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Abstract

Within the framework of multiblock data analysis, a unified approach of supervised
methods is discussed. It encompasses multiblock redundancy analysis (MB-RA)
and multiblock partial least squares (MB-PLS) regression. Moreover, we develop
new supervised strategies of multiblock data analysis, which can be seen as vari-
ants of one or the other of these two methods. They are respectively refered to
as multiblock weighted redundancy analysis (MB-WRA) and multiblock weighted
covariate analysis (MB-WCov). The four methods are based on the determination
of latent variables associated with the various blocks of variables. They are derived
from clear optimization criteria whose aim is to maximize either the sum of the
covariances or the sum of squared covariances between the latent variable associ-
ated with the response block of variables and the block latent variables associated
with the various explanatory blocks of variables. We also propose indices to help
better interpreting the outcomes of the analyses. The methods are illustrated and

compared based on simulated and real datasets.
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1 Introduction

With the advent of technology, several blocks of variables are very often collected in
different areas to study some phenomena of interest. As example, for the characteri-
zation and optimization of food products, several measurements can be made (sensory,
instrumental, physico-chemical) and linked to consumers preferences. In ecology, we may
be interested in exploring the relationships between the abundance of some species in
different sites, on the one hand, and, the variables describing those sites (environment,
biodiversity, spatial situation, etc.), on the other hand.

We consider the setting where all the blocks of variables are measured on the same
individuals, but the variables can be different from one block to another. For the purpose
of predicting a block of variables from other blocks of variables, supervised methods
are often used. Examples of such methods are Multiblock Redundancy Analysis (MB-
RA) [1-4], Multiblock PLS (MB-PLS) regression [5-7], Hierachical PLS (H-PLS) [6] and
P-ComDim [8].

The purpose of this paper is to: (i) set up a unified approach for MB-RA and MB-
PLS regression, (ii) propose new supervised strategies for the analysis of multiblock data,
(iii) highlight the similarities and differences among all these methods, (iv) propose new
indices for a better interpretation of the results of these supervised strategies.

Although self containing, this paper can be seen as a follow up of the unified framework
for unsupervised strategies of multiblock data analysis [9].

We start by introducing Redundancy Analysis [10,11] and PLS2 regression analysis [12]
using an original presentation. Then, from two different viewpoints, we extend these two
strategies to the framework of multiblock data analysis. The first extension of RA leads
to MB-RA, whereas the second extension gives a new strategy of analysis that can be seen
as a variant of MB-RA. This new strategy of analysis is refered to as Multiblock Weighted
Redundancy Analysis (MB-WRA). In the same vein, we consider a first extension of PLS2
regression, which leads to MB-PLS regression and a second extension which leads to an
interesting variant of MB-PLS, to which we refer to as Multiblock Weighted Covariate

Analysis (MB-WCov). We also exhibit indices that reflect the importance of the latent
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variables determined at the successive stages and indices that highlight the contribution
of the various explanatory blocks of variables to the determination of the global latent
variables. All the methods of analysis are compared and illustrated using simulated and
real datasets.

The paper is organized as follows. In section 2, we introduce the various methods
of analysis. Then, in section 3, we illustrate and compare these methods on the basis
of simulated and real datasets. We end the paper by a discussion and some concluding

remarks.

2 Methods

2.1 Relationships between two datasets

2.1.1 Redundancy analysis

Let us denote by X (n X p) and Y (n X q), two datasets measured on the same
individuals and supposed to be column-centered. The aim is to predict Y from X . Let us
denote by Px = X(X TX)71X T the orthogonal projector upon the space generated by
the variables of X . We consider a latent variable associated with Y, uw = Y v, where v is
the vector of loading weights, which is constrained to be of length equal to 1 (||v|| = 1).
The projection of u upon the space generated by the variables of X is given by the latent

variable t = Pxu. We seek u, and, therefore, t so as to maximize the criterion:

1 1
cov(u,t) = E’u,Tt = ;VTYTP)(YI/ (1)

The rationale behind this maximization problem is clear enough: we seek a latent variable
u in the Y-space and a latent variable ¢ in the X -space that are as close as possible to
each other.

It is clear that the vector, v, that maximizes such a criterion is given by the eigenvector
of Y T PxY associated with the largest eigenvalue. Thus, we are led to the same solution

as redundancy analysis of X and Y. A Non Iterative PArtial Least Squares (NIPALS)-like
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algorithm to run this analysis is as follows:
0. Choose randomly v and set v = v/||v||;
1. Compute the Y-latent variable: u = Yv;
2. Compute the X-latent variable: t = Pxu;
3. Update v: v =Y "t/||Y T¢t|[;

4. Tterate starting from step 1, until convergence. That is, the criterion to be maxi-

mized ceases to increase by more than a pre-specified threshold (e.g., € = 1078).

We can notice that, since the projector Px is idempotent (P2 = Px) and symmetric

(Py = Px), we have:
Y 'PxY =Y " PxPxY =Y Py PxY = (PxY)' (PxY) (2)

It follows that trace(Y " PxY) =n Zgzl var(y;), where §; = Pxyj; is the projection
of the 5 variable, y; of Y on the space spanned by the variables in X. In other words,

trace(Y T PxY) reflects the total variance in Y explained by X. Similarly,
v'Y T PxYv =u'Pxu= (Pxu)' (Pxu) =mn X var(Pxu) (3)

Therefore, an index of particular interest is:

_ VvVIY'PxYv  war(Pxu) B var(t)
~ trace(YTPxY) > i—y var(Pxy;) N > j—1 var(Pxy;)

(4)

This index reflects the variation in PxY recovered by the latent variable ¢. It ranges
between 0 and 1. Obviously, the analysis seeks to maximize this index I.

It is worth noting that for the particular case where Y = [y] (a single variable), we
are led to multiple linear regression.

Subsequent latent variables could be retreived after a deflation of X and Y, with

respect to the X-latent variable ¢ = Pxwu. More precisely, this deflation procedure
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consists of subtracting from the datasets X and Y, the information that has already been
explained by the previous latent variables in X [13,14]. This information is computed by
projecting the datasets X and Y onto these latent variables. This leads us to compute
the Y-latent variables u™, u(®, ... and correspondingly, the X-latent variables t(, ¢(2),

etc. At each stage, we can compute the index:

var(t™)
q

I, =
=1 var(Pxy;)

(5)

These indices could be plotted as a function of the latent variables at each stage, h, and
could be interpreted similarly to the so-called scree diagram in Principal Components
Analysis (PCA) [15] to select an appropriate number of latent variables to be retained
from the analysis.

A prediction model of the variables in Y from X can be set by regressing Y upon the
latent variables t(), ¢, ..., (4 The number of latent variables, A, to be introduced in
the prediction model can be selected by a cross-validation procedure [16].

The projector, Px, involves the inversion of the matrix, X ' X. The advantage of
this inversion is that the correlations as well as the variances of the variables in X are
shaded off. Therefore, the analysis is targeted at recovering the variation in Y by means
of the variables of X. However, a major drawback of the inversion of such a matrix is
that, in case of high redundancy among the variables of X, the analysis is likely to lead

to unstable results because of the well known problem of quasi-colinearity [17].

2.1.2 PLS2 regression

We consider the same setting as in the previous section. By way of circumventing
the problem of quasi-colinearity, we consider the operator Wx = X X T instead of the
projector Px = X (X "X)71XT. This means that the matrix (X T X)~! is replaced
by the identity matrix.

To a latent variable u = Yv (||v|| = 1), we associate the latent variable t = Wxu.
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Thereafter, we seek u (and, consequently, t) so as to maximize the criterion:

1 1
cov(u,t) = —u't=-v'Y' XX Y. (6)
n n

It follows that the vector, v, that maximizes this quadratic form is given by the eigenvector
of YTXXTY associated with the largest eigenvalue. Obviously, we are led to the same
solution as PLS regression [12,18]. A NIPALS-like algorithm to run this method is the

following:
0. Choose randomly the vector of loadings, v, associated with Y and set v = v/||v|];
1. Compute the latent variable, u, associated with Y: u = Yv;
2. Compute the latent variable, t, associated with X: t = Wxwu;
3. Update the vector v: v =Y T¢/||Y T¢||;

4. Tterate starting from step 1, until convergence. That is the criterion to be maximized

ceases to increase by more than a pre-specifed threshold (e.g., € = 1078).

The convergence of this algorithm is granted by the fact that at each step, the criterion
to be maximized increases. Since this criterion is upper-bounded, it results that the series
of values of this criterion generated in the course of the iterations converges.

Since PLS2 regression revolves around the eigenanalysis of the matrix YT XX TY,
we can remark that trace(YTXX'Y) = trace(XX'YY "). By using the rela-
tionships X X T = 30, @& and YY T = Y% y;y, where @; (vespectively, y;)
is the " (respectively, j®*) variable of X (respectively, Y'), it readily follows that
trace(Y'XXTY)=n?3Y7 37, cov?(z;,y;). Therefore, the quantity:
trace(Y T XX TY) reflects the strength of the link between the variables in X and
those in Y. This index was introduced by Robert and Escouffier [19,20] and it is tightly
linked to the so-called RV coefficient, which is widely used in sensometrics and chemo-

metrics [21-25]. Similarly, we have: vTY T XX TYv = n?Y"_ cov?(z;,u). Conse-
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quently, the index:

vV'YTXXTYv n X cov(t,u) B cov?(x;,u)
- trace(YTXXTY) - trace(YTXXTY) - 1 23—y cov® (x4, Yj)
= )
trace(YTXXTY)

where \; is the largest eigenvalue of YT X X TY. This index reflects the proportion of
covariation (i.e., trace(Y " X X TY)) recovered by ¢ (and u).

Subsequent latent variables could be determined after a deflation of X and Y with re-
spect to the latent variables associated with X, determined at previous stages. Therefore,
we obtain the Y-latent variables u™,u(®, ... and the corresponding X-latent variables

tMW, t?) ete. At each stage, the index:

P
Ih — =1
i1 D=1 COVX (i, Y;)

cov?(x;, uM)

(8)

could be computed. These indices could be plotted as a scree diagram. This yields a tool

to help choosing the number of latent variables to be retained.

2.2 Multiblock data analysis

We consider the multiblock setting where we have a dataset Y (n X q) to be predicted
by K datasets X1, Xa,..., Xk; the dimension of X} (k = 1,2,..., K) is n X pg. All
these datasets are measured on the same individuals and assumed to be column-centered.
Moreover, in order to set all the X -datasets on the same footing, they can be pre-scaled

so as to have their norms equal to 1. This is achieved by dividing each dataset X} by its

norm || Xy|| = \/trace(XkTXk).

2.2.1 Multiblock Redundancy Analysis

Let us denote by P, = X (X, Xx)~'X, the orthogonal projector upon the space
generated by the variables of dataset X.

Starting with a Y-latent variable w = Yv (||v|| = 1), we consider its orthogonal
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projection upon the space generated by the variables of X}. Thus, we obtain t;, = Pyu,
which define the block latent variables associated with the datasets X (k = 1,2, ..., K).

We seek u, and, consequently %, so as to maximize:

K K

Zcov(u, ty) = %uT Ztk = lIJTYT (Z Pk> Yv. (9)

The rationale behind this problem is clear: we seek a latent variable w in the Y -space
that is as close as possible to the Xg-spaces. The optimal vector, v, of this quadratic form
is given by the eigenvector of Y T (Eszl Pk> Y associated with the largest eigenvalue.
Clearly, we are led to MB-RA [2-4].

We can remark that the criterion to be maximized can also be written as:
K K
zcov(u,tk) = cov(u, Ztk) = cov(u,t) (10)
k=1 k=1

where t = Zszl t), stands as the global latent variable.

A NIPALS-like algorithm to solve the above maximization problem is as follows:

0. Choose randomly a vector v and set v = v/||v]|;
1. Determine the latent variable associated with Y: v = Y v and the block latent

variable associated with Xg: tp = Ppu;
2. Compute the global latent variable ¢ = 25:1 tr;

3. Update the vector v: v =Y "t/||Y Tt||;

4. Iterate starting from step 1, until convergence.

The block latent variable ¢, = Xk(X,;'—Xk)_lX,Iu is a linear combination of the
variables in X: t, = Xpwy, with wy = (X} X)X, u. For interpretational purpose,
this latter vector could be standardized to unit length. Similarly, the global latent variable
t can be written as t = Xw, where X = [X1, X3, ..., Xk] and w = (wy, Wz, ..., wg) .
Again for interpretational purpose, this latter vector could be standardized to unit length.

Latent variables of higher order than 1 could be obtained by following the same strat-

egy of analysis after deflating all the datasets with respect to the global latent variables
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associated with X, determined at previous stages. Therefore, we are led to computing
the Y-latent variables u,u(, ..., the X-block latent variables t,(cl), t,(f), . (k=
1,2,..., K) and the global latent variables t(), () etc.

As for the case of RA, the index:

Zszl u®T P B Zle var(Pyu®™) B Zszl 'vafr(t,(ch))

B Zszl t,ra'ce(YTPkY) B ZkK=1 Zg:l 'Ua/r(Pk'yj) B Zl{f:l Zg:l ’va’r(PkyJ)
(11)

can be computed at each stage to reflect the variation in datasets PY (k =1,2,..., K)

I,

recovered by ™. These indices could be plotted as a function of the number of latent
variables, h, and could be interpreted as a scree diagram to help choosing the number of
latent variables to be retained.

At stage h, the quantity:

w _ var(Pu™) var(t{)

cont = —
YK var(Pu®) K yar®)

(12)

reflects the contribution of the block X} in the determination of the components w(?)

and £,

2.2.2 Multiblock weighted redundancy analysis (MB-WRA)

Let us consider the same setting as in the previous section. We operate the same
centering and pre-scaling of the datasets.
We consider a variant to the maximization problem. Instead of maximizing the quan-

tity Zszl cov(u, Pyu), we propose to maximize the quantity:

K K
1
E cov?(u, Pyu) = — E (v'YTPYv)? (13)
n
under the constraint that ||v|| = 1.

Obviously, the rationale behind this problem is exactly the same as previously, that is
seeking a direction in the Y -space that is as close as possible to the Xg-spaces. To solve

this problem, let us use the Lagrangian method. The Lagrange expression associated with
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this maximization criterion is the following:

K
Y (WYTPYV)? —2u( v —1) (14)
k=1

where 2p is the Lagrange multiplier associated with the constraint ||v|| = 1 or equiv-

T

alently |[v]|?> = v"v = 1. By deriving this Lagrange expression with respect to v and

setting this derivative to 0, we obtain:

K
) WYTPYv)Y P.Yv —4pv =0. (15)
k=1

If we denote by Ay, the quantity A, = v Y T P,Y v, we can write:
K
S MY TRYv=pv (16)
k=1

Multiplying the two members of this equality by v and setting v "v = 1, we obtain

K MY TP.Yv

n= Zszl AZ. From this, we can derive the stationnary point as: v = K e
k=1 "k

This suggests the following iterative algorithm:

0. Choose randomly the vector v and set v = v/||v||;

1. )\k = I/TYTPkYV;
2. v=Y MYTP.Yv/ T A2
3. v=v/llv]];

4. Tterate starting from step 1, until convergence.

We show that this algorithm converges (see appendix). More precisely, we show that
at each iteration, the criterion to be maximized increases and since this criterion is upper-
bounded, the series of the values of the criterion that we seek to maximize generated in

the course of the algorithm converges.

10
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Let us consider again the criterion that we sought to maximize. We have:

K 1 & 1 X 1
Z cov?(u,ty) = — Z Axcov(u, ty) = —cov(u, Z Aity) = —cov(u,t)  (17)
n n n
k=1 k=1 k=1
where t = 2sz1 Artr stands as the global latent variable and appears as a linear com-
bination of the Xj-block latent variables ¢, = P,u. More precisely, since A\, = u ' t}, =
n X cov(u,ty), it follows that t is proportional to the first PLS component of w upon
t1,ta,...,tx. These remarks suggest an alternative algorithm to solve the maximization

problem above. Indeed, this criterion can also be expressed as:

K

K K
Z cov?(u,ty) =n Z Awcov(u,ty,) = v’ (E )\kYTPkY> v (18)
k=1

Therefore, it follows that for fixed values of A, the optimal vector, v, is given by the
eigenvector of Zszl MY TP,Y associated with the largest eigenvalue. Conversely, for a
fixed value of v, A is given by: A, = v"Y " P,Yv. The algorithm associated with this

solution is the following:
0. Set \p =1fork=1,2,...,K;
1. Set v to the eigenvector of Zszl MY T P.Y associated with the largest eigenvalue;
2. Update A\, = v'Y TP, Yv;

3. Iterate from step 1 until convergence, that is until the criterion to be maximized

ceases to increase by more than a pre-specified threshold (e.g., € = 1078).

Subsequent latent variables of higher order can be determined by following the same
strategy of analysis after a deflation of all the blocks of variables with respect to the global
latent variable t.

Let us denote by ™ the global latent variable and by tgh), tgh), s ty{l), its associated
block latent variables. Similarly, we denote by ™, u®,...,u™ the successive latent

variables in the Y-space. Finally, we denote by )\,(ch) = ncov(uM, t,(ch)). The following

11
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indices can be very useful to better interpret the results.

K +(h)
D k1 Mk

I, =
" YK trace(YTRY)

(19)

highlights the importance of the global component ™ in explaining the covariation of

Y and Xl, Xz, ceey XK

(h) A
cont,’ = W (20)
k=1 "'k

reflects the contribution of the block X} in the determination of the latent variables ¢(")

and u™.

2.2.3 Multiblock PLS regression

In order to counteract the problems of colinearity that arise from the inversion of the
matrices X, X, we propose, as for the case of PLS regression, to replace the matrices
(X, X4)~! by the identity matrix and, therefore, consider the operators Wy, = X X!,
instead of the projectors P, = X3 (X, X)) 1 X, .

Starting from the Y-latent variable, u = Yv (||v|| = 1), we define the Xg-block
latent variable as t, = Wju. Thereafter, we seek u and, therefore, t;, so as to maximize

the criterion:

K K 1 K
cov(u,ty) = —u' t,=—v'Y" W. | Yv
S conturt) = a7 - 2 (z :

k=1

K K
1
= v ) Y XX/ Yv=nv" (Z VYkaY> v (21)

where Viy = %X 4 Y is the covariance matrix between X and Y and Vyy = V%
Since SR, cov(u, ty) = cov(u, Yr, ), the latent variable t = S #; stands as
the global latent variable.

All in all, we are led to the same solution as MB-PLS regression. A straightforward

algorithm to run this method is the following:

0. Randomly choose v, with ||v|| = 1;

12
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1. u = Yv: Y-latent variable;
2. t, = XkX,;'—u: X block latent variables;
3. t = 35|ty global latent variable;

4. v=Y Tt/||Y "t||;

5. Iterate starting from step 1, until convergence.

It is clear that at each step of this algorithm, the criterion to be maximized increases
and since this criterion is upper-bounded, the series of values of this criterion computed
at the successive step of this algorithm converges.

We can also note that:

K K
1 1

Y cov(u,ty)=—v YT Y XX Yr=—2"Y XX Yv (22)
n n

k=1 k=1

where X = [X;|X3|...| X k] is the dataset obtained by horizontally merging the datasets

X1, X2,..., Xg. This entails that the optimal vector v is the eigenvector of matrix

Y "X XTY associated with the largest eigenvalue. In other words, the solution to MB-

PLS regression amounts to performing PLS regression of Y upon X [6].

We can compute the index:

A A
I = =
YK trace(YTX,XY) trace(YTXXTY)

(23)

where A = n X cov(u,t). This index reflects the proportion of covariation between Y,
on the one hand, and X, (k = 1,2,..., K), on the other hand, that is explained by
the global latent variable. Moreover, since we have A = Eszl Ak, where A\, = u 'ty =
n X cov(u,ty), we can compute the indices conty = %, which reflects the contribution
of the blocks of variables X} in the determination of the global latent variable. In other
words, these indices reflect the importance that each block of variables, X}, attaches to
the global latent variable.

Subsequent latent variables can be computed following the same strategy of analysis

after deflation with respect to the global latent variables associated with X.

13
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2.2.4 Multiblock Weighted Covariate Analysis (MB-WCov)

We consider the same setting and the same notations as in the previous section. As
a variant to the maximization criterion that led us to introduce MB-PLS regression,
namely S0 cov(u,ty), we consider the criterion S5, cov?(u,ty). The rationale
behind these two criteria is the same, that is exploring the covariation between, on the
one hand, Y and, on the other hand, the blocks of variables Xj. The latter maximization
criterion will lead us to a strategy of analysis that we shall refer to as Multiblock Weighted
Covariate Analysis (MB-WCov). Indeed, as with MB-WRA, this method of analysis will
explicitely exhibit weights that reflect the contribution of the Xj-blocks of variables to
the determination of the latent variables at each stage.

To the Y-latent variable u = Yv (||v|| = 1), we associate the variables t, = Wyu,
which are the block latent variables associated with the datasets X},. Thereafter, we seek

u S0 as to maximize:

K K

1
E cov?(u,ty) = — E VY TW,Yv)? (24)
k=1 n k=1

The Lagrangian expression associated to this problem is:

K
Y WTYTWLYv)? —2u(vTv —1) (25)
k=1

where 2p is the Lagrange multiplier associated with the constraint ||v|| = 1 or equiv-

Tv = 1. By deriving this Lagrange expression with respect to v and

alently ||v]|? = v
setting this derivative to 0, we obtain 4EkK:1(1/TYTWkYV)YTWkYI/ —4uv = 0.
By denoting A\, = v'Y T W, Y v, we have EkK=1 MY TW,.Y v = pv. Multiplying the

two members of this equality by »T and setting v "v = 1, we obtain p = Zszl AZ. The

SE MY TWiYr

stationnary point is therefore given by v = S
Zk:l Ak:

. This suggests the following

iterative algorithm:

0. Choose randomly the vector v and set v = v/||v||;

1. )‘k = I/TYTWkYV;

14


https://doi.org/10.20944/preprints202103.0530.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 March 2021 d0i:10.20944/preprints202103.0530.v1

3. v=v/|lv]];
4. Iterate starting from step 1, until convergence.

The convergence of this algorithm can be shown using very similar developments as
for the case of MB-WRA (appendix).

The criterion that we sought to maximize can be written as Eszl Agcov(u,ty) =
cov(u, Zszl Arti). This yields the global latent variable ¢ = Z,If:l Aietr, with A =
n X cov(u,t). It follows that ¢ is proportional to the first PLS component of u upon
t1,ta, ..., tx. Thus, for fixed values of A, the optimal vector, v, is given by the eigenvec-
tor of ZkK=1 XY TW,Y associated with the largest eigenvalue. Conversely, for a fixed
value of v, Ay is given by: A, = v Y "W, Y. From these developments, we can pro-
pose an alternative algorithm for the resolution of the MB-WCov maximization criterion

as follows.
0. Set \p =1for k=1,2,...,K;
1. Set v to the eigenvector of Eszl ALY TWLY associated with the largest eigenvalue;
2. Update A, =v'Y "W, Yv:

3. Iterate starting from step 1 until convergence, that is until the criterion to be max-

imized ceases to increase by more than a pre-specified threshold (e.g., € = 1078).

Subsequent latent variables of higher order can be determined after deflating all the
blocks of variables with respect to the global latent variable.
Similar indices as for the case of MB-PLS regression can be computed to enhance the

interpretation of the results.

2.3 Comparison of methods

Table 1 sums up the four methods of multiblock data analysis discussed in this paper.
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Table 1: Overview of the supervised multiblock methods.

(u=Yv ([[v|| =1); P. = X3u(Xy Xp) 7' X Wi = X3 X))

| Xj-block | Maximization | Global 1 | NIPALS-like
Method : ! ! ! First algorithm !
. latent variable | criterion . latent variable | . Algorithm
1 0. Initial v (||v|| = 1)
|
| 1. u=Yv; t = Pyu
D K " v is the first eigenvector X
MB-RA t, = P,u P e cov(u,ty) [ t=3 0tk 2. t=r  tr
K =
‘ of YT (Ek=1 Pk) Y.
| 3.v=YTt/||[Y Tt
|
| 4. Iterate from 1.
,,,,,,,,,,,,,,,,,,, S
0.Initial v (||v|| =1)
1. u=Yv; t = Pyu
K 1. v is the first eigenvector
t= z — Aktk 2. Ak) = uTtk
k=1 of YT (2kK=1 )\kpk) Y.

with >\k: = uTtk 3. t= Zkkzl Aktk

4. v=YTt/||lY Tt

2. Ak = VTYTPkYV

3. Iterate from 1.
5. Iterate from 1.

0.Initial v (||v]] = 1)

l.u=Yvit,=W,u
v is the first eigenvector

K
t= Ek*l ty K 2.t= ZkK=1 2
of YT <Zk=1Wk) Y.
3. v=YTt/||[Y Tt
4. Iterate from 1.
,,,,,,,,,,,,,,,,,,, S
0. Initial v (||v]| = 1)
0. Set }\k:1
1. u=Yv; t = Wiu
1. v is first eigenvector
t=Yr Mt 2 Ap=ut

of YT (K MW ) Y.

4. v=YTt/||lY Tt

with >\k = ’U,Ttk
2. Ak = I/TYTWle/

|
|
|
|
|
:
| K 2
t, = Wiu ) kg cOV? (u, ty,)
|
|
:
|
! 3. Iterate from 1.
|

5. Iterate from 1.

It is clear that the four methods of multiblock data analysis discussed herein can
be differentiated by two main features. The first key of differentiation is how the Xj-
block latent variables, tp, are computed from the Y-latent variable, w. Two options
are offered to us, namely, whether we consider t, = Pru or t = Wyru. The first
option leads to methods of analysis pertaining to redundancy analysis (i.e., MB-RA and
MB-WRA). The second option leads to methods of analysis akin to PLS regression (i.e.,
MB-PLS and MB-WCov). The second key of differentiation between the methods is the
relationship between the Xj-block latent variable, tx, and the global latent variable, .

This relationship directly stems from the optimization criterion to determine the latent
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variable. More precisely, the criterion based on the covariance between ¢, and w leads to
t = Zszl tr and the criterion based on the squared covariance between t; and u leads
to t = Eszl Aitr, where A, = uw'#;. In other words, the global latent variable sums
up the block latent variables by stating that ¢ is proportional to the average of the block
latent variables ty (k = 1,2,..., K), in the former case and, in the latter case, stating

that ¢ is proportional to the first PLS component of w upon t, (k = 1,2,..., K).

3 Illustrations

The supervised strategies of multiblock data analysis are illustrated and compared

based on a simulation study and a real case study.

3.1 Simulation study

This simulation study is, to a large extent, similar to that of Westerhuis et al. [6].
It consists of considering two orthogonal variables d; and ds, four explanatory datasets
X; to X4 and a response dataset, Y. These datasets are defined as follows: X; =
[d1,d1,d1,d1,d1], Xo = X3 = X4 = [d2,randn(4)] and Y = [d;,ds], where
randn(4) stands for four columns of normally distributed random variables. In each
dataset, twenty percent of random noise was added to the variables d; and do. MB-RA,
MB-WRA, MB-PLS regression and MB-WCov were performed with the aim of predicting
Y from X, X5, X3 and X4. The simulation study was done based on fifty observations.

Figure 1a depicts the proportion of covariation between the predictive blocks of vari-
ables X7 to X4, and the response block of variables Y explained by the first six latent
variables derived from MB-RA, MB-WRA, MB-PLS and MB-WCov. As mentionned
above, this figure can be interpreted as a scree diagram to help determining the number
of latent variables to be retained. We can see that the curves for all the methods sharply
drop between the second and the third components and form a plateau starting from the
third component. This suggests to retain the first three components.

Figure 1b shows the proportions of total variance in Y recovered by the six successive
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components obtained by the various methods of analysis. From this figure, we can draw

exactly the same conclusions as those from Figure 1a.

a0

g '\ -= MB-RA H MB-RA
W\ -=  MB-WRA B MB-WRA
= 3 —— MB-PLS - B MB-PLS
E —— MB-WCov = = MB-WPLS
I £ 84
2 o 4 2
é = t.\ % [=]
5 AN e 7
g o \ g
g - \ g _
5 AN 7
® I
o
2 " ~a . .
T T T T T T e -
1 2 3 4 5 6 Dim1  Dim2  Dim3 Dim4 Dim5  Dim6
Dimensions Dimensions
(a) Covariation (b) Total variance

Figure 1: Simulated data: (a) Proportion of covariation between the predictive and re-
sponse blocks of variables explained by the first six latent variables derived from MB-RA,
MB-WRA, MB-PLS and MB-WCov and (b) Proportion of total variance of the response
block of variables recovered by the first six latent variables computed by means of MB-RA,
MB-WRA, MB-PLS and MB-WCov.

Table 2 gives the correlations between the global latent variables t™V and t(® with
the building variables d; and ds. It also gives the contributions of the blocks of variables
X1, X2, X3 and X, to the determination of the components () and ¢,

The first component, ¢ obtained by means of MB-RA and MB-WRA is highly
correlated to dy and the second component, () is highly correlated with dy. MB-PLS and
MB-WCov show an opposite pattern in that sense that their respective first components
are highly correlated with d; and their respective second components are highly correlated
with ds. This can be explained by the fact that since the two methods pertaining to MB-
RA do not take account of the variation (i.e., variances and correlations) within each
predictive dataset, it is the variable do that takes the lead because it appears in Y,
on the one hand, and X5, X3 and X4, on the other hand. Therefore, it appears as a

common pattern to all the datasets but X;. This is a configuration favored by MB-RA
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and MB-WRA. By contrast, the variable d; appears in the dataset X, five times but since
MB-RA and MB-WRA do not take account of the within variation, it will be counted
as one variable. Contrariwise, this variable will be the leading variable for MB-PLS and
MB-WPLS because these methods of analysis take account of the variation within the
predictive datasets in addition to taking account of their relationships with Y.

As regards the contributions of the datasets X7, X2, X3 and X4 to the determination
of the component t(*) (Table 2), we can see that, not surprisingly, this component is almost
equally determined by X5, X3 and X4 insofar as MB-RA and MB-WRA are concerned.
With MB-PLS and MB-WCov, the first component is almost determined by the block
of variables X;. Similar conclusions regarding the second component t(3) can easily be
drawn. All these conclusions are in line with the rationale governing the various methods,
namely that the two methods pertaining to MB-RA do not take account of the within

variation in the blocks of variables, whereas the two methods pertaining to MB-PLS do.

Table 2: Simulated data: Correlations between the global latent variables t(), () with
the building variables dy and ds and contributions of the various blocks of variables to
the determination of the global latent variables t( and ¢(2).

: Correlations : Contributions
| |

: dl d2 : Xl X2 X3 X4

tM 1004 -0.99,0.02 0.32 0.33 0.33

MB-RA | |

t® 1 -0.90 -0.06 ;0.78 0.10 0.04 0.08
,,,,,,,,,,,, O R

tM 001 0.99 ,0.02 0.32 0.33 0.33
MB-WRA | |

t® 099 001 ,0.84 006 0.02 0.08
,,,,,,,,,,,, R S

tM 1 _0.99 0.09 |0.96 0.0l 001 0.02
MB-PLS | |

t® 009 098 000 0.34 0.33 0.33
,,,,,,,,,,,, R e R

tM 1 -1.00 0.01 ,0.97 0.01 0 0.02
MB-WCov ! !

t® | 001 -0.98,0 0.34 0.33 0.33

In order to assess the prediction ability of the four methods of analysis, we divided
the datasets into calibration sets with thirty observations and test sets with twenty ob-

servations. The former datasets were used to set up prediction models. These models
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were applied to the predictive blocks of variables from the test data. The predictions
thus obtained were compared to the actual values from Y by means of the root mean
squared errors of prediction (RMSEP, [16]). It can be seen in Figure 2, which shows the
evolution of the RMSEP values as a function of the number of latent variables introduced
in the models, that the four methods show more or less the same pattern. More precisely,
the RMSEP sharply decreases when the second latent variable is introduced, then it very
slightly decreases with the introduction of the third component. Thereafter, the various
curves form a plateau or tend to slightly increase. It is worth noting that the smallest

RMSEP value is obtained by means of MB-WRA with three components.

-=  MB-RA
-=  MB-WRA
—— MB-PLS
= —— MB-WCov
z
r =
Z - ~
\\\l'—--—:—l-.—:—zirr‘l

T T T T T T
1 2 3 4 5 G

Dimensions

Figure 2: Simulated data: Root mean squared errors of prediction (RMSEP) for MB-
RA, MB-WRA, MB-PLS and MB-WCov as a function of the number of latent variables
introduced in the models.
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3.2 Case study: Potatoes data

The multiblock data used to compare the methods of analysis are described in more
details in [26]. The aim is to predict sensory attributes from measurement data. Twenty
potato samples were analyzed after one month of storage and six additional samples, after
eight months of storage. A panel of assessors profiled the texture of cooked potatoes with
respect to nine texture attributes. The sensory data were averaged accross assessors,
yielding a dataset Y (26 potatoes samples x 9 sensory attributes). The block X is given
by the chemical analysis of the potatoes samples (14 variables) and a second block of
variables, X3, concerns the uniaxial compression at six deformation rates (6 variables).
Each predictive dataset was column-centered and pre-scaled so as to have its norm equal
to 1. Thereafter, they were submitted to MB-RA, MB-WRA, MB-PLS and MB-WCov
analyses.

Figure 3a shows the proportion of covariation between the predictive and response
blocks of variables explained by the first six latent variables derived from MB-RA, MB-
WRA, MB-PLS and MB-WCov. It turns out that, for all these methods, there is no more
improvement in the explained covariation when we move from the third latent variable to
the fourth latent variable. Therefore, the first three latent variables can be retained.

The proportions of total variance in the response block of variables, Y, recovered by
the first six latent variables derived from MB-RA, MB-WRA, MB-PLS and MB-WCov are
depicted in Figure 3b. These values decrease as we move from the first latent variable to
the fourth latent variable. For the first latent variable, MB-RA and its variant MB-WRA
are the methods that recover the highest proportion of variance. MB-PLS and MB-WCov

show more or less the same behaviour.
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Figure 3: Potatoes data: (a) Proportion of covariation between the predictive and re-
sponse blocks of variables explained by the first six latent variables derived from MB-RA,
MB-WRA, MB-PLS and MB-WCov and (b) Proportion of total variance of the response
block of variables recovered by the first six latent variables computed by means of MB-RA,
MB-WRA, MB-PLS and MB-WCov.

The contributions of each dataset in determining the global latent variables of MB-
RA, MB-WRA, MB-PLS and MB-WCov are presented in Table 3. Globally, it appears
that, for all the methods, the chemical dataset (X7) is the one that contributes most to
the determination of the first two latent variables.

Table 3: Potatoes data: Contributions of the blocks of variables X; and X5 to the
determination of the global latent variables t(*) and ¢(®.

. MB-RA | MB-WRA , MB-PLS |, MB-WCov
| | | |
|
|

X, X 0 X, X Xy X, Xy X,

tW 1059 041,059 041,055 045,056 0.44

i - == F-—-—— === b= ==

t@ 055 045,056 044, 0.67 033,067 0.33

Figure 4 depicts the root mean squared errors (RMSECV) obtained by a leave one
out (LOO) cross validation procedure as a function of the first six global latent variables
obtained by the various methods. We can see that the RMSECYV values associated with

MB-PLS and MB-WCov decrease with the number of global latent variables introduced
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in the model and reach a plateau starting from the third component. Moreover, these
two methods of analysis seem to have the same prediction performance. The conclusions
regarding RMSECV obtained by means of MB-RA and MB-WRA are very different.
With a model based on only the first global component from MB-RA or MB-WRA,
the RMSECYV is smaller than those obtained by means of MB-PLS and MB-WCov with
one component. However, as new latent variables are introduced in the models, the
performance dramatically deteriorates. These findings are typical of those methods that

are vulnerable to the problem of multicolinearity.

-=- MB-RA o
- = MB-WRA /' /
_ |—— wmB-PLS y /
—— MB-WCov ./ /
g—— - ;"" o~ ‘.f
ff- -
L r f
= ;!
s !
o
=<
- \-—.h.ﬂ-

Dimensions

Figure 4: Potatoes data: Root mean squared errors obtained by a LOO cross validation
procedure for the first six latent variables derived from MB-RA, MB-WRA, MB-PLS and
MB-WCov.
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4 Discussion and concluding remarks

We have set up a unified approach for two supervised methods, namely, MB-RA
and MB-PLS regression. We have also proposed two new strategies for predicting a
block of variables from other blocks of variables. These four methods are based on clear
optimization criteria and can be differentiated according to two traits.

The first trait concerns the relationship between the Y -latent variable w and the
X-block latent variables t,. We have considered herein two types of relationships: (i)
tr = Xip(X) Xp) ' X/ w and (ii) t, = XX, u. The first relationship leads to the
methods pertaining to redundancy analysis, namely, MB-RA and MB-WRA. Since, this
strategy of analysis involves the inversion of the matrices X, X, the variances and
the correlations of the datasets Xy are shaded off. Therefore, the methods of analysis
will focus on recovering the variation of Y by means of the latent variables of the Xy
datasets. However, in case of multicolinearity among the variables of Xy, the inversion of
such matrices is likely to lead to unstable models. By considering the relationship (ii), we
circumvent this problem and we are led to methods pertaining to PLS regression, namely,
MB-PLS regression and MB-WCov.

The second distinguishing trait is the relationship between the global latent variable
t and its associated block latent variables t,. Again, we have considered two kinds of
relationships: (i) the global latent variable t is equal to the sum of its block latent variables
te (t = ZkK=1 tx) and (ii) the global latent variable ¢ is equal to the linear combination of
its block latent variables t;, (t = Zszl Aitr, with Ay = u T ¢). This latter relationships
means that ¢ is the first PLS component of w upon ¢4, ta, ..., tx. For the relationship (i),
we are led to MB-RA and MB-PLS regression. By using the relationship (ii), a specific
weight, Ag, is attached to each dataset Xj. These weights reflect the importance of each
dataset in the computation of the latent variables ¢t and w. With the relationship (ii), we
obtain the methods MB-WRA and MB-WCov.

We have already noted the relationship ¢ = Zszl Aitr, with ¢, = u 't means that

the latent variable t is proportional to the first PLS component of w upon the block
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components tg. From this standpoint, it appears that MB-WCov bears some similarities
to Multiblock Hierarchical PLS (MB-HPLS) [6] which basically enjoys the same property.
However, since MB-HPLS is not grounded on a clear optimization criterion, it suffers from
convergence problems [6,27].

The fact that, with MB-WRA and MB-WCov, the global latent variable ¢ is the first
PLS component of the Y-latent variable u upon the block latent variables t1,ta, ..., tk
suggests new interesting developments. Indeed, instead of the usual PLS regression, we
could use a sparse PLS regression. This means that, at each stage, the blocks of variables
that do not have a significant contribution to the determination of the latent compo-
nents computed at the current stage will be discarded. As a consequence, we are led to
parsimonious models that are easier to interpret without affecting the prediction ability.

Moving from the projectors P, = X3 (X, X)™1 X, to the operators Wy = X3, X,/
was dictated by a requirement to circumvent the tricky problem of quasi-colinearity.
In effect, this corresponds to a drastic shrinkage of the matrices X, X towards the
identity matrix. A softer shrinkage may consist in considering the operators Pp, =
X (YT 4+ (1 — )X, Xi] 1 X7 where v is a tunning parameter comprised between 0
and 1. This yields a continuous strategy of analysis whose two extreme points (i.e., v = 0
and v = 1) are the methods of analysis discussed herein. In practice, the tuning param-
eter could be determined together with the number of latent variables to be included in
the model by a technique of cross-validation [28].

We have also proposed indices for the interpretation of the results of the strategies
of analysis. Among these indices, we have an index that indicates the proportion of
covariation between the blocks of variables. This index could give a hint regarding the
number of latent variables to be retained. We have also proposed an index that highlights
the contribution of the block of variables X in the determination of the global latent

variable.
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Appendix

This appendix aims at proving the convergence of the algorithm associated with the
maximization of the criterion that defines MB-WRA.
The maximization with respect to v (||v|| = 1) of the criterion:

Cv) = szzl(VTYTPkYI/)2 led us to the following iterative algorithm:

0. Initial v, with ||v|| = 1.

1. v= %m where A, =Y TP,Y and A\, = v ' Axv.
17N

2. v=v/||v||
3. Iterate until convergence.

The algorithm generates a series of (positive) real values C'(n) = Zle(l/;{ Agvy,)?
where v, is the vector, v, determined at the nt? iteration.

We prove that this series increases with n. Since it is upper bounded by Eszl lYTP.Y||?,
the convergence will be granted.

K
Let us denote by G(n) = % where Ap(n) = v,] Agv,.
k=1 n

G(n)vn
G (n)vall”

We aim at proving that C'(n) < C(n +1).

We have vy,41 =

We have the following property:

v, G(n)v, < v, G(n)v, (26)
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This property is readily proven by remarking that by virtue of Cauchy-Schwarz inequality,

the maximum (with respect to @, |||| = 1) of the function T G(n)v, is achieved for
— _Gmn __
T = Gmal] = Yrtt:

By expanding the left term of inequality (26), it is easy to check that it is equal to 1.

_ She1 Ak (n)V;Lr+1AkVn

. . . . T
The right term of inequality (26) is: v, ,G(n)v, = K u(r))?

Since the matrices Ay = Y ' P,Y are semi-definite positive, we have by virtue of Cauchy-

Schwarz theorem v, Agy, < \/V1;r+1AkVn+1 \/I/;{Akl/n.

Thus we have:

Zszl Ak(n)\/Vp 11 Aplng1\/V,] Ary
lei1 (Ai(n))?

Again, by using Cauchy-Schwarz inequality it follows that the last term of the inequality

1< VI+1G(n)Vn <

(27)

(27) is smaller than:

VI um)? S (T Awvg) (7 Awvn) SIS M@l Avv
iz u(m)? VI ()2

(28)
Using one last time Cauchy-Schwarz inequality, it follows that:
K K K
D A1 Aevnga < (| D)2 [ D (v Arnga)? (29)
k=1 k=1 k=1

Combining the inequalities (27), (28) and (29), we have:

1< (Zsz1(>\k(n))2> 1/4 (Zszl(VI+1AkVn+1)2> 1/4 ) (Zf:l(VZHAkVnH)z) 1/4
_ VB e (S5, (ump?)

(30)

By remarking that Ag(n) = v,] Agvy, it readily follows that:

1/4

K 1/4 K
(E(VIAkVn)Z) < (Z(V;rlAkanLl)Z) (31)
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or equivalently:

K K

Z(VIAkVn)z < Z(V;;-lAkVn—i-l)z' (32)
k=1 k=1

This is precisely the property that we aim to prove.
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