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Abstract: The vulnerability of alpine environments to climate change presses an urgent need to accu-

rately model and understand these ecosystems. Popularity in use of digital elevation models (DEMs) to 

derive proxy environmental variables has increased over the past decade, particularly as DEMs are rel-

atively cheaply acquired at very high resolutions (VHR; <1m spatial resolution). Here, we implement a 

multiscale framework and compare DEM-derived variables produced by Light Detection and Ranging 

(LiDAR) and stereo-photogrammetry (PHOTO) methods, with the aims of assessing their relevance and 

utility in species distribution modelling (SDM). Using a case study on the arctic-alpine plant Arabis al-

pina in two valleys in the western Swiss Alps, we show that both LiDAR and PHOTO technologies can 

be relevant for producing DEM-derived variables for use in SDMs. We demonstrate that PHOTO DEMs 

rivalled the accuracy of LiDAR, putting the current paradigm of LiDAR being the more accurate of the 

two methods into question. We obtained DEMs at spatial resolutions of 6.25cm-8m for PHOTO and 

50cm-32m for LiDAR, where we determined that the optimal spatial resolutions of DEM-derived varia-

bles in SDM were between 1 and 32m, depending on the variable and site characteristics. We found that 

the reduced extent of PHOTO DEMs altered the calculations of all derived variables, which had particu-

lar consequences on their relevance at the site with heterogenous terrain. However, for the homoge-

nous site, we found that SDMs based on PHOTO-derived variables generally had higher predictive pow-

ers than those derived from LiDAR at matching resolutions. From our results, we recommend carefully 

considering the required DEM extent to produce relevant derived variables. We also advocate imple-

menting a multiscale framework to appropriately assess the ecological relevance of derived variables, 

where we caution against the use of VHR-DEMs finer than 50cm in such studies. 
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1. Introduction 

Alpine environments are among the most sensitive ecosystems to climate change and 

associated extreme weather fluctuations [1]. Increases in mean annual air temperature 

coupled with changes in precipitation patterns have been associated with glacial retreats, 

permafrost degradation, and increases in sedimentation and erosion, leading to an up-

ward migration of vegetation belts and increased interspecies competition over the past 
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100 years [2–6]. As such, there is a growing interest in alpine conservation research to 

understand how plants are likely to respond to novel pressures, and with this, guide ap-

propriate and effective management strategies. 

Modelling species distributions in alpine environments requires a move from the tra-

ditional methods that rely on environmental and climatic data interpolated from regional-

scale sensors, such as local weather stations [7,8]. New evidence highlights the importance 

of incorporating fine-scale topographic information for modelling microclimatic condi-

tions [9,10], as microclimates are thought to largely determine habitat availability, the 

number of species a region can support, and the ability of species to either stay or go under 

a changing climate [7–9,11].  

Recently, ecologists have been turning towards remote sensed digital elevation mod-

els (DEMs) to obtain accurate topographical attributes that proxy for environmental vari-

ables [12,13]. Originally adopted in the fields of geology and hydrology to describe terrain 

steepness and orientation, the primary terrain attributes of slope, aspect and curvature 

derived from DEMs can be used to calculate more complex secondary terrain attributes. 

These secondary derived variables can accurately model environmental factors such as 

soil depth, nutrient status, solar radiation, terrain ruggedness, humidity and soil wetness 

[7,10,12,14–16], which have been successfully used in species distribution models 

[7,17,18], studying responses to environmental change [8,9,11], and evaluating capacities 

for local adaptation [19].  

Accurate modelling of microhabitat conditions requires very high resolution (VHR) 

DEMs of 1m or finer, which have recently become more financially and logistically ob-

tainable. There are two main capture systems to produce VHR-DEMs: airborne Light De-

tection and Ranging (LiDAR) and drone-based stereo-photogrammetry (PHOTO). While 

LiDAR is traditionally the method used to acquire DEMs, particularly as it produces 

highly accurate models under most weather, light and vegetation conditions [20–22], pop-

ularity is increasing for PHOTO as a practical and cheaper solution to LiDAR [23–25], 

particularly in alpine terrain above the tree line where the models are directly of the sur-

face [26], despite PHOTO’s limitations regarding sensitivity to terrain complexity, vege-

tation, lighting and weather conditions [27,28]. Technical differences between the technol-

ogies result in an important trade-off between the maximum extent captured during a 

flight and the final spatial resolution [23,29]: LiDAR’s use of an active laser system restricts 

it to airborne platforms, resulting in larger extents at lower resolutions, while the camera 

equipment of the passive PHOTO method allows its use on drones, restricting extent 

while improving spatial resolution by up to 10 times that of LiDAR.  

Acquiring VHR-DEMs raises important questions relating to accuracy and scale, 

such as: is such level of detail necessary for ecological studies? And: what resolution is 

precise enough to adequately represent topography and microclimates? Indeed, DEM res-

olutions that are too fine may hold an excess of detail, while those that are too coarse may 

over-generalise and lose important features [30,31]. The optimal spatial resolution de-

pends on the derived variable: predictions of soil depth, for example, were found to be 

most accurate when using DEMs at 2m resolution [32], while models of topsoil pH were 

optimised when using DEMs at 1m resolution [33]. Similar patterns are found for climatic 

variables, where one study found optimal resolutions to be between 0.5 – 4m [15]. Unsur-

prisingly, species distribution models (SDMs) have been shown to depend on the spatial 

resolution of the input variables [18,34]. Yet, a general lack of guidance and formal dis-

cussion around the topic of spatial scale has resulted in the arbitrary selection of resolu-

tions in many ecology studies [35,36], with consequences for ecological modelling [37,38]. 

Here, we implement a multiscale framework and compare DEM-derived variables 

produced by LiDAR and PHOTO technologies on the same two alpine regions, with the 

aims of: i) assessing the predictive powers of variables derived from each technology, ii) 

illustrating the importance of mindfully selecting spatial scale, and iii) highlighting key 

differences between the two technologies. We implement SDMs with data from a case 

study on Arabis alpina in the western Swiss Alps to evaluate the ecological relevance of 

DEM-derived variables at multiple scales from both technologies. We conclude by 



 

providing a comparison of LiDAR- and PHOTO-based DEMs for use in ecological re-

search, and we outline key differences between the technologies to help researchers de-

cide on the appropriate DEM-acquisition technology to use in their research. 

2. Materials and Methods 

We obtained VHR (<1m resolution) DEMs for two alpine sites located in the western 

Swiss Alps in the context of a landscape genomics project (GENESCALE) [25,39]. We were 

interested in testing the adequacy of the cheaper and logistically simpler PHOTO method 

using a drone compared to state-obtained LiDAR using airplanes, with the motivation for 

cost-effective repeatability of the project in other areas. This presented a good opportunity 

to compare DEMs produced by LiDAR and PHOTO technologies, as well as their associ-

ated derived variables, particularly as a lack of vegetation and man-made structures at 

the study sites meant that the digital surface model (DSM) obtained by PHOTO made it 

equivalent to a terrain model [26]. To avoid ambiguity, we use the term spatial resolution 

to describe the pixel size of DEMs and derived variables, while we use the term extent to 

describe the total area sampled or analysed [36]. 

2.1 Study sites 

Both La Para (Para) and Col des Martinets (Martinets) target study sites cover 0.5km2 

and are located in alpine valleys located above the tree line in the western Swiss Alps 

(Figure 1). Para is located in a narrow valley and is characterised by bumpy and steep 

slopes; Martinets is located at a slightly higher elevation in a wider valley and is charac-

terised by flatter terrain with a cliff across the middle of the site (Table 1). These sites were 

selected for this case study as they show a diverse range of alpine habitat types (e.g., rocks, 

grassy-meadows, low shrub, cliff-faces) with high topographic complexity [25]. A total of 

181 and 123 geo-referenced points (±3cm) were recorded across Para and Martinets, re-

spectively, using a Leica DGPS (Table 1). Of these, 24 and 13 points were measured spe-

cifically as ground control points for producing PHOTO DEMs using Global Navigation 

Satellite Systems in Real-Time Kinematic mode (GNSS RTK), while 146 and 100 points 

were geo-referenced locations of the alpine perennial plant A. alpina (Brassicaceae). The 

remaining control points (11 and 10) correspond to the location of environmental loggers, 

whose data were not used in the present study. 



 

Figure 1. Location of Para (left) and Martinets (right) study sites in the western Swiss Alps (loca-

tion indicated in black rectangle on the Swiss map insert). The site perimeter is outlined in white 

and control points are indicated as black dots. The Light Detection and Ranging (LiDAR) digital 

elevation models (DEMs) are superimposed on an elevation map of the surrounding area and are 

in darker colors.   

Table 1. Location and characterization of the two study sites, Para and Martinets, situated in val-

leys in the western Swiss Alps, including the areas of the target study sites and DEM extents, as 

well as the number of geo-referenced points used in the analyses. 

 Para Martinets 

Coordinates 46°23'23"N; 7°9'6"E 46°12'37"N; 7°5'12"E 

Elevation range  1826 – 2320 m asl 1928 – 2368 m asl 

Orientation NNE NE 

Slope (mean ±sd) 0.50 ±0.16 0.45 ±0.17 

Eastness (mean ±sd) 0.44 ±0.5 0.34 ±0.6 

Northness (mean ±sd) 0.64 ±0.4 0.48 ±0.6 

VRM1 (mean ±sd) 4.5×10-3 ± 7.3×10-3 4.7×10-3 ± 9.6×10-3 

Area of LiDAR DEM 6.0 km2 3.7 km2 

Area of PHOTO DEM 0.7 km2 0.7 km2 

Area of target site  0.5 km2 0.5 km2 

Ground control points 24 13 

Plant occurrence points 146 100 

Logger points 11 10 

Total geo-referenced points2 181 123 
1 VRM = Vector Ruggedness Measure 
2 Sum of ground control points, plant occurrence points, and logger points 

2.2 Digital Elevation Models 



 

2.2.1 LiDAR acquisition  

Raw LiDAR point clouds were obtained from a laser survey carried out by the Direc-

tion of Land registry and of Geoinformation (DCG) of the Swiss state of Vaud in June 2015 

and distributed by ASIT Vaud [40]. The point cloud was acquired using a LiDAR Optech 

ALTM Gemini at a wavelength of 1064nm and a flight altitude of approximately 650m 

above the terrain. The laser used a scanning angle of ~20° on both sides of the vertical and 

resulted in a point density of between 8 to 12 points m-2.  

2.2.2 Photogrammetry acquisition 

PHOTO data were collected in August 2014 using a SenseFly eBee fixed-wing UAV 

[41], which is capable of autonomous flight in wind speeds up to 50km h-1 (rapid wind 

and weather changes are common at altitude in this region; actual windspeed of approx-

imately 35km h-1 was recorded during flights). A flight plan was developed to account for 

a 130m flight-height above the terrain aiming for a ground pixel resolution of about 4cm, 

as well as a 75% longitudinal and 60% lateral overlap of images to allow for good stereos-

copy. Parameters were slightly modified when flown over certain terrain types, particu-

larly cliff areas, to ensure a homogeneous ground pixel size throughout the flight. Images 

were analyzed and orthorectified using Pix4D software (v1.1.45, 2014). Images were ini-

tially processed at double image size to maximize extracted features and improve accura-

cies, after which additional 3D points were computed based on the original image size to 

maximize point cloud densification, and the minimum number of matches per 3D point 

was set to three. The DSM was produced at a resolution of 5cm per pixel using inverse 

distance weighting, where noise and errors in calculated points were filtered using the 

median elevation of neighboring points, and small bumps were removed using the me-

dium surface smoothing filter. This was exported as a .las file. All PHOTO DEM acquisi-

tion and processing was performed at HEIG-VD, Switzerland. 

2.2.3 DEM processing 

We used CloudCompare (v 2.10.2, 2020) to process the point cloud .las files from both 

technologies. The Rasterize tool was used to produce the VHR-DEMs from the point clouds 

using average cell height, where missing data were filled with values interpolated from 

neighboring values. The finest resolution DEM from the LiDAR point cloud was 0.5m, 

while the finest resolution DEM for PHOTO was 6.25cm. The DEMs were modified in R 

(v3.6.0, 2019) to add empty pixels along the right and bottom borders, such that the raster 

extents were divisible by 2n for multiscale decomposition up to n times. All DEMs were 

geo-referenced in the Swiss reference system (MN95: CH1903+/LV95). See Table 1 for the 

areas of the finest-resolution DEMs obtained for LiDAR and PHOTO at both sites, as well 

as the areas of the target study sites. 

2.2.4 DEM multiscale decomposition 

A multiscale framework was used to investigate the effect of spatial scale on the ac-

curacy of DEMs obtained by LiDAR and PHOTO technologies, as well as to assess the 

optimal spatial scales of derived variables. We generalized the DEMs to multiple scales 

using the Gaussian Pyramid algorithm in MATLAB with the impyramid function (Math-

Works: MATLAB R2019a, 2019) [42–44]. The PHOTO DEM was generalized from 6.25cm 

to 12.5cm, 25cm, 50cm, 1m, 2m, 4m and 8m, and the LiDAR DEM was generalized from 

50cm to 1m, 2m, 4m, 8m, 16m and 32m. The generalized DEM rasters were then manually 

cropped using QGIS (v3.4, 2019) to remove incorrectly calculated border pixels due to 

edge effects during generalization. The differences in the ranges of DEM spatial resolu-

tions produced for LiDAR and PHOTO are due to the trade-off between the finest obtain-

able pixel size and the extent of the area captured. 

2.2.5 DEM accuracy assessment  

The accuracy of each DEM (LiDAR at 7 resolutions; PHOTO at 8 resolutions) was 

evaluated as the vertical error (Δhi) of the elevation obtained from the DEM compared to 

the accurately measured ground points (Δhi = Ground point – DEM point; Para: n=181, Mar-

tinets: n=123), following the DEM accuracy assessments as recommended by [45]. All 



 

calculations were performed in R. The distribution of Δhi was first visualized using box-

plots and quantile-quantile (Q-Q) plots to check for deviations from normal distribution. 

Vertical accuracy was assessed using standard accuracy measures (assuming a normal 

distribution of errors), including mean, standard deviation (sd), and root mean square 

error (RMSE), as well as assessed with robust measures of accuracy, including minimum, 

maximum, median, 68.3% quantile (±1sd from mean), 95% quantile (±2sd from mean) and 

the normalized median absolute deviation (NMAD) - an estimate for the standard devia-

tion that is more resilient to outliers. Outliers were defined as points with a |Δhi| greater 

than three times the RMSE [46], which were then removed for the recalculation of the 

standard accuracy measures.  

2.3 DEM-derived variables  

2.3.1 Derived variable computation 

A total of 23 variables relating to terrain morphometry, hydrology and solar radiation 

were derived from each DEM using SAGA GIS (v7.5.0, 2019). Eastness and Northness 

were calculated as the sine and cosine of Aspect in R. Descriptions and parameters used 

in calculations of all the derived variables are provided in Table S1 in the Supplementary 

material.  

2.3.2 Derived variable correlations 

Correlations between each pair of derived variables generated at 0.5m resolution 

were calculated to select independent variables following rules adapted from [15]. Spear-

man’s rank correlations were calculated based on a subset of 15 000 random points across 

each study site. Using a correlation threshold of |rs|≥0.8 [47], we reduced the number of 

variables to eight (Table 2), prioritizing primary terrain attributes (slope, aspect, curva-

ture), followed by variables that were deemed to be more ecologically meaningful to high-

altitude alpine plants [48]. For each DEM, we reassessed pairwise correlations for the eight 

independent variables to investigate how spatial resolution, technology and site charac-

teristics alter collinearity. Additionally, we produced scatterplots to directly compare the 

eight independent LiDAR and PHOTO DEM-derived variables at the common spatial res-

olutions of 0.5m, 1m, 2m, 4m, and 8m. 

Table 2. Description of independent DEM-derived variables computed at each resolution for Li-

DAR and PHOTO. See Table S1 in the supplementary material for the parameters used in calcula-

tions. 

 Variable Abbv. Description Units Ref. 

P
ri

m
ar

y
 a

tt
ri

b
u

te
s 

Elevation - DEM elevation, interpolated from LiDAR or PHOTO, gen-

eralized to multiple resolutions using B-spline wavelet 

transforms. 

m [42,43] 

Slope Slope Morphometry. Local morphometric terrain parameters; prox-

ies for water flow, snow movements, erosion, solar radia-

tion, etc. Eastness and Northness represent the sine and co-

sine of Aspect (Orientation), respectively. Curvature is used 

to understand erosion and runoff processes.  

radians [49] 

Eastness East radians 

Northness North radians 

Plan curvature Hcu 1/m 

S
ec

o
n

d
ar

y
 a

tt
ri

b
u

te
s 

Vector rugged-

ness measure 

VRM Morphometry. Quantifies rugosity with less correlation to 

slope, indicating a combined variability in slope and aspect. 

No unit [50] 

SAGA wetness 

index 

SWI Hydrology. Modified version of Topographic Wetness Index 

(TWI), which is a calculation of the slope and a modified 

catchment area (MCa). It predicts a more accurate soil mois-

ture for cells situated on the valley floor (when compared to 

the TWI) 

MCa/ 

Slope 

[51,52] 

Sky view factor SVF Lighting. Ratio of the radiation received by a planar surface 

to the radiation emitted by the entire hemispheric environ-

ment 

no unit [14,53,

54] 



 

Total Solar radi-

ation in June 

Ti06 Lighting. Sum of direct and diffuse insolation in summer 

(calculated for 1 to 30 June 2015). 

kWh/m² [12,14] 

2.3.3 Derived variables in species distribution models 

To investigate the ecological relevance of DEM-derived variables from LiDAR and 

PHOTO at various spatial resolutions, we performed SDMs at each site following the 

methods of [55]. As we had presence-only data of A. alpina across the sites, we used the 

machine learning method of MaxEnt [56] through the R package maxnet [57] to estimate 

the probability distribution of the plants across the sites based on incomplete species pres-

ence-only data and environmental predictor variables [58,59]. 

For each model, we used Elevation and the eight independent variables from Table 

2, varying only the DEM-acquisition technology and spatial resolution, where all rasters 

were limited to the extent of the study site as indicated in the maps of Figure 2. To deter-

mine the technology–resolution combination that can best discriminate plant location 

from random background points for each variable at each site, we performed Student t-

tests in R with the t.test function, comparing the plant presence data (Para: n=146, Marti-

nets: n=100; green dots in Figure 2) to 10 000 random background points at each site. We 

considered a technology–resolution combination to be significant if the t-test value was 

<0.01 after applying a Bonferroni correction for multiple comparisons. For each variable 

at each site, we retained the technology–resolution combination that produced the largest 

T-value and used these in a ‘combination’ model for each site (see Table S2 for summary 

of t-tests results). 

Figure 2. Location of Arabis alpina individuals (green dots) across the Para (left, n=146 locations) 

and Martinets (right, n=146 locations) sites, where target site perimeters are outlined in black. The 

sky view factor (SVF) variable derived from PHOTO is shown in light colors and superimposed 

on hill shaded DEMs. 

As species’ responses to environmental factors tend to be complex [59], MaxEnt al-

lows for non-linear transformations termed feature classes (FC) of predictor variables, 

which are regulated for overfitting with regularization multipliers (RM) [60]. To optimize 

these two parameters for our SDMs, we assessed the performance of MaxEnt models pro-

duced for each site using the combination models specific for each site, where we varied 



 

the FC transformations (linear; linear-product; linear-quadratic; linear-product-quadratic) 

and RM values (1, 2, 5 and 10). We ran 20 models each with a different random subset, 

using 75% of the data to train the models and 25% to test them, and projected the models 

using the cloglog scaled output. Two metrics were used to evaluate the performance of 

the MaxEnt models [61]: the mean of the commonlyused Area Under the Receiver Oper-

ating Curve (AUC) [62] based on the test data (AUCtest), which was complemented with 

the mean sample-size corrected Akaike Information Criterion (AICc) [63]. From this we 

determined that the optimal parameters for the SDM at both sites was the linear-product-

quadratic FC coupled with a RM of 1 (LPQ1; Table S3). Finally, we performed MaxEnt 

SDM for A. alpina at both study sites separately, using the optimized parameters to trans-

form the predictor variables. We performed one model for each technology–resolution 

combination, resulting in a total of 15 models in addition to the combination model, per 

site. We note while that there may have been more than one plant location record per grid 

at the coarser resolutions, we retained all presence locations to maintain consistent sample 

sizes in the models, as per [60].  

3. Results 

3.1 DEM accuracy assessment 

DEM accuracy (Δhi), measured as DEM vertical error when compared to control 

points, decreased at coarser spatial resolutions, particularly from 4m onwards (Figure 3; 

Table S4). However, accuracy remained constant from 6.25cm through to 50cm. 

 



 

 

Figure 3. The vertical error (Δh; in meters) of DEMs acquired from LiDAR (orange) or PHOTO 

(blue) technologies across all resolutions for a) Para (n=181) and b) Martinets (n=123). Boxplots are 

accompanied by examples of Q-Q plots of LiDAR and PHOTO DEM errors at 0.5m resolution. The 

complete set of Q-Q plots for both sites can be found in Figure S1. 

Visual inspection of the vertical error distribution using Q-Q plots (Figure 3 for Q-Q 

plots of 0.5m DEMs; Figure S1 for all Q-Q plots) showed strong deviations from a normal 

distribution, where heavy tails at the finer resolutions indicate the presence of extreme 

values such as outliers. These extreme values diminished at coarser resolutions. Skews in 

the data were stronger at Para than at Martinets, with four outliers at Para compared to 

one at Martinets. We assessed accuracy using robust measures that are more resistant to 

outliers, though we report standard and robust measures in Table S4. 

We found that the accuracy of PHOTO DEMs was equal to, if not better than, the 

accuracy of the LiDAR DEMs at both study sites for spatial resolutions ≤4m, though at 

coarser resolutions PHOTO DEMs became more varied and less accurate than LiDAR.  

At Para, LiDAR and PHOTO DEMs showed similar magnitudes of error, where PHOTO 

had slightly more outliers than LiDAR at matching resolutions (Figure 3a, Table S4). Ad-

ditionally, PHOTO DEMs at Para had approximately the same variation as LiDAR DEMs 

at matching resolutions, as determined by NMAD, the robust estimate for standard 



 

deviation (Table S4, Figure S2a). At Martinets, PHOTO DEMs were more accurate than 

the LiDAR DEMs when compared to the ground points (Figure 3b, Table S4), where 

PHOTO DEMs over-estimated elevation by a median of approximately 5-10cm, while Li-

DAR DEMs over-estimated elevation by a median of approximately 1.2m PHOTO. Addi-

tionally, PHOTO DEMs at Martinets showed less variation in error than did LiDAR DEMs 

up to resolutions of 2m (Table S4, Figure S2b), after which vertical errors in PHOTO DEM 

were more variable than LiDAR.  

3.2 DEM-derived variables 

3.2.1 Derived variable correlations  

Eight independent DEM-derived variables were retained from an initial 23, based on 

a Spearman rank correlation threshold of |rs|≥0.8 for the variables at 0.5m resolution (Ta-

ble 2). When correlations were reassessed at coarser resolutions, most correlations re-

mained consistent and below the |rs|=0.8 threshold (Table S5).  

We showed strong correlations between the DEMs of LiDAR and PHOTO at all res-

olutions (rs=1), but this was not observed for the derived variables between the technolo-

gies (Figure S3). Indeed, we found a high degree of scatter, indicating inconsistencies be-

tween variables derived from the LiDAR versus PHOTO DEMs, particularly at finer res-

olutions. This was especially notable for HCu and VRM at both sites, where variables were 

poorly correlated at 0.5m resolutions (rs<0.2 and <0.45, respectively), but were more 

aligned at 8m resolutions (rs>0.8 and >0.89, respectively). For other variables, including 

East, North and Ti06, LiDAR and PHOTO produced relatively congruent variables at both 

sites, with rs>0.75 at the 0.5m resolution and rs>0.9 at the 8m resolution. In general, varia-

bles derived from LiDAR and PHOTO DEMs were slightly more consistent for Para than 

Martinets. 

3.2.2 Predictive power of derived variables in species distribution models 

The optimal resolution–technology combination that distinguished plant presence 

from random background points was dependent on the site characteristics (Table S2). At 

Para, 120 of the 135 variable-resolution combinations (9 variables each at 15 resolutions) 

were able to significantly distinguish plant locations from random background points at 

a significance level of p≤0.05, where more derived variables were from LiDAR than from 

PHOTO DEMs. As such, all derived variables used in the ‘combination’ MaxEnt model 

for Para were LiDAR-derived. The optimal spatial resolution depended on the variable: 

Elevation and Slope at 32m; VRM at 16m; Hcu, SVF and SWI at 8m; Ti06 at 4m; and East 

and North at 1m. At Martinets, 101 of the 135 variable-resolution combinations were able 

to distinguish plant location from random points, with weaker significances than at Para. 

Interestingly, 59 variables significantly able to distinguish plants from background were 

PHOTO-derived, while 42 were LiDAR-derived. Despite this, all variables that could most 

significantly distinguish plant location were LiDAR-derived with the exception of SVF, 

where most variables were optimized at the coarser resolutions: Elevation, East, Hcu, 

Slope and Ti06 at 32m; SWI at 16m; SVF at 4m; and North and VRM at 1m. These optimal 

variables for each site, as listed above and highlighted in grey in Table S2, were then used 

to determine that the optimal MaxEnt model parameters to use are a FC of linear-product-

quadratic coupled with a RM of 1 (LPQ1; Table S3). 

The ability of each MaxEnt model to predict the distribution of A. alpina at each site 

was assessed using AUCtest and AICc (Figure 4). At Para, all models appeared to be well 

suited to predicting plant location, with mean AUCtest values >0.8 (Figure 4a). Model 

performance at Para improved with variables at 6.25cm to 12.5cm, after which SDM per-

formance was approximately equal with variables at 12.5cm to 4m resolutions (Figure 4a, 

c). The highest predictive power was the model produced with 16m resolution variables, 

followed by the Para combination model. MaxEnt model performance at Para was slightly 

improved when variables were derived from LiDAR rather than from PHOTO. SDMs at 

Martinets were marginally less accurate than at Para, with mean AUCtest values >0.75. 

While model performance improved as input variable resolution coarsened, particularly 



 

from 6.25cm to 1m, there was little difference in model performance from 2m to 32m (Fig-

ure 4b, d). Highest model performance was obtained with the combination model, fol-

lowed by 4m PHOTO and 32m LiDAR. With the exception of 1m resolution, SDMs based 

on PHOTO-derived variables had higher predictive power than those based on LiDAR at 

Martinets. 

 

 

Figure 4. MaxEnt SDM performances evaluated using AUCtest and AICc at Para (a and c, respec-

tively) and Martinets (b and d, respectively) as a function of variable resolution (x-axes) and DEM-

acquisition technology (LiDAR in orange, PHOTO in blue). Each point represents the evaluation 

criteria mean ±sd, based on the results of 20 model iterations for the input variables. The horizon-

tal black lines represent the mean ±sd of the ‘combination’ model calculated for each site using the 

variable resolutions that best differentiated plant occurrence points from random background 

points. 

4. Discussion 

Using a multiscale framework to model plant distributions across two alpine study 

sites, we systematically evaluated the ecological relevance of DEMs and derived variables 

acquired from both LiDAR and PHOTO technologies.  

We found that the accuracy of PHOTO DEMs rivals that of LiDAR DEMs, putting 

the current paradigm of LiDAR being the most accurate DEM-acquisition method into 

question. Furthermore, we show that the optimal spatial resolutions for DEM-derived 

variables in alpine plant distribution modelling is between 1 and 32m, depending on the 

variable and the characteristics of the study site. This reiterates concerns regarding the use 

of the finest obtainable resolutions (<0.5m) to represent micro-climatic conditions experi-

enced by sessile organisms, further supporting suggestions that such high resolutions are 

simply introducing noise to ecological models [18]. Here, we discuss the influence of 



 

spatial scale and DEM-acquisition technologies on the relevance of derived variables in 

SDM at the two study sites, after which we provide an overview of the technologies to 

assist in selecting the most appropriate method for producing data to use in alpine ecology 

studies. 

4.1 Spatial scale 

Through a multiscale framework, we show that DEM accuracy is stable up to 2m 

resolution then reduces at coarser resolutions. This corroborates previous studies 

[31,33,43] that show how DEM generalization smooths over topography, removing infor-

mation about microtopography and noise from outliers that are present at the finer reso-

lutions.  

Despite higher accuracies of the VHR-DEMs, SDMs using variables at coarser reso-

lutions between 1 and 32m best predicted the distribution of A. alpina across the study 

sites. Indeed, DEM-derived variables for use in ecological modelling need to be at spatial 

resolutions that accurately represent climatic variables such as air temperature, humidity 

and soil moisture, where it has been shown in a similar Alpine region that climatic varia-

bles are best represented by derived variables between 1 and 4m [15]. It should be noted 

that despite relatively lower performance, the SDMs built with VHR input variables re-

mained useful models of plant distribution. Additionally, it has been shown that the num-

ber of location points and their clustering across a site can alter the performance of SDMs 

[60], which may influence optimal spatial resolution for SDMs. 

The optimal spatial resolution depended strongly on the derived variable and char-

acteristics of the study site [15,60]. Indeed, we found some improvement in SDM when 

each input variable was used at its specific optimal resolution in the ‘combination’ model. 

We also found that SDMs for more flat and homogeneous topography variables, as at 

Martinets, were optimized with coarser resolution, while SDMs for more complex heter-

ogenous areas, such as Para, were optimized with a combination of coarse- and fine-reso-

lution variables, supporting conclusions from previous studies [61].  

We showed that the relationships between the eight retained independent variables 

changed with spatial resolution and characteristics of the study sites. For example, the 

relationship between SVF and East was stronger at Para, with its NNE orientation, than 

at Martinets, with its NE orientation, where the correlation between North with SVF 

weakened as the spatial resolution coarsened. 

4.2 LiDAR versus photogrammetry 

At matching resolutions, PHOTO DEMs rivalled the accuracy of LiDAR DEMs, 

where PHOTO DEMs up to 4m resolution were in fact more accurate than the LiDAR 

DEMs. There are two main reasons why we might have seen this result. First, the use of 

ground points to measure DEM accuracy favors the PHOTO DEMs, as the ground points 

were collected at the same time as the PHOTO DEM was produced, while the LiDAR 

DEM was collected as part of a state-wide elevation campaign and was not calibrated us-

ing these points. Second, the two DEMs were collected at different times of the year: while 

PHOTO was collected in August, LiDAR was collected in June of the following year, at a 

time when snow was likely to be covering parts of these high-altitude sites. We found that 

at Martinets in particular, the LiDAR DEM over-estimated elevation by approximately 

1.2m when compared to the control points, while the PHOTO DEM over-estimated eleva-

tion by approximately 5-10cm at matching resolutions.  

Despite customization and overall higher accuracies of PHOTO DEMs, they had 

more outliers than LiDAR DEMs, where the quantity of outliers was influenced by the 

topography at the study sites. Indeed, a major drawback of PHOTO is the influence of 

external factors on DEM accuracy, where bumpy terrain is known to cause problems due 

to the projection of shadows and lighting irregularities [23]: sites with more complex to-

pography are likely to produce DEMs with more outliers and inaccuracies than sites with 

smoother terrain [27]. These errors can be manually edited, as was done here, but this does 

involve considerable post-processing and good knowledge of DEM-processing systems. 



 

DEM extent affected the calculation of derived variables, such that we found between 

LiDAR and PHOTO DEM-derived variables. Though DEM extents of both technologies 

surpassed the targeted areas, LiDAR captured much larger extents than did PHOTO and 

included the surrounding topography (mountains, cliffs, etc.). Inclusion of surrounding 

topography is particularly important for variables such as total irradiance in June (Ti06), 

whose accuracy depends on the inclusion of the overall surface orientation and total in-

coming solar radiation, which may be affected by obstructing objects such as mountains 

or boulders [14]. Limited extent for the PHOTO DEM also affected the number of times it 

could be generalized before border pixels were lost over the target site.  

The relevance of DEM-derived variables from each technology depended on study 

site characteristics. At Para, SDM performance was improved with LiDAR-derived varia-

bles, indicating the importance of having a DEM with a large-enough extent to include 

the site’s surrounding mountainous topography. At Martinets, PHOTO DEM-derived 

variables at the mid-range resolutions were more relevant in predicting A. alpina distribu-

tions than LiDAR derived variables at matching resolutions. This may reflect the reduced 

influence of surrounding mountains at Martinets, as well as the bias for PHOTO variables 

due to potential snow cover in the LiDAR DEM. 

4.3 Recommendations 

Both LiDAR and PHOTO are valid technologies for acquiring DEMs in alpine re-

gions, particularly when collected with the aim of deriving ecologically relevant variables. 

The choice between which technology to use depends on the characteristics of the study 

site, the extent and spatial resolution required, as well as budget and planned frequency 

of surveys required to be carried out. The key characteristics and technical properties of 

LiDAR and PHOTO technologies are summarized in Table 3. We acknowledge that 

though LiDAR is now available on drones and is thus cheaper than airplane-based LiDAR, 

the drones required to carry the LiDAR and its battery means that it remains expensive 

when compared with drone-based PHOTO (LiDAR on drones >US$10k; PHOTO on 

drones > US$5k), while raising the same issues as drone-based PHOTO of limited extents 

at arguably too fine resolutions (1-3cm resolutions). As such, we focus only on comparing 

airborne LiDAR and drone-based PHOTO. 

Table 3. Key differences between airborne LiDAR and drone photogrammetry (PHOTO) technolo-

gies to acquire DEMs, with regards to technical aspects and data characteristics. For more infor-

mation, see [15,23,29,30,62]. 

 LiDAR PHOTO Pre-

ferred 

Data acquisition  

Sensor Active (laser and sensor) Passive (images)  

Vehicle used Fixed-wing vehicle or helicopter  Drones  

Flight details Faster and longer flight, with 20-30% 

overlap, more complicated flight plan-

ning 

Slower and shorter flight, with 60-90% 

overlap, more simple flight planning 

 

Area covered Regional Local  

Flight conditions Light- and weather-independent Light- and weather-dependent (dif-

fused light to avoid shadows, dry 

weather, low winds) 

LiDAR 

Terrain type Suited to most terrain types  Suited to open areas with smooth, vis-

ually distinct objects  

 

Processing time Fast / direct Long / slow LiDAR 

Cost Aircraft:  ~US$680-1400/km2 (out-

sourced service) 

Drone:  >US$5000 (for complete drone 

and sensor purchase – acquisition for 

own use) 

PHOTO 



 

Software Open source available (e.g., PDAL); 

Software licenses start at 

~US$150/month (e.g., TerraScan) 

Open source available (e.g., MicMac); 

Software licenses start at 

~US$200/month (e.g., Pix4D) 

 

Data characteristics  

DEM produced DTM + DSM1 DSM (DTM if little or no vegetation) LiDAR 

Data presentation Monochrome, points only; additional 

camera can be used for photos 

Color and near-infrared images, pho-

tos 

PHOTO 

Land classification Points classified based on reflection 

and return of laser 

Pixels classified later based on point 

height 

LiDAR 

Data resolution 50cm depending on sensor and flight 

height 

1-3cm depending on sensor and flight 

height 

PHOTO 

Feature preservation May miss some geomorphological fea-

tures 

High performance in preserving geo-

morphological features 

PHOTO 

Derived variables  Produces more variables  Produces fewer variables due to re-

duced coverage of surrounding topog-

raphy 

LiDAR 

Data accuracy  

Accuracy Better vertical than horizontal Better horizontal than vertical  

Characteristics Accuracy may not be uniform over 

survey area 

More homogeneous within the image 

format 

 

Control points Low number for validation High number for photo matching and 

validation 

LiDAR 

1 DTM = Digital terrain model; DSM = Digital surface model 

 

4.3.1 Characteristics of the study site  

LiDAR is preferred for sites with moderate vegetation and complex terrain, as the 

laser is not impacted by illumination and can penetrate vegetation. As PHOTO produces 

digital surface models (DSMs), the site must have minimal vegetation and obstructions 

present. In homogenous terrain with minimal vegetation, PHOTO is just as good as Li-

DAR.  

We recommend that the extent of DEMs cover larger areas than simply the target site, 

particularly when surrounding topography is likely to influence variables, and to ensure 

that information around the border is not lost when generalizing DEMs to coarser resolu-

tions. 

Given that SDM performance seems to reduce when input variables are at very high 

resolutions, in addition to the increase in computational time when using such detail, we 

recommend carefully considering the necessity and use of VHR variables finer that 0.5m 

in ecological alpine studies of plants and we strongly encourage implementing a mul-

tiscale approach to optimize the spatial resolution of derived variables. 

4.3.2 Logistics 

Acquiring DEMs using the PHOTO method requires more pre-flight planning, par-

ticularly as PHOTO is heavily influenced by weather and light conditions, as well as veg-

etation and other non-topographical obstructions. Light conditions are of particular note, 

as optimal PHOTO results are obtained with diffused light (e.g., on an overcast day or 

with the sun low on the horizon), as full sunlight results in high contrast can lead to errors 

in the DEM. The effect of light is amplified in alpine regions where fewer atmospheric 

particles means less light scattering and higher contrasts than at sea level, resulting in 

more errors. In regions of complex topography where vegetation, lighting and weather 

may pose problems, LiDAR is likely to be the more accurate option. For more information, 

see reviews such as [25,29,30]. 

Despite logistical difficulties in acquiring PHOTO data, it remains the cheapest op-

tion for producing DEMs: an advantage when an area needs frequent surveys. Where 



 

LiDAR DEMs can cost upwards of US$680-1400 per km2 depending on whether it is spe-

cifically commissioned or already available, costs of purchasing one’s own PHOTO equip-

ment (drones and sensors) begin at around US$5000, such that cost per km2 reduces with 

use. Post-processing is required for both LiDAR and PHOTO technologies, and while 

open-source software are available, professional software licenses that improve speed and 

quality start at around US$150-200 per month, or several thousand USD for a permanent 

license, for both technologies.  

4.3.3 Environmental variables 

Here, we began with 23 commonly derived variables, and retained eight uncorrelated 

variables that appeared to be good proxies for environmental factors such as soil pH, solar 

radiation, and wind exposure. While we used an example of eight variables, there are a 

plethora of other variables available for use in ecological studies. As the variable selected 

can alter the outputs of ecological models, they must be carefully selected [63]. Indeed, 

[13] have compiled a table that groups frequently covarying variables together so that the 

reader can select six to seven terrain attributes that likely capture about 70% of surface 

structures across a site. We recommend that the reader consults this table prior to selecting 

variables for their own research. 

When selecting variables for ecological models, one must first ensure independence 

between variables to avoid redundancy [13,19]. One option is to reduce the dimensional-

ity of the data by performing a principle component analysis (PCA) with all variables that 

may be relevant to the study, then use the coordinates of the PCA-components as uncor-

related input predictor variables in the model. While this method inherently ensures in-

dependence between input variables, there is a loss of specific information about the en-

vironmental variables that might be driving patterns seen in the study. An alternative is 

to assess the collinearity of the derived variables, and to select only those that are uncor-

related at a certain threshold (here we used |rS|≥0.8 as suggested by [47]). In using this 

latter option, however, it should be noted that collinearity between variables may vary 

with spatial resolution, so we recommend reassessing variable collinearity at the spatial 

resolutions intended to be used.   

4.3.4 Evaluation 

Prior to deriving variables, we recommend assessing the accuracy of DEMs as an 

indication of the reliability of the final model results. We recommend consulting [45], who 

have detailed outlines on best-practices for evaluating DEMs. Derived variables can be 

evaluated by comparing them with field-collected environmental data from sensors or 

ecological species indicator values. In our case, a multiscale VHR-DEM was evaluated in 

this way in a close area during the pilot phase of the GENESCALE project [15].  

5. Conclusions 

Advancements in LiDAR and photogrammetry (PHOTO) technologies are opening 

new doors for ecologists to model alpine habitats at very high spatial resolutions (VHR). 

Reductions in costs and improvements in accuracy and ease-of-use, particularly for 

PHOTO, has allowed researchers to obtain VHR-digital elevation models (DEMs) at finer 

than 1m spatial resolution, which are being used to produce VHR-derived environmental 

variables. We found that PHOTO DEMs rivalled the accuracies of LiDAR, yet the reduced 

extent of the PHOTO DEMs had consequences on the calculations of derived variables 

and their relevance in species distribution models (SDM). 

We support the use of the cheaper PHOTO technology, as long as the researcher 

acknowledges this technology’s drawbacks across complex terrain with obstructions and 

that certain weather conditions may cause issues for PHOTO sensors. However, and re-

gardless of the technology used, we do not recommend using VHR-DEMs finer than 0.5m 

resolution for alpine plant research. We encourage researchers to implement a multiscale 

framework to appropriately assess ecological relevance of derived variables, and we urge 

researchers to carefully select variables prior to obtaining DEMs to ensure sufficient cov-

erage over the study site. 
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