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Abstract. This note addresses a fundamental problem in matrix theory on establishing and characterizing range
equalities for matrix expressions that involve generalized inverses. We first establish a group of necessary and
sufficient conditions for the matrix range equality range(D1 − C1A

†
1B1) = range(D2 − C2A

†
2B2) to hold, where

(·)† denotes the Moore–Penrose inverse of matrix. We then give several groups of range equalities with extrusion
properties for multiple matrix products associated with two matrices and their conjugate transposes and Moore–
Penrose inverses.
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1 Introduction

In this note, let Cm×n denote the collection of all m × n complex matrices; A∗ denote the conjugate
transpose; r(A) denote the rank of A, R(A) = {Ax |x ∈ Cn×1} denote the range (column space) of a
matrix A ∈ Cm×n; and [A, B] denote a columnwise partitioned matrix consisting of two submatrices
A and B. A matrix A ∈ Cm×n is said to be EP if R(A) = R(A∗). The Moore–Penrose inverse of
A ∈ Cm×n, denoted by A†, is the unique matrix X ∈ Cn×m that satisfies the four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA. (1.1)

Recall that the column and row spaces of matrix are basic concepts in linear algebra, and starting lines
from various elementary and advanced researched in matrix theory and applications. One of the regular
work on column and row spaces of matrices is to establish and characterize various possible equalities for
theses spaces under various assumptions. Here we mention such a specified work on establishing range
equalities of matrix expressions that involve matrices and their Moore–Penrose inverses. Assume that
f1(A†1, . . . , A

†
k) and f2(B†1, . . . , B

†
l ) are two matrix expressions, where A1, . . . , Ak, B1, . . . , Bl are given

matrices of appropriate sizes. Then a range equality between the two matrix expressions is formulated as

R(f1(A†1, . . . , A
†
k)) = R(f2(B†1, . . . , B

†
l )). (1.2)

Here we mention one of the simplest and most important situations in (1.2):

R(D1 − C1A
†
1B1) = R(D2 − C2A

†
2B2), (1.3)

where Di − CiA
†
iBi are usually called the Schur complements of Ai in the block matrices

[
Ai Bi

Ci Di

]
in

the literature, i = 1, 2. We next mention two concrete matrix equality problems (AB)† = B†A† and
(AB)† = B†(A†ABB†)†A†, which are usually called the reverse order laws for the Moore–Penrose inverses
of matrix product, which have also been studied since 1960s and many necessary and sufficient conditions
for them to hold were established in the literature. Apparently, the four necessary range conditions for
the two equalities to hold are given by

R((AB)†) = R(B†A†), R((AB)†)∗) = R((B†A†)∗), (1.4)

R((AB)†) = R(B†(A†ABB†)†A†), R((AB)†)∗) = R((B†(A†ABB†)†A†)∗). (1.5)

In order to properly use these range equalities, we should know or establish various rules to simplify or
remove the Moore–Penrose inverses in the range equalities of these matrix expressions. The aim of his
article is to establish a general calculation process of characterizing the range equality in (1.3) by means
of various known algebraic methods in matrix theory. In addition, we propose and prove several groups
of fundamental and interesting range equalities with extrusion expressions for multiple matrix products
associated with two matrices and their conjugate transposes and Moore–Penrose inverses.

We start with recalling some necessary preliminary results on ranks and generalized inverses of ma-
trices that are used as tools for later sections. The following two lemmas are well known in linear algebra
to describe relationships between matrices.
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Lemma 1.1. Let A ∈ Cm×n. Then the rank equality r(A) = r(A∗) holds.

Lemma 1.2. The matrix rank inequality r(XAY ) ≤ r(A) always holds. If the two matrix equalities
X1AY1 = B and A = X2BY2 hold, then the rank equality r(A) = r(B) holds.

The following lemma regarding Moore–Penrose inverses associated with a matrix and its operations
can be found in [1, 2].

Lemma 1.3. Let A ∈ Cm×n. Then the following equalities hold

(A†)∗ = (A∗)†, (A†)† = A, (1.6)

A† = A∗(AA∗)† = (A∗A)†A∗ = A∗(A∗AA∗)†A∗, (1.7)

(A∗)†A∗ = (AA†)∗ = AA†, A∗(A∗)† = (A†A)∗ = A†A, (1.8)

(AA∗)† = (A†)∗A†, (A∗A)† = A†(A†)∗, (AA∗A)† = A†(A†)∗A†. (1.9)

Lemma 1.4. Let A ∈ Cm×n, B ∈ Cm×p, P ∈ Cp×m, and Q ∈ Cq×n. Then the following results hold

R(A) ⊆ R(B) and r(A) = r(B)⇒ R(A) = R(B), (1.10)

R(A) ⊆ R(B)⇒ R(PA) ⊆ R(PB), (1.11)

R(A) = R(B)⇒ R(PA) = R(PB). (1.12)

R(A) = R(B)⇔ r[A, B] = r(A) = r(B)⇔ AA† = BB†, (1.13)

R(AQ†Q) = R(AQ†) = R(AQ∗Q) = R(AQ∗). (1.14)

We need to use the following well-known equalities for calculating ranks of the Schur complement
D − CA†B (cf. [3, 4]).

Lemma 1.5. Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k. Then

r(D − CA†B) = r

[
A∗AA∗ A∗B
CA∗ D

]
− r(A). (1.15)

In particular, if R(A) ⊇ R(B) and R(A∗) ⊇ R(C∗), then

r(D − CA†B) = r

[
A B
C D

]
− r(A). (1.16)

2 Main results

In this section, we show how to derive elementary necessary and sufficient conditions for the range equality
in (1.3) to hold using the basic matrix rank formulas in Lemma 1.5.

Theorem 2.1. Let Ai ∈ Cmi×ni , Bi ∈ Cmi×ki , Ci ∈ Cl×ni , and Di ∈ Cl×ki , i = 1, 2. Then the following
five statements are equivalent:

(i) R(D1 − C1A
†
1B1) = R(D2 − C2A

†
2B2).

(ii) r[D1 − C1A
†
1B1, D2 − C2A

†
2B2] = r(D1 − C1A

†
1B1) = r(D2 − C2A

†
2B2).

(iii) r

A∗1A1A
∗
1 0 A∗1B1 0

0 A∗2A2A
∗
2 0 A∗2B2

C1A
∗
1 C2A

∗
2 D1 D2

 = r

A∗1A1A
∗
1 0 A∗1B1

0 A∗2A2A
∗
2 0

C1A
∗
1 C2A

∗
2 D1


= r

A∗1A1A
∗
1 0 0

0 A∗2A2A
∗
2 A∗2B2

C1A
∗
1 C2A

∗
2 D2

.
(iv) R

A∗1A1A
∗
1 0 A∗1B1 0

0 A∗2A2A
∗
2 0 A∗2B2

C1A
∗
1 C2A

∗
2 D1 D2

 = R

A∗1A1A
∗
1 0 A∗1B1

0 A∗2A2A
∗
2 0

C1A
∗
1 C2A

∗
2 D1


= R

A∗1A1A
∗
1 0 0

0 A∗2A2A
∗
2 A∗2B2

C1A
∗
1 C2A

∗
2 D2

.
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(v) R

A∗1A1A
∗
1 0 A∗1B1

0 A∗2A2A
∗
2 0

C1A
∗
1 C2A

∗
2 D1

 ⊇ R

 0
A∗2B2

D2

 and R

A∗1A1A
∗
1 0 0

0 A∗2A2A
∗
2 A∗2B2

C1A
∗
1 C2A

∗
2 D2

 ⊇ R

A∗1B1

0
D1

 .

In particular, if R(Ai) ⊇ R(Bi) and R(A∗i ) ⊇ R(C∗i ), i = 1, 2, then the following four statements are
equivalent:

(vi) R(D1 − C1A
†
1B1) = R(D2 − C2A

†
2B2).

(vii) r

A1 0 B1 0
0 A2 0 B2

C1 C2 D1 D2

 = r

A1 0 B1

0 A2 0
C1 C2 D1

 = r

A1 0 0
0 A2 B2

C1 C2 D2

.
(viii) R

A1 0 B1 0
0 A2 0 B2

C1 C2 D1 D2

 = R

A1 0 B1

0 A2 0
C1 C2 D1

 = R

A1 0 0
0 A2 B2

C1 C2 D2

.
(ix) R

A1 0 B1

0 A2 0
C1 C2 D1

 ⊇ R

 0
B2

D2

 and R

A1 0 0
0 A2 B2

C1 C2 D2

 ⊇ R

B1

0
D1

 .

Proof. The equivalence of (i) and (ii) follows from (1.13). Next by (1.15),

r[D1 − C1A
†
1B1, D2 − C2A

†
2B2] = r([D1, D2]− C1A

†
1[B1, 0]− C2A

†
2[0, B2])

= r

A∗1A1A
∗
1 0 A∗1B1 0

0 A∗2A2A
∗
2 0 A∗2B2

C1A
∗
1 C2A

∗
2 D1 D2

− r(A1)− r(A2),

r(D1 − C1A
†
1B1) = r

[
A∗1A1A

∗
1 A∗1B1

C1A
∗
1 D1

]
− r(A1)

= r

A∗1A1A
∗
1 0 A∗1B1

0 A∗2A2A
∗
2 0

C1A
∗
1 C2A

∗
2 D1

− r(A1)− r(A2),

r(D2 − C2A
†
2B2) = r

[
A∗2A2A

∗
2 A∗2B2

C2A
∗
2 D2

]
− r(A2)

= r

A∗1A1A
∗
1 0 0

0 A∗2A2A
∗
2 A∗2B2

C1A
∗
1 C2A

∗
2 D2

− r(A1)− r(A2).

Substituting these rank equalities into (ii) yields the two rank equalities in (iii). Applying (1.10) to the
two rank equalities in (iii) leads to the equivalence of (iii), (iv), and (v). The equivalences of (vi), (vii),
(viii), and (ix) follow from (i), (iii), (iv), (v), and (1.16).

As a special case of Theorem 2.1, we can establish a general rule of characterizing the range equality
of Schur complement and its conjugate transpose.

Corollary 2.2. Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Ck×n, and D ∈ Ck×k. Then the following five statements
are equivalent:

(i) R(D − CA†B) = R((D − CA†B)∗), namely, D − CA†B is EP.

(ii) r[D − CA†B, (D − CA†B)∗] = r(D − CA†B).

(iii) r

A∗AA∗ 0 A∗B 0
0 AA∗A 0 AC∗

CA∗ B∗A D D∗

 = r

A∗AA∗ 0 A∗B
0 AA∗A 0

CA∗ B∗A D

 = r

A∗AA∗ 0 0
0 AA∗A AC∗

CA∗ B∗A D∗

.
(iv) R

A∗AA∗ 0 A∗B 0
0 AA∗A 0 AC∗

CA∗ B∗A D D∗

 = R

A∗AA∗ 0 A∗B
0 AA∗A 0

CA∗ B∗A D

 = R

A∗AA∗ 0 0
0 AA∗A AC∗

CA∗ B∗A D∗

.
(v) R

A∗AA∗ 0 A∗B
0 AA∗A 0

CA∗ B∗A D

 ⊇ R

 0
AC∗

D∗

 and R

A∗AA∗ 0 0
0 AA∗A AC∗

CA∗ B∗A D∗

 ⊇ R

A∗B0
D

.
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In particular, if R(A) ⊇ R(B) and R(A∗) ⊇ R(C∗), then the following four statements are equivalent:

(vi) R(D − CA†B) = R((D − CA†B)∗).

(vii) r

A 0 B 0
0 A∗ 0 C∗

C B∗ D D∗

 = r

A 0 B
0 A∗ 0
C B∗ D

 = r

A 0 0
0 A∗ C∗

C B∗ D∗

.
(viii) R

A 0 B 0
0 A∗ 0 C∗

C B∗ D D∗

 = R

A 0 B
0 A∗ 0
C B∗ D

 = R

A 0 0
0 A∗ C∗

C B∗ D∗

.
(ix) R

A 0 B
0 A∗ 0
C B∗ D

 ⊇ R

 0
C∗

D∗

 and R

A 0 0
0 A∗ C∗

C B∗ D∗

 ⊇ R

B0
D

.
The above results clearly show that we can construct certain block matrices that are composed of

the given matrices and their products and use the rank and range equalities of the block matrices to
characterize (1.3). Since block matrices and ranks of matrices are among the most basic concepts in
elementary linear algebra, the results and their derivations are easy to understand and used without much
preparation. Apparently, the ranks of the block matrices can be adequately simplified when the given
matrices are given in various specified forms, such as, zero matrices, identity matrices, and nonsingular
matrices. Theoretically speaking, we can always establish some equivalent facts about the range equality
on the left-hand side of (1.2) by repeatedly applying the above procedures.

3 Miscellaneous matrix range equalities

In the following, we present several groups of range equalities with extrusion expressions for multiple
matrix products associated with two matrices and their conjugate transposes and Moore–Penrose inverses.

Theorem 3.1. Let A ∈ Cm×n and B ∈ Cn×p. Then the following four groups of range equalities hold

R(B(AB)†A) = R(B(AB)∗A) = R(BB∗A∗A), (3.1)

R(A†(B†A†)†B†) = R(A†(B†A†)∗B†) = R((A∗A)†(BB∗)†), (3.2)

R((B(AB)†A)†) = R((B(AB)†A)∗) = R((B(AB)∗A)†)

= R((B(AB)∗A)∗) = R(A∗ABB∗), (3.3)

R((A†(B†A†)†B†)†) = R((A†(B†A†)†B†)∗) = R((A†(B†A†)∗B†)†)

= R((A†(B†A†)∗B†)∗) = R((BB∗)†(A∗A)†). (3.4)

Proof. The second range equality is evident by noticing that (AB)∗ = B∗A∗. To show the first range
equality, we first obtain by Lemma 1.2 and the definition of the Moore–Penrose inverse the following two
rank equalities

r(B(AB)†A) ≤ r((AB)†) = r(AB), (3.5)

r(B(AB)†A) ≥ r(AB(AB)†AB) = r(AB), (3.6)

both of which imply

r(B(AB)†A) = r(AB). (3.7)

Also by (1.14),

R(B(AB)†A) ⊇ R(B(AB)†AB) = R(B(AB)∗) ⊇ R(B(AB)∗A), (3.8)

Combining (3.7) and (3.8) with (1.10) leads to (3.1). Replacing A and B in (3.1) with B† and A†,
respectively, yields (3.2). Applying (1.14), (3.1), and (3.2) to (B(AB)†A)† and (A†(B†A†)†B†)† leads to
the range equalities in (3.3) and (3.4), respectively.

Obviously, the right-hand sides of (3.1)–(3.4) display certain extrusion patterns in contrast with the
left-hand sides. So that we name (3.1)–(3.4) matrix range extrusion equalities. Given the above, we
would believe intuitively that there are many possible variations and extensions of these range extru-
sion equalities associated with various mixed matrix products. Here we present several of groups range
extrusion equalities as follows.
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Theorem 3.2. Let A ∈ Cm×n and B ∈ Cn×p. Then the following range equalities hold

R(A(B(AB)†A)†B) = R(A(B(AB)†A)∗B)

= R(A(B(AB)∗A)†B) = R(A(B(AB)∗A)∗B)

= R(AA∗ABB∗B); (3.9)

the following range equalities hold

R((A(B(AB)†A)†B)†) = R((A(B(AB)†A)∗B)∗)

= R((A(B(AB)∗A)†B)∗) = R((A(B(AB)†A)†B)∗)

= R((A(B(AB)∗A)∗B)†) = R((A(B(AB)†A)∗B)†)

= R((A(B(AB)∗A)†B)†) = R((A(B(AB)∗A)∗B)∗)

= R(B∗BB∗A∗AA∗); (3.10)

the following range equalities hold

R(B†(A†(B†A†)†B†)†A†) = R(B†(A†(B†A†)†B†)∗A†)

= R(B†(A†(B†A†)∗B†)†A†) = R(B†(A†(B†A†)∗B†)∗A†)

= R((BB∗B)†(AA∗A)†); (3.11)

and the following range equalities hold

R((B†(A†(B†A†)†B†)†A†)†) = R((B†(A†(B†A†)†B†)∗A†)∗)

= R((B†(A†(B†A†)∗B†)†A†)∗) = R((B†(A†(B†A†)†B†)†A†)∗)

= R((B†(A†(B†A†)∗B†)∗A†)†) = R((B†(A†(B†A†)†B†)∗A†)†)

= R((B†(A†(B†A†)∗B†)†A†)†) = R((B†(A†(B†A†)∗B†)∗A†)∗)

= R((A∗AA∗)†(B∗BB∗)†). (3.12)

Theorem 3.3. Let A ∈ Cm×n and B ∈ Cn×p. Then the following range equalities hold

R(B(A(B(AB)†A)†B)†A)†) = R(B(A(B(AB)∗A)∗B)∗A)†)

= R(B(A(B(AB)∗A)∗B)†A)†) = R(B(A(B(AB)∗A)∗B)∗A)∗)

= R((A∗A)2(BB∗)2), (3.13)

and the following range equalities hold

R((A†(B†(A†(B†A†)†B†)†A†)†B†)†) = R((A†(B†(A†(B†A†)∗B†)∗A†)∗B†)†)

= R((A†(B†(A†(B†A†)∗B†)∗A†)†B†)†) = R((A†(B†(A†(B†A†)∗B†)∗A†)∗B†)∗)

= R(((BB∗)2)†((A∗A)2)†). (3.14)

Theorem 3.4. Let A ∈ Cm×n and B ∈ Cn×p, and denote Â = AA∗AA∗A and B̂ = BB∗BB∗B. Then
the following range equalities hold

R(A(B(A(B(AB)†A)†B)†A)†B) = R(A(B(A(B(AB)∗A)∗B)∗A)†B)

= R(A(B(A(B(AB)∗A)∗B)†A)†B) = R(A(B(A(B(AB)∗A)†B)†A)†B)

= R(A(B(A(B(AB)∗A)∗B)∗A)∗B) = R(ÂB̂), (3.15)

and the following range equalities hold

R(B†(A†(B†(A†(B†A†)†B†)†A†)†B†)†A†) = R(B†(A†(B†(A†(B†A†)∗B†)∗A†)∗B†)†A†)

= R(B†(A†(B†(A†(B†A†)∗B†)∗A†)†B†)†A†) = R(B†(A†(B†(A†(B†A†)∗B†)†A†)†B†)†A†)

= R(B†(A†(B†(A†(B†A†)∗B†)∗A†)∗B†)∗A†) = R(B̂†Â†). (3.16)
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Apparently, the above result can further be simplified when A and B are given in some specified
forms. For example, if AA∗A = A and BB∗B = B, namely, A and B are two partial isometries, then
the right-hand sides of (3.10)–(3.16) can be reduced to R(AB), R(B∗A∗), R(A∗ABB∗), R(BB∗A∗A),
respectively.

It is worth pointing out that the most predictable application of the above results is to establish
various equivalence relationships between matrix range equalities that involve the products of matrices
and their Moore–Penrose inverses. As examples, we give some basic range equalities associated with (1.4)
and (1.5).

Theorem 3.5. Let A ∈ Cm×n and B ∈ Cn×p. Then

R(B†A†) = R((BB∗B)†(AA∗A)†)⇔ R(B∗A∗) = R(B∗BB∗A∗AA∗), (3.17)

R((B†A†)∗) = R(((BB∗B)†(AA∗A)†)∗)⇔ R(AB) = R(AA∗ABB∗B). (3.18)

Proof. We first know that

r(B†A†) = r((BB∗B)†(AA∗A)†) = r(B∗BB∗A∗AA∗) = r(AB), (3.19)

r((B†A†)∗) = r(((BB∗B)†(AA∗A)†)∗) = r(AA∗ABB∗B) = r(AB). (3.20)

We next show by (1.6)–(1.9), (1.11), and (1.12) that

r[B†A†, (BB∗B)†(AA∗A)†] = r[B∗BB∗BB†A∗, B∗BB∗B(BB∗B)†(AA∗A)∗]

= r[B∗BB∗A∗AA∗, B∗A∗], (3.21)

and

r[(B†A†)∗, ((BB∗B)†(AA∗A)†)∗] = r[AA∗AA∗(A†)∗B, AA∗AA∗(A∗AA∗)†BB∗B]

= r[AA∗ABB∗B, AB]. (3.22)

Combining (3.21) and (3.22) with (3.19) and (3.20) yield (3.17) and (3.18).

We leave the proofs of the following results to the reader.

Theorem 3.6. Let A ∈ Cm×n and B ∈ Cn×p. Then the following range equalities hold

R(B†(A†ABB†)†A†) = R(B†A†),

R(B†(A†(B†(A†ABB†)†A†)†B†)†A†) = R((BB∗B)†(AA∗A)†).

Theorem 3.7. Let A ∈ Cm×n and B ∈ Cn×p. Then

(AB)† = (A†AB)†A† ⇔ R((A†)∗(B†)∗) = R(AB)⇔ R(AA∗ABB∗B) = R(AB),

(AB)† = B†(ABB†)† ⇔ R(B†A†) = R(B∗A∗)⇔ R(B∗BB∗A∗AA∗) = R(B∗A∗).

Theorem 3.8. Let A ∈ Cm×n and B ∈ Cn×p. Then

R(AB −ABB†A†AB) = R(AB)⇔ r(AB −ABB†A†AB) = r(AB)⇔ R(A) ∩R(B) = {0}.

Theorem 3.9. Let A ∈ Cm×n and B ∈ Cn×p. Then

R(A†ABB†) = R(BB†A†A)⇔ A†ABB† = BB†A†A.

Finally, we remark that establishment and characterization of matrix range equalities is a fundamental
and challenging problem in matrix theory with fruitful results and facts. As ongoing study, people can
propose various simple and complicated matrix range equalities from theoretical applied point of view,
which we believe will bring deep insight into many classic and new problems in matrix theory.
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