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Abstract: Soil moisture is one of the key components of the land surface processes and a potential 16 

source of atmospheric predictability that has received less attention in the regional scale studies. In 17 

this study, an attempt was made to investigate the impact of soil moisture on Indian Summer Mon-18 

soon simulation using a regional model. We conducted seasonal simulations using Regional Climate 19 

Model (RegCM4) for two different years viz., 2002 (deficit) and 2011 (normal). The model was forced 20 

to initialize with the high -resolution satellite -derived soil moisture data obtained from the Climate 21 

Change Initiative (CCI) of the European Space Agency (ESA) by replacing the default static soil 22 

moisture. Simulated results were validated against high-resolution surface temperature and rainfall 23 

analysis datasets from India Meteorology Department (IMD) data.). Careful examination revealed 24 

that there was significant advancement in the RegCM4 simulation while initialized with the soil 25 

moisture from ESA-CCI despite of having regional biases. Whilst inIn general, the model exhibited 26 

slightly higher soil moisture than observation, RegCM4 with ESA setup showed lower soil moisture 27 

than that of with default one. Model skill was relatively better in capturing surface temperature 28 

distribution when initialized with high -resolution soil moisture. Rainfall biases over India as well 29 

asand homogeneous regions were significantly improved with the use of ESA-CCI soil moisture. 30 

Several statistical measures such as temporal correlation, standard deviation and, equitable threat 31 

score (ETS)), etc. were also employed for the assessment. ETS values were found better in 2011 and 32 

higher in the simulation with the ESA setup. However, RegCM4 still couldn’t able to enhance its 33 

skill in simulating temporal variation of rainfall adequately. Although initializationinitializing with 34 

the soil moisture from the satellite performed relatively better in normal monsoon year (2011) but 35 

had limitationlimitations in simulating different epochs of monsoon in an extreme year (2002). Thus, 36 

the study concluded that the simulation of the Indian Summer Monsoon was improved by using 37 

RegCM4 initialized with high -resolution satellite soil moisture although having limitationlimita-38 

tions in predicting temporal variability. OverallThe study suggests that soil moisture initialization 39 

has critical impact on the accurate prediction of atmospheric circulation process and convective 40 

rainfall activity. 41 

Keywords: Indian Summer MonsoonConvective rainfall, land surface model, soil moisture initiali-42 

zationmixed convection scheme, regional climate model, satellite-derived soil moisture. 43 
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The strong impact of land surface processes is well recognized in modulating the 46 

weather and climate system in subseasonal to seasonal and even longer time scale. Land 47 

surface acts as an interface between the biosphere and the overlying atmosphere. It inter-48 

acts with the atmosphere through the exchange of mass, momentum, energy and hence is 49 

considered as the lower boundary of the atmosphere at approximately 30% of the earth’s 50 

surface [1]. It is also well understood that the earth’s surface is the reservoir of our main 51 

energy resources that comes from the solar radiation. Both short and long wave form of 52 

the solar radiation is absorbed by the land surface and reemitted. When releasing the en-53 

ergy through the planetary boundary layer, the earth’s surface works like a separator and. 54 

It redistributes the net incoming radiative energy into various fluxes such as sensible, la-55 

tent and other ground fluxes. Hence, the energy required for the developmentto develop 56 

and sustenance ofsustain any weather system, particularly over landmass, is supplied 57 

from the underlying land surface [2-–5]. Therefore, the land-atmosphere interaction plays 58 

a vital role in modulating the weather and climate systems both inon a regional and global 59 

scale [6-–10]. Due to its immense impact, the functions of the land surface have been ex-60 

plored extensively in observation as well as modeling studies across the globe [9–14]. 61 

Land surface-atmosphere interaction may be regarded as a positive and/or negative 62 

feedback mechanism between the atmosphere and different land surface characteristics 63 

such as soil moisture, soil temperature, soil types, vegetation cover, snow cover etc. Each 64 

of them is not of similar importance for a weather system over a region. In particular, soil 65 

moisture is an important component of the global water budget and hydrology cycle [1, 66 

8, 15]. The function of the soil moisture may be described in two ways. Primarily, rate of 67 

evaporation from the land surface is determined by the soil moisture quantity which con-68 

trols the moisture supply to the atmosphere. Secondly, as mentioned earlier, it mainly 69 

partitions the net absorbed solar radiation into fluxes. It is mentioned by Dutta et al. [16] 70 

that soil moisture and snow cover are the two leading land surface variables thosethat 71 

have a potential impact on the variation of weather system if the effect of sea surface tem-72 

perature is excluded. 73 

Climate downscaling using a Regional Climate Model (RCM) is well accepted and 74 

widely used since past several decades for the simulation of various weather and climate 75 

systems. for the past several decades. It is demonstrated in numerous earlier litera-76 

turesworks of literature [17–22] that the RCMs show better competence in simulating cli-77 

matic features due to better representation of the sub-grid scale physical process and to-78 

pography compared tothan the Global Circulation Model. Land surface processes mostly 79 

occur at a subgrid -scale but plays veryplay an important role in controlling the weather 80 

systems [6–7, 23]. Through evaporation, the exchange of heat and moisture fluxes from 81 

the land surface to the atmosphere particularly helps to form convection and precipita-82 

tion. Proper representation of soil moisture is therefore extremely crucial for the numerical 83 

weather forecast as well as climate simulations on seasonal, annual and decadal scale us-84 

ing fully coupled RCMs. In each state-of-the-art RCM, physical parameterization of the 85 

land surface is taken care of through different Land Surface Model (LSM henceforth). Soil 86 

moisture initialization technique is different in different LSMs. However, provision 87 

ofproviding an accurate state of the soil parameters has a serious impact on the evaluation 88 

ofevaluating the weather and climate modelsmodes which are associated with the retro-89 

spective research -based on the terrestrial hydrology cycle. Therefore, better simulation of 90 

atmospheric processes can be achieved through initializing the climate models with real-91 

istic observational/reanalysis soil moisture datasets. 92 

Several researcheskinds of research have already been carried out to emphasize the 93 

impact of land surface model initialization with realistic soil moisture datasets [6–7, 24–94 

32]. Fennessy and Shukla [24] studied the importance of initial soil wetness in seasonal 95 

prediction with dynamical models and. They concluded that the effect of initial soil wet-96 

ness is local and greatest in the near -surface fields, viz. evaporation, surface temperature 97 
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and precipitation. Douville and Chauvin [25] used a land surface scheme that was forced 98 

with meteorological observation and analysis using relaxation technique and inferred that 99 

the relaxation has positive impact onpositively impacts both model climatology and var-100 

iability at an interannual scale. Kanamitsu et al. [27] showed that the predictive skill of the 101 

initial soil moisture is higher in arid/semi-arid regions and havehas a sound impact on 102 

surface temperature simulation. Douville [28] investigated the effect of soil moisture on 103 

climate variability and potential predictability and highlighted about its strong contribu-104 

tion to the climate variability. 105 

Moufouma-Okia and Rowell [2] investigated the sensitivity of soil moisture initiali-106 

zation on West African Monsoon by using a RCM and revealed that specification of initial 107 

soil moisture is little sensitive to the West African Monsoon rainfall. Douville [3] high-108 

lighted the significant impact of soil moisture on regional climate and suggested further 109 

comprehensive and systematic investigation of it. Bisselink et al. [4] performed a similar 110 

study by initializing a RCM with satellite derived soil moisture and showed that themore 111 

impact is more during dry years. Suarez et al. [7] performed numerical experiment for 112 

three synoptic events using two different mesoscale models with varying soil moisture. 113 

They illustrated that the rainfall is increased (decreasedincreases (decreases) with the use 114 

of enhanced (reduced) soil moisture respectively. These studies clearly indicate that the 115 

soil moisture has significant effect onsignificantly affects the weather and climate simula-116 

tion, but varies from region to region. However, no studies have yet been discussed in this 117 

context over the Indian region.  118 

Among the various RCMs available, the regional climate modeling system which is 119 

commonly abbreviated as RegCM of International Center for Theoretical Physics (ICTP, 120 

Italy) becomes remarkably popular due to its successful application towards numerous 121 

scientific studies [15, 17-–22, 30, 35-–37] and many studies have tested its performance 122 

over Indian regions [17-–22, 37]. In the context of soil moisture, RegCM is also used over 123 

various regions [30-–31, 38]. Hu et al. [38] argued that the treatment of soil moisture 124 

should pay more attention while performing an experiment on the soil moisture data as-125 

similation of soil moisture using RegCM over China. Patarcic and Brankovic [30] investi-126 

gated the skill of surface temperature seasonal forecast over Europe using RegCM by ini-127 

tializing it with three different types of soil moisture condition during summer and winter 128 

time. Their study showed that the systematic error was reduced and deterministic skill 129 

was improved during summer using realistic soil moisture. Liu et al. [31] evaluated the 130 

impact of soil moisture using RegCM simulation and. They showed that initialization with 131 

wet (dry) soil moisture anomalies increased (reduced) the subsequent precipitation 132 

amount and reduced (increased) surface temperature. Due to sparse observation net-133 

works, the availability of accurate soil moisture data (observation and/or reanalysis) in 134 

the past was very rare. Now-a-daysNowadays different organizations offer accessibility 135 

of satellite- derived as well as reanalysis soil moisture datasets. Climate Change Initiative 136 

(CCI) of the European Space Agency (ESA) is one such piece of data that was publicly 137 

released in 2015. This dataset has been successfully applied in some of the observational 138 

[39] and modeling studies [40] over the other regions across the globe. However, it is not 139 

extensively explored over Indian regions. Although there are few observational studies 140 

over India are available in the literature [8, 10, 11], it is not comprehensively used in the 141 

modeling studies. This study mainly deals with the soil moisture initialization over India 142 

to understand their role on the seasonal simulation (May-September) of the Indian Sum-143 

mer Monsoon (ISM) by using RegCM. To our knowledge, our attempt to investigate the 144 

impact of soil moisture on ISM using a regional model is the first time over India. The rest 145 

part of the paper is structured as the following: brief model information, experimental 146 

design and, descriptions of the various datasets and validation strategy are discussed dif-147 
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ferent subsection ofin section 2. Results and discussion isare described in section 3 fol-148 

lowed by Summary and concluding remarksdiscussion, conclusion, limitation and future 149 

scope in section 4, 5, 6 respectively.  150 

 151 

2. Materials and Methods 152 

2.1. Model description 153 

In the present study, RegCM version 4.4.5 (RegCM4 henceforth) is employed. It is a 154 

compressible, hydrostatic, terrain-following, finite difference, limited area model hav-155 

ingwith a similar dynamical core to that of its previous version (RegCM3 [41]). The model 156 

offers a variety of parameterization schemes to represent different physical processes. Cu-157 

mulus convection is represented using five major schemes such as Kuo [42], Grell [43], 158 

MIT [44], Tiedke [45] and Kain-Fritsch [46]. Due to variation in performance, RegCM4 159 

shows flexibility of using different schemes separately over land and ocean, referred to as 160 

“mixed” schemeschemes. Land surface processes are represented using two LSMs 161 

namely, the BATS scheme [47] as well as CLM (version 3.5 [48]; version 4.5 [49]). Radiative 162 

transfer package from the global model CCM3 [50], planetary boundary layer from 163 

Holtslag [51] as well as University of Washington [52] are also available in RegCM4. De-164 

tailedA detailed description of other available physics schemes viz., ocean fluxes param-165 

eterization schemes, interactive aerosol schemes and interactive lake models are described 166 

in Giorgi et al. [15]. 167 

 168 

Figure 1:. Map of the simulation domain used in the study. The domain encompasses 30°E – –120°E, 169 

15°S – –45°N overin Lambert Conformal map projection. Different color shades specify the topo-170 

graphical height above sea level (in meters). 171 

 172 
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In this study, we focused on the soil moisture initialization in the seasonal simulation 173 

of ISM using RegCM4. Two LSMs differ with their formulation in various aspects. One of 174 

the major disparities is in the description of the soil moisture column. BATS is composed 175 

of three soil moisture layers with varying depth from 10 cm to 3 m [35]. On the other hand, 176 

the CLM soil column consists of 10 unevenly distributed soil layers at 1.8 cm, 2.8 cm, 4.6 177 

cm, 7.5 cm, 12.4 cm, 20.4 cm, 33.6 cm, 55.4 cm, 91.3 cm and 113.7 cm depth, for a total depth 178 

of 3.4m [53]. In the earlier version of RegCM, soil moisture was initialized using static soil 179 

water content relative to saturation as a function of land cover type [54]. Patarcic and 180 

Brankovic [30] suggested that this technique is rather a crude way of defining the initial 181 

soil moisture which includes neither seasonal nor interannual variation and due. Due to 182 

that, the model took a higher spin-up time to get stable, particularly for deeper soil layers. 183 

Considering this, RegCM4 offers the option to be initialized using climatological soil mois-184 

ture both in CLM and BATS [29, 55] along with the default static soil moisture. After get-185 

ting initialized from the soil moisture climatology, RegCM4 evolves independently with 186 

its own internal water balance equation [30], which would reduce sudden shock to the 187 

model at the initial time step and consequently decreases the spin -up time at the deeper 188 

soil layer of the model [29, 53]. 189 

2.2. Experimental design 190 

Seasonal simulation (1 May, 00UTC - –30 September, 18UTC) of ISM is conducted 191 

using RegCM4 for two different years viz., 2002 and 2011 encompassing the geographical 192 

area encompassing 30°E-–120°E, 15°S-–45°N (Figure 1) at 30 km horizontal resolution. 193 

Based on the criteria ofAccording to the India Meteorological Department (IMD), India 194 

didn't face any excess monsoon year during last few decades subsequent to 1988. Indi-195 

atHowever, the country witnessed a severe drought in 2002 with 81% ISM rainfall of its 196 

long period average [56]. On the other hand, 2011 was a normal year with 102% ISM rain-197 

fall of its long period average. Model configuration setup is provided in Table 1 (as men-198 

tioned in Maity [57]).]. Simulation during May is considered as spin -up and excluded 199 

from the subsequent analysis. 200 

 201 

Table 1:. Overview of the model considered for this study (Maity [57]).. 202 

Contents Description 

Model domain South Asia (30°E - 120°E ; 15°S - 45°N) 

Resolution Horizontal: 30 km, Vertical: 23 terrain following  levels 

Map projectionLand 

surface 
Lambert ConformalCLM4.5 [49] 

Cumulus convection 

scheme 
Grell [43] over ocean and MIT [44] over land. 

Cumulus closure 

scheme 
Arakawa and Schubert [58]  

Explicit moisture 

scheme 
SUBEX [6059] 

Ocean flux Zeng [60] 

 203 
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By default, RegCM4 gets initialized from the static soil moisture data through the 204 

BATS lookup table. In this study, the model is forced to get started with high -resolution 205 

satellite -derived soil moisture data [61-–62] from the Climate Change Initiative (CCI) of 206 

the European Space Agency (ESA) [referred as ESA-CCI (http://www.esa-soilmoisture-207 

cci.org)]. Detailed information of this dataset is given in the following subsection. 208 

2.3. Data 209 

The model was forced with six -hourly ERA -Interim reanalysis (EIN75 [63] hereafter) 210 

data at 0.75°× 0.75° resolution. Topography and land use were obtained from United States 211 

Geological Survey and Global Land Cover Characterization [64] global data at 10 minutes 212 

resolution. The sea surface temperature from optimum interpolation weekly mean sea 213 

surface temperature [65] was fed to the model at 1° × 1° resolution from National Oceanic 214 

and Atmospheric Administration. Additional datasets including land cover, soil texture, 215 

soil colour, leaf area index, plant functional type, emission factors, snow data etc. required 216 

for CLM4.5 [49] were obtained from the RegCM data portal (http://clima-217 

dods.ictp.it/Data/RegCM_Data/CLM45/). Simulated surface temperature and rainfall 218 

were validated against high resolution surface temperature (1°x1°; [66]) and rainfall 219 

(0.25°x0.25°; [67]) analysis data from IMD-resolution surface temperature and rainfall 220 

analysis data from IMD. The temperature data was constructed by IMD based on 395 sta-221 

tion observatories data at 1°x1° spatial resolution [66] covering the land region of India 222 

(6.5°N–38.5°N, 66.5°E–100°E). Similarly, the rainfall data was prepared by IMD by con-223 

sidering the daily rainfall measurements from 6955 rain gauge stations at 0.25°x0.25° spa-224 

tial grid [67]. These datasets are the finest observation data from IMD so far which uses 225 

highest number of station observations and are successfully utilized in various observa-226 

tion/modeling studies. 227 

RegCM4 was initialized here with ESA-CCI soil moisture datasets (version 02.2). This 228 

dataset is a multi-decadal satellite -derived soil moisture product with high spatial reso-229 

lution at 0.25°x0.25°. The primary data is accumulated through various spaceborne micro-230 

wave scatterometers such as ERS-1/2 (SCAT) and METOP-A (ASCAT) as well as micro-231 

wave radiometers viz., SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2. The detailed in-232 

formation about the different satellite sensors and their specification areis mentioned in 233 

Dorigo et al. [61-–62]. ESA provides three types of soil moisture products viz., active only, 234 

passive only and combined datasets based on these gathered data. Active only data is 235 

made by merging all the data from the scatterometers while the passive only product is 236 

generated by merging all the data from radiometers. Afterwards these two products are 237 

further rescaled to the common platform of Global Land Data Assimilation System ver-238 

sion-1 and merged for the preparation ofto prepare the combined soil moisture data [68]. 239 

Complete procedural technique and further details about this data preparation may be 240 

obtained from the literature cited above and the references therein. The datasets are avail-241 

able in the volumetric unit ( 33 mm 33 mm ) at daily scale during 1979 - –2014. SoilThe soil 242 

depth of the data varies in the range of 0.5 cm - –2 cm. For this study, we used the ESA-243 

CCI combined soil moisture data only. The ESA-CCI dataset are the calibrated data pre-244 

pared with in-situ observation from International Soil Moisture Network (ISMN; [62]). At 245 

present, ISMN data consists of 6100 soil moisture datasets from 1400 measurement sta-246 

tions operated by 40 different networks [62]. ISMN holds data globally having 10 station 247 

data in India. Validation is carried out for 28 data networks all over the globe. Detailed 248 

validation strategy including precise information about the measurement stations is men-249 

tioned in Dorigo et al. [62]. 250 

 251 

 252 

http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
http://clima-dods.ictp.it/Data/RegCM_Data/CLM45/
http://clima-dods.ictp.it/Data/RegCM_Data/CLM45/
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 253 

3. Results 254 

2.4. Validation strategy 255 

Model performance was assessed in terms of the spatiotemporal distribution of sur-256 

face temperature, soil moisture and rainfall considering all India (AI henceforth) as well 257 

as its five homogeneous regions viz., North west India, West central India, Central and 258 

north east India, South peninsular India and North east India (NWI, WCI, CNEI, SPI, NEI 259 

henceforth) [69]. The simulation forced with a default lookup table (ESA-CCI) soil mois-260 

ture will be referred to as default (ESA) hereafter. The validation includes some of the 261 

basic inferential statistics such as mean, standard deviation (SD) and correlation. Further-262 

moreIn order to further estimate the model skill in predicting the rainfall, Equitable Threat 263 

Score (ETS) [70] were calculated for different rainfall categories andwas computed. ETS is 264 

a skill measure generally used for dichotomous (yes/no) forecasting events [70, 71]. Math-265 

ematically, ETS is defined as follows:in the assessment. 266 

rand

rand

HFMH

HH
ETS




  267 

 Where  268 

   
  

T

FHMH
H rand


  269 

  270 

H, M, F stands for no. of hits, misses and false alarms whileT and randH refer to the 271 

total events and hits due to random chances respectively. These values are calculated 272 

based on a 2x2 contingency table. ETS measures the fraction of perfectly forecast points, 273 

corrected using hits due to random chance. It varies in the range of 
3

1
 to 1 with 0ETS274 

indicating no skill and 1ETS indicating perfect skill. 275 

 276 

3. Results 277 

3.1. Surface Temperature 278 

The analysis was started with the discussion about the model simulated surface tem-279 

perature and its validation with the IMD observation. Results from 2002 (2011) are given 280 

in Figure 2 (Figure 3). FirstThe first two columns represent bias with default and ESA 281 

configuration with their difference in the last column. First four rows (a–c, d–f, g–i, j–l) 282 

correspond to June, July, August and September while the last row (m–o) stands for sea-283 

sonal (June-July-August-September; JJAS hereafter) mean. It clearly indicates that 284 

RegCM4 showed consistent cold bias over peninsular India, irrespective of the years and 285 

attain maxima in July, 2002 (Figure 2) and June, 2011. (Figure 3). Contrastingly from the 286 

JJAS mean, it was noticed that the model exhibited cold (warm) bias during 2002 (2011) 287 

over north India. In the monthly distribution, RegCM4 experienced warm bias in August, 288 

September during 2002 while in July, August, and September during 2011. 289 

 290 
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 291 

Figure 2. Surface temperature bias (°C) at monthly and seasonal scales during 2002 from both the model configuration. 292 

IMD analysis is considered as ground truth. Rows correspond to June, July, August, September and JJAS mean respec-293 

tively. The column represents default and ESA setup alongwith their difference in third column. 294 

IMD analysis is considered as ground truth. Rows correspond to June, July, August, September and JJAS mean respectively. Col-295 

umn represents default and ESA setup alongwith their difference in third column. 296 

 297 

 298 
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 299 

Figure 3. Same as Figure 2 but for 2011. 300 
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 301 

Figure 4. Daily variation of surface temperature (°C) over India and five homogeneous regions [69] from the two different setups 302 

and IMD analysis during 2002. 303 

 304 

 305 

Figure 5. Same as Figure 4 but for 2011. 306 

The simulated surface temperature was noticed to be more close to IMD data while ini-307 

tialized with ESA soil moisture. It clearly indicates that the model was sensible to the soil 308 

moisture initialization process and outperformed after getting initialized with real -time 309 

soil moisture data by reducing existing cold bias in the default soil moisture combination. 310 

Eventhough, the present model bias (cold/warm) might be associated with the simulation 311 

of rainfall by the model. We have discussed about it in the later subsections, particularly 312 
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the model inefficiency in predicting various epochs of rainfall (during initial months of 313 

ISM) which might have possible consequences in obtaining different surface temperature 314 

biases. 315 

A discussionDiscussion was further extended by analyzing the daily variation of sur-316 

face temperature. Time series of surface temperature during 2002 and 2011 over AI and 317 

its five homogeneous regions are described in Fig.Figure 4 and 5 respectively. Irrespective 318 

of the regions, temporal variation of surface temperature was slightly better estimated by 319 

the model while initialized with the ESA soil moisture except for some evident exceptions. 320 

As observed earlier, the model showed consistent cold bias throughout the season in both 321 

the years over SPI, NEI as well as AI level. Underestimation was higher over SPI and AI 322 

compared to NEI. However, the temporal variation was not well simulated by the model. 323 

Model’s skill was further investigated through the different temporal statistics. Temporal 324 

correlation and standard deviation over AI and five homogeneous regions during 2002 325 

and 2011 are illustrated in Table 2. Except for SPI, the model showed a significant corre-326 

lation with both the configuration (default and ESA) in both the years. Eventhough there 327 

existed minor variationvariations at the regional scale existed, RegCM4 exhibited slightly 328 

better skill at the AI level with ESA configuration. Interestingly, the correlation was con-329 

sistently highest over NWI in both the configuration and the years, which indicated the 330 

daily variation of surface temperature was relatively better simulated over there. It 331 

wasThe table also noticed from the table that the spread of surface temperature in ESA 332 

simulation was slightly higher in both the years. Overall, it concluded that soil moisture 333 

initialization in RegCM4 apparently havehas a significant impact in simulating surface 334 

temperature and subsequently spatio-temporalspatiotemporal distribution of surface 335 

temperature in individual month as well asand season are better predicted by the model 336 

while initialized with realistic soil moisture from ESA-CCI albeit having few lacunae. 337 

Table 2:. Temporal statistics of surface temperature (°C) from default, ESA configuration and IMD data over all India and five ho-338 

mogeneous regions [69] during 2002 and 2011. *: significant at 95% and †: not significant at 95%. 339 

 340 

 2002 2011 

 Correlation Standard deviation Correlation Standard deviation 

 Default ESASM Default ESASM IMD Default ESASM Default ESASM IMD 

NWI 0.52* 0.48* 1.95 2.20 2.03 0.59* 0.54* 1.66 1.72 2.05 

WCI 0.34* 0.39* 1.33 1.34 2.09 0.31* 0.50* 1.20 1.16 1.56 

CNEI 0.42* 0.43* 1.84 1.94 1.81 0.32* 0.28* 1.33 1.17 1.33 

SPI -0.13† 0.03† 0.98 1.15 0.83 -0.10† 0.04† 0.75 0.78 0.74 

NEI 0.46* 0.41* 1.62 1.58 0.78 0.38* 0.39* 1.06 1.06 0.83 

INDIA 0.46* 0.49* 1.24 1.28 1.43 0.44* 0.47* 0.77 0.77 1.11 

3.2. Soil Moisture 341 

The model simulated seasonally averaged soil moisture from the two combinations 342 

(default and ESA) were compared for the years 2002 and 2011 and validated with that 343 

from ESA-CCI (Figure 6 and 7). It is worth to mentionmentioning that RegCM4 provides 344 

soil moisture output in two layers viz., upper/surface layer (with depth 10 cm) and root 345 

zone layer (with depth 100 cm). In this study, only upper layer soil moisture from both 346 

the simulation and observation were considered for the model validation although they 347 

differ marginally in depth. While analyzing JJAS mean, it was observed that RegCM4 sim-348 

ulated the soil moisture reasonably well using both the setup. SoilIn both simulation and 349 

observation, soil moisture was found to vary in the range of 0.1 - –0.4 33 mm over major 350 

parts of the Indian landmass in both simulation and observation.. However, soil moisture 351 
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was seen to be higher than that of ESA-CCI data in both the combinations. For example, 352 

soil moisture over central India and the adjoining region was largely distributed in the 353 

range of 0.3 - –0.4 33 mm in the model simulation, while that in ESA-CCI was found within 354 

0.2 - –0.3 33 mm . Similarly, over western India and neighboring area, the magnitude of 355 

simulated soil moisture was found in the range of 0.1 - –0.3 33 mm but the same varied 356 

within 0.1 - –0.2 33 mm or even less in ESA-CCI. This disagreement was significantly no-357 

ticed in 2002 (deficit year) compared to 2011 (normal year). As described earlier, the top 358 

soil layer in the model was deeper than that of ESA-CCI, therefore. Therefore, higher soil 359 

moisture in the model simulation may be attributed byto this disparity in soil depth. In-360 

terestingly, soil moisture from the ESA setup was found more realistic in terms of spatial 361 

distribution. Soil moisture with default setup was considerably higher than that of using 362 

ESA data in both the years and it was very prominent over the central India and adjoining 363 

regionregions. Hence, it can be concluded that RegCM4 was sensible to the soil moisture 364 

initialization technique. Moreover, while initialized with ESA-CCI data, the model im-365 

proved the soil moisture distribution by reducing the non-realistic bias from the default 366 

setup. 367 
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 399 

 400 

 401 

Figure 6:. Simulated soil moisture ( 33 mm ) at monthly and seasonal scale during 2002 from the two model setup (default and ESA), 402 

corresponding ESA-CCI data and the difference from the two model setup (arranged in a column). Rows represent June, July, August, 403 

September and JJAS mean respectively. 404 
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The analysis was further extended by analyzing monthly soil moisture (June, July, 405 

August and September). As observed seasonally, simulated soil moisture was distinctly 406 

higher than that of ESA-CCI data inon a monthly scale as well. It was noticed that ESA-407 

CCI soil moisture was lower in the month of June and it gradually improved in the month 408 

of July, August and September. HighestThe highest amount of soil moisture was noticed 409 

during August in both the years. Comparing both the simulation, RegCM4 with default 410 

setup overestimated the soil moisture in each of the months and consequently. Conse-411 

quently, soil moisture from ESA configuration was more realistic and hence closed to 412 

ESA-CCI. These differences were strongly visible from their difference indicated in the 413 

last column of the figuresFigure 6 and 7 which was noticed highest in June and lowest in 414 

August. Hence, based on the above analysis it is concluded that RegCM4 was extremely 415 

sensiblesensitive to the soil moisture initialization and therefore. Therefore, RegCM4 us-416 

ing ESA setup showed reasonable enhancement on soil moisture simulation. 417 

 418 
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 445 

 446 

Figure 7:. Same as figureFigure 6 but for 2011. 447 

3.3. Rainfall 448 

In order to investigate the impact of soil moisture initialization on rainfall, model 449 

simulated rainfall was analyzed in different spatio-temporalspatiotemporal scale. Daily, 450 
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monthly and seasonal rainfalls from the model simulation were compared with those of 451 

from IMD over AI and five homogeneous regions (mentioned earlier). The monthly and 452 

seasonal rainfall ( 1mmday ) distribution from the two model combinations during 2002 453 

and 2011 is illustrated in Fig.Figure 8 and 9 respectively in terms of bias and individual 454 

difference. From the JJAS mean (last row of the figures), the model depicted wet bias over 455 

western and peninsular India and dry bias over NEI including Gangetic West Bengal and 456 

west coast. Wet bias was higher in 2002 (deficit) while the dry bias was stronger in 2011 457 

(normal). Central India predominantly experienced wet bias in 2002 and dry bias in 2011. 458 

These disparities in biases might be related to the model’s skill in accurately predicting 459 

intraseasonal variation of rainfall (discussed later). 460 
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 494 

 495 

Figure 8:. Same as Fig.Figure 2 but for rainfall ().( ). 496 

ModelThe model simulated monthly rainfall (June, July, August and September) 497 

during 2002, 2011 were also analyzed (Figure 8 and Figure 9) as a part of the validation. 498 

During June, July and September of 2002, the model showed wet bias over the major part 499 

of the Indian landmass except for NEI and Gangetic West Bengal where dry bias was no-500 

ticed. Both the biases were found highest in July. In a similar waySimilarly, dry bias re-501 

1mmday
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gions remained similarly visible in 2011 while the coverage of wet bias regions were re-502 

duced with lower magnitude which, indicating an improvement in model skill. Neverthe-503 

less, it is important to mention that RegCM4 with ESA setup reduced the rainfall bias. 504 

 505 

Table 3:. Temporal rainfall statistics of rainfall ( 1mmday ) from default, ESA configuration and IMD data over all India and five 506 

homogeneous regions [69] during 2002 and 2011. *: significant at 95%; †: not significant at 95%. 507 

 508 
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 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

Figure 9:. Same as Fig.Figure 8 but for 2011. 534 

 2002 2011 

 Correlation Standard deviation Correlation Standard deviation 

 Default ESASM Default ESASM IMD Default ESASM Default ESASM IMD 

NWI -0.14† -0.14† 2.62 2.48 3.37 0.27* 0.38* 2.80 2.80 5.56 

WCI -0.14† -0.12† 2.98 2.81 5.89 0.16† 0.22* 2.63 2.66 4.81 

CNEI -0.06† -0.03† 3.77 3.29 5.62 0.41* 0.19* 2.83 3.29 5.29 

SPI -0.07† -0.03† 3.52 3.77 2.24 0.02† 0.03† 3.39 3.69 5.11 

NEI 0.40* 0.34* 4.67 4.12 6.41 0.11† 0.17† 3.74 3.43 5.49 

INDIA -0.04† 0.03† 1.77 1.70 2.86 0.51* 0.47* 1.43 1.64 2.99 
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Figure 10:. Same as Fig.Figure 4 but for rainfall ( ). 550 

 551 
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 567 

Figure 11:. Same as Fig.Figure 10 but for 2011. 568 

 569 

Day to day variation of rainfall is an important aspect of ISM which controls the 570 

overall performance of the model throughout the season. Hence, daily rainfall variations 571 

from the model simulation in both the years were examined over the whole of India and 572 

the other five regions against IMD observation (Figure 10 and Figure 11). The rainfall was 573 

significantly overestimated (underestimated) over major Indian land throughout the sea-574 

son in 2002 (2011) by the model except for few extreme epochs. Moreover, the variation 575 

within the season was also not reasonably well simulated by the model. During 2002, it 576 

was observed that rainfalls were not initiated inon the same dates over all the homogene-577 

ous domains rather maintained a few days interval. 578 

1mmday
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FirstThe first rainfall peak was noticed over SPI followed by WCI, NWI, CNEI and 579 

NEI. While compared with the same from IMD over the corresponding regions, it was 580 

noticed to be pretty earlier by few days in the model simulation. This indicated that the 581 

model showed early onset over each of the regions compared to the IMD data. In a similar 582 

waySimilarly, RegCM4 exhibited delayed withdrawals from each of the regions during 583 

the end of the season. In contrast to 2002, moderately better performance was perceived 584 

during 2011. Even though the model showed a large amplitude of over and underestima-585 

tion during the peak rainfall months of July and August, it followed the daily rainfall 586 

pattern of IMD.  587 

 588 

 589 

 590 

 591 
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 593 
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 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

Figure 12:. JJAS mean difference (2011-2002) of rainfall ( 1mmday ), surface temperature (°C) and soil moisture ( 33 mm ) arranged 615 

columns. Rows represent results from simulation with default and ESA setup alongwith observation in the third row. 616 

Interestingly, the onset and withdrawal of this year (2011) were also reasonably well 617 

simulated by the model. It implies that the model exhibited better skill during normal 618 

monsoon year (2011) as compared to extreme year (2002). Temporal statistics (correlation 619 

and standard deviation) for the two years are provided in Table 3. It showed a 95% sig-620 

nificant correlation during 2011 in both the simulation over major parts of India and there-621 

fore, simulation using ESA soil moisture was slightly better in comparison to other. Con-622 

trarily, correlations were insignificant and negative over entire India in 2002 which indi-623 

cated deviation in model skill. However, the standard deviation was significantly less 624 
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than that of IMD, which inferred limited model performance about the accurate prediction 625 

of magnitude. 626 

To investigate the model skill during extreme monsoon years, differences of seasonal 627 

average (2011 - 2002) of the three parameters (rainfall, surface temperature and soil mois-628 

ture) were analyzed (Figure 12). It was noticed that soil moisture and rainfall were rela-629 

tively higher during 2011 while the surface temperature was lower in 2011 (last row of the 630 

figureFigure 12). Simulated results are depicted in the 1st and 2nd row using default and 631 

ESA setup. It was noticed that the spatial patterns in both the model combinations were 632 

not prominent while comparing with observation. Moreover, simulated surface tempera-633 

ture over north India was slightly higher in 2011 which contradicted withcontradicting 634 

the same from the observation. Even though RegCM4 with ESA setup improved the sim-635 

ulation by reducing bias, further enhancement is needed. There was hardly any difference 636 

between the two years in soil moisture using both the combinations.  637 
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 667 

Figure 13. Equitable threat score for different rainfall categories (0 – 5, 5 – 10, 10 – 20 and 20 – 50 1mmday ) during 2002 over all 668 

India and five homogeneous regions [69]. 669 
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Surprisingly, the model showed mixed performance in simulating rainfall during two 670 

years and therefore the results were not convincing. Hence, based on the above analysis, 671 

it is concluded that the contrasting monsoon features were not well captured by the model 672 

in comparison to the observations. 673 

3.4. Quantitative evaluation: equitable threat score 674 

In order to further estimate the model skill in predicting the rainfall, ETS was com-675 

puted. ETS is a skill measure generally used for dichotomous (yes/no) forecasting events 676 

[71]. Mathematically, ETS is defined as follows: Where  677 

of hits, misses and false alarms whileT and randH  refers to the total events and hits 678 

due to random chances respectively. These values are calculated based on a 2x2 contingency 679 

table. ETS measures the fraction of perfectly forecast points, corrected using hits due to random 680 

chance. It varies in the range of 
3

1
 to 1 with 0ETS indicating no skill and 1ETS681 

indicating perfect skill. In our study, ETS is computed over AI and five homogeneous 682 

regions (described earlier) for different rainfall category (0 – 5, 5 – 10, 10 – 20 and 20 – 50683 
1mmday ) during 2002 and 2011 and are illustrated in Fig. 13 and Fig. 14 respectively. 684 

 685 

The Higher ETS in 2011 (Figure 14) indicates that the precipitation events at all India 686 

level were better estimated by the model in 2011 compared to 2002 (Figure 13 & 14). Mag-687 

nitude of ETS was relatively higher in ESA simulation for all rainfall categories in 2011 688 

indicating improvement in rainfall simulation using ESA soil moisture.  689 
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Figure 14. Same as figure 13 but for 2011. 721 

Although, RegCM4 with default setup showed similar skill in higher rainfall category (10 722 

– 20 and 20 – 50 1mmday ), its efficiency deviated in low (0 – 5 1mmday ) or moderate (5 – 723 

10 1mmday ) rainfall cases. At regional scale, highest ETS was noticed over NWI followed 724 

by CNEI, WCI, SPI and NEI. In 2011, the model with default configuration showed higher 725 

ETS in the low category rainfall over CNEI, WCI and SPI. Moderate rainfall was better 726 

estimated using the ESA setup. As observed earlier, ETS values were similar for both the 727 

setup in high rainfall cases indicating superior efficiency of the model in predicting high 728 

rainfall compared to other categories. During 2002, higher ETS was noticed in higher rain-729 

fall cases over NWI followed by AI but failed to estimate other categories. The model was 730 

unable to show any skill for other regions. It is noteworthy to mention that RegCM4 con-731 

sistently showed better skill over NWI in estimating moderate/high rainfall events irre-732 

spective of the years. Performance of RegCM4 in 2011 (normal year) was better compared 733 



Atmosphere 2021, 12, x FOR PEER REVIEW 21 of 25 
 

 

to 2002 (deficit year) and consequently exhibited superior skill in predicting all categories 734 

of rainfall while initialized with ESA soil moisture.  735 

4. Discussion 736 

: Same as figure 13 but for 2011. 737 

 738 

4. Summary and concluding remarks 739 

In this study, the impact of soil moisture initialization technique in the model 740 

RegCM4 was investigated through the incorporation ofby incorporating high -resolution 741 

satellite -derived soil moisture data from ESA-CCI. In order to evaluate this aspect, sea-742 

sonal simulations were conducted during two specific years viz., 2002 (deficit monsoon 743 

year) and 2011 (normal monsoon year) with default soil moistureas well as modified soil 744 

moisture. A comprehensive evaluation was carried out based on the three essential pa-745 

rameters viz., surface temperature, soil moisture and rainfall through the investigation of 746 

these. These parameters were investigated with their distribution and accuracy at differ-747 

ent temporal and spatial scalescales. 748 

From theThe surface temperature distribution, it was clearly noticed that model skill 749 

was relatively better while initializedinitializing with the soil moisture from the ESA. The 750 

magnitude and distribution of the temperature were better predicted by the model in this 751 

setup although having warm and cold biases over various regions of the country. In com-752 

parison to the default configuration, RegCM4 reduced the surface temperature biases sig-753 

nificantly in the ESA setup. Statistical values such as correlation and standard deviation 754 

is consistently better using ESA soil moisture. Simulated soil moisture was higher in 755 

RegCM4 than that of ESA-CCI, but when initialized using ESA soil moisture, it lowered 756 

the magnitude of soil moisture and portrayed better performance. Rainfall validation 757 

demonstrated that model showed superior skill while initialized with ESA soil moisture 758 

both inon a seasonal and monthly scale. However, the model couldn’t able to predict ac-759 

curately predict the temporal variation at daily rainfall. Studies on soil moisture initiali-760 

zation with RegCM over other regions across the globe also highlighted similar skills. 761 

Over European region, Patarcic and Brancovic [30] investigated the skill of RegCM3 and 762 

found reduction (enhancement) in systematic errors (deterministic skill) of RegCM3 while 763 

initialized with high-resolution soil moisture. Over Asia, Liu et al. [31] mentioned that 764 

RegCM4 with higher initial soil moisture reduced the surface temperature and conse-765 

quently increased the rainfall although the impact was more in mid-latitude compared to 766 

the tropics. This study also highlighted that temperature (rainfall) response was stronger 767 

(weaker) over India. Hu et al. [38] indicated that description of soil moisture with RegCM2 768 

affected the model bias over China. Similar studies with other models (e.g., Weather Re-769 

search and Forecasting Model) also showed that the skill scores and frequency bias of 770 

rainfall and root mean square of temperature were improved while used soil moisture 771 

from global forecast system [72].   772 

Although, RegCM4 with ESA setup appeared to ameliorate the performance, still 773 

improvement is still necessary. Careful examination proclaimed that the model perfor-774 

mance was deteriorated, particularly during the extreme monsoon year (2002) although it 775 

showed acceptable accuracy during normal monsoon year (2011). Major association of the 776 

poor skill during 2002 was the inefficiency to pick up various epochs of ISM precisely and 777 

thereby showed early onset and delayed withdrawal. However, it was also recognized 778 

that simulated rainfall was surprisingly low during the peak monsoon months viz., July 779 

and August during 2011 (normal). In addition, rainfall was extremely high in June and 780 
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July during 2002 (deficit). This indicated that RegCM4 couldn’t be able to capture the con-781 

trasting features of ISM accurately. Thus, thisIn brief, the soil moisture initialization can 782 

significantly improve the model skill in simulating weather/climate features and hence 783 

should be paid more attention. Our overall analysis infers significant improvement in the 784 

model skill in simulating surface temperature and rainfall distribution while using high-785 

resolution ESA soil moisture albeit lacunae noticed in temporal variation. ETS of rainfall 786 

was higher with ESA setup. 787 

5. Conclusion 788 

This study provided a primary assessment of the realistic soil moisture initialization 789 

through seasonal simulation of ISM using regional model and imparts potential improve-790 

ment. Although systematic investigation with added number of extreme years may de-791 

liver the results in further meaningful means, this work presented the preliminary ideas 792 

for those future studies.the regional model. In summary, we found RegCM4 was sensitive 793 

to the soil moisture initialization and consequently imparts potential improvement in sim-794 

ulating surface temperature and rainfall while initialized with high-resolution, satellite-795 

derived soil moisture data. Although, the model showed reasonable skill in normal year, 796 

it still came across difficulties in simulating different epochs of monsoon in extreme year 797 

in particular. Further investigation is therefore required to enhance the model skill.  798 

6. Limitation and future studies 799 

The investigations presented here are the preliminary ideas for similar modeling 800 

studies in future. Thus, systematic investigation with the added number of extreme years 801 

may reproduce more robust results. In addition, it is also important to test the model skill 802 

using soil moisture data from different sources. 803 
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