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Abstract: Wave breaking is one of the most important yet poorly understood water wave phe-1

nomena. It is via wave breaking that waves dissipate most of their energy and the occurrence2

of wave breaking directly influences several environmental processes, from ocean-atmosphere3

gas exchanges to beach morphodynamics. Large breaking waves also represent a major threat for4

navigation and for the survivability of offshore structures. This paper provides a systematic search5

for intermediate to deep water breaking waves with particular focus on the elusive occurrence6

of plunging breakers. Using modern remote sensing and deep learning techniques, we identify7

and track the evolution of over four thousand unique wave breaking events using video data8

collected from La Jument lighthouse during ten North Atlantic winter storms. Out of all identified9

breaking waves (Nb=4683), ≈22% were dominant breaking waves, that is, waves that have speeds10

within [0.77cp, 1.43cp], where cp is the peak wave speed. Correlations between the occurrence11

rate of dominant breaking waves (that is, waves per area and time per peak wave period) and12

wave steepness and wave age were observed. As expected, the number of identified plunging13

waves was small and six waves of all detected breaking waves, or 0.13%, could undoubtedly be14

considered as plunging waves. Two waves were also identified as unusually large, or rogue waves.15

Although afflicted by several technical issues, the data presented here provides a good indication16

that the probability of occurrence of plunging waves should be better incorporated into the design17

of offshore structures, particularly the ones that aim to harvest energy in offshore environments.18

Keywords: wave breaking; remote sensing; intermediate water waves, dominant waves; plunging19

waves; rogue waves; machine learning.20
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1. Introduction21

Wave breaking is still one of the least understood water wave phenomena despite22

decades of continuous research, especially during extreme storm conditions. Longuet-23

Higgins [1] summarizes the occurrence of large scale intermediate to deep water wave24

breaking into two main categories: spilling and plunging breakers. In a spilling breaker,25

a region of strong turbulence, visible as white foam, develops on the crest of the wave26

as it propagates. Plunging breakers are far more dramatic as the wave profile becomes27

so unstable that the wave crest curls and a forward moving (plunging) jet is formed.28

Breaking waves in intermediate to deep water result from wave group interactions [2] or29

may be generated by the hydrodynamic modulation of short waves by underlying long30

waves, which increases the probability of wave breaking of the short waves [3]. While31

the occurrence of spilling breakers is easily observed during moderate to strong wind32

conditions, direct field observations of intermediate to deep water plunging breakers33

remains rare and, to the authors’ knowledge, only laboratory data [4–6] or reports from34

mariners [7] are available. Further, contrarily to their shallow water counterparts, no35

non-dimensional number to differentiate between the two types of breakers is currently36

available in the literature, which makes their identification very challenging using37

conventional instruments such as wave buoys or pressure transducers.38

This paper will focus on the occurrence of dominant breaking waves, which are39

defined as waves that have energy contained within±30% of the spectral peak frequency40

( fp) and are assumed to correspond to the peak enhancement region in the JONSWAP41

spectrum [2]. Assuming that the linear dispersion relation is valid, dominant waves are,42

consequently, waves that travel at speeds close to the peak spectral speed (cp), within43

the range [0.77cp, 1.43cp] (not accounting for bottom interaction). Despite this definition44

being rather arbitrary, it is practical and supported by the fact that the most intense45

and dangerous breaking waves are the dominant waves, since they carry most of the46

energy of the wave field. The research presented here will, therefore, heavily rely on47

such definition.48

The main candidates for intermediate to deep water dominant breakers in well49

developed, storm seas may be the unusually large waves known was rogue waves.50

For example, a laboratory investigation of the Draupner wave has recently shown that51

plunging breaking happened for one of the possible simulated scenarios [5]. There52

also is some debate regarding if another famous rogue wave, the Andrea wave, was53

a breaking wave or not [8] (the evidence points towards no). In contrast, the rogue54
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wave recently reported by Cavaleri et al. [9] was evidently breaking (most probably as a55

strong spilling breaker). The mechanisms that generate rogue waves are also not fully56

understood. While the Benjamin-Feir (or modulational) instability has been used to57

justify such waves (see Adcock and Taylor [10] for a review), recent research shows that58

it is not a requirement [11]. Further, interactions between the waves and the underlying59

current field [12] also enhance the probability of occurrence of rogue waves and the60

interaction with strong opposing winds may considerably steepen breaking waves, at61

least in shallow water [13]. All the mentioned factors, as well as direct observation of62

unusually large waves [14], occur in the vicinity of La Jument lighthouse, which makes63

this location a perfect spot for the search of large breaking waves.64

In the context of the current climate crisis and the search for renewable offshore65

energies, it is important to make a clear distinction between the occurrence of plunging66

and spilling breakers in the design of offshore structures given that the forces that67

these waves generate on structures are very distinct. While spilling breakers generate68

continuous forces, the forces from plunging breakers may be felt as sharp peaks [15],69

known as “slamming forces”. Considering the famous Goda formula [16], the slamming70

force of a breaking wave is:71

FI = ρwDληbc2
bCs, (1)

where ρw is the water density, D is the structure diameter, cb is the breaking wave speed,72

ηb is the maximum water elevation above the still water level, Cs is a constant (equals73

to π in Goda’s work [16]) and λ is a wave curling factor which gives the proportion74

of the crest that is active in the slamming load. Assuming that only plunging waves75

have non-negligible λ, knowing the probability of occurrence of such waves is of crucial76

importance for the design of offshore structures such as floating wind turbines.77

In this paper, we employ state-of-the-art remote sensing and image processing78

techniques applied to a dataset of extreme waves collected at La Jument lighthouse79

off the coast of Brittany, France during the 2019-2020 North Atlantic winter storm80

season (ten storms are analyzed here). Our efforts aim to provide further insight into81

dominant, intermediate to deep water wave breaking with particular focus on the82

occurrence of plunging breakers, as these waves represent a major threat for ships83

and offshore structures. The La Jument lighthouse is the ideal location for observing84

extreme dominant breaking waves in deep and intermediate water using remote sensing85

instrumentation. This iconic lighthouse acts as a real-world laboratory providing a high86
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vantage point on a steep shelf-break that can be easily accessed and equipped during87

the summer. Further, it is fully exposed to North Atlantic storm waves (individual88

wave height recorded over 24m by Filipot et al. [14]) and its location is close to future89

commercial floating offshore wind farms to be deployed in Brittany. Our results indicate90

that, from a total number of over four thousand active wave breaking events, 21.7% were91

classified as dominant waves and six waves could be undoubtedly considered plunging92

breakers. The occurrence rate of breaking waves correlated well with wave steepness93

and wave age. This paper is organized as follows: Section 2.1 presents a summary of the94

field observations, Section 2.2 describes how breaking waves were detected, Sections 395

and 4 present, respectively, results and discussions regarding dominant breaking waves96

and the occurrence of plunging waves and Section 5 concludes.97

2. Materials and Methods98

2.1. Field Observations99

Field observations were conducted during the 2019-2020 North Atlantic winter100

storm season and covered a span of three months (from mid October 2019 to mid January101

2020). Stereo video data were collected at the La Jument lighthouse off the coast of102

Brittany, France (48025′20.00′′N, 508′2.28′′W) using the same instruments described in103

Filipot et al. [14]. The data used in this paper were collected by a pair of synchronized104

5 megapixel (2048 x 2456 pixels) BM-500GE JAI cameras fitted with 64mm lenses. Dif-105

ferently from the previous study, in which the cameras imaged the area directly below106

the lighthouse, in the present study, the cameras imaged water depths from 60m in the107

near field of view (about 200m away from the lighthouse) to 120m in the far field of108

view (about 1km away from the lighthouse). Assuming an average depth (d) of 90m,109

kd ranged from ≈1.2 to ≈3.3, with k the wavenumber. Figure 1 and Table 1 show the110

environmental characteristics during the campaign. In addition to the stereo video111

cameras, a Datawell waverider buoy was deployed by the French Naval Hydrographic112

and Oceanographic Service (Shom) in the same area imaged by the video cameras (see113

Figure 2-a for the location of the buoy). A total of ninety 30-minute long video data114

acquisition runs were recorded but only ten 20-minute records, representative of storm115

conditions, will be analysed here, as it will be explained below. Note that the wave buoy116

data collection started after 1 month from the start of the campaign; therefore, the data117

reported here previous to this date was extracted from the HOMERE database [17,18].118

The wind data reported here is from the European Center for Medium Range Weather119

Forecast ERA-5 reanalysis [19].120
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Extreme events were selected based on a block maxima approach [20] with a121

window size of three days (roughly corresponding to the storm passage rate in the122

region) applied to the significant wave height (Hm0) timeseries. A total of ten storms123

were identified using this method. Note, however, that not all the storms matched124

stereo video records (for example, the gap between November 12 to November 27).125

From the analysis of Table 1, the significant wave height for these storms varied from126

approximately 4m up to 10m, the peak period varied from 10s to 18s and the peak127

wave direction ranged from SW to NW. The winds speeds varied from 11ms−1 up to128

approximately 20ms−1 with main direction also ranging from SW to NW. The computed129

wave ages (cp/u∗) varied from approximately 20 to 66, which is an indicative of mature130

sea-states dominated by swells.131

Table 1: Environmental conditions for the selected storm events. Hm0 is the significant
wave height, Tp is the peak wave period, Sp is the wave steepness calculated as Hm0/L
in which L = g

2π T2
p , u10 is the wind speed, udir is the wind direction, cp/u∗ is the wave

age and Dp is the peak wave direction. All dates are in UTC time.

Date Hm0 Tp Sp u10 udir cp/u∗ Dp kd
[m] [s] [−] [ms−1] [o] [−] [o] [−]

2019-10-26 09:53:48 4.68 11.24 0.024 15.88 205 28.32 237 2.88
2019-11-02 07:34:01 6.23 12.20 0.027 19.31 255 23.61 260 2.46
2019-11-04 15:04:57 5.93 12.82 0.023 17.58 261 28.18 257 2.25
2019-11-07 15:36:02 3.84 11.36 0.019 11.05 260 46.2 265 2.82
2019-11-12 08:25:27 4.67 18.87 0.008 12.3 306 66.69 263 1.21
2019-11-27 10:00:05 5.68 10.53 0.033 16.27 264 25.68 243 3.27
2019-12-09 09:10:37 9.98 18.18 0.019 16.3 318 44.23 261 1.27
2019-12-13 09:00:05 7.75 13.33 0.028 17.95 293 28.49 259 2.10
2019-12-15 11:42:58 6.40 15.38 0.017 13.24 227 49.37 256 1.64
2019-12-22 11:00:05 7.49 16.67 0.017 15.61 271 42.98 241 1.45

Unfortunately, our experiments were afflicted by a series of technical issues due132

to the hostile environment surrounding the lighthouse which precluded from precisely133

obtaining individual wave parameters (for example, crest height and asymmetry). As a134

consequence, the analyses presented hereafter will have a more qualitatively character.135

Two weeks after the video recordings started, a short circuit in the camera housing clean-136

ing wipers made them to work continuously. This means that, on average, the cleaning137

wiper blades contaminated approximately 70% of the images from the right camera. Fur-138

ther, strong winds caused the camera housing structure to vibrate significantly during139

the data acquisition runs. Because the cameras were imaging a significantly far field140

of view, even small vibrations may lead to differences of hundreds of meters in the far141

field. These two problems make the three-dimensional stereo reconstruction for the vast142

majority of the data either impossible or very unreliable. It was possible, nevertheless,143
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Figure 1. Wind and wave data during the video data acquisition period. (a) Timeseries of wind
speeds at 10m (u10) from ECMWF’s ERA5 reanalyses database [19]. (b) Histogram showing the
probability density of u10. (c) Timeseries of the significant wave height (Hm0) extracted from the
HOMERE database [17,18] (blue lines) and measured by the Datawell buoy (black circles). (d)
Histogram showing the probability density of Hm0 for both HOMERE (blue) and Datawell (black)
data. (e) Timeseries of peak wave period (Tp) extracted from the HOMERE database (blue) and
measured by the Datawell buoy (black). (f) Histogram showing the probability density of Tp for
both HOMERE (blue) and Datawell (black) data. (g) Timeseries of directional spreading (sprd).
(h) Histogram showing the probability density of Spd for HOMERE (blue). In (a), (c), (d) and (h),
the vertical orange lines indicate the events classified as extreme and wave #1 and #2 indicate the
conditions during the two waves discussed in Section 3.2.
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to use the standard ARGUS [21] methodology to project pixel to metric coordinates144

(that is, rectify the image) and utilise data from one of the cameras (the left camera)145

to track the evolution of breaking waves. To do so, 250 ground control points (GCPs)146

were extracted from a successful stereo reconstruction (from the day the cameras were147

installed and calibrated in calm conditions). A good agreement between measured and148

projected GCPS was found (Figures 2-a and b). Due to the characteristics of the field of149

view, the errors (both mean square error, RMSE, and mean absolute error, MAE) in the150

x-direction were only in the order of 0.1m whereas the same errors in the y-direction are151

in the order of 1.5m. Based on this results, all usable images were projected to metric152

coordinates considering the tidal level as estimated by Boudière et al. [17] (which is153

provided alongside HOMERE data) as projection height.154

Figure 2. (a) Snapshot showing the region of interest and the points used as ground control
points (GCPs) for image rectification. The blue rectangle shows the region of interest and has
area (A) equals to 8107.9m2. (b) Comparison between measured and projected x-coordinates. (c)
Comparison between measured and projected y-coordinates. In (b) and (c), the red line shows the
linear correlation between measured and projected coordinates, the blue dashed line shows the
one-to-one equivalence line, RMSE is the root mean square error, MAE is the mean absolute error
and rxy is the Pearson’s correlation coefficient.
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2.2. Wave Breaking Detection155

The wave breaking detection technique used in this paper is an extension from156

the method developed in Stringari et al. [22]. These authors developed different neural157

networks trained on a relatively diverse dataset to classify images that contained active158

wave breaking, that is, breaking waves that are actively generating bubble entrainment.159

Differently from the original method, which is limited to a binary image classification160

task, here the technique is extended to an image segmentation framework. Such ex-161

tension allows to classify individual pixels in an image as being active wave breaking162

or otherwise. A modified U-net model based on the Xception architecture [23,24] was163

used as the deep learning backbone (Figure 3-a). A total of 2393 images divided into164

training (80%) validation (10%) and testing (10%) datasets were manually annotated in165

a pixel-by-pixel manner and used to train and assess the neural network. The neural166

network weights from the best performing model in the previous study were used to167

initiate the present model (that is, transfer learning [25] was used). After the training168

procedure, the average classification error of the neural network is less than 5% for the169

training and validation datasets. However, errors as high as 25% for some samples in the170

test dataset were observed. Figure 3-b shows the evolution of the loss (or cost) function171

(binary cross-entropy) as a function of the training steps (or epochs) for the training and172

validation datasets and Figure 3-c shows the evolution of the accuracy score for the same173

datasets. Figure 3-d to f show the application of the method to a sample drawn from the174

test dataset. These figures show how the neural network was capable to correctly classify175

the vast majority of the pixels but small errors, particularly for small scale breakers,176

remains. We encourage future researchers to attempted to further improve our method,177

which is fully open-source (see the Data Availability section for details).178

To track the the spatio temporal evolution of the waves, a combination of data179

clustering and Kalman filtering was used. Individual active wave breaking pixels are180

clustered into patches are using the OPTICS clustering algorithm [26]. To be considered181

a correct detection, a minimum number of 10 pixels or maximum distance of 1 meter182

were required. The time evolution tracking of the actively breaking foam patches was183

done using the SORT [27] algorithm employing its default parameters. This method184

uses a combination of a Kalman filter and the Hungarian algorithm to track the time185

evolution of the bounding box defined from the clusters obtained with OPTICS. From186

the results of this algorithm, it is possible to obtain the speed at which the breaking187

wave crests are travelling (cb). Finally, wave breaking crest lengths were calculated188
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using the α-shape algorithm [28] (red lines in Figure 3-f) and ellipses were fitted to each189

detected event as per Stringari et al. [22]. While these data were not analysed in detail190

here, it allows, for example, to obtain Phillips’ Λ(c)dc distribution [29] from which wave191

breaking probabilities can be derived.192

3. Results193

3.1. Wave Breaking Statistics194

Table 2 shows a summary of the number of observed breaking waves. A total of195

4683 unique wave breaking events were identified across the ten storms. Of these, a total196

of 1121 detections (or 21.7%) fell within the dominant wave breaking band as defined197

as per Banner et al. [2]. As expected, only a small number of breaking waves could198

be considered plunging waves. Six waves (or 0.13%) of all detected breaking waves199

could undoubtedly be considered as plunging waves (which is equivalent to 0.53% of all200

dominant breaking waves). Note that all plunging waves were also dominant waves. To201

be considered a plunging wave, the wave must had presented the characteristic shape of202

a plunging wave and trapped air must had been observed. Unfortunately, more precise203

definitions of plunging waves, such as the one from Grilli et al. [30], could not be used204

due to the lack of three-dimensional data. See Section 3.2 below for more details about205

these waves.206

Our analyses start with the kinematic and geometric properties of breaking waves.207

Figure 4-a shows the probability density distribution (PDF) and Kernel Distribution208

Function (KDE) of the ratio between wave breaking and peak phase speed (p(cb/cp))209

for all breaking waves. This PDF followed a log-normal distribution and shows that210

most of breaking waves were propagating slower than the peak wave speed (mode=0.39,211

mean=0.42). Figure 4-b shows the PDF of the maximum wave breaking length (Lb)212

normalized by the wavelength computed from the peak wave period using the linear213

dispersion relation, Lp. The behaviour of p(Lb/Lp) also followed a log-normal PDF for214

both all breaking waves and dominant waves. This PDF indicates that the majority of215

the wave breaking events were small whitecaps. Finally, Figure 4-c shows the PDF of the216

wave breaking period (Tb) normalized by peak wave period (Tp), which also followed a217

log-normal PDF with mean=0.11 and mode=0.06. These results are discussed below in218

Section 4.219

Based on the research initially presented in Banner et al. [2] and extended in several220

other studies [31,32], the number of dominant breaking waves should present a direct221

correlation with the dominant wave steepness (Sp, calculated as Hm0/L in which L =222
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Figure 3. Wave breaking detection method and results. (a) Schematic representation of the U-net
Xception model. Note that the layers indicate in this figure are merely for illustration and do not
correspond to all layers present in the model, please refer to https://github.com/caiostringari/
deepwaves/tree/master/segmentation for our formal models. (b) Evolution of the loss function
(sparse cross-entropy) for the training and validation datasets. (c) Evolution of the accuracy score
for the training and validation datasets. (d) Input test image, (e) Ground truth mask. Predicted
mask and clustering of unique foam patches (colors) and their respective contours extracted with
α-shape (red lines).
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g
2π T2

p) and, to a lesser extent, with wave age (cp/u∗) and not with wave height (Hm0).223

Here, the occurrence rate of waves per unit of area and time per peak wave period is224

used as a proxy to investigate such correlations. This parameter is calculated as:225

Rt,d,p = Nd,t,p/A/T/Tp [number o f waves/m2/s2], (2)

where N is the number of breaking waves indicated, respectively, by the subscripts226

t, d and p for total, dominant and plunging waves, A is the total analysed area in227

square meters, T is the total analysis duration in seconds and Tp is the wave peak228

period in seconds. Table 2 shows the values of Rd,t,p for all analysed storms. Figure229

4 shows the correlations between Rd and Hm0, Sp and cp/u∗ for the present data. As230

expected, no statistically significant correlation (rxy = 0.37, p ≈ 0.29) was found between231

Rd and significant wave height (Hm0), as shown in Figure 4-d. Stronger correlations232

were found between Rd and wave steepness (Sp) (rxy = 0.63, p ≈ 0.05) and between233

Rd and wave age (cp/u∗) (rxy = 0.57, p ≈ 0.08). Nearly identical results were found if234

limiting the significant wave height and wave steepness to the same spectral bands as235

defined by Banner et al. [2]. These results are not shown here because 1) simplicity and 2)236

practicability as, almost always, engineers only have access to the so-called peak wave237

parameters (for example, Tp).238

Table 2: Wave breaking statistics. Total experiment duration (T), number of wave
breaking events (Nb), number of dominant wave breaking events (Nd), ratio between
total and dominant events (Nd/Nb), number of plunging breakers (Np) and ratio between
all and plunging events (Np/Nb), occurrence rate of breaking waves per area and time
normalized by peak wave period for all breaking waves (Rt = Nb/A/T/Tp), dominant
breaking waves (Rd = Nd/A/T/Tp) and plunging waves (Rp = Nb/A/T/Tp). For all
events, the total area (A) is 8107.9m2.

Date T Nb Nd Nd/Nb Np Np/Nb Rt Rd Rp
[s] [−] [−] [%] [−] [%] waves/m2/s2 waves/m2/s2 waves/m2/s2

2019-10-26 09:53:48 1196.2 698 276 39.5 1 0.14 6.41× 10−6 2.53× 10−6 9.18× 10−9

2019-11-02 07:34:01 1187.0 453 129 28.5 1 0.22 3.83× 10−6 1.10× 10−6 8.52× 10−9

2019-11-04 15:04:57 1196.8 156 34 21.8 - - 1.25× 10−6 2.73× 10−7 -
2019-11-07 15:36:02 1191.2 538 119 22.1 - - 4.90× 10−6 1.08× 10−6 -
2019-11-12 08:25:27 1196.6 491 36 7.3 1 0.20 2.68× 10−6 1.97× 10−7 5.46× 10−9

2019-11-27 10:00:05 1199.2 756 230 30.4 - - 7.39× 10−6 2.25× 10−6 -
2019-12-09 09:10:37 1199.0 284 54 19.4 1 0.35 1.61× 10−6 3.06× 10−7 5.66× 10−9

2019-12-13 09:00:05 1194.6 455 102 22.4 2 0.44 3.52× 10−6 7.90× 10−7 1.55× 10−8

2019-12-15 11:42:58 1155.2 163 13 8.0 - - 1.13× 10−6 9.02× 10−8 -
2019-12-22 11:00:05 1198.4 689 128 18.6 - - 4.25× 10−6 7.90× 10−7 -

Total 4683 1121 21.7 6 0.13
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Figure 4. Wave breaking statistics. (a) Probability density function (PDF) of wave breaking speed normalized by peak wave speed (p(cb/cp)). The red swash indicates the dominant wave
bandwidth. (b) PDF of the wave breaking length normalized by peak wave length (p(Lb/Lp)). (c) PDF of wave breaking duration normalized by peak wave period (p(Tb/Tp)). In (a), (b)
and (c) the grey bars show the density histogram, the blue line shows the Kernel Density Estimation (KDE) considering a Gaussian kernel, the orange line shows the log-normal fit to the
data, the green tick indicates the mean and the purple tick indicates the mode. In (b) and (c) the filled bars indicate the PDF only for dominant waves where as the open bars show the
PDF for all breaking waves. (d) Correlation between Hm0 and the occurrence rate of dominant waves per area and time and normalized by peak wave period (Rd = Nd/A/T/Tp). (e)
Correlation between the wave steepness (Sp) and Rd. (f) Correlation between wave age (cp/u∗) and (Rd). In (d), (e) and (f) the blue swash indicates the 95% confidence interval for the
regression, rxy is Pearson’s correlation coefficient and each marker corresponds to a storm from Table 2.
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3.2. Plunging Waves239

From the results presented above, six waves could be considered intermediate240

to deep water plunging waves. Out of these six waves, two waves appeared to be241

particularly severe and were selected for a more detailed analysis. The first wave242

(Figure 5-a, wave #1 hereafter) occurred at 26/10/2019 10:11:30. The sea-state waves243

characterized by Hm0 = 4.7m, Tp = 11.2s and south-westerly winds blowing at 15.9ms−1.244

This was the only plunging wave observed for this record. The maps in Figure 6 indicate245

that no opposing currents (Figure 6-a and b) and no opposing synoptic winds (Figure 6-c)246

were occurring. Local winds, however, may have been opposing given the characteristic247

foam wisps coming out the wave seen in Figure 5-a. The second wave (Figure 5-b, wave248

#2 hereafter) occurred at 13/12/2019 09:08:55 and is clearly larger than the first one. The249

sea-state was characterized by Hm0 = 7.8m, Tp = 13.3s and north-westerly winds blowing250

at 17.9m/s. Opposing currents (Figure 6-d and e) were occurring during this event. The251

winds were blowing in the same directions as the waves synoptically and locally (note252

the absence of foam wisps). This wave was visually observed to be the largest wave in253

its wave group. Interestingly, this particular sea-state produced another plunging wave.254

Also interestingly, no plunging waves were observed for the most severe storm which255

had Hm0 close to 10m which can be linked to the low wave steepness for this storm when256

compared to the others (See table 1) or could simply be due to the stochastic nature of257

the wave field combined with the relatively short duration of the records.258

Figure 5. Temporal evolution of two deep water plunging breakers. (a) Wave #1 recorded at
26/10/2019. (b) Wave #2 recorded at 13/12/2019. Note the characteristic three-dimensional
structure of the waves, the amount of air being trapped and the great amount of white water
being generated as the plunging face of the wave collapses into the water. In both cases, the
environmental conditions are shown in the figure. In this plot, Hc indicates the crest height.
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Figure 6. Spatial maps of environmental parameters that help to explain the waves seen in Figure
5. (a) Significant wave height (Hm0), (b) current speed and direction and (c) wind speed and
direction for wave #1 (26/10/2019 10:11:30). (d) Significant wave height (Hm0), (e) current speed
and direction and (f) wind speed and direction for wave #2 (13/12/2019 09:08:55). In all plots,
data were from the HOMERE and were linearly interpolated from a non-structured grid to a
regular grid with 25m resolution. Vectors were re-sampled to a coarser resolution to improve
visualization.

4. Discussion259

We have presented a systematic search for intermediate to deep water, dominant260

breaking waves with particular focus on plunging waves using remote sensing tech-261

niques from a lighthouse that is highly exposed to severe sea-states. To our knowledge,262

this is the first time such search has been attempted using complex field data collected263

in intermediate to deep waters. The results obtained here make it clear that the recent264

advances on data-driven research, particularly deep learning, will enable researchers265

to investigate phenomena of ever-increasing complexity. While the present method is266

robust enough to separated advected foam from actively breaking waves, it was impos-267

sible to distinguish between dominant spilling breakers and small whitecaps that appear268

on the crest of non-breaking waves (which we assume to be created due to modulation269

from longer waves), even for a experienced observer. Future research should dedicate270

more attention to this issue because the phase speed of the short breaking waves (when271

not modulated by long waves) is much smaller than the speed from the underlying272

(non-breaking) long wave, which may lead to biases in wave breaking statistics, such273

as in Phillips‘ Λ(c)dc distribution. Another limitation of the method is that the neural274

network does not take into account the time evolution of the waves. This means that each275

frame of the video record is treated as an independent sample (the temporal tracking276
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was done a-posteriori with SORT). Future research should focus on developing models277

that are time-aware, which should eliminate the need for OPTICS and SORT.278

The analysis presented in Section 3.1 showed patterns can be at least qualitatively279

linked to previous studies. For instance, p(cb/cp) (Figure 4-a) is consistent with field280

data from Gemmrich et al. [33] (their Figure 3) and indicates that most of breaking waves281

travel at phase velocity significantly lower than cp. This result is consistent with the fact282

that most of the wave breaking events are small compared to the dominant wavelength283

(see the p(Lb/Lp) distribution in Figure 4-b, for example) and thus are travelling at284

speeds much slower than cp. Another factor that may contribute to the appearance of285

p(cb/cp) is the intrinsic slowdown of breaking crests discussed by Fedele et al. [34] that286

arises due to the non-linear characteristics of ocean waves. Further, p(Tb/Tp) (Figure287

4-c) is consistent with field data from Gemmrich and Farmer [35] (their Figure 2) but288

appears to be one order of magnitude smaller than previously reported laboratory data289

[4,6,36]. This difference could be due to the much more controlled laboratory conditions290

in which the full evolution of wave breaking, including very small scale features, can291

be precisely quantified. Finally, To the authors’ knowledge, the behaviour of p(Lb/Lp)292

has not been yet discussed in the literature. The heavy heavy tail of this distribution,293

however, appears to hint self-similar behaviour of the breaking wave geometry, at least294

for the largest observed events. Of course, large uncertainties are present in the data295

analysed here and the results from Section 3.1 should be interpreted carefully.296

The correlations between wave properties and Rd also presented the expected297

behaviour. For instance, the correlation between Rd and Sp and Rd and cp/u∗ are298

qualitatively consistent with both the results seen in Banner et al. [2] and with several299

other observations that correlate wind speeds to wave breaking probabilities (Melville300

and Matusov [37], for example). For the present data, the direct correlation between301

Sp and Rd indicates that steeper dominant waves are more likely to break (Figure 4-d)302

and younger sea-states generate more dominant breaking waves (Figure 4-f), which303

can be explained by higher steepness and direct forcing of the wind on the waves. The304

same correlations were observed between Rt and SP and Rt and cp/u∗ but for brevity,305

these are not discussed here. Due to the small number of plunging waves, a similar306

analysis for Rp would have little statistical meaning and was not attempted here. Future307

research should focus on correlating the occurrence of plunging waves to similar wave308

parameters. This will require the development of automated plunging wave detection309

techniques, a much greater number of sampled storms and longer timeseries, which310
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were beyond the scope of this paper. Finally, note that the total number of waves (broken311

and unbroken) as a function of space and time is unknown in the present study, which312

precludes the direct calculation of wave breaking probabilities.313

One important question still remains: could the two waves from Section 3.2 be314

considered rogue waves? Due to the issues described in Section 2.1, a reliable stereo315

video reconstruction was impossible and only approximations of the height of these316

waves could be achieved. Following the same approach as recently used by Cavaleri et al.317

[9] (see their Figure 4 and Equation 1), wave #1 had a approximate crest height (Hc) of318

6.5m and crest length of 45.1m and wave #2 had a crest height of 11.5m and crest length319

of 145.8m. Considering the observed sea-state and the usual criterion for rogue wave320

identification of 1.25Hm0, both waves could be considered rogue waves. Interestingly,321

a wave with Hc = 9.5m was observed breaking as a spilling breaker less than 100m322

away from wave #2 at the same time. We highlight, however, that the values reported323

here are only estimations and are subject to errors. Also note that the the Hm0 reported324

for the first wave is from HOMERE, which indicates that it could be underestimated.325

This result is, however, in accordance with several rogue wave studies that indicate326

that the occurrence of these waves are far more likely than previously thought [38,39].327

Moreover, the observed crest lengths, particularly for wave #1, indicate that the usual328

assumption that the breaking crest lateral extension is much larger than the dimension of329

offshore structures is not always valid. The implications of previous findings about rogue330

waves and the present observations of plunging waves in intermediate to deep water331

are important for the design of offshore structures. As mentioned in the Introduction,332

Goda’s formula will predict a much more intense slamming force for these waves than333

for spilling or non-breaking waves, which should be considered with increased attention334

by the engineering community in the design of future offshore structures.335

Finally, while it is impossible to precisely know the interconnections between waves,336

winds and currents that led to the occurrence of waves #1 and #2, it is possible to search337

for the most likely causes. From the analysis of Figure 1-d, the directional spreading was338

low for both waves, which indicates that crossing-seas were not a direct cause. Although339

the synoptic wind field seems to be aligned with the peak wave direction for both waves,340

clear foam wisps are seen coming out of wave #1, which indicates locally opposing wind341

maybe the likely cause. This wind condition has been shown to enhance wave steepness342

in the surf zone [13] and may have been a decisive factor creating this wave. While no343

opposing current was present for wave #1, a strong opposing current jet is clearly seen344
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in Figure 6-e. It is well established that strong opposing currents lead to enhanced wave345

steepness and rogue waves [12], hence this is the most likely cause of wave #2. Finally,346

for both waves, the classic modulational instability cannot be ruled out as cause. The347

uncertainties as to what factors caused these extreme waves only highlight the need for348

further research into this subject and facilities such as the ones La Jument lighthouse will349

surely pave a way forward.350

5. Conclusions351

This paper presented a systematic search for intermediate to deep water, dominant352

waves with particular focus on plunging, breaking waves during extreme storm condi-353

tions. The combination of state-of-the-art remote sensing , data-driven techniques and354

the real-world laboratory facility available at La Jument lighthouse were key aspects355

that the made the research presented here possible. The results showed that from all356

identified wave breaking events (Nb = 4683), 21.7% represented dominant waves and357

six waves (or 0.13% of all breaking waves) could be undoubtedly considered plunging358

breaking waves. On average, the amount of breaking waves per unit area and time359

per by peak wave period were in the order of 10−6, 10−7 and 10−9, for all breaking360

waves, dominant breaking waves and plunging waves, respectively. The occurrence361

rate of dominant waves correlated well with wave steepens and wave age but not with362

wave height, as expected. In the context of renewable energies and offshore structures,363

these are important findings, particularly regarding the number of plunging waves,364

because the slamming force of these waves has a very different nature from their, more365

frequent, spilling counterparts. Although these events are rare, this work has shown that366

they do occur and should be accounted for in the design of future offshore structures,367

particularly the ones that aim to harvest energy in extreme offshore environments, such368

as floating offshore wind turbines. Unfortunately, several problems occurred during369

our field experiments which precluded us from obtaining robust quantitative data. It370

is anticipated, however, that the next data acquisition campaigns at La Jument will fill371

this gap and provide further quantitative insight into extreme breaking waves. The372

methods used here are, nonetheless, a robust way to identify and track breaking waves373

and should provide a solid basis for subsequent field studies.374
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