron of red
meat reduces the number of operational taxonomical units (OTUs) in the colonic lumen
indicating a reduction in the flora. Firmicutes and Deferribacteres were specifically low-
ered, whereas Bacteroidetes and Proteobacteria counts were increased. Heme iron in-
creases luminal lipid peroxidation, aldehydes, and ROS, leading to cytotoxic and geno-
toxic effects on colonic epithelium [35]. Similarly, in a colitis mouse model fed with heme
iron Constante et al. reported Firmicutes depletion and Proteobacteria overgrowth. These
mice had exacerbation of dextran sodium sulfate (DSS)-induced colitis and subsequently
formed adenomas [36]. However, clinical epidemiological support for this pathway. A
cohort study of over 48,000 women in Canada showed no association between iron, heme
iron, or iron from meat and colorectal cancer [37].

Red meat contains higher levels of N-glycolylneuraminic acid (Neu5Gc) which gets
incorporated into cancer cell surface glycans and triggers immunologically mediated in-
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flammation. Neu5Gc rich diet modifies the microbial composition of the gut with higher
levels of Clostridium and Bacteroides species which efficiently express sialidases that
release the mucopolysaccharide from the glycans [38]. Although it is unclear if this asso-
ciation is causation, bacterial sialidases may prove protective for red meat consumers by
potentially reducing Neu5Gc triggered inflammation. Firmicutes, Bacteroidetes, and
Proteobacteria phyla also produces enzymes, such as beta-glucuronidase and glycer-
ol/diol dehydratase, which can metabolize heterocyclic amines from red meat into less
toxic products, thus proving useful in CRC [39].

Despite the data suggesting that red meat may contribute to carcinogenesis via mi-
crobiota alterations, the overall balance of the literature shows that this association is
weak at best. A rigorous review of 35 prospective studies showed minimal association
between red meat and colorectal cancer with most relative relatively risks below 1.50 and
not statistically significant [40]. An alternative hypothesis is that specific combinations of
foods may have a detrimental impact on the microbiome. Rats concomitantly fed both
red meat and high amylose-resistant starch shift the gut metabolism from protein to
carbohydrate fermentation with modulation of gut microbial composition involving
mainly Ruminococcus bromii, Bifidobacteriales, Turicibacteraceae and Lactobacillaceae.
This change in taxonomical traits were associated with reduced expression of
pro-oncogenic miR17-92, protective against CRC [41]. Functional foods such as processed
meat fortified with polysaccharide inulin increases the abundance of anti-inflammatory
and fiber fermentative Blautia genus which increase SCFAs like propionate and butyrate
[42]. This has shown to reduce colonic polyps in experimental rats possibly due to the
anti-inflammatory effects. Alternatively, shifting to a fish-inclusive vegetarian diet might
have potential benefit over a standard western diet [43]. Collectively it can be postulated
that consumption of certain food combinations may be more toxic than others for the
colonic epithelium and increases the risk for CRC development.

Dietary constituents significantly modulate chronic inflammation by regulating the
immune response. Liu et al. reported that CRC subjects who consumed food with in-
flammatory potential were positive for Fusobacterium nucleatum in their cancer biop-
sies. suggesting that healthy diet is a valuable key to a healthy colon [44]. Moreover,
consumption of whole grains and dietary fiber rich prudent diets decrease the risk of
developing F nucleatum-positive CRC [45]. Fermented foods such as yogurts are protec-
tive to the colonic mucosa and maintain microbial diversity, which reduces the risk for
CRC, especially in the proximal colon [46]. Moreover, yogurts supplemented with ly-
ophilized jabuticaba (Myrciaria jaboticaba) seed extract have strong prebiotic, antioxi-
dant and anti-cancer properties. When these supplements were fed to CRC rat models,
the gut microbiota was modulated and increased the cytotoxic effects on colon cancer
cells [47]. This suggests that consumption of yogurt or other probiotic rich foods may be a
healthy supplement for the gut and its microbial ecosystem.

Antioxidant consumption is very essential for the survival of certain bacterial strains
in the GIT. Absence of ascorbic acid, glutathione and uric acids turned out to be lethal for
the anaerobic gut bacterial species (Clostridium sporogenes, Clostridium subterminale
and Romboutsia lituseburensis) whereas supplementation of these anti-oxidants in con-
trolled aerobic condition resulted in production of protective SCFA such as propanoic,
butanoic, isobutanoic and isopentanoic acids [48]. SCFA were excessively synthesized in
aerobic conditions as compared to anerobic environment. It can be hypothesized that
aerobic conditions in colon will favor higher SCFA production with dietary supplemen-
tation of antioxidants. SCFA such as butyrate produced by the anerobic species has a
protective effect in CRC [49]. In CRC survivors, consumption of legumes such as navy
beans improved the production of useful metabolites in the stool. Gut microbes metabo-
lize the indigestible substrates present in navy beans to synthesize useful metabolites
with antioxidants and anti-inflammatory properties [50]. Individuals with diets deficient
in dietary fibers, high in processed meat and high in sugary beverages show colonization
with sulfur-digesting bacteria which have been associated with an increased risk for
distal colon and rectal malignancies [51]. However, the relative risk for CRC in this pop-
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ulation is only 1.43, and those consuming sulfur-metabolizing diet were also more likely
to smoke and have a higher BMI.

Glycyrrhiza uralensis polysaccharide (GCP) extracted from licorice impedes tumor
growth and metastasis in mice inoculated with murine colon cancer (CT-26) cells. This is
achieved by modifying the composition of gut microbiome such as increased level of
Enterorhabdus, Odoribacter, Ruminococcaceae_UCG_014, Ruminococcaceae_UCG_010,
Enterococcus, and Ruminiclostridium_5 [52]. Similarly, polysaccharides extracted from
jujube have been associated with reductions in inflammation in mouse colon cancer
models, due most likely to an associated decrease in Firmicutes and Bacteroidetes taxa in
the gut flora [53]. Similarly, combinations of Ganoderma lucidum polysaccharides and
Gynostemma pentaphyllum saponins decreased colonic inflammatory and precancerous
changes in APCmin/+ mice. Together they altered the microbial richness by increasing
SCFA-producing microbes and decreasing sulfate-reducing microbes [54]. This suggests
that certain plant and fungi-based products may be effective prebiotics and exert protec-
tive effects on the colonic epithelium.

Alcohol consumption is associated with alteration of the gut flora that potentially
accelerates CRC carcinogenesis. Alcohol is metabolized by the gut microbiota to toxic
intermediates leading to colonic carcinogenesis via formation of DNA-adducts, oxidative
stress, epimutations, loss of epithelial barrier function, and immunomodulation [55]. This
effect can be potentiated and aggravated by poor nutrition and chronic smoking status;
covariates commonly associated with alcohol consumption. The microbiota in alcoholics
have decreased dominant obligate anaerobes such as Bacteroides and Ruminococcus and
increased Streptococcus taxa [56]. Integrated analysis using 165 rRNA data and epide-
miological characteristics by Kim et al. revealed that alcohol consumption increased
Fusobacterium OTU levels in gut [57]. Among alcoholics, deficiency of obligate anaerobe
OTUs was demonstrated through decreased production of acetaldehyde in formed stool
when treated with specific quantities of ethanol under experimental conditions. This
suggested that restriction of alcohol can potentially prevent colonic mucosa from geno-
toxic insults.

4. The Effects of Dietary Interventions on Colorectal Cancer

Dietary fibers provided by plant-based diet are not digested by the human intestinal
enzymes and reach the lower GIT unchanged. Figure 2 illustrates the effects of dietary
factors on the gut microbiome and their impact on CRC development. Colonic bacteria
express the enzymes which metabolize and ferment dietary fibers into useful metabolites
such as SCFAs which have roles in decreasing colonic mucosal inflammation and low-
ering the risk for CRC [58,59]. Butyrate has an inhibitory effect over the histone deacety-
lases (HDAC) enzymes which results in enhanced expression of genes which arrest the
cell cycle [60]. Butyrate also serves as an energy source for normal enterocytes; however
rapidly dividing CRC cells are dependent on glycolysis-based metabolism rather than
butyrate utilization for energy needs [61]. Co-culturing certain bacterial strains results in
enhanced production of butyrate and has extended SCFA-mediated protection in animal
models. Faecalibacterium prausnitzii co-cultured with Bifidobacterium catenulatum and
supplemented with fructooligosaccharides in anerobic conditions significantly enhanced
butyrate production and decreased the release of proinflammatory cytokines such as IL-8
from the HT29 colon cancer cells in vitro. The supernatant from the co-cultured bacteria
decreases IL-8 production in DSS-induced colitis mice models as well [62]. More recently,
butyrate has also been shown to increase the extracellular tight junction protein com-
plexes in APCmin/+ mice model [63]. This underscores the potential role of butyrate in
preventing formation and dissemination of CRC.
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Diet-derived phytochemicals such as polyphenols and flavonoids have protective
effects on the colonic mucosa [64,65]. Most of the ingested polyphenols present in
plant-based diets and their derivatives reach the colon unaltered and are metabolized by
intestinal bacteria to active substances which decrease oxidative stress, inflammation,
and tumorigenesis [64]. Polyphenols also act on the gut microbiota to enhance the pro-
liferation of beneficial strains and inhibit pathogenic strains. Polyphenols increases the
growth of beneficial butyrate-producing microbiota which inhibit inflammation, while
decreasing strains like Lactobacillus and Bifidobacterium which induce colitis and CRC
[66]. Polyphenols such epigallocatechin-3-O-gallate and theaflavins present in tea ex-
tracts exert anti-inflammatory effects on Fusobacterium nucleatum-induced inflamma-
tory bowel disorders, which are risk factors for CRC [67]. These anti-inflammatory effects
are due to the reduction of NF-kB activation that triggers the production of
pro-inflammatory cytokines such as IL-1f3, IL-6, TNF-a (tumor necrosis factor-a), and
CXCLS8 (C-X-C motif chemokine ligand 8) in macrophages. Polyphenols present in ber-
ries function as prebiotics and improve microbial richness in the form of Bifidobacterium,
Lactobacillus and Akkermansia. Berry polyphenols also modulate the production of cy-
tokines which alleviate inflammation and decrease the viability and proliferation of CRC
cells [68]. Polyphenols present in mango pulp such as gallotannins and gallic acid exhibit
anti-inflammatory effects on the intestinal mucosa. In human subjects, consumption of
mango pulp has been shown to decrease pro-inflammatory cytokines such as IL-8,
growth-regulated oncogene (GRO), and granulocyte macrophage colony-stimulating
factor (GM-CSF). Mango polyphenols increase the abundance of Lactobacillus planta-
rum, Lactobacillus reuteri, and Lactobacillus lactis as well as increase butyrate levels in
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feces [69]. Date palms, another source of polyphenols and fibers, do not significantly alter
gut microbiota or raise SCFAs in healthy volunteers, but decrease genotoxicity, fecal
ammonia levels, and increase bowel movements, thereby decreasing the risk for CRC
[70]. Similarly, administration of polyphenol-rich green tea extracts to human volunteers
results in enhanced Firmicutes to Bacteroidetes ratio and SCFAs producing gut microbes,
while decreasing the colonization of oral cavity organisms like Fusobacterium [71]. Thus
collectively, polyphenols are natural plant products which may have a potent role in re-
shaping the gut microbiome and their regular consumption can stimulate the microbiota
to produce active metabolites which prevent CRC tumorigenesis.

Curcumin, a natural product from Curcuma longa plant, is a polyphenol with a
significant role in decreasing inflammation, oxidative stress, and gut dysbiosis [72]. Sim-
ilar to other polyphenols, curcumin is also subjected to bacterial metabolism resulting in
production of useful metabolites which have protective effects in CRC. IL-10-deficient
CRC mice models fed a curcumin-based diet demonstrated improved gut flora taxo-
nomic profiles such as an abundance of Lactobacillales and deceased levels Coriobacter-
ales. This was also associated with a reduction in tumor size and complete elimination of
macroscopic lesions. In addition, there was restoration of (-catenin on plasma mem-
branes. However, there were limited effects on mucosal inflammatory responses [73].
Farhana et al. reported that a combination of essential turmeric oil-curcumin and to-
cotrienol-rich fraction of vitamin E isomers effectively reduced the proliferation of colon
cells (HCT-116 and HT-29 cells) in vitro and suppressed the growth of mice xenograft
formed of HCT-116 cells in vivo [74]. The anti-tumor effect was observed with a shift in
microbial diversity with a concomitant increase in Lactobacillaceae and Bifidobacteri-
aceae and Clostridium XIVa which have probiotic and anti-inflammatory actions, and
decrease in Bacteroides, Parabacteroides, Lachnospirace, Ruminococcaceae and Firmic-
utes families. Collectively, this evidence supports the potential role of curcumin in com-
bination with other natural substances in diet in contributing to restricting tumor growth.

Flavonoids are polyphenols abundant in fruits and vegetables and naturally impart
their colors due to pigments [75]. The diverse gut microbial flora and associated enzymes
convert the flavonoids into bioactive metabolites which result in anti-inflammatory, an-
tioxidant, and anti-tumor effects [75]. Neohesperidin, a flavonoid which is abundant in
citrus fruits, imparts tumoricidal activity in APCmin/+ CRC mice models by inhibiting
angiogenesis and promoting apoptosis. This effect is achieved through restructuring of
the gut microbiota composition as shown by fecal transplantation from neohesperi-
din-treated mice. Neohesperidin treatment increased Firmicutes and Proteobacteria and
decreased Bacteroidetes species [76]. Black raspberry anthocyanins are another group of
protective flavonoids that decreased tumorigenesis in colitis-associated CRC model
mices by inducing epigenetic changes [77]. Pan et al. reported that consumption of
raspberry anthocyanin resulted in a significant increase in anti-inflammatory taxa of
Akkermansia and Desulfovibrio as well as butyrate producing Anaerostipes. However,
alteration in the microbial composition was achieved only on consumption of whole
raspberries [78]. Thus, consumption of flavonoids abundant in a plant-based diet im-
proved microbial richness and effectively decreased CRC growth.

Olive oil, an essential component of the Mediterranean diet, is rich in monounsatu-
rated fatty acids, squalene, phytosterols, and phenols [79]. Phenolic derivatives of some
of these nutrients are further metabolized by gut microbiota into active substances that
achieve chemoprevention in CRC. Consumption of extra virgin olive oil (EVOO) has a
superior effect on the mucosal health when compared to other oils such as coconut and
sunflower. In experimental mice models, high-fat diets based on sunflower and coconut
oil led to gut microbial dysbiosis with inflammatory changes [80]. Interestingly, EVOO
helped in recuperating the gut dysbiosis by increasing the Firmicutes/Bacteroidetes ratio
and promoting beneficial microbiota such as Akkermansia growth, while decreasing
harmful microbiota such as Enterococcus, Staphylococcus, Neisseria and Pseudomonas.
This suggests that diets based on extra virgin olive oil may be beneficial for CRC pre-
vention, compared to other oils. Other lipids such as n-3 polyunaturated fatty acid
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(PUFA) in combination with fermentable dietary fibers have been shown to regulate
critical pathways related to programmed cell death and epigenetic dysregulation ob-
served in CRC [81]. In a randomized control trial, administration of n-3 PUFA lead to an
increase in butyrate-producing bacteria such as Bifidobacterium, Roseburia, and Lacto-
bacillus suggesting that it has role in reducing inflammation and CRC risk [82]. However,
it is noteworthy that several lipid signature molecules including PUFA and sphingolipids
are altered in the fecal metabolomic profile of the adenoma-carcinoma sequence, which
correlated to many species of Firmicutes and Bacteroidetes in the gut microbiome [83].
This suggests that careful selection of lipids in diet, especially EVOO and n-3 PUFA, is
necessary for optimizing healthy colonic mucosa.

The combination of prebiotics and probiotics, also known as synbiotics, and their
consumption is presumably an active intervention to modulate the gut microbiome in
preventing CRC. This works by enriching the gut microbiome and the microbial strains
which protect the intestinal mucosa by decreasing inflammation, uncontrolled prolifera-
tion, immune responses, production of toxic metabolites, and oxidative stress [84]. In an
experimental in vitro chip-based model (HuMiX gut-on-a-chip), synbionts (consisting of
Lactobacillus rhamnosus Gorbach-Goldin strain) have been shown to selectively capaci-
tate the microbes that downregulate oncogenic signaling pathways (in Caco-2 cells). They
also enhanced lactate production and drug resistance in colon cancer-derived cells, while
increasing acetate and formate levels [85]. A new symbiotic combination of Lactobacillus
gasseri 505 and Cudrania tricuspidata leaf extract in fermented milk has been shown to
decrease Staphylococcus and increase Lactobacillus, Bifidobacterium, and Akkermansia
in the gut microbiota, thus increasing protective effects in DSS/azoxymethane (AOM)
induced colitis-CRC model mice. This in vivo intervention decreased tumor proliferation
and inflammation (marked by decreased levels of TNF-a, interferon (IFN)-y, IL-1f, IL-6,
inducible nitric oxide synthase and cyclooxygenase-2) and lead to upregulation of an-
ti-inflammatory cytokines IL-4 and IL-10 [86]. Praveen et al. developed raindrop candy
consisting of polysaccharides extracted from Indian seaweed (S. wightii, E. compressa,
and A. spicifera) and probiotic species L. plantarum NCIM 2083. These seaweed poly-
saccharides demonstrated anti-cancer effects on RAW 264.7 macrophage and HT-29
human colon cancer cell line in vitro [87]. Thus, synbiotics could be novel therapeutic
measures to strengthen the gut microbiome and potentially mitigate CRC by alleviating
inflammation and preventing tumorigenesis. Consumption of dietary fibers and di-
et-derived factors such as phytochemicals and essential fatty acids, as well as inclusion of
prebiotics, probiotics, and postbiotics may lead to a multi-pronged protective effect
against CRC. Therefore, adopting a healthy fiber-based diet consisting of fruits and veg-
etables could be effective in promoting gut health. Table 1 presents the studies on dietary
factors influencing the gut microbiome and its effect on the colonic mucosa and CRC
progression.

Table 1. Studies showing the effect of dietary factors influencing the gut microbiome and its impact on the colonic
mucosa and CRC progression.

Author Human/in Dietary factors or Influence on gut Impact on
vivolin intervention microbiome colon/CRC
vitro
Constante et al., | in vivo Heme iron (red meat) | Firmicutes 1 DSS induced Colitis
2017 1 Proteobacteria 1 Colitis induced
adenoma
Fernandez et al., | in vivo Processed meat mixed with 1 Blautia CRC prevention
2019 polysaccharide inulin 1 SCFA production
(Functional food) 1 Anti-inflammatory
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2019

Gorbach-Goldin
(Probiotic)

action
Lagha et al., 2016 in vitro Epigallocatechin-3-O-gallate | | Fusobacterium nucleatum | | Inflammation
and Theaflavins (Tea | NF-kB activation
polyphenols)
Kim et al., 2020 Human Mango pulp polyphenols 1 Lactobacillus | Intestinal
inflammation
1 IL-8, GRO and
GM-CSF
Gong et al., 2019 in vivo Neohesperidin (Flavonoid) 1t Firmicutes 1 Apoptosis
1 Proteobacteria | Angiogenesis
| Bacteroidetes
Chen et al., 2018 in vivo Black raspberry t Eubacterium rectale | Tumorigenesis
anthocyanin (Flavonoid) 1 Faecalibacterium | SERP2 promoter
prausnitzii methylation
1 Lactobacillus
Pan et al., 2017 in vivo Black raspberry 1 Akkermansia CRC prevention
anthocyanin (Flavonoid) 1 Anaerostipes
1 Desulfovibrio
Rodriguez-Garcia et | in vivo Extra virgin olive oil 1 Firmicutes:Bacteroidetes | | Gut dysbiosis
al. 2020 1 Akkermansia 1 Anti-inflammatory
| Enterococcus effect
| Staphylococcus
| Neisseria
| Pseudomonas
Watson et al,, 2018 | Human n-3 PUFA 1 Bifidobacterium CRC prevention
1 Roseburia (Increase butyrate
1 Lactobacillus producers)
Kim et al., 2020 in vitro Fructooligosaccharides Faecalibacterium prausnitzii | | Pro-inflammatory
in vivo Bifidobacterium catenulatum | cytokines
(Co-culture)
Yuan et al., 2018 Human Green tea extracts 1 Firmicutes:Bacteroidetes | CRC prevention
(Polyphenols) 1 SCFA producers
| Fusobacterium
Pluta et al., 2020 in vivo Curcumin (polyphenol) 1 Lactobacillales | CRC tumor size
| Coriobacterales
Farhana et al., 2020 | in vivo Essential turmeric 1 Lactobacillaceae | CRC proliferation
oil-curcumin and vitamin E 1 Bifidobacteriaceae 1 Probiotic action
isomers 1t Clostridium XIVa 1 Anti-inflammatory
effect
Greenhalgh et al., | in vitro Dietary fiber Lactobacillus rhamnosus CRC prevention

1 Oncogenic

pathways
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| Lactate production

| Chemoresistance

Mehta et al., 2017 Human Prudent diet (Whole grain | Fusobacterium nucleatum | | CRC risk
and dietary fiber)

Oh et al., 2020 in vivo Cudrania tricuspidate Lactobacillus gasseri 505 1t Lactobacillus
extracts in fermented milk (Probiotic) 1 Bifidobacterium
(Prebiotic) 1 Akkermansia

| Inflammatory
cytokines

1 Anti-inflammatory

cytokines
Lietal., 2019 Human Childhood calorie | Fusobacterium nucleatum | | CIMP and |MSI
restriction which influences
prognosis of CRC
Sobhani et al., 2019 | in vivo Fecal microbiota } Coprococcus Enhanced DNA
transplantation (of CRC 1 Bacteroides mutation and
subjects to germ free mice) hypomethylation

involving genes of

pro-oncogenic Wnt

and Notch pathway
in mice
Alrafas et al., 2020 in vivo Resveratrol (plant 1 SCFA (butyrate and CRC prevention
stilbenoid) iso-butyrate) producers | | HDAC
1 Foxp3

1 Treg cells and IL-10
| Thl and Th17 cells
Abbreviations: CIMP: CpG island methylator phenotype; CRC: colorectal cancer; DSS: dextran sulfate sodium; Foxp3:

forkhead box P3; GM-CSF: granulocyte-macrophage colony-stimulating factor; GRO: growth-regulated oncogene;
HDAC: histone deacetylase; IL-8: interleukin-8; MSI: microsatellite instability; NF-kB: nuclear factor
kappa-light-chain-enhancer of activated B cells; PUFA: polyunsaturated fatty acids; SCFA: short chain fatty acid;
SFRP2: secreted frizzled related protein 2; Symbols: Enhanced (1); Reduced ()

5. The Diet-Gut Microbiome-Epigenetics Axis

Cancer is triggered by a multitude of factors that destabilize the genetic regulatory
mechanisms controlling the cell proliferation events. Apart from mutations occurring in
the tumor suppressor genes or protooncogenes leading to either loss or gain of resulting
protein function, epigenetic changes also transform the transcriptomic profile and the
genomic landscape resulting in CRC oncogenic traits (Figure 3). Epigenetic dysregula-
tion, otherwise known as ‘epimutations’, commonly occur by promoter methyla-
tion/demethylation of CpG islands, histone acetylation/deacetylation or by non-coding
RNA such as miRNA which alter the expression of genes involved in cellular growth,
differentiation, and metabolism [88]. The gut microbiome is unique in the sense that it
carries millions of genes which execute functions exotic to the human genome and their
metabolic activities depend on the substrate present to them by the host diet, thus estab-
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lishing a symbiotic relationship. However, this symbiosis comes at a cost as impaired
nutrition can result in the synthesis of harmful metabolites which potentiate the host
genomic architecture’s susceptibility to genotoxicity [88].
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Figure 3. The host-gut microbiome influencing the CRC associated epigenetics. The resulting gut microbial metabolites
can induce pro-oncogenic or onco-suppressive effects on CRC by modulating epigenomics.

Abbreviations: CRC: colorectal cancer; FFAR2: free fatty acid receptor 2; FMT: fecal microbiota transplantation; GM:
gut microbiome; ncRNA: non-coding RNA; SCFA: short chain fatty acids; SFPR2: secreted frizzled related protein 2;
TET3: ten eleven translocation 3

Symbols: Enhanced (1); Reduced (]); Activation (-)

The SCFAs, bacterial metabolites produced by digestion of dietary fibers by gut
microbes, regulate certain epigenetic alterations in enterocytes associated with CRC car-
cinogenesis [88]. SCFAs such as butyrate protect the genetic and epigenetic architecture
of enterocytes by multiple mechanisms [58]. The foremost includes its anti-inflammatory
action, whereby it alleviates colonic mucosal inflammation and directly decreases the risk
for CRC. Butyrate upregulates the activity of T-regulatory (T-reg) cells which exert an
inhibitory effect on pro-inflammatory cytokine production and thereby blocking
pro-oncogenic pathways [89]. Butyrate has an inhibitory effect over the HDAC enzymes
which results in enhanced expression of genes which arrest the cell cycle [60]. Free fatty
acid receptor 2 (FFAR2), which is activated by SCFAs such as butyrate, is known to
suppress inflammation and prevent epigenetic dysregulation in CRC. Loss of FFAR2 in
DSS/AOM treated APCmin/+ colitis-CRC mice models led to overexpression of HDAC
mediated by overactivation of CREB (cAMP-response element binding protein). This
resulted in an epigenetic under-regulation of immunomodulating genes such as SFRP1,
Dickkopf-related protein 3 (DKK3), and suppressor of cytokine signaling 1 (SOCS1)
which were collectively associated with enhanced infiltration of the colonic mucosa and
tumor tissue by the neutrophils. The study demonstrated that the epigenetic dysregula-
tion induced by loss of FFAR2 resulted in enhanced colonic inflammation, progressing
into adenoma and adenocarcinoma formation [78]. The loss of FFAR2 subjugates the
protective immunomodulatory effect of BRB in CRC prevention [78]. This suggests that
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enterocytic expression of functional FFAR2 is important for the beneficial effects of gut
microbial metabolites. One carbon metabolism mediated by S-adenosyl methionine
(SAM) transfers a methyl group to the CpG islands in the DNA promoter region which
affects the gene expression and is of significance in CRC [90]. Thus, bacterial metabolites
in the gut also serve as co-factors and epigenetic regulators within the host cell.

The absence of calorie restriction during childhood may negatively impact microbi-
ota composition which may contribute to epigenetic dysregulation and development of
CRC later in adulthood [77]. Subjects who were energy restricted during their childhood
had decreased abundance of pathogenic species such as Fusobacterium nucleatum, Bac-
teroides fragilis, and Escherichia coli in later life, compared to non-restricted subjects
[77]. Fusobacterium nucleatum is specifically associated with development of genetic and
epigenetic defects such as microsatellite instability (MSI) and CpG island methylator
phenotype (CIMP), respectively [75]. Similarly, consumption of high caloric foods could
lead to histone modifications such as methylation and acetylation at the active enhancers
which augments the gene expression pertaining to CRC. Transplantation of colonic mi-
crobiota adapted to a high-fat diet into germ-free mice fed on high-calorie diet initiated
the reoccurrence of these epigenetic changes [91]. In another experiment, human fecal
microbiota transplantation (from CRC subjects) to germ-free mice (treated with
azoxymethane, CRC model) resulted in increased rate of DNA mutation and decreased
DNA methylation involving the gene families of oncogenic Wnt and Notch pathway, in
conjunction with lower abundance of Coprococcus and higher Bacteroides in stools [92].
Sobhani et al. used fecal micriobata transfer techniques to examine differences in mice
who receiving micriobiota from human subjects with or without colorectal cancer. With
this approach they developed a blood-based cumulative methylation index (CMI) for
assessing methylation status from three selected genes WIF1, NPY, and PENK respec-
tively in CRC [92]. It was observed that a CMI>2 had significant correlation with CRC
and the associated microbiota significantly composed of microbes from Parvimonas ge-
nus [92]. Thus, CMI could be a useful non-invasive tool in analyzing epigenetic de-
rangements associated with increased risk of developing CRC.

Plant-based derivatives and microbiomes together can modulate epigenomic
changes associated with CRC. Anthocyanins present in freeze-dried BRB extracts have
been shown to induce demethylation of secreted frizzled related protein 2 (SFRP2) pro-
moters, revived by probiotics such as Eubacterium rectale, Faecalibacterium prausnitzii,
and Lactobacillus in DSS/AOM colitis-CRC model mice [77]. SFRP2 hypermethylation
and subsequent downregulation are highly associated with development of hepatocel-
lular carcinoma and CRC [93]. Gut bacterial dysbiosis activates ten-eleven-translocation 3
(TET3) expression in colonocytes which induces demethylation of lamina-associated
domains (LADs) leading to epigenetically programmed tumorigenesis associated with
impaired chemotherapeutic response in CRC [94,95]. Resveratrol, a plant based stil-
benoid induces changes in the gut microbiome and is associated with an increased pro-
duction of butyrate and isobutyrate producing taxa, causing release of anti-inflammatory
cytokines. This is achieved through resveratrol-induced inactivation of HDAC, which
correlated with upregulation of transcription factor forkhead box P3 (Foxp3). This has
several immunomodulatory functions, such as concomitant activation of T-regulatory
(T-reg) cells, IL-10 synthesis, and reduction in pro-inflammatory Thl and Th17m cells.
This resulted in inhibition of inflammation in association with restoration of gut micro-
biome thereby reducing the risk of colitis-associated CRC [96]. Lactobacillus reuteri 6475,
a commensal and  probiotic  producing 2-carbon  folate  metabolite,
5,10-ethenyl-tetrahydrofolyl polyglutamate, biochemically takes part in transfer of 2
carbon atoms from acetate to homocysteine, leading to formation of an exclusive amino
acid ethionine, instead of conventional methionine. Incorporation of ethionine instead of
methionine in proteins leads to reduced methylation as well as enhanced ethylation of
lysine residues in histones [97]. Dietary ethionine can result in immunomodulatory ef-
fects by suppressing cell mediated immunity and plausibly by NF-kB inhibition [97,98].
However, ethionine also carries carcinogenic potential, which can be reduced by sup-
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plementing sufficient methionine [99]. Nicotinamide adenine dinucleotide (NAD+) de-
pendent deacetylases such as sirtuin-3 have profound anti-inflammatory and anti-cancer
effects. Sirtuin-3 knockout mice showed pro-tumorigenic effects marked by depressed
levels of pro-apoptotic caspase 3, together with upregulated p38, and chloride volt-
age-gated channel 4 (CLCN4), which is possibly caused by abundance of infective gut
microbes, Escherichia and Shigella dysenteriae [100]. This suggests that consumption of
certain plant-based extracts and probiotics may help to prevent epigenetic alterations
associated with CRC.

Finally, the non-coding RNA are also products of the genetic machinery which reg-
ulate gene expression in CRC [88]. Yuan et al. reported 76 differentially expressed mi-
croRNAs (miRNAs) in tumor samples of which 55 were upregulated and 21 downregu-
lated. miR-182, miR-183, miR-503, and the miR-17~92 clusters were among the most con-
sistently overexpressed miRNA in CRC [101]. Genus Blautia reciprocally correlated with
miR-20a, miR-21, miR-96, miR-182, miR-183, and miR-7974, while positively correlated to
miR-139, which is significantly expressed in normal tissues [101]. However, enrichment
analysis has shown that Akkermansia is the only genus associated with miRNA, which is
linked to CRC pathway [101]. This suggest that CRC dysbiosis often changes expression
profiles of miRNA linked to cancer pathway. In the case of Fusobacterium nucleatum,
selective downregulation of miRNA such as miR-18a and miR-4802 has shown to activate
autophagy, inhibit apoptosis, and induce chemoresistance in HCT116 and HT29 CRC
cells [29]. miR-18a and miR-4802 post-transcriptionally regulate the expression of
pro-autophagic proteins ULK1 and ATG?7. However, Fusobacterium nucleatum did not
correlate significantly with miR-31 expression which was previously shown to be up-
regulated in CRC with BRAF mutation [102,103]. Therefore, Fusobacterium nuclea-
tum-associated CRC plausibly has a key miRNA profile related to its pathogenesis.

The gut microbiome is also an enormous source of lipopolysaccharides (LPS) which
are immense activators of inflammation and associated with CRC progression. Exosomal
miR-200c-3p notably impedes LPS-induced CRC invasion and migration by targeting
zinc finger E-box-binding homeobox-1 (ZEB-1) as well as induces apoptosis in HCT116
cells in vitro [104]. Tarallo et al. reported altered bacterial small RNA (elevated in E. coli
and low in Bacteroides ovatus) profile in stools of CRC subjects showing bacterial
dysbiosis [105]. Stool samples from CRC patients also showed dysbiosis, characterized by
abundance of Alistipes putredinis species and Firmicutes phyla. Across human ncRNA,
miR-378a-3p and piR-11481 were the most differentially expressed miRNA and small
ncRNA, respectively. Thus, it is suggestive that non-coding RNA expression affecting
CRC pathogenesis correlates with the composition of the gut microbiome. The microbial
dysbiosis pertaining to epigenetic landscape of CRC is highly dependent as well as reg-
ulated by our dietary pattern [58]. Therefore, diet has an important role in repopulating
the gut microbiome and thereby modulating the epigenetic events.

6. Conclusion

Emerging evidence suggests a significant association between the gut microbiome
and colorectal cancer. As a result, dietary constituents such as phytochemicals, essential
fatty acids prebiotics, probiotics, and postbiotics may offer benefits in the prevention of
CRC through favorable alterations in the gut microbiome. More specifically, dietary and
lifestyle factors may enrich the growth of healthy microbes and suppressing the
non-beneficial strains. Beneficial strains of gut microbiome produce enterocyte-friendly
metabolites such as SCFAs which may protect the mucosa against inflammation and
induction of oncogenic pathways. At this time prospective data examining this an-
ti-cancer approach is lacking. Future studies should examine the microbiome impact of
dietary risk factor modification in patients at high-risk for CRC.
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