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1. Introduction

The center vortex model of Quantum Chromodynamics [1,2] explains confinement [3]
and chiral symmetry breaking [4-6] by the assumption that the relevant excitations
of the QCD vacuum are Center vortices: Closed color magnetic flux lines evolving in
time. In four dimensional space-time these closed flux lines form closed surfaces in
dual space, see Figure 1. In the low temperature phase they percolate space-time in all
dimensions. Within lattice simulations the center vortices are detected in maximal center
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Figure 1. left) After transformation to maximal center gauge and projection to the center degrees of
freedom, a flux line can be traced by following non-trivial plaquettes. right) Due to the evolution
in time such a flux can be traced in two dimensions. In dual space this results in a closed vortex
surface.

gauge after projection to the center degrees of freedom. The procedure is described in
more detail in section 2. As long as the detected vortices reproduce the relevant physics
we speak of a valid vortex finding property. During the analysis of the color structure of
vortices in smooth configurations [7] one is confronted with a loss of the vortex finding
property. Problems at detecting center vortices due to ambiguities at the gauge fixing
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procedure have already been found by Kovacs and Tomboulis [8]. They also point out
that thick vortices are of importance when calculating the path integral. We found, that
the thickness of vortices can cause troubles for the vortex detection, resulting in a loss
of the string tension. In search for improvements of the vortex detection the cause of
this loss is analyzed and a possible resolution discussed. An upper limit for the lattice
spacing and a lower limit for the lattice size is presented. These limits are derived from
measurements of the vortex density and estimates of the cross-section of flux tubes.

2. Materials and Methods

The lattice simulation in use is based on gluonic SU(2) Wilson action with inverse cou-
pling B covering an interval from = 2.1 to f = 3.6 in steps of 0.05. The corresponding
lattice spacing a is determined by assuming a physical string tension of (440 MeV)?
via a cubic interpolation of literature values given in Table 1 and complemented by an
extrapolation according to the asymptotic renormalization group equation

o 11 .
a(B) = A'e %o with pg= 5~ and A =0.015(2)fm ™", (1)

47

B 23 24 25 2.635 274 2.85
alfm] | 0.165(1) | 0.1191(9) | 0.0837(4) | 0.05409(4) | 0.04078(9) | 0.0296(3)
o [lattice] | 0.136(2) | 0.071(1) | 0.0350(4) | 0.01459(2) | 0.00830(4) | 0.00438(8)

Table 1: The values of the lattice spacing in fm and the string tension corresponding to
the respective value of B are taken from Refs. [9-13], setting the physical string tension
to (440 MeV)2.

The analysis is performed on lattices of size 8* and 10* with 0, 1, 2, 3, 5 and 10 Pisa-
Cooling [14] steps with a cooling parameter of 0.05. A central part consists in identifying
non-tivial center regions using the algoithms presented in Refs. [15-17]. In the gauge
fixing procedure we look for gauge matrices () that maximize the functional

R? = ZZ | Tr[l’ly(x)] \2 with Uy(x) =Q(x +eﬂ)Uy(x)Q+(x). )
R

Non-trivial center regions are used to guide this procedure to prevent the problems
found by Bornyakov et al. in [18] as is explained in detail in the listed references. After
the gauge is fixed, those plaquettes are identified that evaluate to the non-trivial center
element after projection of the configuration to the center degrees of freedom. These
plaquettes are considered pierced by a P-vortex.

If the count of P-plaquettes is below the count of non-trivial center regions used
to guide the gauge fixing procedure, it is a clear indication of a failing vortex detection.
For each value of 8 the proportion of configurations where this is the case is determined.
This allows to quantify the loss of the vortex finding property besides quantifying it
directly via the string tension of the center projected configurations.

The further analysis is performed in the full SU(2) configurations. For each P-
plaquette a non-trivial center region that encloses the P-plaquette is identified. This
center region is considered to be pierced by the thick vortex that is detected by the
P-vortex. Figure 2 depicts the relation between P-vortices and thick vortices.

The cross-section of the flux building the thick thick vortex, Ayort, is measured
by counting the plaquettes that build up the non-trivial center regions enclosing the
corresponding thick vortex. In each configuration we determine minimal, average and
maximal cross-sections.
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Figure 2. Vortex detection as a best fit procedure of P-Vortices to thick vortices shown in a two
dimensional slice through a four dimensional lattice.

The string tension ¢ is determined via Creutz ratios x calculated in the center
projected configurations

(WR+1,T+1)) (W(R,T))

(W(R,T+1)) (WR+1,T))’ 3)

c~x(R,T)=—In

with R x T Wilson loops W(R, T'). As the Coloumb-part of the potential is strongly sup-
pressed after projecting to the center degrees of freedom, the linear part corresponding to
a non-vanishing string tension is already reproduced with small loop sizes. Symmetric
Creutz ratios are used and the average of x(1,1) and x(2,2) is taken to determine the
string tension. Assuming independence of vortex piercings, the string tension can also
be related to the vortex density gyort, the number of P-plaquettes per unit volume, via

o~ —In(1— 2% oyort)- 4)

The requirement of uncorrelated piercing is only fulfilled if the vortex surface is strongly
smoothed, otherwise this simple equation overestimates the string tension.

The working hypothesis is that the loss of the vortex finding property, observed via
a loss of the string tension, when cooling is applied, can be related to a thickening of the
vortices.

3. Results

The different measurements are performed for a lot of different values of § and
several cooling steps. As not to overload the visualizations only a part of the intermediate
results is depicted, showing only specific numbers of cooling steps and restricting to a
smaller interval of B-values. Those parts of the data that are dominated by finite size
effects are identified and excluded from the further analysis.

Starting with the quantification of the vortex finding property presented in Figure
3 some troubles are brought to light. The proportion of configurations where less P-
plaquettes have been identified than non-trivial center regions exist, rises rapidly when
passing a specific value of B. This specific value depends on the lattice size and the
number of cooling steps. . When reducing the lattice size or increasing the number
of cooling steps the loss of the vortex finding property occurs at lowered values of S.
The proportion depicted seems to saturate at about 30%, except for 10 cooling steps
at a lattice of size 8* where it reaches higher values. The fact that some non-trivial
center regions have no corresponding P-plaquettes after gauge fixing and projection to
the center degrees of freedom hints at a possible explanation for part of the lost string
tension: The gauge functional given in Equation (2) is local in the sense that each gauge
matrix () is solely based on the 8 gluonic links connected to the specific lattice point.
Farther distances than a single lattice spacing are not taken into account directly. In
contrast, the detection of the non-trivial center regions is in a sense more physical as
it is based solely on gauge independent quantities, that is, the evaluation of arbitrary
big Wilson loops. When detecting P-vortices in smooth configurations and high lattice
resolutions, the center flux can be distributed over many link variables. Each of these
links can evaluate arbitrarily close to the trivial center element although a Wilson loop
build by the links can evaluate arbitrarily near to the non-trivial center element. In such
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Figure 3. The proportion of configurations is depicted where less non-trivial plaquettes have been
identified than non-trivial regions exist. The datapoints are joined to guide the eye. Due to the
logarithmic scaling of axes only non-vanishing values are depicted. Observe that the curves rise at
different values of f for different number of cooling steps and different lattice sizes.

a scenario a gauge fixing procedure, only taking the vicinity of lattice points into account,
will likely fail and result in an underestimated string tension.

Looking at the Creutz ratios depicted in Figure 4 two possibly intertwined effects
can be observed. At sufficiently low values of 8 the string tension is independent of the

String tension via center vortices
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Figure 4. The string tension ¢ is estimated via an average of the Creutz ratios x(1,1) and x(2,2)
calculated in center projected configurations for different numbers of cooling steps and lattice
sizes. The datapoints are joined by lines to guide the eye. The literature values correspond to
those listed in Table 1, the asymptotic line is given by Equation (1). Observe that in the low
B-regime an underestimation of the string tension correlates to the number of cooling steps. This
underestimation is independent of the lattice size. At higher values of § finite size effects set in.

lattice size, but decreases with an increasing number of cooling steps. Of interest is that
for sufficiently small values of § the deviation from the asymptotic prediction decreases
with a rising value of 8. At higher values of 3 the independence from the lattice size no
longer holds. For different lattice sizes a sudden decrease of the string tension occurs at
different values of B. The respective B-values are compatible for different numbers of
cooling steps. The dependency on the lattice size and the independence on the number
of cooling steps hint at finite size effects, but finite size effects do not give a direct
explanation of the reduction of the string tension at lower values of B: We do not observe
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a dependency on the lattice size in the low B-regime. Based on the deviations of the
string tensions for different lattice sizes we expect finite size effects to occur at length
scales between 1.1 fm and 1.3 fm, independent of cooling. This length scales are above 1
fm as was already hinted at by Kovacs and Tomboulis [19]. In Ref. [7] we found also
color-homogeneous regions with extensions compatible with these values. A compatible
distance can also be found between neighbouring piercings of a Wilson loop, extracted
from the vortex density.

A relation to the thickness Ayort Of center vortices is suspected and points towards
possible further analysis. The possibility of a thick vortex to expand due to a spreading
of the center flux was already suggested by Kovacs and Tomboulis in [20]. Assuming a
circular cross-section of the flux tube, its diameter can be calculated as

dﬂux =2x %r (5)
—_———

Tflux

with Ayort being the area of the flux cross-section. That flux lines are closed requires that
within each two dimensional slice through the lattice at least two vortex piercings can
find place. This give a criteria on the lattice extent L:

L > 2%dgy,. (6)

If Avort measured by a plaquette count exceeds 19 for a lattice of size 10%, or 12 for a
lattice of size 8%, we can expect finite size effects to step in. These thresholds are of
relevance for the average, minimal and maximal flux tube cross-section depicted in
Figures 5, 6 and 7. The mean flux tube cross-section presented in Figure 5 shows that we
have to restrict to relative low values of j to stay away from finite size effects. Taking a

Average flux tube size
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Figure 5. The average cross-sections of the flux tubes, measured by counting plaquettes, increases
when cooling is applied. It reaches a threshold at which finite size effects are expected to become
problematic, shown as dashed line for the two lattice sizes. Measurements performed on lattices
of different size are in good compatibility.

look at the maximal flux tube cross-section depicted in Figure 6, we can expect finite size
effects at even lower values of B: None of the data with 10 cooling steps can be expected
to be free of finite size effects. The lattice of size 8* could be too small even without any
cooling applied. With an increased number of cooling steps the compatibility of different
lattice sizes gets reduced but it is still given for sufficiently low numbers of cooling steps.

Taking a look at the minimal tube size depicted in Figure 7 an even more sudden rise
of the cross-section can be observed. We expect that the minimal flux tube cross-sections
starts to grow with a certain 8, where the high action density of non-trivial plaquettes
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Maximal flux tube size
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Figure 6. The maximal cross-sections of the flux tubes hint at finite size effects. Within our
B-interval only the lattice of size 10 stays below the threshold when cooling is applied. The
compatibility of different lattice sizes is only given for sufficiently low numbers of cooling steps.

Minimal flux tube size
plaquette
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t
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Figure 7. The minimal size of the flux tubes cross-sections shows a strong dependency on the
lattice size. This dependency becomes even stronger when cooling is applied. Only with at most 3
cooling steps applied, the data seem thrust-worthy for g < 2.3.

leads to a suppression in the path integral. This causes a dependency on the lattice
size due to the reduced statistics. For sufficiently low values of g and sufficiently low
numbers of cooling steps the minimal flux tube cross-section is given by exactly one
plaquette, independent of § and the number of cooling steps. We restrict the further
analysis to the lattice of size 10* with B < 2.3 and at most 5 cooling steps. This concludes
the identification of those parts of the data, that are flawed by finite size effects or a lack
of statistics.

Assuming an exponential growth of the flux tubes cross section with an increase in
the number of cooling steps a model of the form

AVOrt(Ncool) — AVOrt(O) eNcool (gcool+gdiscret a) (7)

is fit to the data with N, being the number of cooling steps and a the lattice spacing.
The fit-parameter g, corresponds to the exponential growth of the flux tube with
cooling. As the tube size is measured by counting plaquettes we have to account
for discretization effects. This is done by adding another fit-parameter ggiscret in the
exponent that is related to the lattice constant and the number of cooling steps. The two
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parameters are not necessarily constant as they can depend on the specific structure of
interest. We restrain from carrying along another index: In the following the values of
these two parameters are to be considered only with respect to the specific given context.
They differ for the average cross-sections and the maximal cross-sections of flux tubes.
The fit of this model to the average flux tube sizes is shown in Figure 8 in physical units.
The fit is done for small 8 and cooling steps indicated by black points. The fit, dashed

Average flux tube size
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Figure 8. The measured data of the average flux tube cross-section for various numbers of
cooling steps and several § are shown by black and orange points. The dashed lines depict the
fits according to Equation (7), where only the black data points were used. The corresponding fit
parameters are given in Table 2. Deviations of the data from the fits can be related to finite size
effects.

lines, reproduce the data well until the expected onset of finite size effects for cross-
sections increasing with the number of cooling steps and f. This onset is compatible to
the estimates in Equation (6) and will be discussed later. Now we concentrate on the
growing of the flux tube cross-section described by the fit parameters given in Table

2. The suspected exponential growth of Aot is confirmed by the good quality of the
fit for positive g.oo1 €ven for larger values of § and cooling steps. The negative value

average

cross-sections | Estimate t-Statistic P-Value
8cool 0.14(1) 13.6393 6.3 %1011
Sdiscret -0.17(5) fm~!  -3.62376 1.9%1073

Table 2: Shown are the parameters of the model described by Equation (7) and depicted
in Figure 9 for average cross-sections.

of Zdiscret reflects the decreasing slope of the dashed lines with increasing g, indicating
an influence of the lattice resolution: A coarser lattice reduces the growth of Ayort. The
overall behaviour of Ayt is qualitatively reproduced by the maximal cross-sections as
is depicted in Figure 9. Only the growth has slowed down as can be seen at the values
given in Table 3. This implies that the growth of Ayt with increased cooling is limited.

A further influence of cooling is a smoothing of the vortex surface. We will now
model this smoothing and show that the vortex flux tubes can be thickened without
pushing each other apart. The vortex density gvort allows to gain information about
the distance of the vortex centers. Here we have to take into account that some of
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Figure 9. The measured data of the maximal flux tube cross-section for various numbers of
cooling steps and several § are shown by black and orange points. The dashed lines depict the
fits according to Equation (7), where only the black data points were used. The corresponding fit
parameters are given in Table 3. Deviations of the data from the fits can be related to finite size

effects.
maximal
cross-sections | Estimate t-Statistic P-Value
8cool 0.0999(10) 9.1369 35%10°8
Sdiscret -0.13(5) fm~!  -2.61939 1.7 %1072

Table 3: Shown are the parameters of the model described by Equation (7) and depicted
in Figure 9 for maximal cross-sections.

the P-plaquettes belong to correlated piercings and can be attributed to short range
fluctuations. We define the quantity Apax as the non-overlapping area around vortex
centers.

The vortex density gyort is usually calculated by dividing the number P-plaquettes
by the total plaquette number. Given enough statistics it can be determined by counting
the number of piercings Nyort within a sufficiently large Wilson loop of Area Aloop build
by Nioop plaquettes

Nvort - Nvort o Nvort
Nloop Aloop * a2 (Afree + Nyort * Amax) *a=2

®)

Ovort =

In the last identity we have split the area of the loop into two non-overlapping parts:
each piercing is enclosed by circular area given by Amax and Agee covers the remaining
part of the loop. When cooling is applied we have to take into account that Amax grows.

Nvort
Afree + Nyort * (Amax(0) + 0 Amax(Neool))) ¥ @72

Qvort (N cool) = ( )
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Using Ajpop = Atree + Nvort * Amax(0) and a model of the form given in Eq. (7) for
Amax(Neool) We attain 6 Amax = Amax(O)(eNcool (8cool T8 diserete @) — 1). It follows

Ovort (O) (10)

N, = .
Qvort( COOI) 1+ Qvort(O) Amax (0)51‘2 (eNcool (8cool +&discrete 1) — 1)

We fit Qcool, Sdiscrete aNd Amax (0) to the measurements of gyort. The measured data and
the fit are shown in Figure 10. The respective fit parameters are listed in Table 4. The

Loss of vortex density due to cooling
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Figure 10. Depicted is the vortex density. For the model prediction shown as dashed lines only
the black data points were used. That the data points fall below the model prediction at specific
numbers of cooling steps for different values of B can be explained by finite size effects. The
corresponding parameters of the model are given in Table 4.

vortex density | Estimate t-Statistic P-Value

8cool 0.035(1) 26.5368 28%10° 1
Qdiscret 0.066(2) fm~! 27.6254 fm~! 15%1071°
Amax(0) 1.41(5)fm? 25.8937 fm? 4.2 x10715

Table 4: The parameters of the model described by Equation (10) for the loss of the
vortex density during cooling.

value of Amax(0) is larger than the flux tube cross-sections depicted in Figures 8. This
and the fact that the value of g for the vortex density is smaller than those of the
vortex flux tube cross-sections indicate that the majority of piercings stay separated from
one another even when cooling is applied. Assuming circular geometry we can calculate
the minimal possible distance between vortex centers

A N,
dcenter(Ncool) =2 M- (11)

The minimal available separation sy of neighbouring piercings can be estimated by

AmaX(O) ) Avort(Ncool)
T T ’

dcenter (0) dﬂux (Ncool )

Sﬂux(Ncool) =2 (12)
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If this separation becomes smaller than one lattice spacing our methods of center vortex
detection will likely fail: we can no longer find two non-overlapping non-trivial center
regions enclosing the thick vortex flux tubes. From this we derive two relevant limits for
the lattice spacing a and the lattice extent L

a4 < S and L > Max(2dguy, Max(dguy))- (13)

The requirement for the lattice extent L is based on the fact, that two vortex piercings
have to fit in every two dimensional slicing through the lattice. Assuming a vanishing
minimal flux tube size, the limit is given either by two times the average diameter dy,,
or one times the maximal diameter Max(dg, ) - whatever is bigger.

Using what we learned so far, we can evaluate these inequalities and find numerical
values for the upper limit of 2 and the lower limit of L. These are depicted in Figure
11 and will now be discussed. Discretization effects are neglected by setting gqiscret = 0.
Fitting the average flux tube cross-sections for configurations without cooling, see Figure
8, by a polynom up to quadratic order with respect to the lattice spacing a gives

Avort (0) ~ 3.36691 a® + 0.200467 fm a, (14)

compatible to the values we found in [21]. A fit to the maximal cross-sections without
cooling, see Figure 9, results in higher fit parameters

Max(Ayort(0)) ~ 11.3 a® + 0.223 fm a. (15)

Using this fit and Eq. (12) with Amax(0) from Table 4 we obtain an upper limit for the
lattice spacing that depends on the number of cooling steps and g.oo;. With this limit
we can determine a lower limit for the required lattice extent. Both limits are shown in
Figure 11 for the two different values of g.,o resulting from average and maximal flux
tube sizes from Tables 2 and 3. Let us remember how these limits have been derived:
Closed flux lines require that there is sufficient room for two piercings within each two
dimensional slice through the lattice - a lower limit for the lattice extent arises.

Lower limit for the lattice extend

Upper limit for the lattice spacing L ffml

a [fm]

0.100

0.050

0.010

cooling | | | | | cooling
10 20 30 40 50 steps 10 20 30 40 50 steps

Figure 11. Based on the growth of the flux tubes and the reduction of the vortex density in
dependency of the number of cooling steps an upper limit for the lattice spacing (left) and a lower
limit for the lattice extent (right) can be derived, as given in Equation (13). The weaker limit
depicted in red is based on the slower growth of the maximal sized flux tubes with g.,o; = 0.0999
(see Table 3), the stronger limit, depicted in orange, is based on the faster growth of average sized
flux tubes with .o, = 0.14 (see Table 2).

Taking the stronger limits with g.,0 = 0.14 we determine corresponding limits of
B for given lattice size and number of cooling steps. In Table 5 some numerical values


https://doi.org/10.20944/preprints202103.0615.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2021 d0i:10.20944/preprints202103.0615.v1

11 0of 13

are shown. We now take a look at the meaning of these limits for the string tension.

[N \L ]| 8 | 10 | 14 [ 20 | 30 | 40 | 50 |
0 212 | 212 | 212 | 212 | 212 | 212 | 212
232 | 239 | 248 | 258 | 273 | 2.84 | 2.92

) 214 | 214 | 214 | 214 | 214 | 214 | 214
231 | 238 | 248 | 258 | 273 | 2.83 | 2.91

) 216 | 216 | 216 | 216 | 216 | 216 | 2.16
231 | 238 | 247 | 258 | 272 | 2.83 | 2.91

3 219 | 219 | 219 | 219 | 219 | 219 | 2.19
23 | 237 | 247 | 257 | 271 | 282 | 29

s 223 | 223 | 223 | 223 | 223 | 223 | 223
229 | 236 | 246 | 256 | 2.7 | 281|289

10 N 234 | 234 | 234 | 234 | 234 | 2.34
ON€ | 534 | 244 | 254 | 267 | 278 | 2.86

244 | 244 | 244 | 244

15 None | None | None | 55 | 55 | 576 | 2.84
254 | 254 | 2.54

20 None | None | None | None 263 273 | 282
2.66 | 2.66

25 None | None | None | None | None 271 | 279

Table 5: For different numbers of cooling steps and different lattice extents the table gives
a lower and an upper limit for 8. "None" indicates that the limits exclude one another.

In Figure 4 we observe that the deviation from the asymptotic prediction decreases
with increasing  in the low B-regime. We believe that this behaviour holds within the
B-intervals of Table 5. The upper limit of B can be extended by increasing the lattice size.
It would be interesting to see, if this alone suffices to restore full compatibility with the
asymptotic string tension with modest cooling, but the required computational power
might exceed the capabilities of our times.

4. Discussion

Using non-trivial center regions we analyzed how Pisa-cooling influences the cross-
sections of thick center vortices. We found an exponential growth that slows down
with increasing cross-sections. By geometric arguments we derived an upper limit for
the lattice spacing above which discretization effects trouble the vortex detection and
a lower limit for the lattice extent where finite size effects set in. This window gets
smaller with cooling and decreasing lattice extent. Cooling results in deviations from
the asymptotic behaviour: an underestimation of the string tension occurs. Within the
window increasing 8 leads to better agreement with the asymptotic behaviour. It would
be interesting to see whether the string tension calculated on the projected lattice is in
fact fully restored with sufficiently large 8 or if only a partial restoration occurs.

By improving the method of center vortex detection it might be possible to soften
the aforementioned limits. The method of vortex detection used in this work was based
on the direct maximal center gauge guided by non-trivial center regions [15-17]: we
identify regions whose perimeter evaluates to the non-trivial center element and preserve
their evaluation during gauge fixing and center projection. This approach comes with
three possibilities of improvement:

The growth of the flux tube due to cooling results in the non-trivial center factors
within the evaluation of Wilson loops being spread over more and more links. The
original direct maximal center gauge minimizes a gauge functional which takes only
those eight links into account that are connected to the respective lattice point. By
taking also those links into account that are connected to neighbouring lattice points the
troubles arising from the spread of the center flux could be counteracted.
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When two thick vortices are not separated by at least one lattice spacing the identifi-
cation of non-trivial center regions enclosing the single piercings might fail. The original
method used for the detection of non-trivial center regions is based on enlarging the
perimeter of Wilson loops while preventing overlaps of the resulting regions: if overlaps
occurred, the region that evaluates to a higher trace gets deleted. By allowing overlaps
an improvement might be possible: more non-trivial center regions are kept to guide the
further gauge fixing procedure.

With rising number of cooling steps more non-trivial center regions than P-plaquettes
were found: The direct maximal center gauge failed to preserve some of the non-trivial
center regions. This could be counteracted by inserting non-trivial factors before starting
the simulated annealing procedure which is used to maximize the gauge functional.
These non-trivial factors should guaranty that each non-trivial center region evaluates to
the non-trivial center element when evaluated in the center projected configuration.
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