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Abstract: Soil moisture is one of the key components of the land surface processes and a potential
source of atmospheric predictability that has received less attention in the-regional scale studies. In
this study, an attempt was made to investigate the impact of soil moisture on Indian Summer Mon-
soon simulation using a regional model. We conducted seasonal simulations using Regional Climate
Model (RegCM4) for two different years viz., 2002 (deficit) and 2011 (normal). The model was forced
to initialize with the high—resolution satellite—derived soil moisture data obtained from the Climate
Change Initiative (CCI) of_the European Space Agency (ESA) by replacing the default static soil
moisture. Simulated results were validated against high-resolution surface temperature and rainfall
analysis datasets from India Meteorology Department (IMDj-data:). Careful examination revealed
that-there-was significant advancement in the RegCM4 simulation while initialized with the soil
moisture from ESA-CCI despite ef-having regional biases. WhilstinIn general, the model exhibited
slightly higher soil moisture than observation, RegCM4 with ESA setup showed lower soil moisture

than that-ef-with default one. Model skill was relatively better in capturing surface temperature
distribution when initialized with high--resolution soil moisture. Rainfall biases over India as-wel
asand homogeneous regions were significantly improved with the use of ESA-CCI soil moisture.
Several statistical measures such as temporal correlation, standard deviation-and, equitable threat
score (ETS)), etc. were also employed for the assessment. ETS values were found better in 2011 and
higher in the simulation with the ESA setup. However, RegCM4 still couldn’t able to enhance its
skill in simulating temporal variation of rainfall adequately. Although initializatieninitializing with
the soil moisture from the satellite performed relatively better in normal monsoon year (2011) but
had limitatienlimitations in simulating different epochs of monsoon in an extreme year (2002). Thus,
the study concluded that the simulation of the Indian Summer Monsoon was improved by using
RegCM4 initialized with high—resolution satellite soil moisture although having limitatienlimita-
tions in predicting temporal variability. OveraliThe study suggests that soil moisture initialization
has critical impact on_the accurate prediction of atmospheric circulation process and convective
rainfall activity.

Keywords: lndianSummer MonsoonConvective rainfall, land surface model, seil-meoisture-initiali-
zationmixed convection scheme, regional climate model, satellite-derived soil moisture.
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The strong impact of land surface processes is well recognized in modulating the
weather and climate system in subseasonal to seasonal and even longer time scale. Land
surface acts as an interface between the biosphere and the overlying atmosphere. It inter-
acts with the atmosphere through the exchange of mass, momentum, energy and hence is
considered as the lower boundary of the atmosphere at approximately 30% of the earth’s
surface [1]. It is also well understood that the earth’s surface is the reservoir of our main
energy resources thatcomes-from the solar radiation. Both short and long wave form of
the solar radiation is absorbed by the land surface and reemitted. When releasing the en-
ergy through the planetary boundary layer, the earth’s surface works like a separator-and.
It redistributes the net incoming radiative energy into various fluxes such as sensible, la-
tent and other ground fluxes. Hence, the energy required forthe-developmentto develop
and sustenanee—ofsustain any weather system,—particslarly over landmass, is supplied
from the underlying land surface [2—5]. Therefore, the land-atmosphere interaction plays
a vital role in modulating the weather and climate systems beth-iron a regional and global
scale [6—10]. Due to its immense impact, the functions of_the land surface have been ex-
plored extensively in observation as well as modeling studies across the globe [9-14].

Land surface-atmosphere interaction may be-regarded-as a positive and/or negative
feedback mechanism between the atmosphere and different land surface characteristics
such as soil moisture, soil temperature, soil types, vegetation cover, snow cover etc. Each
of them is not of similar importance for a weather system over a region. In particular, soil
moisture is an important component of the global water budget and hydrology cycle [1,
8, 15]. The function of the soil moisture may be described in two ways. Primarily, rate of
evaporation from the land surface is determined by the soil moisture quantity which con-
trols the moisture supply to the atmosphere. Secondly, as mentioned earlier, it mainly
partitions the net absorbed solar radiation into fluxes. It is mentioned by Dutta et al. [16]
that soil moisture and snow cover are the two leading land surface variables thesethat
have a potential impact on the variation of weather system if the effect of sea surface tem-
perature is excluded.

Climate downscaling using a Regional Climate Model (RCM) is well accepted and
widely used sinee-pastseveral-decadesfor the simulation of various weather and climate
systems-_for the past several decades. It is demonstrated in numerous earlier litera-
turesworks of literature [17-22] that the RCMs show better competence in simulating cli-
matic features due to better representation of the sub-grid scale physical process and to-
pography eempared-tothan the Global Circulation Model. Land surface processes mostly
occur at a subgrid--scale but plays—eryplay an important role in controlling the weather
systems [6—7, 23]. Through evaporation, the exchange of heat and moisture fluxes from
the land surface to the atmosphere partiestarhy-helps—+te form convection and precipita-
tion. Proper representation of soil moisture is therefore extremely crucial for the numerical
weather forecast as well as climate simulations on seasonal, annual and decadal scale us-
ing fully coupled RCMs. In each state-of-the-art RCM, physical parameterization of the
land surface is taken care of through different Land Surface Model (LSM henceforth). Soil
moisture initialization technique is different in different LSMs. However, previsien
efproviding an accurate state of the soil parameters has a serious impact on the-evaluation
ofevaluating the weather and climate sredelsmodes which are associated with the retro-
spective research--based on_the terrestrial hydrology cycle. Therefore, better simulation of
atmospheric processes can be achieved through initializing the climate models with real-
istic observational/reanalysis soil moisture datasets.

Several researeheskinds of research have already been carried out to emphasize the
impact of land surface model initialization with realistic soil moisture datasets [6-7, 24—
32]. Fennessy and Shukla [24] studied the importance of initial soil wetness in seasonal
prediction with dynamical models-ard. They concluded that the effect of initial soil wet-
ness is local and greatest in the near--surface fields, viz. evaporation, surface temperature
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98 and precipitation. Douville and Chauvin [25] used a land surface scheme that was forced

99 with meteorological observation and analysis using relaxation technique and inferred that

00 the relaxation has-pesitiveimpaetenpositively impacts both model climatology and var-

01 iability at an interannual scale. Kanamitsu et al. [27] showed that the predictive skill of the

02 initial soil moisture is higher in arid/semi-arid regions and kawvehas a sound impact on
103 surface temperature simulation. Douville [28] investigated the effect of soil moisture on

04 climate variability and potential predictability and highlighted abeutits strong contribu-

05 tion to-the climate variability.

106 Moufouma-Okia and Rowell [2] investigated the sensitivity of soil moisture initiali-
107 zation on West African Monsoon by using a RCM and revealed that specification of initial
108 soil moisture is little sensitive to the West African Monsoon rainfall. Douville [3] high-

09 lighted the significant impact of soil moisture on regional climate and suggested further

10 comprehensive and systematic investigation-ef-it. Bisselink et al. [4] performed a similar

11 study by initializing a RCM with satellite derived soil moisture and showed thatthemore

12 impact-is-mere during dry years. Suarez et al. [7] performed numerical experiment for
113 three synoptic events using two different mesoscale models with varying soil moisture.

14 They illustrated that the rainfall is inereased{deereasedincreases (decreases) with theuse

15 of-enhanced (reduced) soil moisture respectively. These studies elearly-indicate that the

16 soil moisture has-significant-effect-onsignificantly affects the weather and climate simula-

17 tion, but varies from region to region. However, no studies have yet been discussed in this

18 context over the Indian region.—

19 Among the various RCMs available, the regional climate modeling system which is
120 commonly abbreviated as RegCM of International Center for Theoretical Physics (ICTP,
121 Italy) becomes remarkably popular due to its successful application towards numerous

22 scientific studies [15, 1722, 30, 35-=37] and many studies have tested its performance

23 over Indian regions [17—22, 37]. In the context of soil moisture, RegCM is also used over

24 various regions [30—=31, 38]. Hu et al. [38] argued that the treatment of soil moisture

25 should pay more attention while performing an experiment on the-soil moisture data as-

26 similation efseil-meisture-using RegCM over China. Patarcic and Brankovic [30] investi-
127 gated the skill of surface temperature seasonal forecast over Europe using RegCM by ini-
128 tializing it with three different types of soil moisture condition during summer and winter
129 time. Their study showed that the systematic error was reduced and deterministic skill
130 was improved during summer using realistic soil moisture. Liu et al. [31] evaluated the
:131 impact of soil moisture using RegCM simulation-ane. They showed that initialization with
132 wet (dry) soil moisture anomalies increased (reduced) the subsequent precipitation
133 amount and reduced (increased) surface temperature. Due to sparse observation net-

34 works, the availability of accurate soil moisture data (observation and/or reanalysis) in

35 the past was very rare. Noew-a-daysNowadays different organizations offer accessibility

36 of satellite- derived as well as reanalysis soil moisture datasets. Climate Change Initiative

37 (CCI) of the European Space Agency (ESA) is one such piece of data that-was-publicly

38 released in 2015. This dataset has been successfully applied in some-ef-the observational
139 [39] and modeling studies [40] over the other regions across the globe. However, it is not
140 extensively explored over Indian regions. Although there-are-few observational studies

41 over India are available in the literature [8, 10, 11], it is not comprehensively used in the
142 modeling studies. This study mainly deals with the soil moisture initialization over India
143 to understand their role on the seasonal simulation (May-September) of the Indian Sum-

44 mer Monsoon (ISM)-by using RegCM. To our knowledge, our attempt to investigate the
145 impact of soil moisture on ISM using a regional model is the first time over India. The rest

46 part-of the paper is structured as the following: brief model information, experimental
47 design-and, descriptions of the various datasets and validation strategy are discussed e
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48 ferent subsecHon-ofin section 2. Results and-diseussion-isare described in section 3 fol-
49 lowed by Summary-and-concludingremarksdiscussion, conclusion, limitation and future
50 scope in section 4, 5, 6 respectively.
51
152 2. Materials and Methods
153 2.1. Model description
154 In the present study, RegCM version 4.4.5 (RegCM4 henceforth) is employed. It is a
55 compressible, hydrostatic, terrain-following, finite difference, limited area model haw-
56 ingwith a similar dynamical core to that of its previous version (RegCM3 [41]). The model
157 offers a variety of parameterization schemes to represent different physical processes. Cu-
158 mulus convection is represented using five major schemes such as Kuo [42], Grell [43],
159 MIT [44], Tiedke [45] and Kain-Fritsch [46]. Due to variation in performance, RegCM4
60 shows flexibility of using different schemes separately over land and ocean, referred to as
61 “mixed” sehemeschemes. Land surface processes are represented using two LSMs
62 namely, the BATS scheme [47] as well as CLM (version 3.5 [48]; version 4.5 [49]). Radiative
163 transfer package from the global model CCM3 [50], planetary boundary layer from
64 Holtslag [51] as well as University of Washington [52] are also available in RegCM4. De-
65 tailed A detailed description of other available physics schemes viz., ocean fluxes param-
166 eterization schemes, interactive aerosol schemes and interactive lake models are described
167 in Giorgi et al. [15].
45°N
30°N
Arabian Sea
15°N —|
0° —,
Indian Ocean
15°8 —— :
30°E 45°E 60°E 75°E 90°E 105°E 120°E
168 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
69 Figure 1:. Map of the simulation domain used in the study. The domain encompasses 30°E—120°E,
70 15°S——45°N ewverin Lambert Conformal map projection. Different color shades specify the topo-
171 graphical height above sea level (in meters).

172
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173 In this study, we focused on the soil moisture initialization in the seasonal simulation
174 of ISM using RegCM4. Two LSMs differ with their formulation in various aspects. One of
75 the major disparities is in the description of the soil moisture column. BATS is composed
76 of three soil moisture layers with varying depth from 10 cm to 3 m [35]. On the other hand,
77 the CLM soil column consists of 10 unevenly distributed soil layers at 1.8 cm, 2.8 cm, 4.6
178 cm, 7.5 cm, 12.4 cm, 20.4 cm, 33.6 cm, 55.4 cm, 91.3 cm and 113.7 cm depth, for a total depth
179 of 3.4m [53]. In the earlier version of RegCM, soil moisture was initialized using static soil
180 water content relative to saturation as a function of land cover type [54]. Patarcic and
81 Brankovic [30] suggested that this technique is rather-a crude way of defining the initial
82 soil moisture which includes neither seasonal nor interannual variation-and-due. Due to
83 that, the model took a higher spin-up time to get stable, particularly for deeper soil layers.
84 Considering this, RegCM4 offers the option to be initialized using climatological soil mois-
85 ture both in CLM and BATS [29, 55] along with the default static soil moisture. After get-
186 ting initialized from the soil moisture climatology, RegCM4 evolves independently with
187 its own internal water balance equation [30], which would reduce sudden shock to the
2188 model at the initial time step and consequently decreases the spin—-up time at the deeper
189 soil layer of the model [29, 53].
190 2.2. Experimental design
:191 Seasonal simulation (1 May, 00UTC——=30 September, 18UTC) of ISM is conducted
192 using RegCM4 for two different years viz., 2002 and 2011 encompassing the geographical
93 area encompassing 30°E-—120°E, 15°S-—45°N (Figure 1) at 30 km horizontal resolution.
94 Based-en-the-eriteriaofAccording to the India Meteorological Department (IMD), India
95 didn't face any excess monsoon year during last few decades subsequent to 1988. adi-
9% atHowever, the country witnessed a severe drought in 2002 with 81% ISM rainfall of its
197 long period average [56]. On the other hand, 2011 was a normal year with 102% ISM rain-
98 fall of its long period average. Model configuration setup is provided in Table 1 {as-ren-
99 tioned-inMaity[57]-]. Simulation during May is considered as spin--up and excluded
200 from the subsequent analysis.
101
302 Table 1:. Overview of the model considered for this study-Mait{57}-.
Contents Description
Model domain South Asia (30°E - 120° ; 15°S - 45°N)
Resolution Horizontal: 30 km, Vertical: 23 terrain following O levels
Map—projeetionLand

Lambert ConformalCLMA4.5 [49

surface

Cumulus  convection
Grell [43] over ocean and MIT [44] over land-

scheme
Cumulus closure
Arakawa and Schubert [58]-
scheme
Explicit moisture
SUBEX [6059]
scheme
Ocean flux Zeng [60]

203
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204 By default, RegCM4 gets initialized from the static soil moisture data through the
05 BATS lookup table. In this study, the model is forced to get started with high--resolution
06 satellite--derived soil moisture data [61—62] from the Climate Change Initiative (CCI) of
07 the European Space Agency (ESA) [referred as ESA-CCI (http://www.esa-soilmoisture-

208 cci.org)]. Detailed information of this dataset is given in the following subsection.

209 2.3. Data

410 The model was forced with six--hourly ERA-Interim reanalysis (EIN75 [63] hereafter)

211 data at 0.75°x 0.75° resolution. Topography and land use were obtained from United States

212 Geological Survey and Global Land Cover Characterization [64] global data at 10 minutes

213 resolution. The sea surface temperature from optimum interpolation weekly mean sea

214 surface temperature [65] was fed to the model at 1° x 1° resolution from National Oceanic

215 and Atmospheric Administration. Additional datasets including land cover, soil texture,

216 soil colour, leaf area index, plant functional type, emission factors, snow data etc. required

417 for CLM4.5_[49] were obtained from the RegCM data portal (http://clima-

218 dods.ictp.it/Data/RegCM Data/CLM45/). Simulated surface temperature and rainfall

219 were validated against high—reselution—surface—temperature—{(15>d%5166])and rainfall

220 £0-25°x0:25%167analysis—data—fremIMDbB-resolution surface temperature and rainfall

121 analysis data from IMD. The temperature data was constructed by IMD based on 395 sta-

222 tion observatories data at 1°x1° spatial resolution [66] covering the land region of India

123 (6.5°N-38.5°N, 66.5°E-100°E). Similarly, the rainfall data was prepared by IMD by con-

224 sidering the daily rainfall measurements from 6955 rain gauge stations at 0.25°x0.25° spa-

125 tial grid [67]. These datasets are the finest observation data from IMD so far which uses

126 highest number of station observations and are successfully utilized in various observa-

127 tion/modeling studies.

228 Reg(CM4 was initialized here with ESA-CCI soil moisture datasets (version 02.2). This

429 dataset is a multi-decadal satellite--derived soil moisture product with high spatial reso-

230 lution at 0.25°x0.25°. The primary data is accumulated through various spaceborne micro-

231 wave scatterometers such as ERS-1/2 (SCAT) and METOP-A (ASCAT) as well as micro-

232 wave radiometers viz., SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2. The detailed in-

jss formation about the different satellite sensors and their specification areis mentioned in
34 Dorigo et al. [61—62]. ESA provides three types of soil moisture products viz., active only,

235 passive only and combined datasets based on these gathered data. Active only data is

236 made by merging all the data from the scatterometers while the passive only product is

237 generated by merging all the data from radiometers. Afterwards these two products are

238 further rescaled to the common platform of Global Land Data Assimilation System ver-

439 sion-1 and merged for-the preparation-ofto prepare the combined soil moisture data [68].

240 Complete procedural technique and further details about this data preparation may be

241 obtained from the literature cited above and the references therein. The datasets are avail-

342 able in the volumetric unit (m*m=m’m) at daily scale during 1979—2014. SeilThe soil

243 depth of the data varies in the range of 0.5 cm——2 cm. For this study, we used the ESA-

244 CCI combined soil moisture data only. The ESA-CCI dataset are the calibrated data pre-

245 pared with in-situ observation from International Soil Moisture Network (ISMN; [62]). At

246 present, ISMN data consists of 6100 soil moisture datasets from 1400 measurement sta-

247 tions operated by 40 different networks [62]. ISMN holds data globally having 10 station

248 data in India. Validation is carried out for 28 data networks all over the globe. Detailed

249 validation strategy including precise information about the measurement stations is men-

250 tioned in Dorigo et al. [62].

251

252


http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
http://clima-dods.ictp.it/Data/RegCM_Data/CLM45/
http://clima-dods.ictp.it/Data/RegCM_Data/CLM45/

Atmosphere 2021, 12, x FOR PEER REVIEW 7 of 25

253

54 3Results

55 2.4. Validation strateqy

56 Model performance was assessed in terms of the spatiotemporal distribution of sur-
257 face temperature, soil moisture and rainfall considering all India (AI henceforth) as well
258 as its five homogeneous regions viz., North west India, West central India, Central and
259 north east India, South peninsular India and North east India (NWI, WCI, CNEL SPI, NEI
260 henceforth) [69]. The simulation forced with a default lookup table (ESA-CCI) soil mois-
261 ture will be referred_to as default (ESA) hereafter. The validation includes some of the
262 basic inferential statistics such as mean, standard deviation (SD) and correlation. Eurther-
163 moreln order to further estimate the model skill in predicting the rainfall, Equitable Threat
264 Score (ETS) {70} werecalenlated-for-ditferentrainfall categoriesandwas computed. ETS is
265 a skill measure generally used for dichotomous (yes/no) forecasting events [70, 71]. Math-
266 ematically, ETS is defined as follows:inthe-assessment

H-H
267 ETS = rand
H+M+F-H,_,4
:*68 Where
(H+M)H +F)
269 o
T
270
71 H, M, F stands for no. of hits, misses and false alarms whileT and H 4 refer to the
172 total events and hits due to random chances respectively. These values are calculated
173 based on a 2x2 contingency table. ETS measures the fraction of perfectly forecast points
1

274 corrected using hits due to random chance. [t varies in the range of — § to 1 with ETS<0
175 indicating no skill and ETS =1indicating perfect skill.
176
177 3. Results
278 3.1. Surface Temperature
279 The analysis was started with the discussion about the model simulated surface tem-
280 perature and its validation with the IMD observation. Results from 2002 (2011) are given

81 in Figure 2 (Figure 3). EixstThe first two columns represent bias with default and ESA

82 configuration with their difference in the last column. First four rows (a—c, d—f, g, j-1)

83 correspond to June, July, August and September while the last row (m-o) stands for sea-

84 sonal (June-July-August-September; JJAS hereafter) mean. It—elearly indicates that
285 RegCM4 showed consistent cold bias over peninsular India, irrespective of the years and
:{86 attain maxima in July, 2002 (Figure 2) and June, 2011 (Figure 3). Contrastingly from the
287 JJAS mean, it was noticed that the model exhibited cold (warm) bias during 2002 (2011)
288 over north India. In the monthly distribution, RegCM4 experienced warm bias in August,
:*89 September during 2002 while in July, August, and September during 2011.

290
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291
292 Figure 2. Surface temperature bias (°C) at monthly and seasonal scales during 2002 from both the model configuration.
193 IMD analysis is considered as ground truth. Rows correspond to June, July, August, September and JJAS mean respec-
194 tively. The column represents default and ESA setup alongwith their difference in third column.
295
296
297
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Figure 4. Daily variation of surface temperature (°C) over India and five homogeneous regions [69] from the two different setups
and IMD analysis during 2002.
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Figure 5. Same as Figure 4 but for 2011.

The simulated surface temperature was noticed to be more close to IMD data while ini-
tialized with ESA soil moisture. It-elearly indicates that the model was sensible to the soil
moisture initialization process and outperformed after getting initialized with real--time
soil moisture data by reducing existing cold bias in the default soil moisture combination.
Eventhough, the present model bias (cold/warm) might be associated with the simulation
of rainfall by the model. We have discussed-abeut it in the later subsections, particularly
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the model inefficiency in predicting various epochs of rainfall (during initial months of
ISM) which might have possible consequences in obtaining different surface temperature
biases.

A discussionBiseussier was further extended by analyzing the daily variation of sur-
face temperature. Time series of surface temperature during 2002 and 2011 over Al and
its five homogeneous regions are described in Eie-Figure 4 and 5 respectively. Irrespective
of the regions, temporal variation of surface temperature was slightly better estimated by
the model while initialized with the ESA soil moisture except for some evident exceptions.
As observed earlier, the model showed consistent cold bias throughout the season in both
the years over SPI, NEI as well as Al level. Underestimation was higher over SPI and Al
compared to NEL. However, the temporal variation was not well simulated by the model.
Model’s skill was further investigated through the different temporal statistics. Temporal
correlation and standard deviation over Al and five homogeneous regions during 2002
and 2011 are illustrated in Table 2. Except for SPI, the model showed a significant corre-
lation with beth-the configuration (default and ESA) in both the-years. Eventhough there
existed-minor variatienvariations at the regional scale existed, RegCM4 exhibited slightly
better skill at the Al level with ESA configuration. Interestingly, the correlation was con-
sistently highest over NWI in both the configuration and the years, which indicated the
daily variation of surface temperature was relatively better simulated over there.
wasThe table also noticed-from-the-table that the spread of surface temperature in ESA
simulation was slightly higher in both the years. Overall, it concluded that soil moisture
initialization in RegCM4 apparenthyhavehas a significant impact in simulating surface
temperature and subsequently spatio-temporalspatiotemporal distribution of surface
temperature in individual month as-wel-asand season are better predicted by the model
while initialized with realistic soil moisture from ESA-CCI albeit having few lacunae.

Table 2:. Temporal statistics of surface temperature (°C) from default, ESA configuration and IMD data over all India and five ho-
mogeneous regions [69] during 2002 and 2011. *: significant at 95% and t: not significant at 95%.

2002 2011
Correlation Standard deviation Correlation Standard deviation
Default ESASM  Default ESASM IMD Default ESASM  Default ESASM IMD
NWI 0.52" 0.48 1.95 2.20 2.03 0.59° 0.54 1.66 1.72 2.05
WCI 0.34" 0.39 1.33 1.34 2.09 0.31" 0.50 1.20 1.16 1.56
CNEI 0.42° 0.43 1.84 1.94 1.81 0.32" 0.28" 1.33 1.17 1.33
SPI -0.13¢ 0.03* 0.98 1.15 0.83 -0.10t 0.04* 0.75 0.78 0.74
NEI 0.46" 0.41" 1.62 1.58 0.78 0.38 0.39 1.06 1.06 0.83
INDIA  0.46" 0.49 1.24 1.28 1.43 0.44 0.47 0.77 0.77 1.11

3.2. Soil Moisture

The model simulated seasonally averaged soil moisture from the two combinations
(default and ESA) were compared for the—rears-2002 and 2011 and validated with that
from ESA-CCI (Figure 6 and 7). It is worth te-mentienmentioning that RegCM4 provides
soil moisture output in two layers viz., upper/surface layer (with depth 10 cm) and root
zone layer (with depth 100 cm). In this study, only upper layer soil moisture from beth
the simulation and observation were considered for the model validation although they
differ marginally in depth. While analyzing JJAS mean, it was observed that RegCM4 sim-
ulated the soil moisture reasonably well using both the setup. Seilln both simulation and
observation, soil moisture was found to vary in the range of 0.1—0.4 m°m~ over major
parts of the Indian landmass-inbeth-simulationand-ebservation-. However, soil moisture
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was seen to be higher than that of ESA-CCI data in both the-combinations. For example,
soil moisture over central India and the adjoining region was largely distributed in the
range of 0.3—0.4 m*m~in the model simulation, while thatinESA-CCI was found within
0.2—-0.3m>m. Similarly, over western India and neighboring area, the magnitude of
simulated soil moisture was found in the range of 0.1—0.3 m*m~=but the same varied
within 0.1—0.2 m’m~or even less in ESA-CCI. This disagreement was significantly no-
ticed in 2002 (deficit year) compared to 2011 (normal year). As described earlier, the top
soil layer in the model was deeper than that of ESA-CCl-therefore. Therefore, higher soil
moisture in the model simulation may be attributed byto this disparity in soil depth. In-
terestingly, soil moisture from the ESA setup was found more realistic in terms of spatial
distribution. Soil moisture with default setup was considerably higher than that-ef-using
ESA data in both the-years and it was very prominent over the central India and adjoining
regionregions. Hence, it can be concluded that RegCM4 was sensible to the soil moisture
initialization technique. Moreover, while initialized with ESA-CCI data, the model im-
proved the soil moisture distribution by reducing the non-realistic bias from the default
setup.
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Figure 6:. Simulated soil moisture ( m3m‘3) at monthly and seasonal scale during 2002 from the two model setup (default and ESA),
corresponding ESA-CCI data and the difference from the two model setup (arranged in a column). Rows represent June, July, August,
September and JJAS mean respectively.
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The analysis was further extended by analyzing monthly soil moisture (June, July,
August and September). As observed seasonally, simulated soil moisture was distinctly
higher than that of ESA-CCI data iron a monthly scale as well. It was noticed that ESA-
CCI soil moisture was lower in themoenth-efJune and it gradually improved in the month
of July, August and September. HighestThe highest amount of soil moisture was noticed
during August in both the years. Comparing both the simulation, RegCM4 with default
setup overestimated the soil moisture in each of the months-and-eonsequently. Conse-
quently, soil moisture from ESA configuration was more realistic and hence closed to
ESA-CCI. These differences were strongly visible from their difference indicated in the
last column of the-figuresFigure 6 and 7 which was noticed highest in June and lowest in
August. Hence, based on the above analysis it is concluded that RegCM4 was extremely
sensiblesensitive to the soil moisture initialization-and-therefoere. Therefore, RegCM4 us-
ing ESA setup showed reasonable enhancement on soil moisture simulation.
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3.3. Rainfall

In order to investigate the impact of soil moisture initialization on rainfall, model
simulated rainfall was analyzed in different spatio-temperalspatiotemporal scale. Daily,
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Figure 7:. Same as figureFigure 6 but for 2011.
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51 monthly and seasonal rainfalls from the model simulation were compared with-these-of
52 from IMD over Al and five homogeneous regions (mentioned earlier). The monthly and
453 seasonal rainfall (mmday ™) distribution from the two model combinations during 2002
54 and 2011 is illustrated in Fig-Figure 8 and 9 respectively in terms of bias and individual
55 difference. From the JJAS mean (last row of the figures), the model depicted wet bias over
456 western and peninsular India and dry bias over NEI including Gangetic West Bengal and
457 west coast. Wet bias was higher in 2002 (deficit) while the dry bias was stronger in 2011
458 (normal). Central India predominantly experienced wet bias in 2002 and dry bias in 2011.
459 These disparities in biases might be related to the model’s skill in accurately predicting
460 intraseasonal variation of rainfall (discussed later).
461
{a) Default bias  RegCM4-IMD (b ESA bias FegCh4-IMD (c) Difference Default-ESA
462 son | ] - i 1 % i
463 o {1 A d1 S i
464 L R ' - 280 E g s F
= 2on ] L ] : L
465 - )
150 4 1 /‘ F 7 i
466 1an A : .-\, ‘ I ] ‘ [ (mmday™)
467 SN T T
468 (&) E'SA ?iasu f%eg(lzm;IMD if D:ﬂ'ere;ncel | Default-ESA
469 1
471 3 ]
5 ]
47> ] 4.0
473 3.0
474 (0} ESAbias  RegChtd-IMD fi Diflerence  Defaul-ESA
475 ] e 1 j . L 2.0
476 1 Je P j} F =
477 'g N A L —{1.0
478 2 5 S B N
479 ] { J \L 1 ; W[ 0.0
480 e et [
481 o i DFrEUI|1 bials ﬁegCI;M-i-l WD k) EISA lI:N'.asI IIREQCIIM‘!;IMD in Differelmel ID51F“|[.IESA : '1 0
482 35N Sy L E - g
3 ‘ —-2.0
483 é N /“ s ] F
@ M e F Rt 3
484 8 an v t 1 SOF -3.0
485 P wan 5 O A F
486 :‘: 1 B 5 ,_i"_ 1 e ] -4.0
487 {m) Default bias RegCM4-IMD (n) ESAbias  RegCh4-IMD 5.0
30 o ] b
490 @ =+ ”/" s
491 3 e SN T
15M o S~V E
492 wd % £t o . N I
493 e
494 B5E 7OE 7SE BUE ESE 90E 95E100E G5E TDE TSE 80E 45E 90E GSE100E B5E TOE 7SE 80E BSE DOE $5E100E
IR 1111 [ TT TS 4
495 80 -40 00 40 80 (")
496 Figure 8:. Same as Eig-Figure 2 but for rainfall §-(mmday .
497 MedelThe model simulated monthly rainfall (June, July, August and September)
498 during 2002, 2011 were also analyzed (Figure 8 and Figure 9) as a part of the validation.
499 During June, July and September of 2002, the model showed wet bias over the major part
300 of the Indian landmass except_for NEI and Gangetic West Bengal where dry bias was no-
j01 ticed. Both the biases were found highest in July. Jn-a-similar-waySimilarly, dry bias re-
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gions remained similarly visible in 2011 while the coverage of wet bias regions were re-
duced with lower magnitude-whieh, indicating an improvement in model skill. Neverthe-
less, it is important to mention that RegCM4 with ESA setup reduced the rainfall bias.

Table 3:. Temporal rainfall statistics efrainfall-(mmday ") from default, ESA configuration and IMD data over all India and five

homogeneous regions [69] during 2002 and 2011. *: significant at 95%; t: not significant at 95%.

2002 2011
Correlation Standard deviation Correlation Standard deviation
Default ESASM  Default ESASM  IMD Default ESASM  Default ESASM  IMD
NWI -0.14* -0.14t 2.62 2.48 3.37 0.27° 0.38 2.80 2.80 5.56
WCI -0.14¢ -0.12f 2.98 2.81 5.89 0.16t 0.22" 2.63 2.66 4.81
CNEI -0.06* -0.03* 3.77 3.29 5.62 0.41° 0.19 2.83 3.29 5.29
SPI -0.07% -0.03t 3.52 3.77 2.24 0.02t 0.03t 3.39 3.69 5.11
NEI 0.40° 0.34" 4.67 4.12 6.41 0.11¢ 0.17¢ 3.74 3.43 5.49
INDIA  -0.04% 0.03t 1.77 1.70 2.86 0.517 0.47 1.43 1.64 2.99
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Figure 9:. Same as Fig-Figure 8 but for 2011.
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Figure 10:. Same as Eig-Figure 4 but for rainfall ( mmday_l).
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Figure 11:, Same as Eig-Figure 10 but for 2011.

Day to day variation of rainfall is an important aspect of ISM which controls the
overall performance of the model throughout the season. Hence, daily rainfall variations
from the model simulation in both the years were examined over the whole of India and
the other five regions against IMD observation (Figure 10 and Figure 11). The rainfall was
significantly overestimated (underestimated) over major Indian land throughout the sea-
son in 2002 (2011) by the model except for few extreme epochs. Moreover, the variation
within the season was also not reasonably well simulated by the model. During 2002, it
was observed that rainfalls were not initiated i#on the same dates over all the homogene-
ous domains rather maintained a few days interval.
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EirstThe first rainfall peak was noticed over SPI followed by WCIL, NWI, CNEI and
NEI. While compared with the same from IMD over the corresponding regions, it was
noticed to be pretty earlier by few days in the model simulation. This indicated that the
model showed early onset over each of the regions compared to the IMD data. lna-similar
waySimilarly, RegCM4 exhibited delayed withdrawals from each of the regions during
the end of the season. In contrast to 2002, moderately better performance was perceived
during 2011. Even though the model showed a large amplitude of over and underestima-
tion during the peak rainfall months of July and August, it followed the daily rainfall
pattern of IMD.
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Figure 12:, JJAS mean difference (2011-2002) of rainfall (mmday’l ), surface temperature (°C) and soil moisture (m*'m>) arranged

columns. Rows represent results from simulation with default and ESA setup alongwith observation in the third row.

Interestingly, the onset and withdrawal of this year (2011) were also reasonably well
simulated by the model. It implies that the model exhibited better skill during normal
monsoon year (2011) as compared to extreme year (2002). Temporal statistics (correlation
and standard deviation) for the two years are provided in Table 3. It showed_a 95% sig-
nificant correlation during 2011 in both the simulation over major parts of India and there-
fore, simulation using ESA soil moisture was slightly better in comparison to other. Con-
trarily, correlations were insignificant and negative over entire India in 2002 which indi-
cated deviation in model skill. However, the standard deviation was significantly less
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than thatefIMD, which inferred limited model performance about the accurate prediction
of magnitude.

To investigate the model skill during extreme monsoon years, differences of seasonal
average (2011 - 2002) of the three parameters (rainfall, surface temperature and soil mois-
ture) were analyzed (Figure 12). It was noticed that soil moisture and rainfall were rela-
tively higher during 2011 while the surface temperature was lower in 2011 (last row of the
fisureFigure 12). Simulated results are depicted in the 1st and 2nd row using default and
ESA setup. It was noticed that the spatial patterns in both the model combinations were
not prominent while comparing with observation. Moreover, simulated surface tempera-
ture over north India was slightly higher in 2011 which-ecentradieted—withcontradicting
the same from the observation. Even though RegCM4 with ESA setup improved the sim-
ulation by reducing bias, further enhancement is needed. There was hardly any difference
between the two years in soil moisture using both the combinations.
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Figure 13. Equitable threat score for different rainfall categories (0 — 5, 5 — 10, 10 — 20 and 20 - 50 mmday ) during 2002 over all
India and five homogeneous regions [69].
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470 Surprisingly,_the model showed mixed performance in simulating rainfall during two
671 years and therefore the results were not convincing. Hence, based on the above analysis,
672 itis concluded that the contrasting monsoon features were not well captured by the model
673 in comparison to the observations.
674 3.4. Quantitative evaluation: equitable threat score
475 i

76
477

78 ofhits-misses-and-false-alarmsw hileT-and—H rand i
479 ; .

80
481
482 indicatingperfeetskill-In our study, ETS is computed over Al and five homogeneous
683 regions (described earlier) for different rainfall category (0 —5, 5 - 10, 10 — 20 and 20 — 50
484 mmday ') during 2002 and 2011 and are illustrated in Fig. 13 and Fig. 14 respectively.
485
486 Fhe Higher ETS in 2011 (Figure 14) indicates that the precipitation events at all India
487 level were better estimated by the model in 2011 compared to 2002 (Figure 13-&14). Mag-
688 nitude of ETS was relatively higher in ESA simulation for all rainfall categories in 2011

689 indicating improvement in rainfall simulation using ESA soil moisture.
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Figure 14. Same as figure 13 but for 2011.

Although, RegCM4 with default setup showed similar skill in higher rainfall category (10
— 20 and 20 - 50 mmday ), its efficiency deviated in low (0 - 5mmday ) or moderate (5 —

10 mmday ) rainfall cases. At regional scale, highest ETS was noticed over NWI followed

by CNEI, WCI, SPI and NEI. In 2011, the model with default configuration showed higher
ETS in the low category rainfall over CNEI, WCI and SPI. Moderate rainfall was better
estimated using the ESA setup. As observed earlier, ETS values were similar for both the
setup in high rainfall cases indicating superior efficiency of the model in predicting high
rainfall compared to other categories. During 2002, higher ETS was noticed in higher rain-
fall cases over NWI followed by Al but failed to estimate other categories. The model was
unable to show any skill for other regions. It is noteworthy to mention that RegCM4 con-
sistently showed better skill over NWI in estimating moderate/high rainfall events irre-
spective of the years. Performance of RegCM4 in 2011 (normal year) was better compared
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to 2002 (deficit year) and consequently exhibited superior skill in predicting all categories
of rainfall while initialized with ESA soil moisture.-

4. Discussion

In this study, the impact of soil moisture initialization technique in the model
RegCM4 was investigated through-the-ineorperationofby incorporating high--resolution
satellite-derived soil moisture data from ESA-CCI. In order to evaluate this aspect, sea-
sonal simulations were conducted during two specific years viz., 2002 (deficit monsoon
year) and 2011 (normal monsoon year) with default seilmeistareas well as modified soil
moisture. A comprehensive evaluation was carried out based on the three essential pa-
rameters viz., surface temperature, soil moisture and rainfall-through-the investicationof
these. These parameters were investigated with their distribution and accuracy at differ-
ent temporal and spatial sealescales.

Erom-theThe surface temperature distributionitsvas clearly noticed that model skill
was relatively better while initializedinitializing with the soil moisture from the ESA. The
magnitude and distribution of the temperature were better predicted by the model in-this
setup-although having warm and cold biases over various regions of the country. In com-
parison to the default configuration, RegCM4 reduced the surface temperature biases sig-
nificantly in the ESA setup. Statistical values such as correlation and standard deviation
is consistently better using ESA soil moisture. Simulated soil moisture was higher in
RegCM4 than that-efESA-CCI, but when initialized using ESA soil moisture, it lowered
the magnitude of soil moisture and portrayed better performance. Rainfall validation
demonstrated that model showed superior skill while initialized with ESA soil moisture
beth-inon a seasonal and monthly scale. However, the model couldn’t able-te-prediet-ac-
curately predict the temporal variation at daily rainfall. Studies on soil moisture initiali-
zation with RegCM over other regions across the globe also highlighted similar skills.
Over European region, Patarcic and Brancovic [30] investigated the skill of RegeCM3 and
found reduction (enhancement) in systematic errors (deterministic skill) of RegCM3 while
initialized with high-resolution soil moisture. Over Asia, Liu et al. [31] mentioned that
RegCM4 with higher initial soil moisture reduced the surface temperature and conse-
quently increased the rainfall although the impact was more in mid-latitude compared to
the tropics. This study also highlighted that temperature (rainfall) response was stronger
(weaker) over India. Hu et al. [38] indicated that description of soil moisture with RegCM?2
affected the model bias over China. Similar studies with other models (e.g., Weather Re-
search and Forecasting Model) also showed that the skill scores and frequency bias of
rainfall and root mean square of temperature were improved while used soil moisture
from global forecast system [72].

Although, RegCM4 with ESA setup appeared to ameliorate the performance, stil
improvement is still necessary. Careful examination proclaimed that the model perfor-
mance was-deteriorated, particularly during the extreme monsoon year (2002) although it
showed acceptable accuracy during normal monsoon year (2011). Major association of the
poor skill during 2002 was the inefficiency to pick up various epochs of ISM precisely and
thereby showed early onset and delayed withdrawal. However, it was also recognized
that simulated rainfall was surprisingly low during the peak monsoon months viz., July
and August during 2011 (normal). In addition, rainfall was extremely high in June and
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July during 2002 (deficit). This indicated that RegCM4 couldn’t be able to capture the con-
trasting features of ISM accurately. Thus—thisIn brief, the soil moisture initialization can
significantly improve the model skill in simulating weather/climate features and hence
should be paid more attention. Our overall analysis infers significant improvement in the
model skill in simulating surface temperature and rainfall distribution while using high-
resolution ESA soil moisture albeit lacunae noticed in temporal variation. ETS of rainfall
was higher with ESA setup.

5. Conclusion

This study provided a primary assessment of the realistic soil moisture initialization
through seasonal simulation of ISM using regienalmedeland-impartspotentialimprove-

forthosefuture studies-the regional model. In summary, we found RegCM4 was sensitive
to the soil moisture initialization and consequently imparts potential improvement in sim-
ulating surface temperature and rainfall while initialized with high-resolution, satellite-
derived soil moisture data. Although, the model showed reasonable skill in normal vear,
it still came across difficulties in simulating different epochs of monsoon in extreme year
in particular. Further investigation is therefore required to enhance the model skill.

6. Limitation and future studies

The investigations presented here are the preliminary ideas for similar modeling
studies in future. Thus, systematic investigation with the added number of extreme years
may reproduce more robust results. In addition, it is also important to test the model skill
using soil moisture data from different sources.
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