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Abstract

Within the framework of multiblock data analysis, a unified approach of supervised

methods is discussed. It encompasses multiblock redundancy analysis (MB-RA)

and multiblock partial least squares (MB-PLS) regression. Moreover, we develop

new supervised strategies of multiblock data analysis, which can be seen as vari-

ants of one or the other of these two methods. They are respectively refered to

as multiblock weighted redundancy analysis (MB-WRA) and multiblock weighted

covariate analysis (MB-WCov). The four methods are based on the determination

of latent variables associated with the various blocks of variables. They are derived

from clear optimization criteria whose aim is to maximize either the sum of the

covariances or the sum of squared covariances between the latent variable associ-

ated with the response block of variables and the block latent variables associated

with the various explanatory blocks of variables. We also propose indices to help

better interpreting the outcomes of the analyses. The methods are illustrated and

compared based on simulated and real datasets.

Keywords: Multiblock data analysis, redundancy analysis, PLS regression, super-

vised methods, multicolinearity.

1

Manuscript FilePreprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 March 2021                   doi:10.20944/preprints202103.0530.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202103.0530.v1
http://creativecommons.org/licenses/by/4.0/


1 Introduction

With the advent of technology, several blocks of variables are very often collected in

different areas to study some phenomena of interest. As example, for the characteri-

zation and optimization of food products, several measurements can be made (sensory,

instrumental, physico-chemical) and linked to consumers preferences. In ecology, we may

be interested in exploring the relationships between the abundance of some species in

different sites, on the one hand, and, the variables describing those sites (environment,

biodiversity, spatial situation, etc.), on the other hand.

We consider the setting where all the blocks of variables are measured on the same

individuals, but the variables can be different from one block to another. For the purpose

of predicting a block of variables from other blocks of variables, supervised methods

are often used. Examples of such methods are Multiblock Redundancy Analysis (MB-

RA) [1–4], Multiblock PLS (MB-PLS) regression [5–7], Hierachical PLS (H-PLS) [6] and

P-ComDim [8].

The purpose of this paper is to: (i) set up a unified approach for MB-RA and MB-

PLS regression, (ii) propose new supervised strategies for the analysis of multiblock data,

(iii) highlight the similarities and differences among all these methods, (iv) propose new

indices for a better interpretation of the results of these supervised strategies.

Although self containing, this paper can be seen as a follow up of the unified framework

for unsupervised strategies of multiblock data analysis [9].

We start by introducing Redundancy Analysis [10,11] and PLS2 regression analysis [12]

using an original presentation. Then, from two different viewpoints, we extend these two

strategies to the framework of multiblock data analysis. The first extension of RA leads

to MB-RA, whereas the second extension gives a new strategy of analysis that can be seen

as a variant of MB-RA. This new strategy of analysis is refered to as Multiblock Weighted

Redundancy Analysis (MB-WRA). In the same vein, we consider a first extension of PLS2

regression, which leads to MB-PLS regression and a second extension which leads to an

interesting variant of MB-PLS, to which we refer to as Multiblock Weighted Covariate

Analysis (MB-WCov). We also exhibit indices that reflect the importance of the latent
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variables determined at the successive stages and indices that highlight the contribution

of the various explanatory blocks of variables to the determination of the global latent

variables. All the methods of analysis are compared and illustrated using simulated and

real datasets.

The paper is organized as follows. In section 2, we introduce the various methods

of analysis. Then, in section 3, we illustrate and compare these methods on the basis

of simulated and real datasets. We end the paper by a discussion and some concluding

remarks.

2 Methods

2.1 Relationships between two datasets

2.1.1 Redundancy analysis

Let us denote by X (n × p) and Y (n × q), two datasets measured on the same

individuals and supposed to be column-centered. The aim is to predict Y from X. Let us

denote by PX = X(X>X)−1X>, the orthogonal projector upon the space generated by

the variables of X. We consider a latent variable associated with Y , u = Y ν, where ν is

the vector of loading weights, which is constrained to be of length equal to 1 (||ν|| = 1).

The projection of u upon the space generated by the variables of X is given by the latent

variable t = PXu. We seek u, and, therefore, t so as to maximize the criterion:

cov(u, t) =
1

n
u>t =

1

n
ν>Y >PXY ν (1)

The rationale behind this maximization problem is clear enough: we seek a latent variable

u in the Y -space and a latent variable t in the X-space that are as close as possible to

each other.

It is clear that the vector, ν, that maximizes such a criterion is given by the eigenvector

of Y >PXY associated with the largest eigenvalue. Thus, we are led to the same solution

as redundancy analysis ofX and Y . A Non Iterative PArtial Least Squares (NIPALS)-like
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algorithm to run this analysis is as follows:

0. Choose randomly ν and set ν = ν/||ν||;

1. Compute the Y -latent variable: u = Y ν;

2. Compute the X-latent variable: t = PXu;

3. Update ν: ν = Y >t/||Y >t||;

4. Iterate starting from step 1, until convergence. That is, the criterion to be maxi-

mized ceases to increase by more than a pre-specified threshold (e.g., ε = 10−8).

We can notice that, since the projector PX is idempotent (P 2
X = PX) and symmetric

(P>X = PX), we have:

Y >PXY = Y >PXPXY = Y >P>XPXY = (PXY )>(PXY ) (2)

It follows that trace(Y >PXY ) = n
∑∑∑q

j=1 var(ŷj), where ŷj = PXyj is the projection

of the jth variable, yj of Y on the space spanned by the variables in X. In other words,

trace(Y >PXY ) reflects the total variance in Y explained by X. Similarly,

ν>Y >PXY ν = u>PXu = (PXu)>(PXu) = n× var(PXu) (3)

Therefore, an index of particular interest is:

I =
ν>Y >PXY ν

trace(Y >PXY )
=

var(PXu)∑q
j=1 var(PXyj)

=
var(t)∑q

j=1 var(PXyj)
(4)

This index reflects the variation in PXY recovered by the latent variable t. It ranges

between 0 and 1. Obviously, the analysis seeks to maximize this index I.

It is worth noting that for the particular case where Y = [y] (a single variable), we

are led to multiple linear regression.

Subsequent latent variables could be retreived after a deflation of X and Y , with

respect to the X-latent variable t = PXu. More precisely, this deflation procedure
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consists of subtracting from the datasets X and Y , the information that has already been

explained by the previous latent variables in X [13,14]. This information is computed by

projecting the datasets X and Y onto these latent variables. This leads us to compute

the Y -latent variables u(1), u(2), ... and correspondingly, the X-latent variables t(1), t(2),

etc. At each stage, we can compute the index:

Ih =
var(t(h))∑q

j=1 var(PXyj)
(5)

These indices could be plotted as a function of the latent variables at each stage, h, and

could be interpreted similarly to the so-called scree diagram in Principal Components

Analysis (PCA) [15] to select an appropriate number of latent variables to be retained

from the analysis.

A prediction model of the variables in Y from X can be set by regressing Y upon the

latent variables t(1), t(2), ..., t(A). The number of latent variables, A, to be introduced in

the prediction model can be selected by a cross-validation procedure [16].

The projector, PX , involves the inversion of the matrix, X>X. The advantage of

this inversion is that the correlations as well as the variances of the variables in X are

shaded off. Therefore, the analysis is targeted at recovering the variation in Y by means

of the variables of X. However, a major drawback of the inversion of such a matrix is

that, in case of high redundancy among the variables of X, the analysis is likely to lead

to unstable results because of the well known problem of quasi-colinearity [17].

2.1.2 PLS2 regression

We consider the same setting as in the previous section. By way of circumventing

the problem of quasi-colinearity, we consider the operator WX = XX> instead of the

projector PX = X(X>X)−1X>. This means that the matrix (X>X)−1 is replaced

by the identity matrix.

To a latent variable u = Y ν (||ν|| = 1), we associate the latent variable t = WXu.
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Thereafter, we seek u (and, consequently, t) so as to maximize the criterion:

cov(u, t) =
1

n
u>t =

1

n
ν>Y >XX>Y ν. (6)

It follows that the vector, ν, that maximizes this quadratic form is given by the eigenvector

of Y >XX>Y associated with the largest eigenvalue. Obviously, we are led to the same

solution as PLS regression [12, 18]. A NIPALS-like algorithm to run this method is the

following:

0. Choose randomly the vector of loadings, ν, associated with Y and set ν = ν/||ν||;

1. Compute the latent variable, u, associated with Y : u = Y ν;

2. Compute the latent variable, t, associated with X: t = WXu;

3. Update the vector ν: ν = Y >t/||Y >t||;

4. Iterate starting from step 1, until convergence. That is the criterion to be maximized

ceases to increase by more than a pre-specifed threshold (e.g., ε = 10−8).

The convergence of this algorithm is granted by the fact that at each step, the criterion

to be maximized increases. Since this criterion is upper-bounded, it results that the series

of values of this criterion generated in the course of the iterations converges.

Since PLS2 regression revolves around the eigenanalysis of the matrix Y >XX>Y ,

we can remark that trace(Y >XX>Y ) = trace(XX>Y Y >). By using the rela-

tionships XX> =
∑∑∑p

i=1 xix
>
i and Y Y > =

∑∑∑q
j=1 yjy

>
j , where xi (respectively, yj)

is the ith (respectively, jth) variable of X (respectively, Y ), it readily follows that

trace(Y >XX>Y ) = n2
∑∑∑p

i=1

∑∑∑q
j=1 cov

2(xi, yj). Therefore, the quantity:

trace(Y >XX>Y ) reflects the strength of the link between the variables in X and

those in Y . This index was introduced by Robert and Escouffier [19,20] and it is tightly

linked to the so-called RV coefficient, which is widely used in sensometrics and chemo-

metrics [21–25]. Similarly, we have: ν>Y >XX>Y ν = n2
∑∑∑p

i=1 cov
2(xi, u). Conse-
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quently, the index:

I =
ν>Y >XX>Y ν

trace(Y >XX>Y )
=

n× cov(t, u)

trace(Y >XX>Y )
=

∑p
i=1 cov

2(xi, u)∑p
i=1

∑q
j=1 cov

2(xi, yj)

=
λ1

trace(Y >XX>Y )
(7)

where λ1 is the largest eigenvalue of Y >XX>Y . This index reflects the proportion of

covariation (i.e., trace(Y >XX>Y )) recovered by t (and u).

Subsequent latent variables could be determined after a deflation of X and Y with re-

spect to the latent variables associated with X, determined at previous stages. Therefore,

we obtain the Y -latent variables u(1), u(2), ... and the corresponding X-latent variables

t(1), t(2), etc. At each stage, the index:

Ih =

∑p
i=1 cov

2(xi, u
(h))∑p

i=1

∑q
j=1 cov

2(xi, yj)
(8)

could be computed. These indices could be plotted as a scree diagram. This yields a tool

to help choosing the number of latent variables to be retained.

2.2 Multiblock data analysis

We consider the multiblock setting where we have a dataset Y (n×q) to be predicted

by K datasets X1,X2, ...,XK ; the dimension of Xk (k = 1,2, ...,K) is n× pk. All

these datasets are measured on the same individuals and assumed to be column-centered.

Moreover, in order to set all the X-datasets on the same footing, they can be pre-scaled

so as to have their norms equal to 1. This is achieved by dividing each dataset Xk by its

norm ||Xk|| =
√
trace(X>k Xk).

2.2.1 Multiblock Redundancy Analysis

Let us denote by Pk = Xk(X
>
k Xk)

−1X>k the orthogonal projector upon the space

generated by the variables of dataset Xk.

Starting with a Y -latent variable u = Y ν (||ν|| = 1), we consider its orthogonal
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projection upon the space generated by the variables of Xk. Thus, we obtain tk = Pku,

which define the block latent variables associated with the datasets Xk (k = 1,2, ...,K).

We seek u, and, consequently tk, so as to maximize:

K∑∑∑
k=1

cov(u, tk) =
1

n
u>

K∑∑∑
k=1

tk =
1

n
ν>Y >

(
K∑∑∑
k=1

Pk

)
Y ν. (9)

The rationale behind this problem is clear: we seek a latent variable u in the Y -space

that is as close as possible to theXk-spaces. The optimal vector, ν, of this quadratic form

is given by the eigenvector of Y >
(∑∑∑K

k=1Pk

)
Y associated with the largest eigenvalue.

Clearly, we are led to MB-RA [2–4].

We can remark that the criterion to be maximized can also be written as:

K∑∑∑
k=1

cov(u, tk) = cov(u,

K∑∑∑
k=1

tk) = cov(u, t) (10)

where t =
∑∑∑K

k=1 tk stands as the global latent variable.

A NIPALS-like algorithm to solve the above maximization problem is as follows:

0. Choose randomly a vector ν and set ν = ν/||ν||;

1. Determine the latent variable associated with Y : u = Y ν and the block latent

variable associated with Xk: tk = Pku;

2. Compute the global latent variable t =
∑∑∑K

k=1 tk;

3. Update the vector ν: ν = Y >t/||Y >t||;

4. Iterate starting from step 1, until convergence.

The block latent variable tk = Xk(X
>
k Xk)

−1X>k u is a linear combination of the

variables inXk: tk = Xkwk, withwk = (X>k Xk)
−1X>k u. For interpretational purpose,

this latter vector could be standardized to unit length. Similarly, the global latent variable

t can be written as t = Xw, whereX = [X1,X2, ...,XK] and w = (w1,w2, ...,wK)>.

Again for interpretational purpose, this latter vector could be standardized to unit length.

Latent variables of higher order than 1 could be obtained by following the same strat-

egy of analysis after deflating all the datasets with respect to the global latent variables
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associated with X, determined at previous stages. Therefore, we are led to computing

the Y -latent variables u(1), u(2), ..., the Xk-block latent variables t
(1)
k , t

(2)
k , ... (k =

1,2, ...,K) and the global latent variables t(1), t(2), etc.

As for the case of RA, the index:

Ih =

∑K
k=1 u

(h)>Pku
(h)∑K

k=1 trace(Y
>PkY )

=

∑K
k=1 var(Pku

(h))∑K
k=1

∑q
j=1 var(Pkyj)

=

∑K
k=1 var(t

(h)
k )∑K

k=1

∑q
j=1 var(Pkyj)

(11)

can be computed at each stage to reflect the variation in datasets PkY (k = 1,2, ...,K)

recovered by t(h). These indices could be plotted as a function of the number of latent

variables, h, and could be interpreted as a scree diagram to help choosing the number of

latent variables to be retained.

At stage h, the quantity:

cont
(h)
k =

var(Pku
(h))∑K

l=1 var(Plu
(h))

=
var(t

(h)
k )∑K

l=1 var(t
(h)
l )

(12)

reflects the contribution of the block Xk in the determination of the components u(h)

and t(h).

2.2.2 Multiblock weighted redundancy analysis (MB-WRA)

Let us consider the same setting as in the previous section. We operate the same

centering and pre-scaling of the datasets.

We consider a variant to the maximization problem. Instead of maximizing the quan-

tity
∑∑∑K

k=1 cov(u,Pku), we propose to maximize the quantity:

K∑∑∑
k=1

cov2(u,Pku) =
1

n2

K∑∑∑
k=1

(ν>Y >PkY ν)2 (13)

under the constraint that ||ν|| = 1.

Obviously, the rationale behind this problem is exactly the same as previously, that is

seeking a direction in the Y -space that is as close as possible to the Xk-spaces. To solve

this problem, let us use the Lagrangian method. The Lagrange expression associated with
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this maximization criterion is the following:

K∑∑∑
k=1

(ν>Y >PkY ν)2− 2µ(ν>ν − 1) (14)

where 2µ is the Lagrange multiplier associated with the constraint ||ν|| = 1 or equiv-

alently ||ν||2 = ν>ν = 1. By deriving this Lagrange expression with respect to ν and

setting this derivative to 0, we obtain:

4

K∑∑∑
k=1

(ν>Y >PkY ν)Y >PkY ν − 4µν = 0. (15)

If we denote by λk, the quantity λk = ν>Y >PkY ν, we can write:

K∑∑∑
k=1

λkY
>PkY ν = µν (16)

Multiplying the two members of this equality by ν> and setting ν>ν = 1, we obtain

µ =
∑∑∑K

k=1 λ
2
k. From this, we can derive the stationnary point as: ν =

∑K
k=1 λkY

>PkY ν∑K
k=1 λ

2
k

.

This suggests the following iterative algorithm:

0. Choose randomly the vector ν and set ν = ν/||ν||;

1. λk = ν>Y >PkY ν;

2. ν =
∑∑∑K

k=1 λkY
>PkY ν/

∑∑∑K
k=1 λ

2
k;

3. ν = ν/||ν||;

4. Iterate starting from step 1, until convergence.

We show that this algorithm converges (see appendix). More precisely, we show that

at each iteration, the criterion to be maximized increases and since this criterion is upper-

bounded, the series of the values of the criterion that we seek to maximize generated in

the course of the algorithm converges.
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Let us consider again the criterion that we sought to maximize. We have:

K∑∑∑
k=1

cov2(u, tk) =
1

n

K∑∑∑
k=1

λkcov(u, tk) =
1

n
cov(u,

K∑∑∑
k=1

λktk) =
1

n
cov(u, t) (17)

where t =
∑∑∑K

k=1 λktk stands as the global latent variable and appears as a linear com-

bination of the Xk-block latent variables tk = Pku. More precisely, since λk = u>tk =

n× cov(u, tk), it follows that t is proportional to the first PLS component of u upon

t1, t2, ..., tK . These remarks suggest an alternative algorithm to solve the maximization

problem above. Indeed, this criterion can also be expressed as:

K∑∑∑
k=1

cov2(u, tk) = n

K∑∑∑
k=1

λkcov(u, tk) = ν>

(
K∑∑∑
k=1

λkY
>PkY

)
ν (18)

Therefore, it follows that for fixed values of λk, the optimal vector, ν, is given by the

eigenvector of
∑∑∑K

k=1 λkY
>PkY associated with the largest eigenvalue. Conversely, for a

fixed value of ν, λk is given by: λk = ν>Y >PkY ν. The algorithm associated with this

solution is the following:

0. Set λk = 1 for k = 1,2, ...,K;

1. Set ν to the eigenvector of
∑∑∑K

k=1 λkY
>PkY associated with the largest eigenvalue;

2. Update λk = ν>Y >PkY ν;

3. Iterate from step 1 until convergence, that is until the criterion to be maximized

ceases to increase by more than a pre-specified threshold (e.g., ε = 10−8).

Subsequent latent variables of higher order can be determined by following the same

strategy of analysis after a deflation of all the blocks of variables with respect to the global

latent variable t.

Let us denote by t(h) the global latent variable and by t
(h)
1 , t

(h)
2 , ..., t

(h)
K , its associated

block latent variables. Similarly, we denote by u(1), u(2), ..., u(h) the successive latent

variables in the Y -space. Finally, we denote by λ
(h)
k = ncov(u(h), t

(h)
k ). The following

11
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indices can be very useful to better interpret the results.

Ih =

∑K
k=1 λ

(h)
k∑K

k=1 trace(Y
>PkY )

(19)

highlights the importance of the global component t(h) in explaining the covariation of

Y and X1,X2, ...,XK .

cont
(h)
k =

λ
(h)
k∑K

k=1 λ
(h)
k

(20)

reflects the contribution of the block Xk in the determination of the latent variables t(h)

and u(h).

2.2.3 Multiblock PLS regression

In order to counteract the problems of colinearity that arise from the inversion of the

matrices X>k Xk, we propose, as for the case of PLS regression, to replace the matrices

(X>k Xk)
−1 by the identity matrix and, therefore, consider the operators Wk = XkX

>
k ,

instead of the projectors Pk = Xk(X
>
k Xk)

−1X>k .

Starting from the Y -latent variable, u = Y ν (||ν|| = 1), we define the Xk-block

latent variable as tk = Wku. Thereafter, we seek u and, therefore, tk, so as to maximize

the criterion:

K∑∑∑
k=1

cov(u, tk) =
1

n
u>

K∑∑∑
k=1

tk =
1

n
ν>Y >

(
K∑∑∑
k=1

Wk

)
Y ν

=
1

n
ν>

K∑∑∑
k=1

Y >XkX
>
k Y ν = nν>

(
K∑∑∑
k=1

VY kVkY

)
ν (21)

where VkY = 1
n
X>k Y is the covariance matrix between Xk and Y and VY k = V >kY .

Since
∑∑∑K

k=1 cov(u, tk) = cov(u,
∑∑∑K

k=1 tk), the latent variable t =
∑∑∑K

k=1 tk stands as

the global latent variable.

All in all, we are led to the same solution as MB-PLS regression. A straightforward

algorithm to run this method is the following:

0. Randomly choose ν, with ||ν|| = 1;

12
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1. u = Y ν: Y -latent variable;

2. tk = XkX
>
k u: Xk block latent variables;

3. t =
∑∑∑K

k=1 tk: global latent variable;

4. ν = Y >t/||Y >t||;

5. Iterate starting from step 1, until convergence.

It is clear that at each step of this algorithm, the criterion to be maximized increases

and since this criterion is upper-bounded, the series of values of this criterion computed

at the successive step of this algorithm converges.

We can also note that:

K∑∑∑
k=1

cov(u, tk) =
1

n
ν>Y >

K∑∑∑
k=1

XkX
>
k Y ν =

1

n
ν>Y >XX>Y ν (22)

where X = [X1|X2|...|XK] is the dataset obtained by horizontally merging the datasets

X1,X2, ...,XK . This entails that the optimal vector ν is the eigenvector of matrix

Y >XX>Y associated with the largest eigenvalue. In other words, the solution to MB-

PLS regression amounts to performing PLS regression of Y upon X [6].

We can compute the index:

I =
λ∑K

k=1 trace(Y
>XkX

>
k Y )

=
λ

trace(Y >XX>Y )
(23)

where λ = n× cov(u, t). This index reflects the proportion of covariation between Y ,

on the one hand, and Xk (k = 1,2, ...,K), on the other hand, that is explained by

the global latent variable. Moreover, since we have λ =
∑∑∑K

k=1 λk, where λk = u>tk =

n× cov(u, tk), we can compute the indices contk = λk

λ
, which reflects the contribution

of the blocks of variables Xk in the determination of the global latent variable. In other

words, these indices reflect the importance that each block of variables, Xk, attaches to

the global latent variable.

Subsequent latent variables can be computed following the same strategy of analysis

after deflation with respect to the global latent variables associated with X.
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2.2.4 Multiblock Weighted Covariate Analysis (MB-WCov)

We consider the same setting and the same notations as in the previous section. As

a variant to the maximization criterion that led us to introduce MB-PLS regression,

namely
∑∑∑K

k=1 cov(u, tk), we consider the criterion
∑∑∑K

k=1 cov
2(u, tk). The rationale

behind these two criteria is the same, that is exploring the covariation between, on the

one hand, Y and, on the other hand, the blocks of variables Xk. The latter maximization

criterion will lead us to a strategy of analysis that we shall refer to as Multiblock Weighted

Covariate Analysis (MB-WCov). Indeed, as with MB-WRA, this method of analysis will

explicitely exhibit weights that reflect the contribution of the Xk-blocks of variables to

the determination of the latent variables at each stage.

To the Y -latent variable u = Y ν (||ν|| = 1), we associate the variables tk = Wku,

which are the block latent variables associated with the datasets Xk. Thereafter, we seek

u so as to maximize:

K∑∑∑
k=1

cov2(u, tk) =
1

n2

K∑∑∑
k=1

(ν>Y >WkY ν)2 (24)

The Lagrangian expression associated to this problem is:

K∑∑∑
k=1

(ν>Y >WkY ν)2− 2µ(ν>ν − 1) (25)

where 2µ is the Lagrange multiplier associated with the constraint ||ν|| = 1 or equiv-

alently ||ν||2 = ν>ν = 1. By deriving this Lagrange expression with respect to ν and

setting this derivative to 0, we obtain 4
∑∑∑K

k=1(ν
>Y >WkY ν)Y >WkY ν − 4µν = 0.

By denoting λk = ν>Y >WkY ν, we have
∑∑∑K

k=1 λkY
>WkY ν = µν. Multiplying the

two members of this equality by ν> and setting ν>ν = 1, we obtain µ =
∑∑∑K

k=1 λ
2
k. The

stationnary point is therefore given by ν =
∑K

k=1 λkY
>WkY ν∑K

k=1 λ
2
k

. This suggests the following

iterative algorithm:

0. Choose randomly the vector ν and set ν = ν/||ν||;

1. λk = ν>Y >WkY ν;
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2. ν =
∑∑∑K

k=1 λkY
>WkY ν/

∑∑∑K
k=1 λ

2
k;

3. ν = ν/||ν||;

4. Iterate starting from step 1, until convergence.

The convergence of this algorithm can be shown using very similar developments as

for the case of MB-WRA (appendix).

The criterion that we sought to maximize can be written as
∑∑∑K

k=1 λkcov(u, tk) =

cov(u,
∑∑∑K

k=1 λktk). This yields the global latent variable t =
∑∑∑K

k=1 λktk, with λk =

n× cov(u, tk). It follows that t is proportional to the first PLS component of u upon

t1, t2, ..., tK . Thus, for fixed values of λk, the optimal vector, ν, is given by the eigenvec-

tor of
∑∑∑K

k=1 λkY
>WkY associated with the largest eigenvalue. Conversely, for a fixed

value of ν, λk is given by: λk = ν>Y >WkY ν. From these developments, we can pro-

pose an alternative algorithm for the resolution of the MB-WCov maximization criterion

as follows.

0. Set λk = 1 for k = 1,2, ...,K;

1. Set ν to the eigenvector of
∑∑∑K

k=1 λkY
>WkY associated with the largest eigenvalue;

2. Update λk = ν>Y >WkY ν;

3. Iterate starting from step 1 until convergence, that is until the criterion to be max-

imized ceases to increase by more than a pre-specified threshold (e.g., ε = 10−8).

Subsequent latent variables of higher order can be determined after deflating all the

blocks of variables with respect to the global latent variable.

Similar indices as for the case of MB-PLS regression can be computed to enhance the

interpretation of the results.

2.3 Comparison of methods

Table 1 sums up the four methods of multiblock data analysis discussed in this paper.
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Table 1: Overview of the supervised multiblock methods.

(u = Y ν (||ν|| = 1); Pk = Xk(X
>
k Xk)

−1X>k ; Wk = XkX
>
k )

Method
Xk-block

latent variable

Maximization

criterion

Global

latent variable
First algorithm

NIPALS-like

Algorithm

MB-RA tk = Pku
∑∑∑K

k=1 cov(u, tk) t =
∑∑∑K

k=1 tk
ν is the first eigenvector

of Y >
(∑∑∑K

k=1Pk

)
Y .

0. Initial ν (||ν|| = 1)

1. u = Y ν; tk = Pku

2. t =
∑∑∑K

k=1 tk

3. ν = Y >t/||Y >t||

4. Iterate from 1.

MB-WRA tk = Pku
∑∑∑K

k=1 cov
2(u, tk)

t =
∑∑∑K

k=1 λktk

with λk = u>tk

0. Set λk = 1

1. ν is the first eigenvector

of Y >
(∑∑∑K

k=1 λkPk

)
Y .

2. λk = ν>Y >PkY ν

3. Iterate from 1.

0.Initial ν (||ν|| = 1)

1. u = Y ν; tk = Pku

2. λk = u>tk

3. t =
∑∑∑K

k=1 λktk

4. ν = Y >t/||Y >t||

5. Iterate from 1.

MB-PLS tk = Wku
∑∑∑K

k=1 cov(u, tk) t =
∑∑∑K

k=1 tk
ν is the first eigenvector

of Y >
(∑∑∑K

k=1Wk

)
Y .

0.Initial ν (||ν|| = 1)

1. u = Y ν tk = Wku

2. t =
∑∑∑K

k=1 tk

3. ν = Y >t/||Y >t||

4. Iterate from 1.

MB-WCov tk = Wku
∑∑∑K

k=1 cov
2(u, tk)

t =
∑∑∑K

k=1 λktk

with λk = u>tk

0. Set λk = 1

1. ν is first eigenvector

of Y >
(∑∑∑K

k=1 λkWk

)
Y .

2. λk = ν>Y >WkY ν

3. Iterate from 1.

0. Initial ν (||ν|| = 1)

1. u = Y ν; tk = Wku

2. λk = u>tk

3. t =
∑∑∑K

k=1 λktk

4. ν = Y >t/||Y >t||

5. Iterate from 1.

It is clear that the four methods of multiblock data analysis discussed herein can

be differentiated by two main features. The first key of differentiation is how the Xk-

block latent variables, tk, are computed from the Y -latent variable, u. Two options

are offered to us, namely, whether we consider tk = Pku or tk = Wku. The first

option leads to methods of analysis pertaining to redundancy analysis (i.e., MB-RA and

MB-WRA). The second option leads to methods of analysis akin to PLS regression (i.e.,

MB-PLS and MB-WCov). The second key of differentiation between the methods is the

relationship between the Xk-block latent variable, tk, and the global latent variable, t.

This relationship directly stems from the optimization criterion to determine the latent
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variable. More precisely, the criterion based on the covariance between tk and u leads to

t =
∑∑∑K

k=1 tk and the criterion based on the squared covariance between tk and u leads

to t =
∑∑∑K

k=1 λktk, where λk = u>tk. In other words, the global latent variable sums

up the block latent variables by stating that t is proportional to the average of the block

latent variables tk (k = 1,2, ...,K), in the former case and, in the latter case, stating

that t is proportional to the first PLS component of u upon tk (k = 1,2, ...,K).

3 Illustrations

The supervised strategies of multiblock data analysis are illustrated and compared

based on a simulation study and a real case study.

3.1 Simulation study

This simulation study is, to a large extent, similar to that of Westerhuis et al. [6].

It consists of considering two orthogonal variables d1 and d2, four explanatory datasets

X1 to X4 and a response dataset, Y . These datasets are defined as follows: X1 =

[d1, d1, d1, d1, d1], X2 = X3 = X4 = [d2, randn(4)] and Y = [d1, d2], where

randn(4) stands for four columns of normally distributed random variables. In each

dataset, twenty percent of random noise was added to the variables d1 and d2. MB-RA,

MB-WRA, MB-PLS regression and MB-WCov were performed with the aim of predicting

Y from X1,X2,X3 and X4. The simulation study was done based on fifty observations.

Figure 1a depicts the proportion of covariation between the predictive blocks of vari-

ables X1 to X4, and the response block of variables Y explained by the first six latent

variables derived from MB-RA, MB-WRA, MB-PLS and MB-WCov. As mentionned

above, this figure can be interpreted as a scree diagram to help determining the number

of latent variables to be retained. We can see that the curves for all the methods sharply

drop between the second and the third components and form a plateau starting from the

third component. This suggests to retain the first three components.

Figure 1b shows the proportions of total variance in Y recovered by the six successive
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components obtained by the various methods of analysis. From this figure, we can draw

exactly the same conclusions as those from Figure 1a.

(a) Covariation (b) Total variance

Figure 1: Simulated data: (a) Proportion of covariation between the predictive and re-
sponse blocks of variables explained by the first six latent variables derived from MB-RA,
MB-WRA, MB-PLS and MB-WCov and (b) Proportion of total variance of the response
block of variables recovered by the first six latent variables computed by means of MB-RA,
MB-WRA, MB-PLS and MB-WCov.

Table 2 gives the correlations between the global latent variables t(1) and t(2) with

the building variables d1 and d2. It also gives the contributions of the blocks of variables

X1,X2,X3 and X4 to the determination of the components t(1) and t(2).

The first component, t(1), obtained by means of MB-RA and MB-WRA is highly

correlated to d2 and the second component, t(2) is highly correlated with d1. MB-PLS and

MB-WCov show an opposite pattern in that sense that their respective first components

are highly correlated with d1 and their respective second components are highly correlated

with d2. This can be explained by the fact that since the two methods pertaining to MB-

RA do not take account of the variation (i.e., variances and correlations) within each

predictive dataset, it is the variable d2 that takes the lead because it appears in Y ,

on the one hand, and X2,X3 and X4, on the other hand. Therefore, it appears as a

common pattern to all the datasets but X1. This is a configuration favored by MB-RA
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and MB-WRA. By contrast, the variable d1 appears in the datasetX1 five times but since

MB-RA and MB-WRA do not take account of the within variation, it will be counted

as one variable. Contrariwise, this variable will be the leading variable for MB-PLS and

MB-WPLS because these methods of analysis take account of the variation within the

predictive datasets in addition to taking account of their relationships with Y .

As regards the contributions of the datasets X1,X2,X3 and X4 to the determination

of the component t(1) (Table 2), we can see that, not surprisingly, this component is almost

equally determined by X2,X3 and X4 insofar as MB-RA and MB-WRA are concerned.

With MB-PLS and MB-WCov, the first component is almost determined by the block

of variables X1. Similar conclusions regarding the second component t(2) can easily be

drawn. All these conclusions are in line with the rationale governing the various methods,

namely that the two methods pertaining to MB-RA do not take account of the within

variation in the blocks of variables, whereas the two methods pertaining to MB-PLS do.

Table 2: Simulated data: Correlations between the global latent variables t(1), t(2) with
the building variables d1 and d2 and contributions of the various blocks of variables to
the determination of the global latent variables t(1) and t(2).

Correlations Contributions

d1 d2 X1 X2 X3 X4

MB-RA
t(1) 0.04 -0.99 0.02 0.32 0.33 0.33

t(2) -0.90 -0.06 0.78 0.10 0.04 0.08

MB-WRA
t(1) -0.01 0.99 0.02 0.32 0.33 0.33

t(2) 0.99 0.01 0.84 0.06 0.02 0.08

MB-PLS
t(1) -0.99 0.09 0.96 0.01 0.01 0.02

t(2) 0.09 0.98 0.00 0.34 0.33 0.33

MB-WCov
t(1) -1.00 0.01 0.97 0.01 0 0.02

t(2) -0.01 -0.98 0 0.34 0.33 0.33

In order to assess the prediction ability of the four methods of analysis, we divided

the datasets into calibration sets with thirty observations and test sets with twenty ob-

servations. The former datasets were used to set up prediction models. These models
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were applied to the predictive blocks of variables from the test data. The predictions

thus obtained were compared to the actual values from Y by means of the root mean

squared errors of prediction (RMSEP, [16]). It can be seen in Figure 2, which shows the

evolution of the RMSEP values as a function of the number of latent variables introduced

in the models, that the four methods show more or less the same pattern. More precisely,

the RMSEP sharply decreases when the second latent variable is introduced, then it very

slightly decreases with the introduction of the third component. Thereafter, the various

curves form a plateau or tend to slightly increase. It is worth noting that the smallest

RMSEP value is obtained by means of MB-WRA with three components.

Figure 2: Simulated data: Root mean squared errors of prediction (RMSEP) for MB-
RA, MB-WRA, MB-PLS and MB-WCov as a function of the number of latent variables
introduced in the models.
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3.2 Case study: Potatoes data

The multiblock data used to compare the methods of analysis are described in more

details in [26]. The aim is to predict sensory attributes from measurement data. Twenty

potato samples were analyzed after one month of storage and six additional samples, after

eight months of storage. A panel of assessors profiled the texture of cooked potatoes with

respect to nine texture attributes. The sensory data were averaged accross assessors,

yielding a dataset Y (26 potatoes samples × 9 sensory attributes). The block X1 is given

by the chemical analysis of the potatoes samples (14 variables) and a second block of

variables, X2, concerns the uniaxial compression at six deformation rates (6 variables).

Each predictive dataset was column-centered and pre-scaled so as to have its norm equal

to 1. Thereafter, they were submitted to MB-RA, MB-WRA, MB-PLS and MB-WCov

analyses.

Figure 3a shows the proportion of covariation between the predictive and response

blocks of variables explained by the first six latent variables derived from MB-RA, MB-

WRA, MB-PLS and MB-WCov. It turns out that, for all these methods, there is no more

improvement in the explained covariation when we move from the third latent variable to

the fourth latent variable. Therefore, the first three latent variables can be retained.

The proportions of total variance in the response block of variables, Y , recovered by

the first six latent variables derived from MB-RA, MB-WRA, MB-PLS and MB-WCov are

depicted in Figure 3b. These values decrease as we move from the first latent variable to

the fourth latent variable. For the first latent variable, MB-RA and its variant MB-WRA

are the methods that recover the highest proportion of variance. MB-PLS and MB-WCov

show more or less the same behaviour.

21

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 March 2021                   doi:10.20944/preprints202103.0530.v1

https://doi.org/10.20944/preprints202103.0530.v1


(a) Covariation (b) Total variance

Figure 3: Potatoes data: (a) Proportion of covariation between the predictive and re-
sponse blocks of variables explained by the first six latent variables derived from MB-RA,
MB-WRA, MB-PLS and MB-WCov and (b) Proportion of total variance of the response
block of variables recovered by the first six latent variables computed by means of MB-RA,
MB-WRA, MB-PLS and MB-WCov.

The contributions of each dataset in determining the global latent variables of MB-

RA, MB-WRA, MB-PLS and MB-WCov are presented in Table 3. Globally, it appears

that, for all the methods, the chemical dataset (X1) is the one that contributes most to

the determination of the first two latent variables.

Table 3: Potatoes data: Contributions of the blocks of variables X1 and X2 to the
determination of the global latent variables t(1) and t(2).

MB-RA MB-WRA MB-PLS MB-WCov

X1 X2 X1 X2 X1 X2 X1 X2

t(1) 0.59 0.41 0.59 0.41 0.55 0.45 0.56 0.44

t(2) 0.55 0.45 0.56 0.44 0.67 0.33 0.67 0.33

Figure 4 depicts the root mean squared errors (RMSECV) obtained by a leave one

out (LOO) cross validation procedure as a function of the first six global latent variables

obtained by the various methods. We can see that the RMSECV values associated with

MB-PLS and MB-WCov decrease with the number of global latent variables introduced
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in the model and reach a plateau starting from the third component. Moreover, these

two methods of analysis seem to have the same prediction performance. The conclusions

regarding RMSECV obtained by means of MB-RA and MB-WRA are very different.

With a model based on only the first global component from MB-RA or MB-WRA,

the RMSECV is smaller than those obtained by means of MB-PLS and MB-WCov with

one component. However, as new latent variables are introduced in the models, the

performance dramatically deteriorates. These findings are typical of those methods that

are vulnerable to the problem of multicolinearity.

Figure 4: Potatoes data: Root mean squared errors obtained by a LOO cross validation
procedure for the first six latent variables derived from MB-RA, MB-WRA, MB-PLS and
MB-WCov.
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4 Discussion and concluding remarks

We have set up a unified approach for two supervised methods, namely, MB-RA

and MB-PLS regression. We have also proposed two new strategies for predicting a

block of variables from other blocks of variables. These four methods are based on clear

optimization criteria and can be differentiated according to two traits.

The first trait concerns the relationship between the Y -latent variable u and the

Xk-block latent variables tk. We have considered herein two types of relationships: (i)

tk = Xk(X
>
k Xk)

−1X>k u and (ii) tk = XkX
>
k u. The first relationship leads to the

methods pertaining to redundancy analysis, namely, MB-RA and MB-WRA. Since, this

strategy of analysis involves the inversion of the matrices X>k Xk, the variances and

the correlations of the datasets Xk are shaded off. Therefore, the methods of analysis

will focus on recovering the variation of Y by means of the latent variables of the Xk

datasets. However, in case of multicolinearity among the variables of Xk, the inversion of

such matrices is likely to lead to unstable models. By considering the relationship (ii), we

circumvent this problem and we are led to methods pertaining to PLS regression, namely,

MB-PLS regression and MB-WCov.

The second distinguishing trait is the relationship between the global latent variable

t and its associated block latent variables tk. Again, we have considered two kinds of

relationships: (i) the global latent variable t is equal to the sum of its block latent variables

tk (t =
∑∑∑K

k=1 tk) and (ii) the global latent variable t is equal to the linear combination of

its block latent variables tk (t =
∑∑∑K

k=1 λktk, with λk = u>tk). This latter relationships

means that t is the first PLS component of u upon t1, t2, ..., tK . For the relationship (i),

we are led to MB-RA and MB-PLS regression. By using the relationship (ii), a specific

weight, λk, is attached to each dataset Xk. These weights reflect the importance of each

dataset in the computation of the latent variables t and u. With the relationship (ii), we

obtain the methods MB-WRA and MB-WCov.

We have already noted the relationship t =
∑∑∑K

k=1 λktk, with tk = u>tk means that

the latent variable t is proportional to the first PLS component of u upon the block
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components tk. From this standpoint, it appears that MB-WCov bears some similarities

to Multiblock Hierarchical PLS (MB-HPLS) [6] which basically enjoys the same property.

However, since MB-HPLS is not grounded on a clear optimization criterion, it suffers from

convergence problems [6, 27].

The fact that, with MB-WRA and MB-WCov, the global latent variable t is the first

PLS component of the Y -latent variable u upon the block latent variables t1, t2, ..., tK

suggests new interesting developments. Indeed, instead of the usual PLS regression, we

could use a sparse PLS regression. This means that, at each stage, the blocks of variables

that do not have a significant contribution to the determination of the latent compo-

nents computed at the current stage will be discarded. As a consequence, we are led to

parsimonious models that are easier to interpret without affecting the prediction ability.

Moving from the projectors Pk = Xk(X
>
k Xk)

−1X>k to the operators Wk = XkX
>
k

was dictated by a requirement to circumvent the tricky problem of quasi-colinearity.

In effect, this corresponds to a drastic shrinkage of the matrices X>k Xk towards the

identity matrix. A softer shrinkage may consist in considering the operators Pkγ =

Xk

[
γI + (1− γ)X>k Xk

]−1
X>k where γ is a tunning parameter comprised between 0

and 1. This yields a continuous strategy of analysis whose two extreme points (i.e., γ = 0

and γ = 1) are the methods of analysis discussed herein. In practice, the tuning param-

eter could be determined together with the number of latent variables to be included in

the model by a technique of cross-validation [28].

We have also proposed indices for the interpretation of the results of the strategies

of analysis. Among these indices, we have an index that indicates the proportion of

covariation between the blocks of variables. This index could give a hint regarding the

number of latent variables to be retained. We have also proposed an index that highlights

the contribution of the block of variables Xk in the determination of the global latent

variable.
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Appendix

This appendix aims at proving the convergence of the algorithm associated with the

maximization of the criterion that defines MB-WRA.

The maximization with respect to ν (||ν|| = 1) of the criterion:

C(ν) =
∑∑∑K

k=1(ν
>Y >PkY ν)2 led us to the following iterative algorithm:

0. Initial ν, with ||ν|| = 1.

1. ν =
∑n

k=1 λkAk∑
l λ

2
l

ν, where Ak = Y >PkY and λk = ν>Akν.

2. ν = ν/||ν||.

3. Iterate until convergence.

The algorithm generates a series of (positive) real values C(n) =
∑∑∑K

k=1(ν
>
nAkνn)2

where νn is the vector, ν, determined at the nth iteration.

We prove that this series increases with n. Since it is upper bounded by
∑∑∑K

k=1 ||Y >PkY ||2,

the convergence will be granted.

Let us denote by G(n) =
∑K

k=1 λk(n)Ak∑K
k=1(λk(n))2

where λk(n) = ν>nAkνn.

We have νn+1 = G(n)νn
||G(n)νn||

.

We aim at proving that C(n) ≤ C(n+ 1).

We have the following property:

ν>nG(n)νn ≤ ν>n+1G(n)νn (26)
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This property is readily proven by remarking that by virtue of Cauchy-Schwarz inequality,

the maximum (with respect to x, ||x|| = 1) of the function x>G(n)νn is achieved for

x = G(n)νn
||G(n)νn||

= νn+1.

By expanding the left term of inequality (26), it is easy to check that it is equal to 1.

The right term of inequality (26) is: ν>n+1G(n)νn =
∑K

k=1 λk(n)ν
>
n+1Akνn∑K

l=1(λl(n))2
.

Since the matricesAk = Y >PkY are semi-definite positive, we have by virtue of Cauchy-

Schwarz theorem ν>n+1Akνn ≤
√
ν>n+1Akνn+1

√
ν>nAkνn.

Thus we have:

1 ≤ ν>n+1G(n)νn ≤

∑K
k=1 λk(n)

√
ν>n+1Akνn+1

√
ν>nAkνn∑K

l=1(λl(n))2
(27)

Again, by using Cauchy-Schwarz inequality it follows that the last term of the inequality

(27) is smaller than:√∑K
k=1(λk(n))2

√∑K
k=1

(
ν>n+1Akνn+1

) (
ν>nAkνn

)∑K
l=1(λl(n))2

=

√∑K
k=1 λk(n)ν>n+1Akνn+1√∑K

l=1(λl(n))2

(28)

Using one last time Cauchy-Schwarz inequality, it follows that:

K∑∑∑
k=1

λk(n)ν>n+1Akνn+1 ≤

√√√√ K∑
k=1

(λk(n))2

√√√√ K∑
k=1

(ν>n+1Akνn+1)
2 (29)

Combining the inequalities (27), (28) and (29), we have:

1 ≤

(∑K
k=1(λk(n))2

)1/4 (∑K
k=1(ν

>
n+1Akνn+1)

2
)1/4

√∑K
l=1(λl(n))2

=

(∑K
k=1(ν

>
n+1Akνn+1)

2
)1/4

(∑K
l=1 (λl(n))2

)1/4
(30)

By remarking that λk(n) = ν>nAkνn, it readily follows that:(
K∑∑∑
l=1

(ν>nAkνn)2

)1/4

≤
(

K∑∑∑
k=1

(ν>n+1Akνn+1)
2

)1/4

(31)
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or equivalently:

K∑∑∑
k=1

(ν>nAkνn)2 ≤
K∑∑∑
k=1

(ν>n+1Akνn+1)
2. (32)

This is precisely the property that we aim to prove.
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