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Abstract: The center vortex model of quantum-chromodynamics can explain confinement and chiral1

symmetry breaking. We present a possible resolution for problems of the vortex detection in2

smooth configurations and discuss improvements for the detection of center vortices.3
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1. Introduction7

The center vortex model of Quantum Chromodynamics [1,2] explains confinement [3]8

and chiral symmetry breaking [4–6] by the assumption that the relevant excitations9

of the QCD vacuum are Center vortices: Closed color magnetic flux lines evolving in10

time. In four dimensional space-time these closed flux lines form closed surfaces in11

dual space, see Figure 1. In the low temperature phase they percolate space-time in all12

dimensions. Within lattice simulations the center vortices are detected in maximal center

Figure 1. left) After transformation to maximal center gauge and projection to the center degrees of
freedom, a flux line can be traced by following non-trivial plaquettes. right) Due to the evolution
in time such a flux can be traced in two dimensions. In dual space this results in a closed vortex
surface.

13

gauge after projection to the center degrees of freedom. The procedure is described in14

more detail in section 2. As long as the detected vortices reproduce the relevant physics15

we speak of a valid vortex finding property. During the analysis of the color structure of16

vortices in smooth configurations [7] one is confronted with a loss of the vortex finding17

property. Problems at detecting center vortices due to ambiguities at the gauge fixing18
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procedure have already been found by Kovacs and Tomboulis [8]. They also point out19

that thick vortices are of importance when calculating the path integral. We found, that20

the thickness of vortices can cause troubles for the vortex detection, resulting in a loss21

of the string tension. In search for improvements of the vortex detection the cause of22

this loss is analyzed and a possible resolution discussed. An upper limit for the lattice23

spacing and a lower limit for the lattice size is presented. These limits are derived from24

measurements of the vortex density and estimates of the cross-section of flux tubes.25

2. Materials and Methods26

The lattice simulation in use is based on gluonic SU(2) Wilson action with inverse cou-
pling β covering an interval from β = 2.1 to β = 3.6 in steps of 0.05. The corresponding
lattice spacing a is determined by assuming a physical string tension of (440 MeV)2

via a cubic interpolation of literature values given in Table 1 and complemented by an
extrapolation according to the asymptotic renormalization group equation

a(β) = Λ−1e−
β

8β0 with β0 =
11

24π2 and Λ = 0.015(2)fm−1. (1)

β 2.3 2.4 2.5 2.635 2.74 2.85
a [fm] 0.165(1) 0.1191(9) 0.0837(4) 0.05409(4) 0.04078(9) 0.0296(3)

σ [lattice] 0.136(2) 0.071(1) 0.0350(4) 0.01459(2) 0.00830(4) 0.00438(8)

Table 1: The values of the lattice spacing in fm and the string tension corresponding to
the respective value of β are taken from Refs. [9–13], setting the physical string tension
to (440 MeV)2.

The analysis is performed on lattices of size 84 and 104 with 0, 1, 2, 3, 5 and 10 Pisa-
Cooling [14] steps with a cooling parameter of 0.05. A central part consists in identifying
non-tivial center regions using the algoithms presented in Refs. [15–17]. In the gauge
fixing procedure we look for gauge matrices Ω that maximize the functional

R2 = ∑
x

∑
µ

| Tr[Úµ(x)] |2 with Úµ(x) = Ω(x + eµ)Uµ(x)Ω†(x). (2)

Non-trivial center regions are used to guide this procedure to prevent the problems27

found by Bornyakov et al. in [18] as is explained in detail in the listed references. After28

the gauge is fixed, those plaquettes are identified that evaluate to the non-trivial center29

element after projection of the configuration to the center degrees of freedom. These30

plaquettes are considered pierced by a P-vortex.31

If the count of P-plaquettes is below the count of non-trivial center regions used32

to guide the gauge fixing procedure, it is a clear indication of a failing vortex detection.33

For each value of β the proportion of configurations where this is the case is determined.34

This allows to quantify the loss of the vortex finding property besides quantifying it35

directly via the string tension of the center projected configurations.36

The further analysis is performed in the full SU(2) configurations. For each P-37

plaquette a non-trivial center region that encloses the P-plaquette is identified. This38

center region is considered to be pierced by the thick vortex that is detected by the39

P-vortex. Figure 2 depicts the relation between P-vortices and thick vortices.40

The cross-section of the flux building the thick thick vortex, Avort, is measured41

by counting the plaquettes that build up the non-trivial center regions enclosing the42

corresponding thick vortex. In each configuration we determine minimal, average and43

maximal cross-sections.44
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Figure 2. Vortex detection as a best fit procedure of P-Vortices to thick vortices shown in a two
dimensional slice through a four dimensional lattice.

The string tension σ is determined via Creutz ratios χ calculated in the center
projected configurations

σ ≈ χ(R, T) = − ln
〈W(R + 1, T + 1)〉 〈W(R, T)〉
〈W(R, T + 1)〉 〈W(R + 1, T)〉 , (3)

with R× T Wilson loops W(R, T). As the Coloumb-part of the potential is strongly sup-
pressed after projecting to the center degrees of freedom, the linear part corresponding to
a non-vanishing string tension is already reproduced with small loop sizes. Symmetric
Creutz ratios are used and the average of χ(1, 1) and χ(2, 2) is taken to determine the
string tension. Assuming independence of vortex piercings, the string tension can also
be related to the vortex density $vort, the number of P-plaquettes per unit volume, via

σ ≈ −ln(1− 2 ∗ $vort). (4)

The requirement of uncorrelated piercing is only fulfilled if the vortex surface is strongly45

smoothed, otherwise this simple equation overestimates the string tension.46

The working hypothesis is that the loss of the vortex finding property, observed via47

a loss of the string tension, when cooling is applied, can be related to a thickening of the48

vortices.49

3. Results50

The different measurements are performed for a lot of different values of β and51

several cooling steps. As not to overload the visualizations only a part of the intermediate52

results is depicted, showing only specific numbers of cooling steps and restricting to a53

smaller interval of β-values. Those parts of the data that are dominated by finite size54

effects are identified and excluded from the further analysis.55

Starting with the quantification of the vortex finding property presented in Figure56

3 some troubles are brought to light. The proportion of configurations where less P-57

plaquettes have been identified than non-trivial center regions exist, rises rapidly when58

passing a specific value of β. This specific value depends on the lattice size and the59

number of cooling steps. . When reducing the lattice size or increasing the number60

of cooling steps the loss of the vortex finding property occurs at lowered values of β.61

The proportion depicted seems to saturate at about 30%, except for 10 cooling steps62

at a lattice of size 84 where it reaches higher values. The fact that some non-trivial63

center regions have no corresponding P-plaquettes after gauge fixing and projection to64

the center degrees of freedom hints at a possible explanation for part of the lost string65

tension: The gauge functional given in Equation (2) is local in the sense that each gauge66

matrix Ω is solely based on the 8 gluonic links connected to the specific lattice point.67

Farther distances than a single lattice spacing are not taken into account directly. In68

contrast, the detection of the non-trivial center regions is in a sense more physical as69

it is based solely on gauge independent quantities, that is, the evaluation of arbitrary70

big Wilson loops. When detecting P-vortices in smooth configurations and high lattice71

resolutions, the center flux can be distributed over many link variables. Each of these72

links can evaluate arbitrarily close to the trivial center element although a Wilson loop73

build by the links can evaluate arbitrarily near to the non-trivial center element. In such74
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Figure 3. The proportion of configurations is depicted where less non-trivial plaquettes have been
identified than non-trivial regions exist. The datapoints are joined to guide the eye. Due to the
logarithmic scaling of axes only non-vanishing values are depicted. Observe that the curves rise at
different values of β for different number of cooling steps and different lattice sizes.

a scenario a gauge fixing procedure, only taking the vicinity of lattice points into account,75

will likely fail and result in an underestimated string tension.76

Looking at the Creutz ratios depicted in Figure 4 two possibly intertwined effects77

can be observed. At sufficiently low values of β the string tension is independent of the

Figure 4. The string tension σ is estimated via an average of the Creutz ratios χ(1, 1) and χ(2, 2)
calculated in center projected configurations for different numbers of cooling steps and lattice
sizes. The datapoints are joined by lines to guide the eye. The literature values correspond to
those listed in Table 1, the asymptotic line is given by Equation (1). Observe that in the low
β-regime an underestimation of the string tension correlates to the number of cooling steps. This
underestimation is independent of the lattice size. At higher values of β finite size effects set in.

78

lattice size, but decreases with an increasing number of cooling steps. Of interest is that79

for sufficiently small values of β the deviation from the asymptotic prediction decreases80

with a rising value of β. At higher values of β the independence from the lattice size no81

longer holds. For different lattice sizes a sudden decrease of the string tension occurs at82

different values of β. The respective β-values are compatible for different numbers of83

cooling steps. The dependency on the lattice size and the independence on the number84

of cooling steps hint at finite size effects, but finite size effects do not give a direct85

explanation of the reduction of the string tension at lower values of β: We do not observe86
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a dependency on the lattice size in the low β-regime. Based on the deviations of the87

string tensions for different lattice sizes we expect finite size effects to occur at length88

scales between 1.1 fm and 1.3 fm, independent of cooling. This length scales are above 189

fm as was already hinted at by Kovacs and Tomboulis [19]. In Ref. [7] we found also90

color-homogeneous regions with extensions compatible with these values. A compatible91

distance can also be found between neighbouring piercings of a Wilson loop, extracted92

from the vortex density.93

A relation to the thickness Avort of center vortices is suspected and points towards
possible further analysis. The possibility of a thick vortex to expand due to a spreading
of the center flux was already suggested by Kovacs and Tomboulis in [20]. Assuming a
circular cross-section of the flux tube, its diameter can be calculated as

dflux = 2 ∗
√

Avort

π︸ ︷︷ ︸
rflux

, (5)

with Avort being the area of the flux cross-section. That flux lines are closed requires that
within each two dimensional slice through the lattice at least two vortex piercings can
find place. This give a criteria on the lattice extent L:

L > 2 ∗ dflux. (6)

If Avort measured by a plaquette count exceeds 19 for a lattice of size 104, or 12 for a94

lattice of size 84, we can expect finite size effects to step in. These thresholds are of95

relevance for the average, minimal and maximal flux tube cross-section depicted in96

Figures 5, 6 and 7. The mean flux tube cross-section presented in Figure 5 shows that we97

have to restrict to relative low values of β to stay away from finite size effects. Taking a

Figure 5. The average cross-sections of the flux tubes, measured by counting plaquettes, increases
when cooling is applied. It reaches a threshold at which finite size effects are expected to become
problematic, shown as dashed line for the two lattice sizes. Measurements performed on lattices
of different size are in good compatibility.

98

look at the maximal flux tube cross-section depicted in Figure 6, we can expect finite size99

effects at even lower values of β: None of the data with 10 cooling steps can be expected100

to be free of finite size effects. The lattice of size 84 could be too small even without any101

cooling applied. With an increased number of cooling steps the compatibility of different102

lattice sizes gets reduced but it is still given for sufficiently low numbers of cooling steps.103

Taking a look at the minimal tube size depicted in Figure 7 an even more sudden rise104

of the cross-section can be observed. We expect that the minimal flux tube cross-sections105

starts to grow with a certain β, where the high action density of non-trivial plaquettes106
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Figure 6. The maximal cross-sections of the flux tubes hint at finite size effects. Within our
β-interval only the lattice of size 104 stays below the threshold when cooling is applied. The
compatibility of different lattice sizes is only given for sufficiently low numbers of cooling steps.

Figure 7. The minimal size of the flux tubes cross-sections shows a strong dependency on the
lattice size. This dependency becomes even stronger when cooling is applied. Only with at most 3
cooling steps applied, the data seem thrust-worthy for β < 2.3.

leads to a suppression in the path integral. This causes a dependency on the lattice107

size due to the reduced statistics. For sufficiently low values of β and sufficiently low108

numbers of cooling steps the minimal flux tube cross-section is given by exactly one109

plaquette, independent of β and the number of cooling steps. We restrict the further110

analysis to the lattice of size 104 with β ≤ 2.3 and at most 5 cooling steps. This concludes111

the identification of those parts of the data, that are flawed by finite size effects or a lack112

of statistics.113

Assuming an exponential growth of the flux tubes cross section with an increase in
the number of cooling steps a model of the form

Avort(Ncool) = Avort(0) eNcool (gcool+gdiscret a) (7)

is fit to the data with Ncool being the number of cooling steps and a the lattice spacing.114

The fit-parameter gcool corresponds to the exponential growth of the flux tube with115

cooling. As the tube size is measured by counting plaquettes we have to account116

for discretization effects. This is done by adding another fit-parameter gdiscret in the117

exponent that is related to the lattice constant and the number of cooling steps. The two118
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parameters are not necessarily constant as they can depend on the specific structure of119

interest. We restrain from carrying along another index: In the following the values of120

these two parameters are to be considered only with respect to the specific given context.121

They differ for the average cross-sections and the maximal cross-sections of flux tubes.122

The fit of this model to the average flux tube sizes is shown in Figure 8 in physical units.123

The fit is done for small β and cooling steps indicated by black points. The fit, dashed

Figure 8. The measured data of the average flux tube cross-section for various numbers of
cooling steps and several β are shown by black and orange points. The dashed lines depict the
fits according to Equation (7), where only the black data points were used. The corresponding fit
parameters are given in Table 2. Deviations of the data from the fits can be related to finite size
effects.

124

lines, reproduce the data well until the expected onset of finite size effects for cross-125

sections increasing with the number of cooling steps and β. This onset is compatible to126

the estimates in Equation (6) and will be discussed later. Now we concentrate on the127

growing of the flux tube cross-section described by the fit parameters given in Table128

2. The suspected exponential growth of Avort is confirmed by the good quality of the129

fit for positive gcool even for larger values of β and cooling steps. The negative value

average
cross-sections Estimate t-Statistic P-Value
gcool 0.14(1) 13.6393 6.3 ∗ 10−11

gdiscret -0.17(5) fm−1 -3.62376 1.9 ∗ 10−3

Table 2: Shown are the parameters of the model described by Equation (7) and depicted
in Figure 9 for average cross-sections.

130

of gdiscret reflects the decreasing slope of the dashed lines with increasing β, indicating131

an influence of the lattice resolution: A coarser lattice reduces the growth of Avort. The132

overall behaviour of Avort is qualitatively reproduced by the maximal cross-sections as133

is depicted in Figure 9. Only the growth has slowed down as can be seen at the values134

given in Table 3. This implies that the growth of Avort with increased cooling is limited.135

A further influence of cooling is a smoothing of the vortex surface. We will now136

model this smoothing and show that the vortex flux tubes can be thickened without137

pushing each other apart. The vortex density $vort allows to gain information about138

the distance of the vortex centers. Here we have to take into account that some of139
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Figure 9. The measured data of the maximal flux tube cross-section for various numbers of
cooling steps and several β are shown by black and orange points. The dashed lines depict the
fits according to Equation (7), where only the black data points were used. The corresponding fit
parameters are given in Table 3. Deviations of the data from the fits can be related to finite size
effects.

maximal
cross-sections Estimate t-Statistic P-Value
gcool 0.0999(10) 9.1369 3.5 ∗ 10−8

gdiscret -0.13(5) fm−1 -2.61939 1.7 ∗ 10−2

Table 3: Shown are the parameters of the model described by Equation (7) and depicted
in Figure 9 for maximal cross-sections.

the P-plaquettes belong to correlated piercings and can be attributed to short range140

fluctuations. We define the quantity Amax as the non-overlapping area around vortex141

centers.142

The vortex density $vort is usually calculated by dividing the number P-plaquettes
by the total plaquette number. Given enough statistics it can be determined by counting
the number of piercings Nvort within a sufficiently large Wilson loop of Area Aloop build
by Nloop plaquettes

$vort =
Nvort

Nloop
=

Nvort

Aloop ∗ a−2 =
Nvort

(Afree + Nvort ∗ Amax) ∗ a−2 . (8)

In the last identity we have split the area of the loop into two non-overlapping parts:
each piercing is enclosed by circular area given by Amax and Afree covers the remaining
part of the loop. When cooling is applied we have to take into account that Amax grows.

$vort(Ncool) =
Nvort

(Afree + Nvort ∗ (Amax(0) + δAmax(Ncool))) ∗ a−2 . (9)
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Using Aloop = Afree + Nvort ∗ Amax(0) and a model of the form given in Eq. (7) for
Amax(Ncool) we attain δAmax = Amax(0)(eNcool (gcool+gdiscrete a) − 1). It follows

$vort(Ncool) =
$vort(0)

1 + $vort(0) Amax(0)a−2 (eNcool (gcool+gdiscrete a) − 1)
. (10)

We fit gcool, gdiscrete and Amax(0) to the measurements of $vort. The measured data and
the fit are shown in Figure 10. The respective fit parameters are listed in Table 4. The

Figure 10. Depicted is the vortex density. For the model prediction shown as dashed lines only
the black data points were used. That the data points fall below the model prediction at specific
numbers of cooling steps for different values of β can be explained by finite size effects. The
corresponding parameters of the model are given in Table 4.

vortex density Estimate t-Statistic P-Value
gcool 0.035(1) 26.5368 2.8 ∗ 10−15

gdiscret 0.066(2) fm−1 27.6254 fm−1 1.5 ∗ 10−15

Amax(0) 1.41(5)fm2 25.8937 fm2 4.2 ∗ 10−15

Table 4: The parameters of the model described by Equation (10) for the loss of the
vortex density during cooling.

value of Amax(0) is larger than the flux tube cross-sections depicted in Figures 8. This
and the fact that the value of gcool for the vortex density is smaller than those of the
vortex flux tube cross-sections indicate that the majority of piercings stay separated from
one another even when cooling is applied. Assuming circular geometry we can calculate
the minimal possible distance between vortex centers

dcenter(Ncool) = 2

√
Amax(Ncool)

π
. (11)

The minimal available separation sflux of neighbouring piercings can be estimated by

sflux(Ncool) = 2

√
Amax(0)

π︸ ︷︷ ︸
dcenter(0)

− 2

√
Avort(Ncool)

π︸ ︷︷ ︸
dflux(Ncool)

. (12)
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If this separation becomes smaller than one lattice spacing our methods of center vortex
detection will likely fail: we can no longer find two non-overlapping non-trivial center
regions enclosing the thick vortex flux tubes. From this we derive two relevant limits for
the lattice spacing a and the lattice extent L

a < sflux and L > Max(2dflux, Max(dflux)). (13)

The requirement for the lattice extent L is based on the fact, that two vortex piercings143

have to fit in every two dimensional slicing through the lattice. Assuming a vanishing144

minimal flux tube size, the limit is given either by two times the average diameter dflux145

or one times the maximal diameter Max(dflux) - whatever is bigger.146

Using what we learned so far, we can evaluate these inequalities and find numerical
values for the upper limit of a and the lower limit of L. These are depicted in Figure
11 and will now be discussed. Discretization effects are neglected by setting gdiscret = 0.
Fitting the average flux tube cross-sections for configurations without cooling, see Figure
8, by a polynom up to quadratic order with respect to the lattice spacing a gives

Avort(0) ≈ 3.36691 a2 + 0.200467 fm a, (14)

compatible to the values we found in [21]. A fit to the maximal cross-sections without
cooling, see Figure 9, results in higher fit parameters

Max(Avort(0)) ≈ 11.3 a2 + 0.223 fm a. (15)

Using this fit and Eq. (12) with Amax(0) from Table 4 we obtain an upper limit for the147

lattice spacing that depends on the number of cooling steps and gcool. With this limit148

we can determine a lower limit for the required lattice extent. Both limits are shown in149

Figure 11 for the two different values of gcool resulting from average and maximal flux150

tube sizes from Tables 2 and 3. Let us remember how these limits have been derived:151

Closed flux lines require that there is sufficient room for two piercings within each two152

dimensional slice through the lattice - a lower limit for the lattice extent arises.

Figure 11. Based on the growth of the flux tubes and the reduction of the vortex density in
dependency of the number of cooling steps an upper limit for the lattice spacing (left) and a lower
limit for the lattice extent (right) can be derived, as given in Equation (13). The weaker limit
depicted in red is based on the slower growth of the maximal sized flux tubes with gcool = 0.0999
(see Table 3), the stronger limit, depicted in orange, is based on the faster growth of average sized
flux tubes with gcool = 0.14 (see Table 2).

153

Taking the stronger limits with gcool = 0.14 we determine corresponding limits of154

β for given lattice size and number of cooling steps. In Table 5 some numerical values155
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are shown. We now take a look at the meaning of these limits for the string tension.

Ncool \ L 8 10 14 20 30 40 50

0 2.12
2.32

2.12
2.39

2.12
2.48

2.12
2.58

2.12
2.73

2.12
2.84

2.12
2.92

1 2.14
2.31

2.14
2.38

2.14
2.48

2.14
2.58

2.14
2.73

2.14
2.83

2.14
2.91

2 2.16
2.31

2.16
2.38

2.16
2.47

2.16
2.58

2.16
2.72

2.16
2.83

2.16
2.91

3 2.19
2.3

2.19
2.37

2.19
2.47

2.19
2.57

2.19
2.71

2.19
2.82

2.19
2.9

5 2.23
2.29

2.23
2.36

2.23
2.46

2.23
2.56

2.23
2.7

2.23
2.81

2.23
2.89

10 None 2.34
2.34

2.34
2.44

2.34
2.54

2.34
2.67

2.34
2.78

2.34
2.86

15 None None None 2.44
2.52

2.44
2.65

2.44
2.76

2.44
2.84

20 None None None None 2.54
2.63

2.54
2.73

2.54
2.82

25 None None None None None 2.66
2.71

2.66
2.79

Table 5: For different numbers of cooling steps and different lattice extents the table gives
a lower and an upper limit for β. "None" indicates that the limits exclude one another.

156

In Figure 4 we observe that the deviation from the asymptotic prediction decreases157

with increasing β in the low β-regime. We believe that this behaviour holds within the158

β-intervals of Table 5. The upper limit of β can be extended by increasing the lattice size.159

It would be interesting to see, if this alone suffices to restore full compatibility with the160

asymptotic string tension with modest cooling, but the required computational power161

might exceed the capabilities of our times.162

4. Discussion163

Using non-trivial center regions we analyzed how Pisa-cooling influences the cross-164

sections of thick center vortices. We found an exponential growth that slows down165

with increasing cross-sections. By geometric arguments we derived an upper limit for166

the lattice spacing above which discretization effects trouble the vortex detection and167

a lower limit for the lattice extent where finite size effects set in. This window gets168

smaller with cooling and decreasing lattice extent. Cooling results in deviations from169

the asymptotic behaviour: an underestimation of the string tension occurs. Within the170

window increasing β leads to better agreement with the asymptotic behaviour. It would171

be interesting to see whether the string tension calculated on the projected lattice is in172

fact fully restored with sufficiently large β or if only a partial restoration occurs.173

By improving the method of center vortex detection it might be possible to soften174

the aforementioned limits. The method of vortex detection used in this work was based175

on the direct maximal center gauge guided by non-trivial center regions [15–17]: we176

identify regions whose perimeter evaluates to the non-trivial center element and preserve177

their evaluation during gauge fixing and center projection. This approach comes with178

three possibilities of improvement:179

The growth of the flux tube due to cooling results in the non-trivial center factors180

within the evaluation of Wilson loops being spread over more and more links. The181

original direct maximal center gauge minimizes a gauge functional which takes only182

those eight links into account that are connected to the respective lattice point. By183

taking also those links into account that are connected to neighbouring lattice points the184

troubles arising from the spread of the center flux could be counteracted.185
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When two thick vortices are not separated by at least one lattice spacing the identifi-186

cation of non-trivial center regions enclosing the single piercings might fail. The original187

method used for the detection of non-trivial center regions is based on enlarging the188

perimeter of Wilson loops while preventing overlaps of the resulting regions: if overlaps189

occurred, the region that evaluates to a higher trace gets deleted. By allowing overlaps190

an improvement might be possible: more non-trivial center regions are kept to guide the191

further gauge fixing procedure.192

With rising number of cooling steps more non-trivial center regions than P-plaquettes193

were found: The direct maximal center gauge failed to preserve some of the non-trivial194

center regions. This could be counteracted by inserting non-trivial factors before starting195

the simulated annealing procedure which is used to maximize the gauge functional.196

These non-trivial factors should guaranty that each non-trivial center region evaluates to197

the non-trivial center element when evaluated in the center projected configuration.198
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