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Abstract

The modulation instability of surface capillary-gravity water waves is analysed in a

shear flow model with a tangential discontinuity of velocity. It is assumed that air

blows along the surface of the water with a uniform profile in the vertical direction.

Such a model, despite its simplicity, plays an important role in hydrodynamics as

the reference model for investigating basic physical phenomena of wave–current

interactions and acquiring insights into a series of complex phenomena. In certain

cases where the wavelength of interfacial perturbations is much bigger than the

width of the shear flow profile, the model with the tangential discontinuity in

the velocity is adequate for describing physical phenomena at least within limited

spatial and temporal frameworks. A detailed analysis of the air-flow conditions

under which modulation instability sets in is presented. It is also shown that the

interfacial waves are subject to dissipative or radiative instability when negative-

energy waves appear at the interface.
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1. Introduction

A shear flow with the tangential discontinuity of velocity plays an important role

in hydrodynamics, despite the real wind profiles are usually nonuniform; they

are often approximated by the logarithmic dependence of wind velocity with

height. Nevertheless, a wind flow with the uniform profile plays an important

role as it serves as the reference model in the study of the physical phenomena

of wave–current interaction and for gaining insights into these complex areas

(see, for example, [12]). This model is attractive because of its simplicity and

richness of the effects. In particular, it can provide simple explanations of the

concepts of negative energy waves (NEWs) [8, 17], wave-induced currents [7, 8],

over reflection phenomenon [8, 15, 20], etc. Further, in the cases where the

wavelength of the interfacial perturbations is much greater than the width of the

shear flow profile, this model can describe physical phenomena adequately, at

least within the limited spatial and temporal frameworks.

As well-known [10], Kelvin and Helmholtz attempted to explain wave generation

by wind with the uniform profile in the inviscid fluids (both in the air and water).

However, it was discovered that waves are observed to be generated at wind speed

far below the predicted Kelvin–Helmholtz (K-H) threshold speed ∼ 6.7 m/s. In

the considered model the existence of NEWs was missing which do not manifest

themselves if dissipation mechanisms are ignored. This concept of NEWs was

initiated in hydrodynamics after the pioneering paper by Brooke Benjamin in the

early 1960s [4]. However this concept is not widely understood till date. As

was demonstrated in [8], the existence of NEWs leads to the possibility of shear

flow instability for a smaller current speed. In particular, in the K-H model, the

potentially unstable (growing with time) NEWs exist as the wind speed exceeds

0.23 m/s. The interplay of the air and water viscosity leads to the threshold

speed of wind wave generation up to approximately 1.5 m/s which agrees rather
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well with the observations.

The shear-flow model with the tangential discontinuity of velocity has been stud-

ied in detail in the linear approximation (see, for example, [8]); but to the best

of our knowledge, the modulation instability of weakly nonlinear wave trains has

not been studied yet. It is of interest to determine the conditions which lead to

the modulation instability because generation of quasi-stationary nonlinear wave

trains – envelope solitons are expected under such conditions. An ensemble of

envelope solitons with random parameters can play an important role in the

development of strong wave turbulence at least for moderate wind intensity [9].

The main aim of this paper is to fill up the gap in the study of modulation

instability at the air-water interface and to present a detailed analysis of the con-

ditions leading to the modulation instability within the framework of a simplified

reference model. Following [1, 6], we neglect the viscosity of both air and water

to separate the modulation instability per se. The developed approach is suitable,

in particular, to superfluids having no viscosity at all.

2. Formulation of the problem

We consider a shear flow that consists of an upper layer fluid flowing with a

uniform velocity over a lower layer fluid of higher density as shown schematically

in Fig. 1. We assume both the layers are of infinite extents in the two-dimensional

Cartesian coordinate system. The classical examples are air-flow over a free

surface of the water or a motion of one layer of a fluid relative to another layer

of a different density. In the present study, the effect of surface tension is taken

into consideration at the interface between the fluid layers by assuming that the

two fluids are immiscible and the fluids of both layers are perfect. We choose

coordinate axes as shown in Fig. 1, with the x-axis being directed along the

horizontal direction and the z-axis being directed vertically upward, so that the

2
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acceleration due to gravity g is directed downward, with the line z = 0 being

along the mean interface.

Let ρ1 be the density of the upper layer fluid, ρ2 be the density of the lower layer

fluid, U be the fluid speed of the upper layer (wind speed) and T be the surface

tension at the interface of the two-layers.
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Figure 1: Sketch of fluid flow in two-layers of infinitely deep fluids with an immov-

able lower layer and tangential discontinuity of velocity in upper layer

The assumption of perfect fluids allow us to introduce hydrodynamic potentials

for the perturbed velocities in each layer as uj = ∇Φj, for j = 1, 2, where

subscript 1 corresponds to the upper layer fluid and the subscript 2 corresponds

to the lower layer fluid. The condition of fluid incompressibility yields the Laplace

equation for the potential flow in each layer, which is given by the equation:

∇2Φj = 0 for j = 1, 2. (1)

We assume that there are no wave perturbations far from the interface in the

vertical direction as |z| → ±∞ :

|∇Φ1| → 0 as z →∞, (2)

|∇Φ2| → 0 as z → −∞. (3)
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The kinematic boundary conditions at the interface are given by the set of equa-

tions (
∂

∂t
+ U

∂

∂x

)
η +

∂η

∂x

∂Φ1

∂x
=

∂Φ1

∂z
at z = η, (4)

∂η

∂t
+
∂η

∂x

∂Φ2

∂x
=

∂Φ2

∂z
at z = η, (5)

where η(x, t) is the perturbation of the interface.

The dynamic boundary condition at the interface z = η yields:

ρ1

(
∂

∂t
+ U

∂

∂x

)
Φ1 − ρ2

∂Φ2

∂t
+ (ρ1 − ρ2)gη +

1

2
ρ1|∇Φ1|2

− 1

2
ρ2|∇Φ2|2 + T

ηxx
(1 + η2x)

3/2
= 0 on y = η. (6)

In the linear approximation of wave perturbations of infinitesimal amplitudes, we

can seek a solution for the perturbation at the interface in the form:

η(x, t) = Aei(kx−ωt) + c.c., (7)

where c.c. stands for the complex-conjugate, and A is a constant.

The perturbations of the velocity potentials in the upper and lower layers, which

satisfy the Laplace equations and kinematic boundary conditions as in Eqs. (4)

and (5) in the linear approximation, are given by:

Φ1(x, z, t) = −ηt + Uηx
k

e−kz, (8)

and
Φ2(x, z, t) =

ηt
k
ekz. (9)

The boundary conditions of vanishing perturbations at z → ±∞ are taken into

account in this approximation. Substituting these solutions into the dynamic

boundary condition (6), we obtain the dispersion relation:

G(ω, k) ≡ ρ1
k

(ω − kU)2 +
ρ2
k
ω2 + (ρ1 − ρ2)g − Tk2 = 0. (10)

4
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Solving the dispersion relation (10) with respect to ω, we obtain the dependences

of the wave frequency ω on the wavenumber k in the explicit form (as in [8]):

ω =
akU ±

√
(1 + a) [(1− a)gk + T/ρ2k3]− ak2U2

1 + a
, (11)

where a = ρ1/ρ2 is the density ratio. Graphical representations of the dispersion

relations for three typical velocities are shown in Fig. 2. For the sake of conve-

nience, we assume that wavenumber k is positive and that the frequency ω is

of either sign. However, from the physical point of view, the wave frequency ω

is a positive quantity, whereas the wavenumber k is of either sign being in the

interval −∞ < k <∞.
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Figure 2: (color online): (a) Dispersion relations for water waves in the cases when

U = 0 (line 1) and U = Uc1 = 6.676 ms−1 (line 2). (b) Magnified fragments of

the dispersion relations in the vicinity of the critical point at different velocities:

U = 6.679 ms−1 (line 3), U = UKH = 6.68 ms−1 (line 4), and U = 6.7 m/s (line

5). The figures are plotted for a = 0.0012 and T = 0.073 N·m−1.

Equation (11) describes the two branches of the dispersion relation which are

symmetric with respect to the k-axis for U = 0. These branches correspond to

5
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capillary-gravity waves travelling in opposite directions with phase speed Vph =

ω/k (Fig. 2a).
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Figure 3: (Color online): Dispersion curves of the K-H model. Lines 1 and 1′

pertain to the case when U = 0; lines 2 and 2′ to Uc1; and lines 3 and 3′ to

U > Uc1. The dashed portion of line 3 corresponds to NEWs, and its counterpart

with ω > 0 is shown by the solid line in the right half-plane for k > 0.

For U 6= 0, the dispersion curves become non-symmetric because of the wave

drift caused by the flow. When U increases and becomes bigger than some

critical value Uc1, the lower branch of the dispersion curve in Fig. (2b) changes

6
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sign and becomes positive for k′1 < k < k′2 where

k′1,2 =
ρ1U

2

2T

(
1±

√
1− U4

c1

U4

)
and Uc1 =

(
4(1− a)

a2
gT

ρ2

)1/4

. (12)

Here, the negative sign pertains to k′1 and the positive sign to k′2. The portion

of the dispersion curve in Fig. 2 where the frequency changes sign corresponds

to NEWs [8]. The dispersion curves shown in Fig. 2, are presented in Fig. 3 for

ω ≥ 0 with −∞ < k < ∞. In this representation, the wave energy becomes

negative when the wave frequency ω becomes formally negative. However, the

waves with ‘negative energy’ are actually captured by a fluid flow and propagate

co-current as shown in Fig. 3.

When U increases further, the two branches of the dispersion curve continue

to converge, and eventually reconnect (lines 4 in Fig. 2b) when U = UKH ,

where UKH = Uc1
√

1 + a, for an air–water interface with a = 0.0012, UKH ≈

1.0006Uc1. The K-H instability arises when U becomes greater than UKH , and

the instability occurs in the interval k1 ≤ k ≤ k2, where

k1,2 =
ρ1U

2

2T (1 + a)

[
1±

√
1− (1 + a)2

U4
c1

U4

]
. (13)

Such re-connection is typical for the interaction of waves of opposite energy

signs [17, 8]. Thus, the appearance of the K-H instability can be attributed to

an interaction of waves of opposite energy signs. The NEWs on the lower branch

of the dispersion curve transfer their energy to the positive-energy waves, on the

upper branch of the dispersion curve. As a result, the amplitudes of both waves

grow with time.

When U is in the interval, Uc1 < U < UKH , then there is no K-H instability,

however, there are non-growing but potentially unstable NEWs. Negative energy

waves existing in the interval k′1 < k < k′2 can grow if the associated wave

7
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energy is depleted, i.e., if there is a mechanism that draws their energy. It can be

easily shown from the expressions for Uc1 and UKH that these velocities are very

close to each other when a is small. This is the case of the air-water interface

with a ' 0.0012. If a ' 1, which is typical for internal layers in the ocean

or atmosphere, then Uc1 ' UKH/
√

2 which was initially noted by Benjamin

[4]. There are potentially different mechanisms which can cause NEWs to grow.

In particular, viscous dissipation in an immovable lower fluid layer leads to the

growth of NEWs [5]. This is analogous to dissipative instability in plasma physics

[16].

For NEWs to be amplified, the viscosity must lead to ‘positive losses’. For

example, NEWs in the model under consideration will be damped if the moving

upper layer is viscous rather than the fixed lower layer. However, positive-energy

waves can grow on the upper branch of the dispersion curve, since the viscosity

of the moving upper layer leads to ‘negative damping’.

Indeed, in passing over to the reference system in which the upper layer is at

rest and the lower layer is moving with a uniform speed U , the energy of the

growing mode and, simultaneously, the dissipation change their signs [8]. In such

a reference system, NEWs exist in the upper branch of the dispersion curve and

can grow under the influence of positive dissipation. The shear flow instability

associated with this mode does not vary with the reference system. The disper-

sion relation in the reference frame in which the upper layer is at rest and the

lower layer moves with the speed U in the opposite direction can be obtained

easily from the dispersion relation (10) by the formal replacement ω → ω+ kU .

In this case, NEWs arise when the velocity of the lower layer U > Uc2 where

Uc2 = 4

√
4(1− a)

gT

ρ2
. (14)

It may be noted that the difference between the critical velocities Uc1 and Uc2

8
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is small if a ' 1 (as in the case of internal waves on the ocean pycnocline),

but it is rather significant for a � 1 (as in the case of air-water interface in

which Uc2 ≈ 0.23 m/s). In general, NEWs can exist on both the branches of

the dispersion curves for waves that are slowed down relative to the flow which

means their phase velocities being less than the velocities of the corresponding

fluid layers.

The dispersion dependence (Eq. (11)) can be considered in the ‘mean-mass’

reference frame which is moving with the velocity V = aU/(1 + a). In this

frame, the lighter fluid in the upper layer moves in the positive direction with

velocity the U/(1 + a), whilst the heavier fluid in the lower layer moves in the

opposite direction with the velocity aU/(1 + a). In this case the two branches

of the dispersion curves are symmetric relative to the k-axis due to the Doppler

frequency shift Ω = ω − akU/(1 + a) (Fig. 4). It can be noted that there are

no NEWs in this reference frame and the dispersion curves do not change their

signs.

For sufficiently large values of U (> Uc2), there are portions on the dispersion

curves that correspond to the ‘retarded waves’. The phase speed of these waves

is less than the current speed of the corresponding layer. For Uc2 < U < Uc1,

the retarded waves appear on the dispersion curve below the dashed straight

line ω = Uk/(1 + a) (Fig. 4). Waves with the wavenumbers in the range

k′′1 < k < k′′2 , where

k′′1,2 =
ρ2U

2

2T

[
1±

√
1− U4

c2

U4

]
, (15)

have phase speeds Vp < U/(1 + a) in the “mean-mass” reference frame.

With further increase of the current speed, the retarded waves appear for Uc1 <

U < UKH on the lower branch of the dispersion curve; they are shown in Fig. 4b

9
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Figure 4: (Color online): Dispersion curves for waves at the air–water interface in

the ‘mean-mass reference frame’ with (a) U = 0.275 m/s and (b) U = 6.679 m/s.

The portions of the dispersion curves corresponding to the retarded waves Which

can be a subject of instability are highlighted in red.

above the straight line ω = −aUk/(1 + a) in a very narrow wavenumber range

k′1 < k < k′2 with k′1,2 being given in Eq. (12). It is difficult to demonstrate both

the dashed straight lines having different slopes and the portions of dispersion

curves corresponding to the retarded waves in the figure as the parameter a is

considered to be very small for the air-water interface. For this reason, they are

shown in separate frames in Fig. 4 with different horizontal and vertical scales.

The estimates for the air-water interface demonstrate that UKH ≈ Uc1 ≈

6.68 m/s, whereas Uc2 ≈ 0.23 m/s which is equal to the minimal phase speed

of surface waves on quiescent water. For U > Uc2, the air viscosity provides

‘negative dissipation’, which may give rise to the dissipative instability of surface

waves [8, 16, 17]. However, the dissipation in water continues to be positive up

to the velocity U = UKH . Thus, the dissipation in water increases the threshold

velocity of the wind and, consequently, delays the onset of instability of wind

10
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waves [10].

Further, with the increase in the wind velocity, the effective dissipation in the

lower layer fluid changes its sign for U > Uc1 and then for U > UKH with a� 1

the dispersion branches reconnect, and the K-H instability arises (see lines 3, 4

and 5 in Fig. 2b). In real conditions, wind wave instability sets in much earlier

than the classical KH theory predicts [10], for U ≈ 1.3 m/s� UKH ≈ 6.68m/s.

From the aforementioned discussion it reveals that for ρ1 � ρ2 the heavier lower

layer fluid ‘carries’ those surface waves of which the dispersion properties (for

U � UKH) are perturbed slightly due to the presence of the lighter fluid in the

upper layer. Simultaneously, the dissipation in the air which moves faster than

certain waves at the interface, leads to instability of surface waves, i.e., to the

appearance of wind waves on quiescent water.

3. Modulation instability of capillary-gravity waves on the tangential

discontinuity of wind speed

3.1. Problem formulation

In this section we consider a small perturbation of the air–water interface in the

form represented by Eq. (7) with the assumption that A is a slowly varying

function of x and t. We will seek solutions for the velocity potentials in the same

form as in Eqs. (8) and (9) but with the functions Φj(x, z, t) depending non-

linearly on the perturbation of the interface η. Using the governing hydrodynamic

equations and the boundary conditions at the interface and at z → ±∞, we

11
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obtain

Φ1(x, z, t) = − ηt + Uηx
k(1 + iηx)

e−kz = −e
−kz

k
(ηt + Uηx)

(
1− iηx − η2x + . . .

)
,

(16)

Φ2(x, z, t) =
ηt

k(1− iηx)
ekz =

e−kz

k
ηt
(
1 + iηx − η2x + . . .

)
. (17)

Substituting the solutions for Φ1 and Φ2 from Eqs. (16) and (17) into the

dynamic boundary condition (6) and neglecting terms beyond the cubic term, we

obtain the following nonlinear equation:

G(ω, k)η = α(ω, k)η2 + β(ω, k)η3, (18)

where

G(ω, k) =
ρ1
k

(ω − kU)2 +
ρ2
k
ω2 + (ρ1 − ρ2)g − Tk2, (19)

α(ω, k) = ρ2ω
2 − ρ1(ω − kU)2, (20)

β(ω, k) = −
{
ρ1k(ω − kU)2 + ρ2kω

2 − 3

2
Tk4

}
. (21)

In the absence of a flow, with U = 0, these expressions reduce to those derived

in [3]. The nonlinear terms in the right-hand side of Eq. (18) provide both

the second harmonic and mean flow generations by a quasi-sinusoidal primary-

harmonic wave mode. In the linear approximation, neglecting the terms in the

right-hand side of Eq. (18), we obtain the dispersion relation (10).

Using Eq. (11), the coefficients of the nonlinear terms in Eq. (18) for the upper

(j = 1) and the lower (j = 2) branches of the dispersion curves shown in Fig. 2

12
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are obtained in the form:

α1(k) =
ρ2

(1 + a)2

[(√
D + aUk

)2
− a

(√
D − Uk

)2]
, (22)

α2(k) =
ρ2

(1 + a)2

[(√
D − aUk

)2
− a

(√
D + Uk

)2]
, (23)

D(k) = (1 + a)

[
(1− a)gk +

Tk3

ρ2

]
− aU2k2, (24)

β1(k) = β2(k) =
ρ2
2

[
T

ρ2k4
− 2(1− a)gk2

]
. (25)

3.2. Derivation of nonlinear Schrödinger equation for interfacial waves

To derive the nonlinear Schrödinger (NLS) equation, we use the method of mul-

tiple scales by introducing the ‘fast’ and ‘slow’ variables:

tn = εnt, xn = εnx, n = 0, 1, 2, (26)

where t0, x0 represent fast variables, t1, x1, t2, and x2 are slow ones. Thus, the

differential operators can be expressed as the derivative expansions:

∂

∂t
= −ω ∂

∂θ0
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ . . . ,

∂

∂x
= k

∂

∂θ0
+ ε

∂

∂x1
+ ε2

∂

∂x2
+ . . . ,

where θ0 = kx0 − ωt0 and ω and k are related by the dispersion relation (11).

Bearing in mind these series, we can present the linear part of Eq. (18) through

the operator

L̂

[
(−iω, ik) + ε

(
∂

∂t1
,
∂

∂x1

)
+ ε2

(
∂

∂t2
,
∂

∂x2

)
+ . . .

]
,

which can be expanded in powers of ε about the point (−iω, ik):

L̂ = L̂0 + εL̂1 + ε2L̂2 + . . . ,

13
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so that in the linear approximation we have

L̂η =
(
L̂0 + εL̂1 + ε2L̂2 + . . .

)
η = 0. (27)

Next, we present the perturbation expansion of the interface in the form of the

series:

η(x, t) =
3∑

n=1

εnηn(θ0, x1, x2; t1, t2) +O(ε4). (28)

Substituting the expressions of Eqs. (27) and (28) in Eq. (18) and equating the

terms of equal powers of ε, we obtain the linear and the successive nonlinear

partial differential equations of various orders:

O(ε) : L0η1 = 0,

O(ε2) : L0η2 = −L1η1 + αη21,

O(ε3) : L0η3 = −L1η2 − L2η1 + 2αη1η2 + βη31.

(29)

In the lowest-order approximation, we consider a solution for the quasi-monochromatic

perturbation with a slowly varying amplitude in the form (cf. Eq. (7)):

η1 = A(x1, x2; t1, t2)e
iθ0 + c.c. (30)

Similarly, form for η2 is obtained as:

L0η2 = −i
(
∂G

∂ω

∂A

∂t1
− ∂G

∂k

∂A

∂x1

)
eiθ0 + αA2e2iθ0 + c.c., (31)

which includes secular terms, corresponding to the factor eiθ0 . To eliminate such

terms, we apply the solvability condition:

∂G

∂ω

∂A

∂t1
− ∂G

∂k

∂A

∂x1
= 0. (32)

Now, using the definition of the group velocity cg in the form:

cg =
dω

dk
= −∂G

∂k
/
∂G

∂ω
,
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we can rewrite the solvability condition as:

∂A

∂t1
+ cg

∂A

∂x1
= 0. (33)

Thus, with the help of the solvability condition, a uniformly valid expression for

η2 is obtained:

η2 =
αA2

G(2ω, 2k)
e2iθ0 + c.c. (34)

Next, using the expression in Eq. (19) for G(w, k), we derive the expression of

G(2ω, 2k) for both upper and lower branches of the dispersion relation:

G(2ω(k), 2k) = −2Tk2 + (1− a)gρ2. (35)

In the next approximation of the parameter ε in Eq. (29), the solvability condition

for L0η3 = 0 gives:

i

(
∂G

∂ω

∂A

∂t2
− ∂G

∂k

∂A

∂x2

)
=

1

2

∂2G

∂ω2

∂2A

∂t21
− ∂2G

∂ω∂k

∂2A

∂x1∂t1

+
1

2

∂2G

∂k2
∂2A

∂x21
+

(
2α2

G(2ω, 2k)
+ β

)
|A|2A. (36)

The solvability condition in Eq. (33) yields

∂2A

∂t21
= c2g

∂2A

∂x21
, (37)

which results in the elimination of the terms containing ∂/∂t1 in Eq. (36). Setting

xn = εnx and tn = εnt, Eq. (36) reduces to:

i

(
∂A

∂t
+ cg

∂A

∂x

)
+ P

∂2A

∂x2
+ ε2Q|A|2A = 0, (38)

where P =
1

2

dcg
dk

and Q = −
(

2α2

G(2ω, 2k)
+ β

)(
∂G

∂ω

)−1
. Putting a new

variable b = εA, Eq. (38) is rewritten as:

i

(
∂b

∂t
+ cg

∂b

∂x

)
+ P

∂2b

∂x2
+Q|b|2b = 0. (39)
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In the next section, we will discuss in detail separately the lower and upper

branches of the dispersion relation and derive expressions for the dispersion and

nonlinear coefficients P and Q which in turn will determine the condition of

modulation instability.

4. Analysis of modulation instability at the air-water interface

4.1. NLS equation and modulation instability on the lower branch of the dis-

persion relation

Substituting for the wave frequency ω with the negative sign as per Eq. (11),

the dispersion coefficient P ≡ (1/2)(dcg/dk) in Eq. (38) is obtained in the form:

P =
{2akU2 + (1 + a) [(a− 1)g − 3Tk2/ρ2]}2 + 4D [aU2 − 3(1 + a)Tk/ρ2]

8(1 + a)D3/2
.

(40)

Proceeding in the similar manner and using the expression for G in Eq. (35), the

nonlinear coefficient Q in Eq. (38) is obtained as:

Q =
k√
D


k2

4

[
2(1− a)g − Tk2/ρ2

]
−

[(√
D − aUk

)2
− a

(
Uk +

√
D
)2]2

(1 + a)2 [(1− a)g − 2Tk2/ρ2]

 .

(41)

In particular, for a = 0, U = 0, T = 0, the well-known coefficients of the NLS

equation for surface gravity waves in deep water are obtained [19, 21, 22]:

ω− = −
√
gk, cg = −1

2

√
g

k
, P =

1

8

√
g

k3
, Q =

1

2

√
gk5. (42)

More complicated expressions follow from Eqs. (40) and (41) in the case of

capillary-gravity waves (with T 6= 0) in deep water [1, 2, 6] for a = 0 and U = 0.
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In Figs. 5 and 6, the graphs of P (k) and Q(k) are plotted for the lower branch of

the dispersion relation for U = 0, U = Uc1 = 6.676 m/s, and U = UKH = 6.68

m/s.

k

0 200 400 600 800

P

×10
-3

-2

-1

0

1

2

U = 0

U = 6.676

U = 6.68

1

2

3

Figure 5: (Color online): The dispersion coefficient P (k) in the NLS equation as

a function of the wavenumber k of the lower branch of the dispersion relation for

three different values of the speed of the upper layer fluid with U = 0 (line 1),

U = Uc1 = 6.676 m/s (line 2), and U = UKH = 6.68 m/s (line 3).

As follows from the Lighthill criterion [13, 14], a uniform wave train is unstable

with respect to self-modulation when the function Wl(k) = P (k)Q(k) is positive.

Figure 7 shows zones of modulation stability (S) and instability (US) in the

(k, U) plane. When U = 0, we obtain the well-known diagram of modulation

17
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U = 6.68

3

2
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12, 3

Figure 6: (Color online): The nonlinear coefficient Q(k) in the NLS equation as a

function of the wavenumber k for the lower branch of the dispersion relation for

three different values of the speed of the upper layer fluid with U = 0 (line 1),

U = Uc1 = 6.676 m/s (line 2), and U = UKH = 6.68 m/s (line 3). Lines 2 and 3

are practically indistinguishable on the left of the dashed vertical line.

instability of surface waves in deep water [1, 2, 6]. There is a dramatic change

in the stability diagram when U exceeds the critical value Um = 3.84 m/s.

The maximum of the growth rate of modulation instability occurs when the

wavenumber of modulation Kmax = b0
√
Q/P where b0 is the amplitude of a

sinusoidal wave in the NLS equation as in Eq. (39) [18]. The maximal value of

the growth rate is Imax = |Q(k)|b20. This expression can be further optimized

18
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Figure 7: Zones of modulation stability (S) and instability (US) in the (k, U) plane.

The dashed line on the top represents the critical velocity UKH = 6.681 when the

K-H instability arises. The bifurcation points in the diagram are denoted by B1

and B2 for Um = 3.84 m/s, and two other bifurcation points B3 and B4 are shown

for higher values of U .

with respect to the carrier wavenumber k for the given value of U . Thus, a

maximal possible growth rate of modulation instability for the given amplitude

of the carrier wave b0 was obtained.

When the modulation instability occurs, one can expect a spontaneous generation

of envelope solitary waves (solitons), breathers, freak waves and other interesting

phenomena related to their interactions [2, 11, 22]. In the case of modulational

stability, dark solitons can be formed against a background of quasi-sinusoidal

waves [2].
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4.2. NLS equation and modulation instability on the upper branch of the

dispersion relation

The similar analysis can be conducted for waves on the upper branch of the

dispersion relation in Eq. (11) with the upper sign being chosen positive in front

of the square root. Thus, the dispersive and nonlinear coefficients of the NLS

equation in this case are obtained as:

P =
{2akU2 − (1 + a) [(1− a)g + 3Tk2/ρ2]}2 + 4D [aU2 − 3(1 + a)Tk/ρ2]

8(1 + a)D3/2
,

(43)

Q =
k√
D


k2

4

[
2(1− a)g − Tk2/ρ2

]
−

[(√
D + aUk

)2
− a

(
Uk −

√
D
)2]2

(1 + a)2 [(1− a)g − 2Tk2/ρ2]

 .

(44)

Figures 8 and 9 demonstrate the the dispersive and nonlinear coefficients P and

Q of the NLS equation for the upper branch of the dispersion relation in Eq. (11).

Next, to demonstrate the occurrence of modulation instability, we define function

Wu(k) = P (k)Q(k) and show in Fig. 10 the zones in the (k, U) plane where

Wu(k) is positive i.e., the zone in which modulation instability occurs. A com-

parison of Fig. 10 with Fig. 7 reveals that a number of stability and instability

zones appear when the shear flow exceeds the critical speeds U1 = 3.84 m/s and

U2 = 4.32 m/s for the lower and upper branches of the dispersion dependencies

respectively. Interestingly, the stability zones near the edge of the capillary-gravity

transition are modified. It becomes the zone of instability, whereas a rather wide

stability zone arises in the lower (gravity) range of wavenumbers when U exceeds

the corresponding critical values. Moreover, a fairly wide stability zone appears

in this case in the capillary range of wavenumbers. To avoid complications in

Figs. 7 and 10, one can visualize the situation with the transition from instability
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Figure 8: (Color online): The dispersion coefficient P (k) in the NLS equation as

a function of the wavenumber k for the upper branch of the dispersion relation

for three different values of the speed of upper layer fluid with U = 0 (line 1),

U = Uc1 = 6.676 m/s (line 2), and U = UKH = 6.68 m/s (line 3).

to stability and again to instability, and so forth by assuming a horizontal cut

across these figures at, for example, U = 5 m/s.

5. Conclusion

In this work, we have studied the modulation stability/instability of surface waves

within the simplified model of air-water interface assuming that the air moves

with respect to the water with a uniform velocity profile with the height. This

is a canonical model of the flow with the tangential velocity discontinuity and
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Figure 9: (Color online): The nonlinear coefficient Q(k) in the NLS equation as

a function of the wavenumber k for the upper branch of the dispersion relation

at three different values of the speed of upper layer fluid, U = 0 (line 1), U =

Uc1 = 6.676 m/s (line 2), and U = UKH = 6.68 m/s (line 3). Lines 2 and 3 are

practically indistinguishable on the left of the dashed vertical line.

such an assumption is widely used in fluid mechanics, physical oceanography,

geophysical fluid dynamics, and plasma physics as the model develops insights

into the complicated range of phenomena associated with the wave-current inter-

actions. To our best knowledge, the modulation instability of waves within this

model has never been attempted in the literature. In this context, the present

work has filled the gap in the existing literature and demonstrated the criteria

22

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 March 2021                   doi:10.20944/preprints202103.0521.v1

https://doi.org/10.20944/preprints202103.0521.v1


k10
1

10
2

10
3

10
4

U

0

1

2

3

4

5

6

7

UKH

B1 B2

B3

B4

S S

S

US

S

US

US US

US US

U = 4.32

Uc2 = 0.23

Figure 10: Zones of modulation stability (S) and instability (US) in the (k, U)

plane. The dashed line on the top represents the critical velocity UKH = 6.681

when the KH instability arises. The threshold value of Uc2 = 0.23 m/s, at which

NEWs arise, is shown by the lower dashed line. The bifurcation points for Um =

4.32 m/s are marked by B1, B2 in the diagram. Two other bifurcation points, B3

and B4, are shown for the greater values of U .

for the occurrence of modulation instability. The diagrams of modulation sta-

bility and instability are exhibited graphically for two different branches of the

dispersion relation. Known results in the limiting cases of pure gravity waves or

capillary-gravity waves without a flow are reproduced from the present model in

agreement with the early publications [6, 1, 2].

The present model has not taken into consideration the influence of viscosity
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and the dissipative instability of NEWs caused by the air viscosity, as well as

wave dissipation in the water. Any dissipative mechanisms have been ignored

deliberately to separate the modulation instability per se. In this perspective, we

plan to consider viscous and nonlinear effects in the slightly super-critical case

when the wind speed is higher than the threshold value for the generation of

NEWs. As the result, the narrow-band weakly nonlinear wave trains in the form

of the envelope solitons can be generated and grow in time until saturation. The

dynamics of ensembles of such solitons and their interaction is a matter of a

great interest in different branches of physical sciences associated with the fluid

motion in stratified layers.
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