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Abstract: Immunotherapy has gained great momentum with chimeric antigen receptor T cell
(CAR-T) therapy, in which patient’s T lymphocytes are genetically manipulated to recognize
tumor-specific antigens increasing tumor elimination efficiency. In the last years, CAR-T cell
immunotherapy for hematological malignancies achieved a great response rate on patients and is a
very promising therapy for several other malignancies. Each new CAR design requires a preclinical
proof-of-concept experiment using immunodeficient mouse models. The absence of a functional
immune system in these mice makes them simple and suitable to be mathematically modeled.
In this work, we developed a three population mathematical model to describe tumor response
to CAR-T cell immunotherapy in immunodeficient mouse models, encompassing interactions
between a non-solid tumor and CAR-T cells (effector and long-term memory). We account for
several phenomena, such as tumor-induced immunosuppression, memory pool formation, and
conversion of memory into effector CAR-T cells in the presence of new tumor cells. Individual
donor and tumor specificities were considered as uncertainties in the model parameters. Our
model is able to reproduce several CAR-T cell immunotherapy scenarios, with different CAR
receptors and tumor targets reported in the literature. We found that therapy effectiveness mostly
depends on some specific parameters such as the differentiation of effector to memory CAR-T
cells, CAR-T cytotoxic capacity, tumor growth rate, and tumor-induced immunosuppression. In
summary, our model can contribute to reduce and optimize the number of in vivo experiments
with in silico tests to select specific scenarios that could be tested in experimental research. Such
in silico laboratory was made available in a Shiny R-based platform called CARTmath. It is an
open-source, easy to run simulator, available at github.com/tmglncc/CARTmath or directly on
the webpage cartmath.Incc.br, containing this manuscript results as examples and documentation.
The developed model, together with the CARTmath platform, provides potential use for assessing
different CAR-T cell immunotherapy protocols and associated efficacy, becoming an accessory
towards in silico trials.

Keywords: three population mathematical model; CAR-T lymphocytes; memory CAR-T cells;

long-term immunity; tumor-induced immunosuppression

1. Introduction

Adoptive cell therapies have been considered a major advance in the fight against
several cancers, especially those associated with the hematopoietic system [1]. Chimeric
antigen receptor T (CAR-T) cell immunotherapy is an adoptive cellular therapy in which
T lymphocytes are taken from the patient’s blood, genetically modified to recognize
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specific antigens expressed by the tumor, submitted to in vitro expansion, and reinjected
into the patient. Insertion of the CAR gene into T lymphocytes bestows their ability to
recognize tumor antigen and directly attack tumor cells regardless of human leukocyte
antigen presentation [2]. Current and future advances in the engineering of CAR and
new immune checkpoint inhibitor drugs offer promising perspectives in the treatment
of cancer. Due to its verified success in eliminating or relieving endurable types of
lymphomas and leukemia, in 2017, the Food and Drug Administration FDA approved
the commercialization of two therapies with CAR-T cells for the treatment of CD19"
B cell malignancies [3,4]. Other target proteins have been studied recently, such as
CD123 which is expressed in many hematological malignancies, including acute myeloid
leukemia (AML), Hodgkin’s lymphoma (HL), acute lymphoblastic leukemia (ALL),
among others, which makes it a potential antineoplastic target [5]. Several new targets
are under investigation and should be tested on mouse models before clinical trials.
A rational experimental design could be achieved with in silico simulations that could
point out the most promising scenarios [6]. More importantly, they can be used to reduce
in vitro/in vivo experiments in substitution to laboratory xenograft mouse studies. This
requires, at a first step, the development of mathematical models to accurately describe
experimental data already present in the literature.

Recent in vitro/in vivo experimental studies investigated the relationship between
immunotherapy with CAR-T cells and the development of immunological memory
[7-10]. Using an immunodeficient mouse model, [7] showed that CAR-T 123 therapy can
eliminate HL and provide long-term immunity against a challenge of the same tumor.
Immune checkpoint blockade (ICB) associated with CAR-T cell therapy is also under
investigation in mouse models where CAR-T cell therapy fails. With the use of immunod-
eficient mouse models, [11] showed that tumor expressing indoleamine 2,3-dioxygenase
(IDO) activity, an intracellular enzyme that has an inhibitory effect on T cells, can be
better controlled by combining the CAR-T cell therapy with 1-methyl-tryptophan (1-MT),
an IDO inhibitor. By the end of 2016, four different ICB drugs were also approved for
the treatment of lymphoma, melanoma, among other cancers. Although the success
of CAR-T cell therapy against hematologic cancers is promising, the mechanisms as-
sociated with failures have been reported and are the subject of recent investigations
[12]. Notably, many challenges remain to be addressed to improve response rates such
as minimum effective CAR-T cell dose, selection of CAR-T subtypes, adverse effects
management, combination of therapies, formation and maintenance of immunological
memory, suppressive microenvironment, and patient specificity, to mention a few [13]. In
this context, mathematical models may contribute to understanding the factors involved
in malignant transformation, invasion, and metastasis, as well as to examine responses
to therapies [8,14-19], confronting hypotheses and testing different settings [20-22].

Simplified mathematical models can be used to investigate some of those issues
and have several advantages, such as reduced simulation time, which allows testing
several experiments in a relatively short period, and the gain of interpretability, that
is, understanding all terms of the model and their impact on the results. Several math-
ematical models in the literature use predator-prey dynamics to explore CAR-T cells’
kinetics [23,24]. However, most of these models do not consider the complex dynamics
of effector CAR-T cell differentiation into memory CAR-T cells and then back to effector
cells after antigen recognition. In this work, we focus on the development of a simple
mathematical model using a system of three ordinary differential equations (ODEs)
to describe CAR-T and tumor cell populations dynamics in immunodeficient mouse
models. Specifically, our model encompasses interactions between tumor cells, effector,
and long-term memory CAR-T cells. The assessment of donor and tumor specificities is
considered as uncertainties in the parameter values. We calibrated some of the model
parameters with in vitro and in vivo data presented in [7] for CAR-T 123 immunotherapy
against HDLM-2 cell line. Considering that the model parameters are highly uncertain,
we built a virtual population (VP) that reflects the variability of the control data. The
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VP heterogeneity allowed exploring the factors that impact therapy outcomes. We also
used the model to retrieve a different CAR-T cell immunotherapy scenario, using data
from [11] for CAR-T 19 immunotherapy on RAJI tumors. We remark that changing
model parameters appropriately made the model suitable to be applied for different
CAR and cell types. In addition, the developed model would allow the inclusion of
other mechanisms in future studies enabling its extension for human patients. Our
model is implemented as an open-source program, called CARTmath, available at
github.com/tmglncc/CARTmath or directly on the webpage cartmath.Incc.br. Using
the CARTmath virtual laboratory, a researcher without a mathematical background can
test the proposed model, reproducing our results, and performing new tests. We use
CARTmath to complement the present study by investigating, in silico, the occurrence of
different therapy outcomes depending on the relationship between the tumor burden
and CAR-T cell number; the intensity of immunosuppression mechanisms in the tumor
microenvironment, and intrinsic individual specificities. Our model simulations provide
insights on the role of these critical mechanisms on the effectiveness of CAR-T cell
immunotherapy, showing that CARTmath can be used for assessing different CAR-T
cell immunotherapy protocols and associated efficacy, complementing and potentially
avoiding further in vivo experiments.

2. Mathematical model
2.1. Model development

Within the context of CAR-T cells immunotherapy in immunodeficient mice, the
therapy response depends mainly on factors such as the capacity of CAR-T cells to
kill tumor cells, the formation of long-term immunological memory, and the immuno-
suppressive effects of the tumor microenvironment. To address these phenomena, we
develop a mathematical model based on ODEs, encompassing three cell populations:
the tumor cells (T), effector CAR-T cells (Ct), and memory CAR-T cells (Cps). Figure 1
shows a schematic description of the mechanisms considered in the model, while the
biological meaning of the model parameters is summarized in Table 1.
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Figure 1. Schematic description of the model structure. Effector CAR-T cells proliferate, have a
cytotoxic effect on tumor cells, differentiate into memory CAR-T cells, and die naturally or are
impaired by tumor-induced immunosuppressive mechanisms. The long-term memory CAR-T
cells also die naturally and are readily responsive to the tumor-associated antigen and when
they interact with tumor cells, they differentiate back into effector CAR-T cells, producing a
rapid immune response against the tumor. Tumor cells grow subject to available resources in the
microenvironment and are killed by effector CAR-T cells.
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The dynamics of the effector (activated) CAR-T cells is described by:

dd% = ¢Cr — pCr +0TCp1 —aTCr . €))
The first right-hand side term of (1) specifies that effector CAR-T cells undergo expansion
due to proliferation at a rate of ¢. This population is reduced at a rate p, which includes
the natural death of the effector CAR-T cells and also its differentiation into long-term
memory CAR-T cells [25,26] according to the linear progression model described in
[8,27]. The term 0TCy, describes the activation of memory CAR-T cells into the effector
state, due to the contact with tumor cells. Indeed, it is well-known that memory CAR-T
cells may provide long-lasting protection to the specific tumor/antigen [28,29]. At any
future time in which memory CAR-T cells come into contact with the same tumor cells,
they can rapidly be converted into effector CAR-T cells, readily activated to prevent
tumor progression when enough memory cells are present in the system. It is also known
that memory CAR-T cells have a lower activation threshold, which eases the secondary
response to a future tumor recurrence [30]. Finally, the term aTCt models the combined
effects of stimulatory and inhibitory signals on effector CAR-T cells modulated by the
tumor. A negative value of « indicates that effector CAR-T cells undergo expansion
stimulated by the tumor burden. On the other hand, a positive value indicates effector
CAR-T cells inhibition due to immunosuppressive mechanisms such as the PD1/PD-L1
immune checkpoint [31]. Many other immune checkpoint molecules have already been
described such as IDO, LAG3, and VISTA with high potential to be used as target therapy
[32,33]. IDO is an intracellular enzyme that has an inhibitory activity on T cells and is
overexpressed in several human cancers [34,35]. In this work, we consider that inhibitory
signals prevail, resulting in positive values for « and we will specifically consider the
effects of IDO inhibition later on. Moreover, we assume that a given dose of effector
CAR-T cells is introduced into the system as an adoptive therapy.
The dynamics of the immunological memory CAR-T cells, a key of the adaptive
immune system [8,36], is modeled by
d;:TM ZGCT—GTCM—“MCM. (2)
Equation (2) assumes that memory CAR-T cells are formed exclusively from the differ-
entiation of effector CAR-T cells at a rate of e. When in future contact with the same
antigen-bearing cancer cells, memory CAR-T cells immediately return to the effector
CAR-T cell phenotype at a per capita rate proportional to the tumor burden (6TCy;). The
term yCys describes the natural mortality of memory CAR-T cells, with a rate of y#, and
mean life-time 1/p.
The response of tumor cells to the CAR-T immunotherapy is modeled by:

ar

5
In the absence of immunosurveillance, we assume a density-dependent growth of
cancer cells due to the limitation of available resources in the tumor microenvironment,
characterizing the existence of intraspecific tumor cell competition. Tumor growth is
described using a logistic growth with maximum growth rate r and carrying capacity
1/b[37,38]. Finally, we assume that effector CAR-T cells kill tumor cells upon contact, at
a constant per capita rate <y; this anti-tumor cytotoxicity mechanism is modeled by the
term yCr T [39-41].

All parameters assume positive values. Further, based on reasonable biological
assumptions, we impose two additional conditions on the model parameters as follows.
First, we note that parameter p may be written as p = # + €, where 7 is the natural
mortality rate of effector CAR-T cells and € is the rate of memory formation. We will
assume that ¢ > 1, which reflects the premise that the healthy donor CAR-T cells

rT(1—bT) — 4CrT. 3)
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are likely to proliferate in vivo and differentiate into memory CAR-T cells, instead of
naturally vanishing. Such condition may be rewritten as ¢ > p — €. Second, we note
that, in general, when the CAR-T therapy leads to complete remission, the tumor is
eliminated in a few days and the populations of effector and memory CAR-T cells
decrease over time. Also, while effector CAR-T cells have a short life span and are not
detected on peripheral blood analyses after tumor elimination [7,11], memory CAR-T
cells can survive for years [42], providing long-term protection against the target antigen
presented by the tumor. This biological behavior is obtained by imposing the restriction
¢ < p, which ensures that effector CAR-T cells decay to zero in absence of tumor cells.
Table 1 summarizes the two restrictions imposed on the values of the parameters.

Table 1: Summary of the model parameters and the two restrictions imposed among ¢,

p,and €.
Parameter Meaning Unit

¢ Cr proliferation rate day ™!
Cr reduction rate, encompassing the Cr natural death and their ,1
differentiation into Cp, day

0 Conversion coefficient of Cy; into Cr due to interaction with T (cell - day) ™

« Cr inhibition/expansion coefficient due to interaction with T (cell - day)~*

€ Effective conversion rate of Ct into Cyy clay*1

U Cpm death rate day~!

r Maximum growth rate of T day~!

b Inverse of the tumor carrying capacity cell ™!

% Cytotoxic coefficient induced by Cr (cell - day)~?

Restriction Meaning

¢ <p Effector CAR-T cells decay to zero in the absence of tumor cells
¢ >p—e€ Healthy donor CAR-T cells proliferate in vivo and differentiate into memory CAR-T cells

2.2. In vitro and in vivo data and model inference

Parameter estimation was performed for two different scenarios of immunotherapy
on immunodeficient mice: CAR-T 123 cells with HDLM-2 tumor cell line and CAR-T
19 cells on RAJI tumor cell line, described in [7] and [11], respectively. The latter was
subdivided into the following scenarios: wild-type RAJI (RAJI-control) treated with
CAR-T 19 immunotherapy; and RAJI expressing IDO enzyme (RAJI-IDO"), treated with
CAR-T 19 only and with a combined therapy of CAR-T19 together with IDO inhibitor
1-MT. We used in vitro and in vivo data published in [7] and [11] to calibrate the tumor
growth rate (r) and the CAR-T cytotoxicity activity () for HDLM-2 and RAJI cells. We
also calibrated the carrying capacity 1/b in the HDLM-2 scenario. Due to the lack of
experimental data from effector and memory CAR-T cells, all other model parameters
were estimated through model simulations. This means that extensive simulations
were performed fixing #, b, and v until finding a (non-unique) set of parameters that
can depict the outcomes predicted in the data. It is also worth mentioning that tumor
burden was experimentally evaluated based on in vivo bioluminescence imaging (BLI)
measurements. We considered one BLI unit as one cell. Although we did not find any
correspondence in the literature to convert BLI to cell number, BLI is directly correlated
with the total number of cells as shown in [43]. The cytotoxic activity of CAR-T on tumor
cells was retrieved from a standard in vitro 4-hour chromium-51 release assay [44]. For
the RAJI tumor, inference of the CAR-T cell inhibition due to interaction with tumor
() was performed based on data from [11]. All used data were extracted using the
free software G3Data Graph Analyzer [45]. For completeness, these data and details
about Bayesian parameter estimation are presented in the Supplementary Material. The


https://doi.org/10.20944/preprints202103.0625.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2021 d0i:10.20944/preprints202103.0625.v1

parameter values used in the simulations for each immunotherapy scenario are given in
Table 2.

Table 2: Model parameter values used in the two immunotherapy scenarios. Additionally, in the
RAJI-IDO™ scenario, the parameters have the same values as for RAJI-control, except for the «,
with & = 1.461699 x 1078 (cell-day) ! for RAJI-IDO* + CAR-T 19 and a = 1.261662 x 108
(cell-day)~! for RAJI-IDO* + CAR-T 19 + 1-MT. Calibrated parameters are indicated

with *.
Parameter HDLM-2 + CAR-T 123 RAJI-control + CAR-T 19
¢ 0.265 day ! 0.830 day !
0 0.350 day ! 0.8300536 day !
€ 0.150 day ! 1.59795 day !
0 6.0 x 107° (cell - day)~! 2.3 x 107 (cell - day)~!
w 4.5 x 1078 (cell - day) ! 1.248506 x 108 (cell - day)~""
n 5.0 x 1073 day~! 6.89 x 1077 day !
r 5.650026 x 10~2 day 1" 0.5071721 day "
b 1.404029 x 10712 cell 0 cell ™!
¥ 3.715843 x 107° (cell - day)~""  3.365388 x 108 (cell - day) "

2.3. Mathematical analysis of model dynamics

We perform a mathematical analysis of the model long-term dynamics, finding the
steady states and characterizing their stability. In order to simplify the calculations, we
non-dimensionalize system (1)-(3), by setting Ct = %X, Cu = %Y, T= %Z, and t = %T,
where X, Y, Z, and T are dimensionless variables. Note that Z represents a fraction of
the T tumor cell population with respect to the carrying capacity. The dimensionless
system is given by

%z—pX—i—qZY—sZX, 4)
Z—};:uX—qZY—wY, (5)
2 _z0-2)-xz, ©)
where p = @, q = %, s = %, u = %, and w = % ; note that these parameters are

positive, due to the conditions imposed on the original parameters (see Table 1). System
(4-6) has the following steady states. The trivial equilibrium point corresponding to
tumor elimination is

Py =(0,0,0) .
Another equilibrium point, representing the tumor escape, given by

P =(0,0,1).

Finally, there are also two nontrivial equilibria corresponding to the coexistence between
tumor cells, effector, and long-term memory CAR-T cells, given by

—s(1 — X)X
Pi:(Xi/Yi/Zi):(Xii [19 S(w Z)] lrl_Xi>/ i:213/

where ¢ = u — p, with u — p positive due to the first condition imposed on the original
parameters, and X, and X3 are the roots of the second-degree equation
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aX?>+bX+c=0,

with coefficients

a=qs>0, b=gr—2qs—sw, c¢=pw—qr+gs-+sw.

Assessing the positiveness and stability of the steady states, we found two thresholds
(bifurcation points), given by

Or = (P+S)%+S and dYgy = %4—21/}7%.

These thresholds determine the following regions in the parameter space where the

model presents different dynamic behavior (see Supplementary Material for details):

) Inregion Ry = {(¢,5); 0 <s < B2, 0 < 07} U{(0,5); s > B, 9 < Osn}, the
non-negative equilibria are Py (which is a saddle point) and P; (which is locally
asymptotically stable);

(1) In region Ry, = {(8,s); s > 0, ¥ > 07}, there are three nonnegative equilibria,
which are Py (saddle point), P; (saddle point), and P; (locally asymptotically
stable);

(T11) In region Rz = {(9,s); s > %, sy < ® < O7}, there are four nonnegative
equilibria, which are Py (saddle point), P; (locally asymptotically stable), P,
(saddle point), and P; (locally asymptotically stable).

The division of the @ x s plane into regions R1, Ry, and Rj is shown in Figure 2a.

s 9 =dsn
L9 =9
v Tl PQ_:E R
n e
‘e
/" ) Cr
(a) ¢ x s plane (b) Phase portrait of the model

Figure 2. The CAR-T therapy ODE model presents different dynamical behaviors in each of the
three regions R1, Ry, and Rs, indicated in the & x s plane (a). In the HDLM-2 + CAR-T 123 scenario,
the parameter values correspond to region Rz, and the phase portrait in this case, together with
typical model trajectories, is shown in (b). The equilibrium points are indicated by red dots. The
yellowish surface represents the separatrix between the basins of attraction of P; (escape) and P;
(stable coexistence). The saddle points are indicated by Py and P.

In order to achieve the patient’s cure, the system trajectory must be either in the
basin of attraction of the tumor elimination equilibrium Py or in the basin of attraction
a stable coexistence equilibrium where only a harmlessly small amount of tumor cells
is present, as described by equilibrium P;. Since the point Py is always unstable, only
the last option is possible, which can be reached in Regions R, and R3. While in region
R; the tumor escape equilibrium P; is unstable (and all trajectories eventually converge
to equilibrium P3), in region R3 we have bistability between P; and Py; in this case, the
model outcome (tumor control or escape) depends on the initial conditions. Setting
the parameter values to those calibrated for immunotherapy with HDLM-2 tumor cells
(Table 2), the model dynamics corresponds to region Rz with P, = (1.5205 x 10%,2.63 x
102,1.442522 x 10°) and P3 = (1.5205 x 10%,1.97519 x 10°,1.089 x 10%), in dimensional
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units. The basins of attraction corresponding to elimination/control and escape are
shown in Figure 2b along with some trajectories of typical model solutions, some leading
to the escape equilibrium point (P;) and others to coexistence equilibrium point (P3).

2.4. In silico population and sensitivity analysis

Individual and tumor specificities may lead to different therapy outcomes under
the same treatment regime. In terms of modeling, they are represented by variations in
the model parameter values so that it would be useful to explore the therapy responses
by considering a variety of plausible physiological parameter sets. To avoid introducing
combinations of parameters that characterize spurious, non-physiological individuals,
we rely on building a VP that reflects the variability observed in the available data using
the strategy similar to that described in [46]. Of note, virtual clinical trials are becoming
increasingly popular to represent the heterogeneity of patient cohorts in pharmacology
models [47,48]. Here we use the resulting VP to investigate how population heterogene-
ity impacts overall treatment responses and to identify the most influential parameters
for each of them.

To build the VP, we first assume that each model parameter is a random variable
following a uniform distribution with a wide plausible range. We take random samples
from the parametric space, each one representing a plausible virtual mouse. The set of
accepted parameters must satisfy the restrictions ¢ < p and € — p + ¢ > 0, as indicated
in Table 1. Moreover, each physiologically plausible set of parameters is included in
the VP only if it leads to a predefined characteristic or behavior similar to that of the
target distribution. Specifically, here we build a VP that matches the overall survival
of non-treated NSG mice injected with HDLM-2 cells reported in [7]. It means that we
simulate the model for a plausible virtual mouse over 300 days, considered here the
maximum life span of the mice without treatment, and it is accepted as a member of
the VP if its survival is in the range of the actual population from [7]. The procedure
proceeds until obtaining a VP with 5,000 virtual mice (VM), with mean and medium
overall survival statistically similar to the actual population.

The VP is then submitted to the CAR-T therapy and the overall treatment response
is evaluated over 300 days. The therapy outcomes are classified into: complete response
(CR), when the number of tumor cells is less or equal to the detection threshold (assumed
equal to 8 x 10° cells, as indicated in [7]), and non-responder (NR), when the number
of tumor cells is greater than 1 x 1019, considered a lethal tumor burden [7]; for com-
pleteness, we classify the outcome with a number of tumor cells between 8 x 10° and
1 x 100 as partial response (PR). Survival curves are made for different CAR-T doses to
investigate how the CR rate decreases with dose reduction. Global sensitivity analysis is
carried out for each treatment outcome by examining scatter plots and evaluating the
Pearson correlation coefficient between the chosen model variable (tumor or memory
CAR-T cells) and all model parameters at early times after therapy. In this way, we
identify the parameters that most impact the tumor burden and the formation of the
immunological memory depending on the therapy response.

2.5. Model settings and numerical solution

Mathematical equations (1)-(3) were solved numerically using the explicit fourth-
order Runge-Kutta method [49]. Simulations represent CAR-T cell therapy in immunod-
eficient mice previously injected with tumor cells. The initial condition for the tumor
population, T(0), corresponds to the injected tumor cells number, while for CAR-T
cells we assume Cr(0) = Cp(0) = 0 cell. At the time when the immunotherapy is
given, a CAR-T cell dose is attributed to Ct and tumor cells have already undergone a
significant growth. Cell populations are followed up to investigate tumor response and
immunological memory formation. In the numerical solution procedure of the model,
the size of the zero cell population threshold is defined as 10~1° cell. Thus, when any cell
population reaches cell numbers below 10710, it is treated as extinct by assigning the zero
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value directly to the corresponding variable. A direct consequence of this hypothesis is
that there may be a complete elimination of the tumor, although mathematical analysis
indicates that the elimination point Py = (0,0, 0) is always a saddle point. Our model
framework is implemented in the CARTmath [50], whereby the results presented in
Section 3 may be easily reproduced using the predefined datasets as explained in the
CARTmath manual.

3. Results: In silico experiments

CARTmath was used to simulate the scenarios of CAR-T 123 cell immunotherapy on
Hodgkin’s Lymphoma (HLDM-2 cell line) and CAR-T 19 cells immunotherapy on ALL-B
(RAJI cell line) in immunodeficient mouse models. HDLM-2 cell line has a low growth
rate and can be rapidly eliminated upon CAR-T 123 immunotherapy even in second
tumor injection (by challenging previously treated mice). On the other hand, RAJI cells
have a very fast growth rate and are not eliminated by CAR-T cells. These two preclin-
ical models that represent two very different scenarios are used here to demonstrate
the plasticity of the developed mathematical model. Using in silico experiments, we
investigate how parameter uncertainties impact CAR-T 123 immunotherapy outcomes.
For the RAJI tumor scenario, we also explore the effect of CAR-T 19 cell immunotherapy
alone or combined with ICB therapy. Of note, the ICB therapy combination with CAR-T
cells is promising in the case of CAR-T cell therapy resistance and is under investigation
in biological studies [51,52].

3.1. CAR-T 123 therapy eliminates HDLM-2 tumor, providing long-term protection, while the
immunotherapy with CAR-T 19 on RAJI tumor slows down its growth

We first simulate the scenario presented in [7], which consists of CAR-T 123 therapy
against HDLM-2 cells. Ruella et al. [7] reported that 2 x 10 cells of Hodgkin lymphoma
(HDLM-2) were injected into immunodeficient NSG mice. Simulation begins with
T(0) = 2 x 10° HDLM-2 cells and tumor progresses in time until it reaches about 2 x 107
cells at t = 42 days (Figure 3a). At this time, immunotherapy with CAR-T 123 cells
is performed, so that we set Ct = 2 x 10° cells at t = 42 days. Effector CAR-T cells
rapidly eliminate tumor cells in a few days, retrieving the experimental remission results
presented in [7]. Our simulation also provides the dynamics of memory CAR-T cells.
Figure 3a shows that, as the population of Cr cells decreases, phenotypic differentiation
occurs giving rise to memory CAR-T cells Cp;. Our simulation shows that effector
CAR-T cell populations remain undetectable until t = 250 days, which agrees on results
presented in [7]. Moreover, our model indicates the presence of long-term memory
CAR-T cells, which slightly decline in time due to a small mortality rate of . Model
parameters values used in this simulation are displayed in Table 2.

In an additional experiment, Ruella et al. [7] demonstrated the formation of the
immune memory by challenging previously treated mice with 1 x 10° HDLM-2 cells
at t = 250 days. The tumor remained undetectable, being eliminated due to the re-
expansion of the effector CAR-T cells. To investigate the model behavior with this
respect, we continued the previous simulation by introducing 1 x 10° tumor cells at
t = 250 days. Figure 3a shows how the model outcome for this challenge. The presence
of tumor cells drives the conversion of memory into effector CAR-T cells, which are
rapidly able to eliminate the new tumor. Afterward, effector CAR-T cells undergo rapid
decay while part of the memory CAR-T cells population is recovered. Tumor clearance
remains until the end of simulation on day 500. As explained in [7], tumor rejection
occurs due to the re-activation of previously undetectable memory CAR-T cells.

Next, we investigate the model behavior in a different scenario with a fast growth
tumor cell. The corresponding experiment is described in [11], which uses RAJI tumor
and immunotherapy with CAR-T 19 cells. RAJI tumors are much more aggressive than
HDLM-2 tumors and express the CD19 antigen. Ninomiya et al. [11] reported that
3 x 10° RAJI tumor cells were injected in SCID/Beige mice and therapy with 1 x 107
cells of CAR-T 19 was given on day 7, which did not eliminate the tumor but could
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partially control its growth. This scenario is simulated with the estimated parameter
values displayed in Table 2. Starting with T(0) = 3 x 10° cells, the tumor reaches almost
1 x 108 cells on day 7, when Cy = 1 x 107 cells of CAR-T 19 are introduced. Retrieving
the results presented in [11], the immunotherapy is able to reduce the tumor growth
rate but not eliminate it, and tumor cell population reaches 6 x 10° cells on day 14, as
shown in Figure 3b. The effector CAR-T cells undergo an expansion of about 30% on
day 9, from which they decrease to extinction, representing the CAR-T cell time course
reported in [11]. In the original experiment and our model simulation, memory CAR-T
cells were not generated.
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Figure 3. Dynamics of tumor cells T (red), effector Ct (green), and memory Cy; (blue) CAR-T cell
populations. (a) The immunotherapy with CAR-T 123 on HDLM-2 and challenge are performed
att = 42 and t = 250 days, respectively. After effector CAR-T cells injection, tumor cells are
rapidly eliminated, and a decay of effector CAR-T cells is observed, which are partially converted
into memory CAR-T cells. The tumor remains undetectable until day 250 when the challenge
is carried out. Upon contact with new tumor cells, memory CAR-T cells are converted into
effector CAR-T cells, which rapidly eliminates the tumor. Afterward, immunological memory
is partially recovered. (b) Immunotherapy with CAR-T 19 on RAJI-control is performed on day
7. There is an expansion of effector CAR-T cells, which can reduce tumor growth rate but did
not eliminate the tumor. Effector CAR-T cells are extinct at the end of the simulation. There is
no memory formation. (c) CAR-T 19 immunotherapy on RAJI-IDO" cells. On day 7, 1 x 107
CAR-T 19 cells were introduced and were rapidly eliminated; (d) CAR-T 19 immunotherapy with
IDO inhibitor (1-MT) shows a restoration of CAR-T cell dynamics, demonstrating the impact of
IDO. The parameter « was estimated for these two cases and was responsible to capture the effect
of IDO inhibition due to 1-MT. Its value decreased for the RAJI-IDO*+ CAR-T 19 + 1-MT case,
being small enough to promote a higher expansion of the effector CAR-T cells, and ultimately
leading to a more effective control on the tumor growth. However, both therapies were not able
either to eliminate the tumor or build memory cells. Dots and standard deviation correspond to
experimental data from [11].
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3.2. Insights on immune checkpoint inhibitors

Our model includes the term aTC7 in equation (1), which describes tumor-modulat-
ed immunosuppressive mechanisms. A higher a value implies a stronger immuno-
suppressive mechanism culminating in less CAR-T cells proliferation. To investigate
ICB mechanisms and, at the same time, how the model deals with different tumors
and CAR-T cells, we selected data from [11] that presents the action of CAR-T 19 cell
immunotherapy against CD19" lymphoma expressing IDO in mice. We then considered
mice bearing RAJI-IDO" cells treated with CAR-T 19 alone (Figure 3c) or combined with
1-MT (Figure 3d), an IDO inhibitor. We estimated « for these scenarios, keeping all the
other parameters fixed with values shown in Table 2 for the RAJI-control. According
to Figure 2C of [11], it should be noted that RAJI and RAJI-IDO" tumor sizes on the
day of immunotherapy administration are indistinguishable so that the same tumor
proliferation rate was used in both experiments. The smaller « value obtained when
1-MT was used allowed a greater expansion of effector CAR-T cells after infusion which
in turn provided a stronger control on the tumor growth. Of note, in both cases, the
CAR-T 19 dose was not able to eliminate the tumor, which eventually escapes, and
there is no formation of memory CAR-T cells. We can also notice the similarity of «
values for the RAJI-control + CAR-T 19 and RAJI-IDO" + CAR-T 19 + 1-MT, reflecting the
ability of the 1-MT to block the immunosuppressive effect of IDO. Thus, the model could
capture the effect of the IDO inhibitor through the « parameter that can modulate the
immunosuppression mechanism used by RAJI-IDO* tumors. These simulations show
the ability of # in modulating immunosuppressive mechanisms displaying the potential
use of our mathematical model as an adjuvant in silico platform to test ICB.

3.3. Insights on dosing strategies: single and fractionated doses

The model is used now to investigate how the relationship between the HDLM-2
tumor burden and CAR-T 123 cell dose and injection protocol impact therapy responses.
To first assess how the dose interferes with the response to the CAR-T 123 immunother-
apy, we perform three different simulations with therapeutic doses of 1.5 x 10, 0.5 x 106,
and 0.2 x 10° cells at t = 42 days. We use the same scenario described in Figure 3a and
the same model parameters shown in Table 2, keeping the initial tumor burden equals to
T(0) = 2 x 10° cells. The resulting dynamics are shown in Figure 4a-4c. A CAR-T dose
of 1.5 x 10° cells can perform tumor elimination, although the level of memory CAR-T
cells at t = 200 days is smaller than that in the case presented in Figure 3a, in which the
therapeutic dose is 2 x 10° cells at t = 42 days. Higher CAR-T cell dose generates greater
immunological memory CAR-T cell pool. On the other hand, by reducing the CAR-T
dose to 0.5 x 10° cells, the tumor is not completely eliminated. It undergoes an intense
decrease but resumes growth on day 150, eventually reaching a state in which it does
not grow or shrink significantly on day 500; the tumor is reduced to a very small (but
not zero) value, which characterizes a state of a residual disease, as depicted in Figure
4b. In this immunotherapy outcome, both Cr and Cj cells are non-zero, and therefore
there is the coexistence of the three cell populations. This is a typical configuration of
tumor equilibrium, one of three “Es” of immunoediting [53]. Finally, further reducing
the CAR-T dose to 0.2 x 10° cells, the tumor escapes (Figure 4c); there is a complete
and rapid extinction of the effector CAR-T cell population and no formation of memory
CAR-T cells. Remarkably, these three possible immunotherapy responses of elimination,
residual disease (coexistence), and escape can also be reached by fixing the CAR-T dose
and increasing the tumor burden.

As the tumor burden in the residual disease outcome at t = 300 days is always
below the detection threshold, assumed equal to 8 x 10° cells [7], we classify both
elimination and residual disease responses observed above as CR. On the other hand,
since all escape results show tumor burden above the lethal disease threshold of 1 x 10'°
cells at 300 days, they all are classified as NR. Figure 5 shows therapy responses over
300 days to a variety of combinations of CAR-T doses and tumor burden. For a tumor
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burden of approximately T(0) = 2 x 10° cells, for example, CR is reached with CAR-T
doses around 2.6 x 10 cells or higher; CAR-T doses lower than 2.6 x 10° cells lead to
NR. The greater the tumor burden, the greater the CAR-T cell dose needed to achieve
CR which is reflected in the reduction of the CR region in the diagram (Figure 5).
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Figure 4. In silico predictions of the immunotherapy response to different CAR-T cell doses and
protocols, beginning on day 42. Initial HDLM-2 tumor burden amounts to 2 x 10° cells. Top row:
(a) with 1.5 x 10°® CAR-T cells dose, tumor elimination occurs around day 55 and approximately
7 x 10° memory CAR-T cells remain at t = 200 days; (b) one third of the previous CAR-T cell dose
(0.5 x 106 cells) induces a strong decline in the tumor burden, although tumor rapidly resumes
growth. After day 250, the three cell populations change slightly over time, with a small pool of
tumor cells coexisting with the effector and memory CAR-T cell populations, characterizing a
residual disease response; (c) 0.2 x 10 CAR-T cells dose is not able to control the tumor, which
escapes and reaches the carrying capacity on day 350. The fast decay of effector CAR-T cells
prevents the formation of a memory CAR-T cell population. Bottom row: the total CAR-T dose of
2 x 10° cells is fractionated into four equal portions and administered every (d) 7 days or (e) 14
days; (f) the dose is fractionated into 3 infusions of increasing dose values over 3 days as in [54].
In all cases (d)-(f), the tumor is eliminated in a few days, followed by a decrease of the effector
CAR-T cells. Fractionated infusions lead to the formation of memory CAR-T cells, although the
quantity depends on the rest time between doses.

The next experiment explores the alternative possibility of a fractionated treatment
using CAR-T cells, which is a strategy tested in the clinic aiming to reduce toxicity effects
[54]. We selected the same scenario described in Figure 3a with the 1-time infusion
of 2 x 106 CAR-T cells, which promotes tumor elimination. Firstly, simulations are
performed dividing the total dose into four equal fractions of 0.5 x 10, infused every
seven or fourteen days. Figures 4d and 4e show that the dosing split does not interfere
with the tumor elimination, which occurs in few days. Of note, a single dose of 0.5 x 10°
CAR-T cells is not able to eliminate the tumor burden, as shown in Figure 4b. While
in a single infusion case tumor decreases but resumes growth until reaching residual
disease, the used fractionated infusions prevent tumor regrowth. As well as in Figure
3a, immunological memory is formed, and the peak of memory cells is similar to that
of a single total dose infusion, although a certain delay is observed due to fractionated
dose. Such delay ultimately yields a greater formation of immunological memory on
day 200. Specifically, the number of memory CAR-T cells at that time is around 7%
and 15% larger for 7 and 14 days rest time between doses, respectively. Alternatively, a
simulation is performed for fractionated immunotherapy described in [54]. In that work,
patients with relapsed or refractory CD19" ALL were treated with three fractionated
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Figure 5. Diagram of occurrence of complete response (CR: T(300) < 8 x 10 cells, green dots)
and non response (NR: T(300) > 1 x 1010 cells, red dots) for the HDLM-2 + CAR-T 123 scenario.
T is the initial tumor burden and Cr is the CAR-T 123 cell dose injected on day 42. The usual
ranges of T and Ct were considered, with the number of tumor cells starting at the detectable
limit established in [7] and with the maximum CAR-T cell dose corresponding to the highest value
used in [7]. Higher doses (Ct > 1.3 x 10° cells) are able to eliminate any tumor burden smaller
than 107 cells. It is worth noting that the CR region decreases with the increase of T.

infusions over 3 consecutive days with increasing doses (10%, 30%, and 60%). It was
shown that such treatment protocol does not compromise effectiveness while reducing
toxicity effects [54]. Figure 4f shows the in silico predictions using this protocol. Like in a
1-time infusion protocol shown in Figure 3a, the tumor is rapidly eliminated, effector
CAR-T cells vanish in 100 days while immunologic memory amounts for 1.5 x 10° cells
on day 200.

3.4. Insights on parameter uncertainties impacting treatment outcome

Our VP was built to reflect the variability observed in the experimental data re-
ported in [7]: five non-treated NSG mice had survived from 100 up to 207 days after
tumor engraftment, with a mean survival of 137 days. To build our VP, we first defined
wide and plausible ranges for the model parameters. Each parameter was assumed
to be a random variable with uniform distribution in the range limited by £60% of
the reference values indicated in Table 2 for HDLM-2 + CAR-T 123. This range was
crucial to obtain our target VP with mean and median survival around 137 and 128 days,
as observed in [7]. The survival curves for both control data from [7] and the VP are
depicted in Figure 6a, displaying statistically similar mean and median survival times.
We then submitted our VP to CAR-T 123 treatment with different doses, varying from
1.5 x 106 to 1.0 x 10° CAR-T cells. While 100% overall survival was reached with mice
treated with 1.5 x 106 CAR-T 123 cells in [7], the VP reached 95% overall survival in 300
days, corresponding to 4754 VM (see Figure 6b). Such a 5% reduction can be explained
by the individual variability in the VP. Figure 6b also shows that the overall survival was
significantly reduced with the decrease of the immunotherapy dose. The frequency of
parameter values in the VP and their distributions for each of the two different therapy
outcomes are shown in the Supplementary Material.

We now use in silico experiments to investigate how parameter uncertainties impact
the CAR-T 123 immunotherapy outcomes. We selected the scenario in which the VP is
treated with 1.0 x 10® CAR-T cells. In this scenario, 645 VM were non-responders and
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died, and 4,354 VM achieved CR within 300 days. We then evaluated the correlation
between the variability of the VM parameters and the immunological memory formation
(Cym) and tumor burden (T) at t = 55 and t = 75 days for each of these therapy outcomes.
These analysis times were chosen because they are within the period in which the
reduction of effector cells and the expansion of memory cells are expected to happen.

Figure 7 shows the tornado plots for the CR and NR cases with respect to Cy,
obtained at t = 55 and t = 75 days, i.e., 13 and 33 days after applying the CAR-T
therapy. Parameter € that modulates the ability of effector CAR-T cells to differentiate
into memory CAR-T cells is the most influential for the formation of immunological
memory at early times when therapy is successful. The tumor growth rate r plays a
negative major role in memory pool formation. It is also remarkable the negative effect
of tumor inhibition on effector CAR-T cells modulated by a. For the NR cases, the
negative effect of both r and 6 on Cj, are the most influential, yielding a growing tumor
burden that keeps activating memory CAR-T cells into effector CAR-T cells, ultimately
precluding the formation of the immunological memory pool. In general, the correlation
values at t = 75 days of the mentioned most influential parameters decreased when
compared to their values at t = 55 days, and we may also note changes in the ranking of
the importance of the parameters. The sensitivity analysis with respect to T is shown in
the Supplementary Material. The most influential parameter is the tumor growth rate r
and it is also remarkable the role of the cytotoxic coefficient y in controlling the tumor
burden for the CR cases.

100 100
control (Ruella et al., 2017)
control (VP) —— 4355 VM (87%)
80 - 80 -

~~
3112 VM (62%)
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40 40 -
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(a) Control of actual population and VP (b) VP treated with different doses of CAR-T
Figure 6. Kaplan-Meier survival curves over 300 days. (a) Experimental data from [7] (green)
and VP of mice engrafted with HDLM-2 tumor (red). (b) CAR-T dose of 1.5 x 106 cells led to
95% overall survival in almost one year, 5% lower than those observed in [7] owed to individual
parameter uncertainties. Overall survival decreased significantly with dose reduction. Specifically,
the survival rate reached 7% when the dose decreased to 1.0 x 10° CAR-T cells. The number of
VM that survived for 300 days for each dosing strategy is also indicated.

4. Discussion

CAR-T cell immunotherapies are spreading across hematological cancers and are
already products of big pharma companies [55]. On the road, there are new CAR designs,
including new antigen targets [6], different CAR affinity [56], and expansion protocols
[57]. Mathematical models can be used as accessory tools for new developments [18,19].
Here, we built a three population mathematical model to describe tumor response to
CAR-T cell immunotherapy in immunodeficient mouse models (NSG and SCID/beige)
based on two published articles from literature [7,11]. Our model was able to represent
different receptors independently of the recognized antigen, such as CAR-T 19BBz and
CAR-T 123, and also different tumor targets as HDLM-2 and RAJI. The HDLM-2 tumor
model was used as a low proliferation, less aggressive tumor model where CAR-T cell
immunotherapy can be effective on tumor elimination and the emergence of memory
CAR-T cells. On the other hand, the RAJI model was chosen for its high proliferation
and escape from CAR-T cell immunotherapy. In this scenario, our model was able to
capture the effect of the IDO enzyme expression by the RAJI cells, as well as the impact
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Figure 7. Tornado plots of the Pearson correlation with respect to Cy at t = 55 days (top panel)
and t = 75 days (bottom panel). VP was split into two groups according to the therapy outcomes
at 300 days: CR (green color) and NR (red color). Solid bars indicate a positive effect while dashed
bars indicate a negative one. It is worth noting the important role of the parameter related to
memory conversion (€) which counteracts the intense negative effect of r for CR cases. For NR
cases, the negative effect of both r and 6 prevented therapy success. The correlation values at
t = 75 days are slightly smaller than those at t = 55 days and one may notice a change of order in
the rank of the most influential parameters for CR cases.

of CAR-T cell immunotherapy and their combination with an IDO inhibitor. This fact
reflects the potential of our model for describing other different immune checkpoint
inhibitor molecules. Indeed, changing model parameters appropriately would make the
model suitable to be applied for different treatment and tumor scenarios. The conversion
of CAR-T cells from effector to memory cells and their long-term persistence as memory
CAR-T cells were demonstrated by previous experimental work with RS4;11 B-ALL
model using CAR-T 19BBz [58]. This biological mechanism proved to be fundamental in
our model for obtaining the outcomes of immunotherapy, highlighting the importance
of including memory CAR-T cells in mathematical models. In HDLM-2 + CAR-T 123
scenario, our model was able to represent tumor elimination after immunotherapy even
in case of a new tumor challenge due to memory CAR-T cells’ long-term protection for
HDLM-2 target. However, for none of the evaluated RAJI scenarios the formation of a
memory pool was observed, due to the rapid growth dynamics of this tumor.

We performed in silico studies to highlight how the model could be used as an
adjuvant platform to contribute to a better understanding of the underlying processes
and for experimental research. Investigating, the application of different dosing pro-
tocols, we showed that fractionated dose appears to be as effective as a single dose,
and the rest periods between infusions might favor long-term immunological memory.
These results corroborate previous clinical trials using fractionated CAR-T cell dose
with similar effectiveness to single-dose and persistence of CAR-T cells on the blood
20 months after therapy [55]. We also found the CAR-T cell dose determination for a
given tumor burden is a critical factor for the success of the immunotherapy. A previous
model already considered CAR-T cell proliferation in response to antigen burden [26],
but memory CAR-T cell was not considered, neither the effect of tumor inhibition of
CAR-T cells. A recent paper considered naive, effector, and long-term memory T cells in
a refractory large B cell lymphoma model [10]. We did not include naive CAR-T cells,
because they pass through an in vitro activation protocol, and only activated effector


https://doi.org/10.20944/preprints202103.0625.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2021 d0i:10.20944/preprints202103.0625.v1

CAR-T cells are present in the treatment [58]. Another interesting mathematical model
was made upon tisagenlecleucel-treated patient data [25]. This model was adapted
from a previous empirical model of an immune response to bacterial /viral infections.
They captured CAR-T cell expansion, contraction, and persistence like our model does,
including memory CAR-T cell population. Their model was calibrated on patients’ data,
and different from ours, no difference in dose-response was detected. They attributed
this result to CAR-T cell proliferation capacity in vivo. We partially agree, but there is a
possibility that the data obtained from humans does not present very different CAR-T
cell dose (especially including only tisagenlecleucel clinical trials). Considering mouse
model data, where CAR-T cell dose varies by thousands, we do observe a dose effect,
especially on aggressive, high proliferative tumors. Another mathematical model was
recently published concerning mouse models for breast cancer and CAR-T cells anti-Erb2
[59]. Only tumor and CAR-T cells were considered in the model, and the authors also
simulated several CAR-T cells doses based on in vitro and in vivo experiments.

Another advantage of our mathematical model is the therapy effectiveness calcu-
lation. Overall therapy effectiveness may depend on intrinsic individual specificities,
regarded here as heterogeneity in the values of the model parameters. In the studied
case, such parameter uncertainties reduced overall survival in 300 days by 5% for the
HDLM-2 + CAR-T 123 scenario.

The adopted structure of our mathematical model allows identifying each mecha-
nism more transparently. Donor/tumor-microenvironment specificities were considered
as uncertainties in the values of the model parameters, which were shown to greatly
impact the therapy outcome. We identified that uncertainties associated with the tu-
mor proliferation, ability to inhibit the effector CAR-T cells, tumor cell lysis by CAR-T
cells, and differentiation of effector CAR-T cell into memory CAR-T cells are, among
all the mechanisms considered in the model, the most influential to immunotherapy
response. This opens room for investigating other chimeric antigen T-cell receptors with
different target/antigen affinities and the blockade of immune checkpoints to boost
therapy efficacy and safety. In our model, we did not consider CAR affinity for each
antigen as an explicit parameter, considering it as a result of tumor lysis by CAR-T cells.
Another aspect that we did not take into consideration is the toxicity effect of CAR-T
cell immunotherapy (cytokine release syndrome - CRS) because our model is based on
an immunodeficient mouse model that lacks this effect. For human data, Hanson et
al. [60] developed a mathematical model for CAR-T cell immunotherapy for B-ALL
emphasizing cytokines and CRS, also considering CAR-T effector and memory cells. As
an acute effect of CAR-T cell immunotherapy, CRS is caused by effector CAR-T cells
hours after the treatment. On the other hand, memory CAR-T cells are correlated with
a durable response against the tumor in patients [10] and in mice [7]. Another model
explored the competition of CAR-T cells and T lymphocytes for the tumor cells, as both
populations are present in patients [24].

There is still a challenge in CAR-T cell immunotherapy and all cellular therapies,
which is the exhaustion of the implanted cells. CAR-T cells become exhausted by
continuous stimulation from tumor cells harboring the cognate antigen. A recent work
modeled CAR-T proliferation and exhaustion using in vitro experimental data from
glioblastoma [23]. No spatial distribution was considered in our model, as we are
dealing with hematological cancer, but this is required in CAR-T therapy for solid tumors.
Difficulties related to access and infiltration in tumors, immunosuppressive mechanisms,
choice of target antigens are among the several challenges to develop successful CAR-T
therapy against solid tumors. Recent work investigated CAR-T therapy targeting two
antigens against glioblastoma [61]. CARs that incorporate multiple target antigens are
also the subject of recent research to overcome the mechanism of resistance to CAR-T
therapy [13]. Although not completely understood, the incidence of this phenomenon
has been linked to antigen escape or lineage switch [62,63] which can be modeled
as stochastic events. A recent mathematical model [10] has already pointed out the
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importance of considering stochastic events to deal with tumor elimination in response to
CAR-T cell therapy. It was proposed a hybrid technique that combines deterministic and
stochastic events, the latter included only when tumor cells are under a given threshold
which ultimately impacts tumor extinction. This strategy reduces the computational
burden associated with the higher cost of stochastic models. However, as stochastic
events can not be neglected in many situations, further researches are still needed
towards accurate and computationally efficient methodologies.

Finally, striving for the reproducibility of our results and the expansion of the
use of mathematical models and in silico experiments by biologists or any researchers
unfamiliar with the mathematical approach, our model has been implemented in a
Shiny R-based platform called CARTmath and website cartmath.Incc.br. It provides an
in silico tool for assessing different issues associated with the CAR-T immunotherapy
such as how CAR-T cell dosing can be adjusted according to tumor burden, CAR-T cell
infusion protocols, immunosuppressive mechanisms, among others, without further in
vivo experiments. A quick guide to running and building simulations is provided in the
software documentation [50]. We plan to keep on working on the software development,
including the integration of new tools such as the one that allows estimating model
parameters to ease integrating new scenarios and the analysis with virtual populations.
Overall, the developed mathematical model and CARTmath may help to shed light on
the structure of the treatment protocol and a better understanding of the challenges that
remain in the study of CAR-T cells immunotherapy:.

Supplementary Materials: The Supplementary Material describes the procedure used for esti-
mating the model parameter values, shows the data used for calibration, provides a detailed
description about the mathematical analysis of model dynamics, and conveys additional analysis
of the VP for the HDLM-2 scenario.
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1-MT  1-methyl-tryptophan
ALL Acute lymphoblastic leukemia
AML  Acute myeloid leukemia

BLI Bioluminescence imaging
CAR  Chimeric antigen receptor
CR Complete response

FDA Food and Drug Administration
HL Hodgkin lymphoma
ICB Immune checkpoint blockade

sosa IDO Indoleamine 2,3-dioxygenase
LAG3 Lymphocyte-activation gene 3
MLE  Most a posteriori estimates
NR No response
ODE  Ordinary differential equation
PD1 Programmed cell death protein 1
PD-L1 Programmed death-ligand 1
VISTA  V-domain Ig suppressor of T cell activation
VM Virtual mice
VP Virtual population
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