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Abstract: The betatron tune in the Large Hadron Collider (LHC) is measured using a Base-Band1

Tune (BBQ) system. The processing of these BBQ signals is often perturbed by 50 Hz noise2

harmonics present in the beam. This causes the tune measurement algorithm, currently based3

on peak detection, to provide incorrect tune estimates during the acceleration cycle with values4

that oscillate between neighbouring harmonics. The LHC tune feedback (QFB) cannot be used5

to its full extent in these conditions as it relies on stable and reliable tune estimates. In this6

work we propose new tune estimation algorithms, designed to mitigate this problem through7

different techniques. As ground-truth of the real tune measurement does not exist, we developed8

a surrogate model, which allowed us to perform a comparative analysis of a simple weighted9

moving average, Gaussian Processes and different deep learning techniques. The simulated10

dataset used to train the deep models was also improved using a variant of Generative Adversarial11

Networks (GANs) called SimGAN. In addition we demonstrate how these methods perform with12

respect to the present tune estimation algorithm.13

Keywords: LHC; betatron tune; deep learning; SimGANs14

1. Introduction15

The tune (Q) of a circular accelerator is defined as the number of betatron oscillations16

per turn [1]. This is a critical parameter in the Large Hadron Collider (LHC) which has to17

be monitored and corrected in order to ensure stable operations [2] and adequate beam18

lifetime. The Base-Band Q (BBQ) system [3] in the LHC is used to measure the tune and19

essentially consists of an electromagnetic pickup followed by a diode-based detection20

and acquisition system. The diode detectors pick-up a small modulation caused by21

betatron motion on the large beam intensity pulses and converts it to baseband, which22

for the LHC is in the audible frequency range. The BBQ system in the LHC is sensitive23

enough to not require that the beam is externally excited in order to measure the tune.24

This normally results in a frequency spectrum such as the one shown in Figure 1, where25

the value of the betatron tune frequency should, in principle, be the frequency position26

of the dominant peak [3,4].27

*+28

Since the start of the LHC, spectral components at harmonics of the 50 Hz mains29

frequency have been observed with several different diagnostic systems. Studies have30

shown that these modulations are on the beam itself with the source of the error found31

to be the main dipoles. Therefore the harmonic perturbations are not a result of instru-32

mentation but are real beam excitations. These harmonics are clearly visible in the BBQ33

system, resulting in a frequency spectrum polluted with periodic spikes every 50 Hz.34

Since these harmonics are also present around the betatron tune, they are a potential35

source of error for the tune estimation algorithm in use until LHC Run 2 (herein refer-36

enced as the BQ algorithm). The current tune estimation algorithm applies a series of37

filters and averaging techniques which have been developed in order to mitigate the im-38

pact of the 50 Hz harmonics on the final estimated value. However, it is not uncommon39
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Figure 1. Example of 50 Hz harmonics present in the BBQ spectrum

to have the estimated tunes oscillate between neighbouring 50 Hz harmonics. The fact40

that the tune estimate locks onto a particular 50 Hz harmonic is clearly not desirable. In41

addition, having the tune jump from one harmonic to another affects the tune feedback42

(QFB) system, causing it to switch off as a protective measure against unstable behaviour.43

The work presented in this paper builds upon the progress made in designing44

alternative algorithms which are able to reliably estimate the tune from spectra polluted45

with 50 Hz harmonics [5]. Namely two alternative algorithms will be considered, one46

which uses a Weighted Moving Average (WMA) and the other uses Gaussian Processes47

in order to reconstruct the BBQ spectra without 50 Hz harmonics. The difference between48

the alternative algorithms and this work that now we take a Machine Learning (ML)49

approach to solve the tune estimation problem. ML offers a set of useful tools that can be50

used to design a mathematical model that attempts to solve a problem from experience,51

and automatically improves its performance over time. The aim of this work is to use52

ML to train a predictor function which can estimate the position of the tune directly from53

BBQ spectra.54

We start by introducing the BQ algorithm, which obtained tune estimates from the55

BBQ spectra until Run 2 of the LHC and whose purpose in this work is purely historical.56

We also briefly explain the alternative algorithms [5] that aim to improve the estimates57

obtained from a BBQ spectrum. We then introduce a novel, albeit a simple approach58

using Artificial Neural Networks (ANNs), and highlight its deficiencies and limitations59

along with its potential room for improvement. Next we aim to improve upon the60

simple approach by considering the inadequacy of simulated spectra to train an ANN61

and consider a variant of Generative Adversarial Networks (GANs), called SimGAN as62

a potential solution to this problem. Finally we collate and discuss the results obtained63

from the current and alternative algorithms, and all the ML approaches.64

2. Tune estimation algorithms65

The BBQ system is normally configured to provide a spectrum of 1024 frequency66

bins at a rate of 6.25 Hz. Since the original signal is sampled at the LHC revolution67

frequency of approximately 11.25 kHz, the spectral resolution is approximately 5.5 Hz.68

This defines the frequency range and resolution available for any system that estimates69

the tune from BBQ spectra.70
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Figure 2. Present BQ tune estimation algorithm [5].

We start by considering the BQ algorithm, where the set of sequential processing71

blocks which form the present tune estimation algorithm is depicted in Figure 2. First,72

each calculated spectrum update is passed through a bank of independent exponential73

moving average filters. Each filter is applied to a single frequency bin with the aim of74

reducing spectral noise. Median and average filters are subsequently applied to the latest75

spectrum to increase its smoothness and mitigate the effect of the 50 Hz harmonics. At76

this stage the frequency corresponding to the maximum value of the processed spectrum77

is taken. This frequency is subsequently refined by going back to the output of the bank78

of exponential moving averages and performing a Gaussian fit of the spectral region79

in its immediate vicinity. This last step attempts to obtain a better estimate of the tune,80

beyond the frequency resolution of the spectrum.81

The development of an improved algorithm was prompted after the observation82

that the tune estimates from the BQ algorithm sporadically jump to adjacent 50 Hz83

harmonic peaks, thus providing incorrect tune estimates. This erratic estimate is used84

by the QFB, which drives the currents in the quadrupole magnets in order to maintain85

a reference tune. Unsurprisingly, the performance of the QFB is affected by the lack of86

stability and accuracy in the tune estimates. The alternative algorithms try to improve87

the performance of the tune estimation algorithm by taking into consideration the 50 Hz88

harmonics into the estimation process [5].89

As before, the tune value is assumed to be located at the maximum peak of the90

spectrum obtained from the BBQ system, however this time, the frequency bins in the91

immediate vicinity of the 50 Hz harmonics are removed from the spectrum. In this work,92

a frequency range of 12 Hz with a harmonic frequency as the center was removed. This93

results in a spectrum with gaps, where only approximately 2
3 of the frequency bins can94

be used. The alternative algorithms can estimate the position of the maximum peak in95

the presence of gaps in the spectrum. Analysis of the results show that the performance96

is somewhat improved.97

Figure 3 shows the distribution of the tune estimation errors obtained from sim-98

ulated spectra with artificially injected 50 Hz harmonics. This figure also shows the99

results of the alternative algorithms when being used with specific parameters. Namely100

the Gaussian Process (GP) fit was used with a Radial Basis Function (RBF) kernel having101

a length scale of 70 while the Weighted Moving Average (WMA) used a window size of102

30 [5].103

3. Simulations104

Due to the nature of the tune estimation problem, any BBQ data that has been105

collected thus far contains the spectra from the BBQ system and tune estimates from106
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Figure 3. Density plot of the errors of the tune estimates of simulated data from non-ML algorithms

the BQ algorithm. Thus when using logged data, it can not be assumed that the logged107

tune values are correct. Due to this limitation another source of pairs of spectra and tune108

values had to be obtained, which could be used to train and test the ML approaches.109

Previous work approached this problem by considering that since the motion of a particle110

in a circular accelerator can be described by a Hill’s type equation, we can approximate111

the shape of a frequency spectrum obtained by the BBQ system by using a second order112

system simulation [5].113

The first part of this work continues to use simulations, however this time in order
to generate a large dataset of spectra and tune value pairs which can be used to train
neural network models. Specifically, the frequency spectrum of a second order system is
given by the following formula:

G(ω) =
ω2

res√
(2ωωresζ)2 + (ω2

res −ω2)2
+N (0, σ), (1)

where we can obtain ωres by using the following:

ωtrue
res =

√
1− 2ζ2ωres. (2)

In Equation (1), N (0, σ) denotes an additive Gaussian noise term with zero mean114

and σ standard deviation while ζ is the damping factor which controls the width of the115

resonance peak obtained. In addition, a finite value of ζ also shifts the true position of116

the resonance in G(ω) according to Equation (2).117

All of the ML models considered in this work require a fixed length input, and118

can only provide a fixed length output. For the models which estimate the tune from a119

frequency spectrum, it would have been possible to feed the entire spectrum however120

this would require a model with a large input length, implying a large number of121

parameters to train. This approach is not necessary since in real operational conditions,122

the spectral region inside which to find the tune frequency is generally well known.123

In this work, the frequency window was chosen to be 100 frequency bins long,124

while guaranteeing that the tune peak lies within this frequency window. This value was125

chosen to be slightly larger than the frequency windows chosen during real machine126

operation using the BQ algorithm. The average operational frequency window obtained127

from a sample of parameters used in the BBQ system for the beam during FLATTOP is128

around 80 frequency bins long. It was empirically observed however that sometimes the129

dominant peak lay close to the edges of the chosen window, which subsequently limits130

the performance of the BQ algorithm. Figure 4 compares the new window length to that131
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Figure 4. Comparing the operational frequency windowing used in the BQ algorithm to the new
window length used in this work.

used in operation and as it can be observed, the tune estimates around the 15s mark are132

close to edge of the operational window. This example also paints a clearer picture of133

the bounds on the inputs used throughout this work where we see that in all the cases134

the input size chosen will always be adequate and representative of real operation.135

It is important to note that the absolute magnitudes of the spectra are not needed.136

For example in Figure 1 the vertical axis is in the range of 160 dB and this is calculated137

by the BBQ system to be representative of the real power in each frequency bin. For138

training neural networks it is imperative that we normalise the input data to be either in139

the range [0, 1] or [−1, 1]. This is due to the type of activation functions that are used140

in between layers in a neural network, which are designed to operate in normalised141

space. Due to this, the real power of the spectra need not be generated by the simulator.142

Another important detail is that the value of the tune, while equivalent to ωtrue
res , had143

to be normalised with respect to the frequency window passed to the model. This is144

not detrimental to the operation of the model as the choice of the frequency window145

is chosen by the operators, and the real value of the tune can be easily transformed to146

Hertz.147

By performing a Monte Carlo simulation of the ωtrue
res and ζ required by the second148

order model as shown in Equation (1), we can explore a myriad of possible spectra, with149

an exact value of the resonant frequency for each spectrum. ωtrue
res was sampled from150

the bounds of the frequency window in radians and ζ was sampled from 10U (−2.5,−1.8)
151

where U is a uniform distribution. The normalised amplitude of the injected 50 Hz152

harmonics was drawn from U (0.5, 2) and after adding the harmonics to the second order153

spectrum, a simple linear digital filter of size 3 was passed forward and backward to154

the spectrum in order to give width to the harmonics as can be observed in Figure 1.155

The spectrum is then normalised again, and ωtrue
res is found in terms of the normalised156

frequency range. Hence by using this generated dataset, we can expect the ANN to157

generalise well and provide a robust tool which can reliably estimate the tune even from158

a BBQ spectrum directly.159

Figure 5 illustrates a normalised real spectrum clipped to the relevant frequency160

window, along with a second order simulation. The procedure described above was161

iteratively performed to locate suitable parameters for the simulated spectrum of162

norm(ωtrue
res ) = 0.76, ζ = 10−2.6 and σ = 0.04. As can be observed, the shape of the163

simulated tune peak matches with that observed in real BBQ spectra.164
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Figure 5. Second order simulation of a real spectrum obtained from the BBQ system.

4. Simple approach165

The simplest way to use ML tools to solve the tune estimation problem is by using166

an Artificial Neural Network (ANN) that is trained to estimate the tune value from167

any BBQ spectrum. The idea would be to first choose a sensible network architecture168

and then train it using the real BBQ spectra as the input. The tune values found from169

the most reliable algorithm from those discussed in the previous section, are used as170

the labels. In this approach however, the ANN can never be better than the algorithm171

that produced the tune label. That is why it is preferable to generate spectra using a172

second order system simulation, since from simulation we would precisely know the173

resonant frequency (i.e. position of dominant peak in the spectrum) used to generate the174

spectrum.175

4.1. Fully-connected layers176

The first network architecture that was considered was a 3-layer, fully-connected177

network (also called a dense network) as shown in Figure 6. Here the spectrum is first178

normalised to the range [0, 1], and then is passed to the network. Each node in the179

network is connected to all other nodes in the previous layer, as well as to all the nodes180

in the next layer. The output of every node in all the layers but the last use a ReLU181

(Rectified Linear Unit) activation function, which clamps negative values to zero. Finally182

the last layer is then connected to one node to produce one scalar which is the tune183

estimate.184

Three model architectures as seen in Table 1 were attempted. Figure 7 shows the185

density plots of the errors of the tune estimates provided by each respective model in186

Table 1. Here it can be seen that Model #1 and Model #2 have the best performance,187

with the highest accuracy and precision. It can also be noted that even though Model188

#2 has much more parameters than Model #1, the latter still performed as good. From189

Figure 7 it can also be seen that unlike the BQ algorithm and the alternative algorithms190

proposed in [5] (GP70, WMA30), the density plot of the three models drops to zero after191
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Figure 7. Density plot of the errors of the tune estimates of simulated data using fully-connected
networks
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Table 1. Model architectures presented for fully-connected networks.

Layer 1 Layer 2 Layer 3 #1

Model #0 150 50 10 23,221
Model #1 300 100 20 62,441
Model #2 500 250 50 188,351

1 Number of trainable parameters.

Figure 8. Network using convolutional layers

approximately 2 frequency bins. This contrasts with the current and the alternative192

algorithms which show a tail extending beyond the bounds of Figure 3.193

4.2. Convolutional layers194

Convolutional layers were invented in order to more efficiently solve tasks whose195

data is known to have a grid-like topology where spatial locality exists. They work on196

the same principle as the visual cortex of mammals, which is to collect subsets of the197

input (such as raw pixels in an image) and processing each subset independently of each198

other. Note that convolutional layers can be used on the output of previous layers in199

order to capture more complex features [6,7].200

Convolutional layers use kernels (also called filters) to perform the convolution201

operation, where a kernel is parametrised by a set of weights. Each kernel is convolved202

with a small subset of the input to produce a feature which is then placed in a feature203

map, all the while maintaining the spatial order of the features with respect to the204

original data. When this operation is done, the kernel is then shifted to the next subset205

of the input to produce a new feature. Note that the length of each shift of the kernel is206

also called stride length. An important advantage of using convolutional layers is the207

significantly reduced number of parameters needed to achieve the same performance as208

an equivalent in function, fully-connected network.209

Figure 8 illustrates a network architecture utilising 3 convolutional layers and one210

dense layer to produce a scalar output. This architecture was trained under various211

configurations of parameters to try and solve the tune estimation problem. The difference212

from the network architecture in Figure 6 is that now the input spectrum is condensed213

to feature maps, and only in the last layer are the features interconnected to produce the214

tune estimate. Table 2 lists the model architectures presented in this work which utilise215

convolutional layers [6].216
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Figure 9. Density plot of the errors of the tune estimates of simulated data using convolutional
networks

Table 2. Model architectures presented for CNNs.

Layer 1 Layer 2 Layer 3
f1 k2 s3 f k s f k s Dense #4

Model #3 32 3 3 16 3 3 8 3 3 20 2,753
Model #4 32 3 1 16 3 1 8 3 1 20 18,113
Model #5 64 3 3 32 3 1 16 3 1 20 18,905
Model #6 128 3 3 64 3 3 16 3 3 20 29,561
Model #7 64 3 1 32 3 1 16 3 1 20 40,025

1 Number of filters.
2 Kernel size of convolution.
3 Stride length, shift size of kernel.
4 Number of trainable parameters.

4.3. Limitations217

Training a neural network to solve a supervised task requires a large set of correctly218

labelled data. The problem of inaccurate tune estimates from real spectra was avoided219

by simulating second-order system spectra, artificially injecting 50 Hz noise harmonics220

and Gaussian noise in order to mimic what is observed in a BBQ spectrum. However221

it was observed that regardless of the model architecture used, the performance of the222

model trained on simulated spectra is sub-optimal in estimating the tune from a real223

spectrum.224

Figure 10 shows the training and validation losses of a model having an architecture225

similar to that illustrated in Figure 6. Validation losses are obtained by comparing the226

labels in the validation dataset to the prediction of the network over the unseen data.227

The plot shows that the loss of the network during training and the loss obtained during228

validation, i.e. the loss from unseen data, are very similar when using simulated spectra229

for validation. This indicates that the network is successfully learning to predict the tune230

values from a simulated spectrum.231

The problems with the simple approach are exposed when validating the network232

using real spectra whilst still training with simulated spectra, and having the BQ, GP70233

and WMA30 estimated tunes used as the labels, we can observe a gap of approximately234

an order of magnitude between the training and validation loss from BQ. Normally235

when training a neural network, such a gap between the two losses is attributed to either236

over-fitting or under-fitting of the model over the training data. This discrepancy in the237
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Figure 10. Comparison of validation losses when using simulated and real spectra respectively.
Note that the dataset containing the real spectra was used to obtain tune estimates from BQ, GP70
and WMA30, thus creating 3 separate validation datasets.

losses is to be expected when knowing that the algorithms used to obtain the validation238

labels are erroneous.239

From Figure 3 it can be seen that the average error of the BQ algorithm is almost at240

half a frequency bin which implies that on a normalised frequency window, the average241

inherent loss from the BQ tunes would be approximately 0.5 bin
100 bins ≈ 5 × 10−3. This242

would explain the size of the gap between the training and the BQ validation loss in243

Figure 10, however it might not be the only contribution to producing said gap. Another244

possible contribution could stem from the fact that the models trained so far are over-fit245

to some features only present in simulated spectra, which would explain the sub-optimal246

performance on real data. Following this hypothesis, we can try to improve our training247

data distributions by making them look more real.248

5. Improving the dataset249

A technique introduced in [8] called SimGAN was considered as a potential solution250

to the above problem. SimGANs build upon the work done in [9] which introduced the251

Generative Adversarial Network (GAN). The goal of the GAN architecture as shown252

in Figure 11 is to train a Generator Network (generator) to transform a random input,253

into an image which looks similar to the images in the dataset of Real Images. Therefore254

the generator needs to capture the data distribution of the Real Images dataset whilst255

the Discriminator Network (discriminator) evaluates the probability that the image came256

from the Real Images dataset and not from the generator (fake). During training, the257

discriminator loss is used to update the discriminator via supervised learning where258

the input is either a real or a fake image and each label is 1 or 0 respectively. Both259

the generator loss and the discriminator loss are used to update the parameters of the260

generator in the direction which maximises the probability of the discriminator making261

a mistake in classifying its input.262

5.1. SimGAN263

SimGAN is a modified version of the GAN, where the goal is to refine a synthetic,264

or simulated image to look more realistic [8]. Figure 12 illustrates he architecture of265
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SimGANs, which is similar to that of GANs, however with two notable differences: The266

input of the generator is now coming from a simulator; The addition of a regularisation267

loss to the generator loss, which restricts the output of the network to remain similar268

to the input. In turn, the discriminator is continuously trained to distinguish between269

refined and real images in order to ultimately help the generator create more realistic270

images in an adversarial manner. Since the role of the generator is now to refine an input,271

in SimGAN nomenclature it is referred to as a Refiner Network (R).272

SimGANs were originally presented to work with images via 2D convolutional273

networks, however since we aim to refine simulated spectra, to look more like spectra274

obtained from the BBQ system we need to convert SimGAN to work with either 1D275

convolutional networks or dense networks. The theory presented below remains valid276

however as the same losses have to be minimised regardless of the input shape and277

network type.278

The goal is to use a set of unlabelled real data, yi ∈ Y , to learn a refiner network,279

Rθ(x) that refines synthetic data x, with θ as the function parameters. Therefore we can280

define refined data, x̃ as:281

x̃ := Rθ(x)

The key requirement is that x̃ should look similar in appearance to the real data282

in the set Y , while still preserving the annotation information from the simulator. To283

achieve this, we learn θ by minimising a combination of two losses:284

LR(θ) = ∑
i
`real(θ; xi,Y) + λ`reg(θ; xi) (3)

where xi is the ith synthetic image. In Equation (3) `real adds realism and `reg285

preserves the annotation information. Since a refiner makes it difficult to classify images286

as real or refined, we need an adversarial discriminator Dφ, that is trained to classify287

Figure 12. Overview of the SimGAN architecture.
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images as real vs. refined. Thus the output of the discriminator can be considered as the288

probability that the input spectrum is real on a scale [0, 1]. The discriminator updates φ289

by minimising the following cross-entropy loss:290

LD(φ) = −∑
i

log(Dφ(x̃i)) − ∑
j

log(1− Dφ(yj)) (4)

Also note that now we can form `real by using Dφ to update θ:291

`real(θ; xi,Y) = −log
(
1− Dφ(Rθ(xi))

)
(5)

By minimising Equation (5) we update θ in the direction that makes Dφ classify292

refined spectra as real, thus improving the performance of the refiner by using the293

discriminator as a metric. Apart from this, `reg is introduced as a self-regularisation294

measure to preserve the annotation information of the input:295

`reg = ||ψ(x̃− x)||1
where ψ(·) modifies how the regularisation loss is obtained. For example ψ could

be an identity matrix which maps the input to itself. In this work, ψ was configured
to satisfy an empirical observation that the 50 Hz noise harmonics in real spectra are
always additive artefacts and never manifest as dips. Due to this observation ψ(·) was
designed as shown in Equation (6) so that any artefacts introduced below the baseline
have a higher cost on the model for η > 1.

e , x̃− x

`reg = ∑
i

max(0, ei) + η ∑
i

max(0, −ei) (6)

5.2. Training SimGAN on simulated and BBQ spectra296

The second-order spectrum simulator that was used to create the spectra to train297

the models in the Simple Approach was modified to not inject the 50Hz noise harmonics.298

Instead the simulator would now only create a spectrum from Equation (1) and add299

Gaussian noise. Note that the noise is necessary in order for the refiner to create realistic300

images, otherwise it would be harder to generalise the refinement process, as in any301

update process utilising backward propagation [10].302

The real dataset, Y , used in Equation (4) to train the discriminator was obtained303

from BBQ data logged during FLATTOP of one fill from the LHC physics runs in July304

2018. A smoothed version of these spectra can also be seen in Figure 14. Since the input305

size of all networks considered in this work was 100 frequency bins, the real spectra306

were clipped to fit in this window, and having its position being randomly chosen while307

guaranteeing that the dominant peak of the spectrum is within the window. This was308

done to ensure that the discriminator does not over-fit to the dominant peak occurring at309

always the same relative location with respect to the frequency window, thus ensuring310

better training of the whole SimGAN.311

The network architectures used for both the refiner and discriminator are a 1D312

version of the networks used in [8]. The value of η in Equation (6) was set to 5 and313

initially λ in Equation (3) was set to 1× 10−3.8, a value which was found empirically to314

achieve the best balance between realism and preservation of annotation information.315

During the training of one SimGAN it was observed that it is possible for a refiner316

to learn to add valid artefacts which are able to trick its respective discriminator into317

classifying the refined spectra as real. However the ultimate goal is to generate spectra318

with enough variety in their shapes as to be able to use them to reliably train a tune319

estimation model. It was found that using one refiner to generate realistic spectra caused320

the tune estimation model to over-fit to the type of artefacts that one refiner produced.321

To overcome this problem, 500 SimGANs were trained while using values of λ322

sampled from 10U (−4,−3.5) in Equation (3) in order to obtain refiners which behave323
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Figure 13. Results from a trained SimGAN. The green line represents the tune estimate from BQ algorithm on the refined
spectrum.
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somewhat differently from each other. In turn this allowed the tune estimation model324

to become more generalised and perform better over the real spectra. Results from325

randomly selected refiners can be seen in Figure 13. Here we can observe that from a326

baseline obtained from Equation (1) with added Gaussian noise (red), a trained refiner is327

able to add artefacts which make the spectra look similar to a real spectrum like the one328

shown in Figure 1.329

6. Discussion330

It is difficult to show any objective difference in the performance of the new ML tune331

estimation models over each respective algorithm presented in this work (BQ, GP, WMA)332

while using real spectra to estimate the tune. The main reason being that we do not333

have access to the ground truth of the real tune value per spectrum. The performance in334

terms of accuracy and precision, of each method used in this work can only be assessed335

qualitatively by visualising the tune estimate traces over the real spectra.336

Figure 14 shows the mean and 3σ of the tune traces obtained from BQ, GP, WMA,337

ML#1, ML#5 and ML-Refined, where the latter is the tune estimation model trained using338

generated spectra collated from a set of 500 refiners. The tune traces are superimposed339

on a heat map which is visualising the tune peak in the BBQ spectra. The heat maps340

were obtained after filtering the original spectra from the 50 Hz harmonics, as well as341

smoothing them to obtain a clear picture of where the tune estimate should be. Also note342

that each µ and σ of each tune trace was obtained after a moving average and moving343

standard deviation of the original tune traces using a centered window.344

From Figure 14 we can observe that even if ML#5 performed well on simulated345

data, its performance is worse than the BQ algorithm in terms of its accuracy. The same346

can be said for ML#1 where we can see that around the 30s and 60s mark, there are347

instances where the tune estimate appears to be unstable. ML-Refined appears to be the348

most robust algorithm, where it can also be observed that its tune trace is the most stable349

of the three ML models shown.350

As mentioned in the Introduction section, the tune estimates are used by the QFB
to apply trims to the quadrupoles and correct the tune of the LHC to be at a reference
value. In order to ensure stable operation the QFB performs a stability measure on the
tune estimates, by keeping two exponential moving averages of the difference between
subsequent tune estimates. Therefore:

Stability = qt+1 ∗ (1− α) + qt ∗ α

where qt represents the change in the tune value at time t and alpha being a time351

constant. These two averages use a 2 and 10 second equivalent time constant respectively,352

and in order to assert a stable tune estimate, both of these values have to be below a353

certain threshold. By default this value is 0.005. This measurement was recreated and354

the stability of the tune estimates coming from each respective model and algorithm in355

this work can be seen in Figure 15. This figure shows us that when using the stability356

as measured by the QFB as a performance metric, we are able to observe an increase in357

performance of the proposed ML solution using refined simulated spectra (ML-Refined)358

to train the dense tune estimation model.359

7. Conclusion360

Several ML tools, namely DNNs, CNNs and SimGANs were used to train a tune361

estimation model. Since for experimental data the associated tune values cannot be362

known with precise accuracy, the spectrum associated with a second order system was363

used to realistically model the beam response and to create a simulated dataset covering364

a wide range of tune values and damping ratios. Different model architectures were365

trained using this simulated data and the best model architectures for the tune estimation366

were chosen. Figure 7 and Figure 9 were used to choose the best DNN and CNN models.367
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It was found that models trained on simulated data did not perform well on real368

data and therefore it was decided to use SimGANs to refine a simulated dataset, by369

using real, unlabelled data to help with the refinement training. A set of 500 SimGANs370

were trained with random initial conditions which were then used to generate a refined371

dataset. This refined dataset was then used to train a DNN tune estimation model.372

Finally a sample of real data was used to compare the performance of the new tune373

estimation model with the models trained on simulated data, as well as the BQ, GP70374

and WMA30 algorithms. The accuracy and precision of the tune estimation models was375

illustrated by Figure 14 where it could be observed that the models were successfully376

producing a tune estimate similar to BQ, GP70 and WMA30, with similar variation.377

It was also shown through Figure 15 that ML-Refined offers improved stability in the378

presence of 50 Hz harmonics which implies a more reliable data source for the QFB.379
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Figure 14. Tune trace plots of the algorithms and models presented in this paper super-imposed on the same heat map of
the spectra.
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Figure 15. Probability distribution of the tune estimation stability. Obtained from Fill 6890, beam 1, horizontal plane. Slow
corresponds to EMA with time constant of 10s and Fast to EMA with time constant of 2s. The threshold was chosen in the
early design of the beam-based feedback systems and used in operation during Run 2. [2]
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