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Abstract: Automatic Voice Query Service can extremely reduce the artificial cost, which could im-
prove the response efficiency for users. The automatic speech recognition (ASR) is one of the im-
portant component in AVQS. However, many dialect areas in China make the AVQS have to re-
sponse the multi-accented Mandarin users by single acoustic model in ASR. This problem severely 
limits the accuracy of ASR for multi-accented speech in the AVQS. In this paper, a new framework 
for AVQS is proposed to improve the accuracy of response. Firstly, the fusion feature including 
iVector and filterbank acoustic features is used to train the Transformer-CTC model. Secondly, the 
transformer-CTC model is used to construct the end-to-end ASR. Finally, key words matching al-
gorithm for AVQS based on fuzzy mathematic theory is proposed to further improve the accuracy 
of response. The results show that the final accuracy in our proposed framework for AVQS arrives 
at 91.5%. The proposed framework for AVQS can satisfy the service requirement of different areas 
in mainland of China. This research has a great significance for exploring the application value of 
artificial intelligence in the real scene. 

Keywords: Automatic Voice Query Service; Automatic Speech Recognition; Multi-Accented Man-
darin Speech Recognition 
 

1. Introduction 
The Telephone/Mobile phone (T/M) Automatic Voice Query Service (AVQS) of is one 

important application research in the field of intelligent speech communication [1, 2]. Us-
ers could fetch their required information by T/M AVQS. The cost of human resource is 
too high for manual voice query service because the amount of customers is too large, for 
example recently about 1.597 billion users receive the mobile phone service in China. 
Therefore, AVQS is an effective solution for decreasing the cost of human resource. In 
AVQS, the automatic speech recognition (ASR) is one of the key part [3]. However, the 
accented Mandarin speech makes the ASR become a great challenge in AVQS [4, 5]. 

Besides, the uncertainty of user townships increases the difficulty of ASR task for 
Mandarin speech. In China, seven main dialect townships include “Mandarin, Cantonese, 
Wu, Xiang, Min and Gan and Kejia” [6]. Dialect is the first language (native language) of 
speaker, while the other speech may be their second language. There is a great difference 
between the second language pronunciation and native language pronunciation of 
speaker, such as rhythm and tone variation [7]. This difference makes the speech recogni-
tion for second language be a great challenge [8, 9]. Pronunciation of Mandarin is different 
from the pronunciation of other dialects, therefore the Mandarin speech spoken by dialect 
speaker is the accented Mandarin speech and the acoustic domain of Mandarin speech 
does not match the acoustic domain of accented Mandarin speech [10]. Undoubtedly, this 
mismatch would further improve the difficulty of ASR for AVQS. Several researches were 
worked to solve the mismatch problem. These methods could be categorized into two 
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main types: dictionary adaption [11-16] and model adaptation [17-22]. Dictionary adapta-
tion focuses on variation of phoneme, for example, expansion of phoneme list and pro-
nunciation vocabulary are used generally. However, the dictionary adaptation may lead 
to the confusion of lexical. Therefore, the effect of dictionary adaptation is limited. The 
model adaptation method is used to reduce the confusion of pronunciation by acoustic 
model based on the phoneme level or state of Hidden Markov Model (HMM) [15, 16]. The 
model adaptation method focuses acoustic variation, and it requires a large amount of 
accented speech to train the acoustic model directly. 

AVQS is a complicated application field of ASR. In this task, not only multi-accented 
Mandarin speech requires to be modeled, but also the different severity accented Manda-
rin speech should be processed. Therefore, our purpose in this paper is to explore how to 
improve the accuracy of multi-accented Mandarin speech recognition. Recently, the 
speaker identification feature, such as iVector has been used in the accented speech recog-
nition [23-25], and its experimental results illustrate that the fusion features including 
speaker identification and acoustic features are very useful to improve the accuracy of 
accented speech recognition. Moreover, the end-to-end ASR has a great performance due 
to the development of ASR [26-28], especially the connectionist temporal classifier (CTC) 
for neural networks is very useful in end-to-end ASR. In this paper, we proposed a novel 
framework to improve the accuracy of ASR for AVQS. This framework includes three 
main parts: 1) the fusion features include iVector and filterbank; 2) the end-to-end ASR; 
3) the key words matching algorithm based on fuzzy mathematic theory. Especially, the 
key words matching algorithm is designed according to the mismatch between pronunci-
ations of accented Mandarin speech and pronunciations of standard Mandarin speech. 

The contributions in this paper mainly include: 1) exploring the suitable ASR, which 
has a good robustness for multi-accented Mandarin speech, in the application of AVQS; 
2) iVector and filterbank are fused into the fusion features, which are used to train and 
test the ASR for multi-accented Mandarin speech; 3) the key words matching algorithm is 
proposed to further improve the response accuracy of AVQS according to the mismatch 
of accented Mandarin speech and standard Mandarin speech. 

The rest of this paper includes that Section 2 introduces the overview of the AVQS 
framework; Section 3 introduces the end-to-end ASR for AVQS; Section 4 introduces the 
fusion features including iVector and filterbank features; Section 5 introduces the key 
words matching algorithm based on the fuzzy mathematics theory; Section 6 includes the 
experiment setup and results; Section 7 introduces the discussion and conclusion of our 
research. 

2. Framework of AVQS for T/M speech 
Two parts in framework of T/M AVQS, shown in figure 1, are query request of T/M 

voice and query response of T/M voice, respectively. Three steps for query request of T/M 
voice are as follows: 1) extraction of fusion feature including iVector and acoustic features; 
2) ASR; 3) extraction of keywords based on named entity recognition (NER). In addition, 
two main steps for query response of T/M voice are as follows: 1) fuzzy matching for key-
words; 2) answering based Text-To-Speech (TTS). 
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Figure 1. Overview of T/M AVQS framework. 

Figure 1 shows the overview of AVQS in T/M environment. Two types of users in-
clude “telephone users” and “mobile phone users”. After the voice of user is dialing into 
server, the ASR service would process the query request from user. Then, the NER proce-
dure would extract the keywords from the recognition result. Another procedure would 
finish the matching process according to the record pre-saved in the database. Finally, the 
TTS procedure would translate the result selected from database into speech and send the 
speech to user. The above process is one round of voice query interaction in T/M AVQS. 

3. ASR based on Transformer-CTC in AVQS 
Transformer is proposed by Ashish Vaswani et al [29], which is a typical seq2seq 

model performing better than the BiRNN on machine translation. Recently, some re-
searches about ASR based on seq2seq are proposed to improve the accuracy [30, 31]. In 
this paper, we proposed the Transformer-CTC-based ASR to get the content from T/M 
speech referring [32]. The ESPNet toolkit [33] is used as the basis for developing ASR. 
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Figure 2. Framework of ASR based on Transformer-CTC 

In Figure 2, the fusion features are normalized as input sequence of Transformer En-
coder. The output label embedding is as the Transformer Decoder. The Encoder, Decoder 
and CTC are used to train seq2seq ASR based on Transformer-CTC. 

3.1 Encoder Stack 
The Encoder of Transformer has M (=6) same neural networks stack. In this stack, the 

first sublayer of each layer is designed based on “Multi-head Attention”, and the second 
sublayer is a simple full-connected feed-forward neural networks. Surrounded every two 
sublayers, one keep-residual connection layer [34] and one normalization layer are used 
[35]. They can be calculated by Equation (1), 

ℎ௧ = 𝑓(
௚

ఙ೟
⨀(𝑎௧ − 𝜇௧) + 𝑏)

𝜇௧ =
ଵ

ு
∑ 𝑎௜

௧ு
௜ୀଵ

𝜎௧ = ට
ଵ

ு
∑ (𝑎௜

௧ − 𝜇௧)ଶ௧
௜ୀଵ

                           (1) 

where b and g are defined as the bias and gate parameters with same dimension of 
ℎ௧ , respectively. In equation 𝑎௧ = 𝑊௛௛ℎ

௧ିଵ +𝑊௫௛𝑥
௧, 𝑊௛௛ represents the weights of recur-

rent hidden layer, and 𝑊௫௛ represents the weights of line that from input layer to hidden 
layer. Please note that, the outputs of every sublayer are LayerNorm(x + Sublayer(x)) , 
where Sublayer(x) is achieved by every sublayer themselves. 
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3.2 Decoder Stack 
Similar to Encoder, the Decoder is designed by stack including N(=6) same neural 

networks layers. Different from Encoder, the Decoder has three sublayers. The third layer 
of Decoder processes the outputs of Encoder stack based on multi-head attention mecha-
nism. Every sublayer of Decoder is designed by keep-residual connectionist neural net-
works. Following each sublayer, normalization is operated. The modification of every 
sublayer based on self-attention is proposed to prevent the model from paying too much 
attention to the follow-up positions. Combing with the embedding outputs, the above op-
erations could ensure that all the predictions depends on the previous outputs. 

3.3 Attention Mechanism 
Attention in Transformer could be described as the map of key, value and query, 

where the key, value and query are all vectors. The final results are the weighted sum of 
outputs. 
3.3.1 Scaled Dot-Product Attention 

The attention mechanism in this paper is designed based on scaled dot-product at-
tention. The input does not only include query and key, whose dimensions are 𝑑௞ , but 
also include the value, whose dimension is 𝑑௩. The detail process of calculation is shown 
as equation (2). 

SDPA(Q, K, V) = softmax(
ொ௄೅

ඥௗೖ
)V                      (2) 

where SPDA is the scales dot-product attention mechanism; the SPDA is used in 
Transformer due to its low time complexity and space complexity. Larger the 𝑑௞ dimen-
sion is, the more cost of calculation for dot-product is. Softmax function is used to decrease 
the gradients extremely. In equation (2), the coefficient ଵ

ඥௗೖ
 is used to counteract this effect. 

3.3.2 Multi-Head Attention 
Different from single attention mechanism, Transformer processes the linear results 

of query and key with 𝑑௞ dimension, and value with 𝑑௩ dimension. 
The multi-head attention could capture the different positions of subspace represen-

tation. However, if the model has only one head, the averaging operation would suppress 
such scattered representation. The multi-head attention could be calculated by equation 
(3). 

MultiHead(Q, K, V) = Concat(ℎ𝑒𝑎𝑑ଵ, . . , ℎ𝑒𝑎𝑑௛)𝑊
ை                (3) 

where ℎ𝑒𝑎𝑑௜ could be obtained by equation (5), 𝑊ை𝜖ℝ௛ௗೡ×ௗ೘೚೏೐೗. 
ℎ𝑒𝑎𝑑௜ = SDPA൫Q𝑊௜

ொ
, K𝑊௜

௄ , V𝑊௜
௏൯                       (4) 

where the parameter matrixes of projection are 𝑊௜
ொ𝜖ℝௗ೘೚೏೐೗×ௗೖ , 𝑊௜

௄𝜖ℝௗ೘೚೏೐೗×ௗೖ  and 
𝑊௜

௏𝜖ℝௗ೘೚೏೐೗×ௗೡ , respectively. 

3.4 CTC 
CTC is a connectionist temporal classification model proposed by Alex Graves et al. 

[36] in the application of temporal classification for neural networks, can solve the problem 
that training data in ASR require pre-segmentation and post-processing for label se-
quences. This requirement constrains the performance of neural networks. The CTC model 
performs better than HMM because it can predict the corresponding label sequences di-
rectly according to the unsegmented input data. Especially, a L-length sequence includes 
some Chinese characters in CTC, such as C = {𝑐௟ ∈ μ| = 𝑙 = 1,2, … , L}. In addition, blank 
symbol ‘<b>’ is also used in CTC to define the boundary of a word. The set 𝐶ᇱ with ‘<b>’ 
can be defined as equation (5). 

𝐶ᇱ = {< 𝑏 >, 𝑐ଵ, < 𝑏 >, 𝑐ଶ, … , 𝑐௅ , < 𝑏 >} = {𝑐௟
ᇱϵμ ∪ {< b >}|𝑙 = 1,2, … , 𝐿}        (5) 

where 𝑐௟ᇱ would be ‘<b>’ if 𝑙 is an odd number; and 𝑐௟ᇱ would be Chinese character 
if 𝑙 is an even number. The acoustic model could be calculated by CTC, such as equation 
(6). 
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p(Z|X) = ∏ 𝑝(𝑧௧|𝑧ଵ,, … , 𝑧௧ିଵ, 𝑋)
்
௧ୀଵ ≈ ∏ 𝑝(𝑧௧|𝑋)

்
௧ୀଵ                (6) 

where X denotes the input; z denotes the outputs; T is the amount of frames. Espe-
cially, CTC obeys the conditional independent assumption rule, therefore we can obtain 
that p(Z|X) ≈ ∏ 𝑝(𝑧௧|𝑋)

்
௧ୀଵ . Moreover, the length of hidden layer sequence should be less 

than the length of input sequence. The acoustic model is constructed based on Trans-
former, and the probability of every state could be calculated by equation (7). 

𝑝(𝑧௧|𝑋) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑖𝑛𝑒𝑎𝑟(𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟௧(𝑋)))              (7) 
where 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(∙) is chosen as the active function; 𝐿𝑖𝑛𝑒𝑎𝑟(∙) denotes the linear layer 

operation for converting the vectors of hidden layers; 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟௧(∙) catches all of the 
inputs and outputs vectors of hidden layer at the moment t. The CTC model for character 
sequence is shown as equation (8). 

p(C|𝑍) =
௣(௓|஼)௣(஼)

௣(௓)
= ∏ 𝑝(𝑧௧|𝑧ଵ,, … , 𝑧௧ିଵ, 𝐶)

்
௧ୀଵ

௣(஼)

௣(௓)
≈ ∏ 𝑝(𝑧௧|𝑧௧ିଵ, 𝐶)

்
௧ୀଵ

௣(஼)

௣(௓)
       (8) 

where 𝑝(𝑧௧|𝑧௧ିଵ, 𝐶) , 𝑝(𝐶)  and 𝑝(𝑍)  are the state transition probability, language 
model probability for Chinese characters and prior probability of state, respectively. CTC 
decode the ASR for a sequence of Chinese characters according to 𝑝(𝐶) and finite state 
machine based on language model. 

4. Fusion Features for Training ASR 
Dehak et al. [37] proposed iVector for speaker identification, which is a milestone in 

the field of speaker identification. iVector might effectively improve the accuracy of ac-
cented speech recognition. Therefore, in this paper, iVector and acoustic features are fused 
into fusion feature for training ASR of AVQS. The iVector could be obtained by equation 
(9), and the filterbank is used as the acoustic feature. 

w = (𝐼 + 𝑇௧∑ିଵ𝑁(𝑢)𝑇)ିଵ𝑇௧∑ିଵ𝐹෨(𝑢)                        (9) 
where 𝑁(𝑢)  denotes a diagonal matrix of CF × CF  dimension, whose diagonal 

blocks are 𝑁஼𝐼(c = 1,2, … , C); C represents the components of Gaussian; F represents the 
dimension of feature space; 𝐹෨(𝑢) is a supervector of CF × 1 dimension; ∑ is a diagonal 
covariance matrix of CF × CF dimension. T is the total variability matrix [36]. In this paper, 
the open source toolkit kaldi is used to extract the iVector, and the iVector and acoustic 
features are composed into the fusion features. 

5. Key Words Matching Algorithm for AVQS based on Fuzzy Mathematic Theory 
The difference between accented Mandarin speech and standard Mandarin speech 

leads to the poor accuracy of ASR. And the poor accuracy of ASR further makes the AVQS 
have a low response accuracy. Therefore, the key words matching algorithm based on 
fuzzy mathematic theory for AVQS is proposed to further improve the response accuracy 
of AVQS. The key words matching algorithm is on the basis of pinyin syllable level. After 
getting the content from T/M speech, the key words could be obtained by named entity 
recognition (NER). Then the key words would be transformed into pinyin sequence, and 
the pinyin of key words pre-saved in database is used to match the pinyin sequence ob-
tained by ASR utilizing key words matching algorithm. Finally, the result by matching 
process would be synthesized into speech and send to user. The whole process could be 
found in figure 1. 

The easily wrong pronunciations of key words are counted statistically, and accord-
ing to the mapping relationship between easily incorrect pronunciations and correct pro-
nunciations the dictionary is constructed. Finally, the degree of membership could be ob-
tained by equation (10) based on edit distance. 

α = 1 −
஽

்೛೔೙೤೔೙
                             (10) 

where D denotes the edit distance (also called Levenshtein distance); T represents the 
total number of characters in one pinyin syllable. During the matching process, the best 
result would be returned according to the biggest degree of membership. 

6. Experiment 
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Several experiments are designed to evaluate the performance of proposed framework for 
AVQS. The experiments include three parts: 1) comparison of different ASR methods in AVQS 
testing data; 2) comparison of filterbank and fusion features for AVQS response; 3) evaluation for 
key words matching algorithm based on fuzzy mathematic theory. 

6.1 Experiment Condition Setup 
The configuration of parameters for ASR based on Transformer-CTC is shown in Table 1. In 

this paper, this configure is used in all experiments. 
Table 1. Configuration of Parameters for ASR based on Transformer-CTC 

Parameter Name Value 

encoder layer 12 

encoder unit 2048 

decoder layer 6 

decoder unit 2048 

attention dimension 256 

attention head 4 

hybrid CTC/attention alpha 0.3 

label smoothing weight 0.1 

batch size 16 

max length of input 512 

max length of output 150 

transformer learning rate 1.0 

transformer attention dropout rate 0.0 

CTC beam size 10 

CTC weight 0.5 

language model weight 0.7 

n-gram weight 0.3 

6.2 Data Preparation 
AIShell-1 (AIShell) speech corpus [38] is chosen in this paper, which is the sub-dataset of 

AIShell-ASR0009. The speech corpus is recorded by 400 speakers including multi-speaker accented 
speech. In this paper, the AIShell speech is also used to obtain iVector. The real T/M speech corpus 
is supported by 114 of China Telecom (114 is a voice service of China Telecom Corporation). In 
the experiment, the accented Mandarin speech can be separated into 7 areas (standard Mandarin, 
Cantonese, Wu, Xiang, Min and Gan and Kejia) according to the characteristics of speakers’ dialect 
area. According to the severity of accented Mandarin speech, in this paper, the accented Mandarin 
speech is split into three severities including “light, medium and heavy”. The details of the above 
speech corpus for training and testing ASR are shown in Table 2. 

Table 2. Configuration of Speech Corpus for Training and Testing ASR. 

Speech Corpus Time Training Amount Validating Amount Usage for ASR 

AIShell ≈178h 121925 utterances 20000 utterances Pre-training 

T/M Voice Corpus ≈30h 8000 utterances 2000 utterances Training and Testing 

In Table 2, 2000 utterances of speech, which did not participate the training process, were 
selected from real T/M Voice Corpus to evaluate the performance of the ASR. The voice corpus for 
training and testing AVQS includes the three severities of accented Mandarin speech, which are 
“light, medium and heavy”, respectively. In addition, the voice corpus also includes all of the 7 
dialect-area speech. The details of configuration are shown in Table 3. 

Table 3. The Accented Speech from Different Dialect Area for Testing AVQS. 

Dialect Area Accented Level Validating Amount (utterances) 

Mandarin Speech Standard 200 
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Cantonese 

light 100 

medium 100 

heavy 100 

Wu 

light 100 

medium 100 

heavy 100 

Xiang 

light 100 

medium 100 

heavy 100 

Min 

light 100 

medium 100 

heavy 100 

Gan 

light 100 

medium 100 

heavy 100 

Kejia 

light 100 

medium 100 

heavy 100 

In Table 3, the standard Mandarin speech has 200 utterances; the others have 300 utterances 
including light (100 utterances), medium (100 utterances) and heavy (100 utterances). 

6.3 Results of AVQS 
Character Error Rate (CER), Sentence Error Rate (SER), Key Word Error Rate (KWER) and 

Response Error Rate (RER) of AVQS (which is optimized by key words matching algorithm). They 
could obtained by equation (11), equation (12), equation (13) and equation (14), respectively. 

CER =
ௌା஽ାூ

ே
=

ௌା஽ାூ

ௌା஽ାூା஼
                            (11) 

SER =
ாೞ

ೞ்
                                  (12) 

KWER =
ாೖೢ

்ೖೢ
                                (13) 

RER = 1 −
஺௖௖ೄ

்ೄ
                              (14) 

where S denotes the amount of substitutions; D denotes the amount of deletions; I denotes the 
amount of insertions; C denotes the amount of corrects. This calculation method is different from 
article [39], because we think that the error rate should not be more than 1. In addition, 𝐸௦ is the 
amount of sentences with wrong characters in testing dataset; 𝑇௦ is the total amount of sentences in 
testing dataset. 𝐸௞௪  denotes the amount of errors of key words; 𝑇௞௪  denotes the total amount of 
key words. 𝐴𝑐𝑐ௌ denotes the amount of correct response sentences of AVQS; 𝑇ௌ denotes the total 
amount of testing sentences of AVQS.. 

6.3.1 Accuracy of ASR 
Different ASR methods are compared in this experiment, where the filterbank is only used to 

train the acoustic model of ASR. The results of accented Mandarin speech are shown in Table 4, 
Table 5 and Table 6 based on T/M testing dataset. 

Table 4. Results of Different ASR for Testing Dataset (light accented) 

Method Mandarin Cantonese Wu Xiang Min Gan Kejia Mean SER 

DNN-HMM 20.67% 32.15% 26.12% 27.15% 30.01% 22.28% 29.66% 26.86% 57.01% 
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bilstm-CTC 15.15% 25.21% 22.05% 25.18% 25.14% 19.11% 25.27% 22.44% 55.15% 

Transformer-CTC 11.23% 18.77% 20.11% 20.15% 21.33% 16.25% 20.21% 18.29% 45.20% 

Table 4 shows the recognition results of different ASR methods for light multi-accented Man-
darin speech. In Table 4, six types of accented Mandarin speech and standard Mandarin speech are 
tested. For DNN-HMM, the CERs of Cantonese, Min and Kejia accented Mandarin speech are close 
to each other; the CERs of Wu and Xiang accented Mandarin speech are close to each other; the 
Gan accented Mandarin speech has the lowest CER; the average CER of DNN-HMM is 26.86%. 
For bilstm-CTC, the CERs of Cantonese, Xiang, Min and Kejia accented Mandarin speech are close 
to each other; the CERs of Wu and Gan accented Mandarin speech are close to each other; the 
average of CER is 22.44%. For Transformer-CTC, the CERs of Wu, Xiang, Min and Kejia are close 
to each other; the CERs among different accented Mandarin speech have no significant difference. 
In addition, the SERs of different baseline ASR methods are above 55%, and the SER of Trans-
former-CTC is the lowest. 

Table 5. Results of Different ASR for Testing Dataset (medium accented) 

Method Cantonese Wu Xiang Min Gan Kejia Mean SER 

DNN-HMM 42.17% 43.15% 38.57% 41.51% 50.18% 38.16% 42.29% 76.51% 

bilstm-CTC 36.31% 31.75% 33.41% 35.64% 38.35% 35.77% 35.21% 65.35% 

Transformer-CTC 25.15% 29.31% 30.18% 27.33% 29.25% 27.21% 28.07% 57.32% 

Table 5 shows the results of ASR for medium multi-accented Mandarin speech. For DNN-
HMM, the CERs of Cantonese, Wu and Min are close to each other; the CERs of Xiang and Kejia 
are close to each other; the average of CER is 42.29%. For bilstm-CTC, the CERs of Cantonese, 
Min, Gan and Kejia are close to each other; the average of CER is 35.21%. For the Transformer-
CTC, all of the CERs are close to each other; the average of CER is 28.07%. In addition, the SERs 
of all ASR for medium accented Mandarin speech arrive above 57%, and the CERs of Gan accented 
Mandarin speech is the highest. 

Table 6. Results of Different ASR for Testing Dataset (heavy accented) 

Method Cantonese Wu Xiang Min Gan Kejia Mean SER 

DNN-HMM 65.31% 52.11% 45.21% 65.72% 73.28% 68.53% 61.69% 85.30% 

bilstm-CTC 56.22% 46.19% 47.18% 41.22% 51.95% 50.11% 48.81% 78.15% 

Transformer-CTC 34.11% 38.23% 43.27% 40.11% 39.02% 36.33% 38.51% 65.05% 

Table 6 shows the recognition results of different ASR for heavy multi-accented Mandarin 
speech. Please note that, the heavy accented Mandarin speech has very low intelligibility, because 
the speaker could not pronounce the vowel and consonant correctly. For DNN-HMM, the CERs of 
Cantonese, Min and Kejia are close to each other, and the CER of Gan is the highest; the average 
of CER is 61.69%. For bilstm-CTC, the differences among accented Mandarin speech decrease, 
where the CERs of Wu, Xiang and Min are close to each other and the CERs of Gan and Kejia are 
close to each other; the average of CER is 48.81%. For the Transformer-CTC, the differences among 
ASRs further decrease; the average CER is 38.51%. However, the SERs of different ASR for heavy 
accented speech arrives above 65%. 

6.3.2 Results of Fusion Features 
In this paper, the fusion feature and filterbank feature are also compared based on testing da-

taset. During this experiment, only the Transformer-CTC is used to test. The results can be found in 
Table 7. 

Table 7. Results of Trained ASR for Fusion Features 

Feature Style light medium heavy 

filterbank 18.29% 28.07% 38.51% 

fusion 13.10% 20.68% 30.05% 

Table 7 shows the results of comparison between the filterbank and fusion features for light, 
medium and heavy multi-accented Mandarin speech, respectively. Especially, the results in Table 7 
are the average CERs of light accented, medium accented and heavy accented speech, respectively. 
From Table 7, the fusion features can obviously decrease the CERs. 

6.3.3 Results of Key Words Matching Algorithm based on Fuzzy Mathematic Theory 
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In this paper, the key words matching algorithm based on fuzzy mathematic theory are evalu-
ated according to the testing dataset. This experiment is on the basis of trained ASR. The results are 
shown in Table 8. 

Table 8. Error Rate of Different ASR for AVQS. 

Average Error Rate light medium heavy 

CER 13.10% 20.68% 30.05% 

KWER 10.20% 16.50% 22.65% 

Response Error Rate (RER) 8.50% 12.63% 18.35% 

Table 8 shows the error rate of AVQS, where the KWER represents the error rate of key words 
in one sentence; the RER represents the error rate of AVQS response after being optimized by the 
key words matching algorithm based on fuzzy mathematic theory. Obviously, the optimization al-
gorithm can effectively improve the accuracy of AVQS response. The highest accuracy of AVQS 
arrives at 91.5%, which makes the AVQS satisfy the requirement of the different speakers in China 
mainland. 

7. Discussion and Conclusion 
AVQS is an interesting application of artificial intelligence. The powerful AVQS can 

greatly reduce the cost of human resource, which can improve the efficiency of response. Es-
pecially, China has a large amount of people which is a big market. Therefore, it has a great 
significance to explore how to improve the performance of AVQS for Mandarin speaker. 

ASR is one key component of the AVQS. However, some problems of ASR in AVQS 
should be solved such as the customers with severe accented Mandarin speech. The customers 
cannot pronounce Mandarin speech standardly enough. In addition, not only the difference be-
tween accented Mandarin speech and standard Mandarin speech is too large, but also the dif-
ferences among different dialect are so large that the different accented Mandarin speech also 
has a significant difference. The above problems severely limit the performance of AVQS. 
Therefore, a novel framework is proposed to improve the performance of AVQS, where the 
framework includes three main parts: fusion features including iVector and acoustic features 
extraction; the ASR based on Transformet-CTC; key words matching based fuzzy mathematic 
theory. 

The results illustrate that the recognition accuracy of light, medium or heavy accented 
Mandarin speech has a significant difference. The AVQS need face different speakers with 
different accented Mandarin speech. Especially, the information technology makes the AVQS 
more and more popular in the users. However, some users with heavy dialect-accented Man-
darin speech extremely limited the response accuracy. In this paper, the end-to-end ASR and 
the fusion features could effectively improve the accuracy of multi-accented Mandarin speech 
recognition. Furthermore, we proposed a new key words matching algorithm based on fuzzy 
mathematic theory according to the statistical characteristics of pronunciation, whose phoneme 
may occur errors easily. This proposed algorithm can effectively further improve the response 
accuracy of AVQS. The experimental results show that the highest response accuracy of AVQS 
arrives at 91.5%. The proposed framework can effectively improve the whole response accu-
racy of AVQS for light, medium and heavy accented Mandarin speech. 
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