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Abstract: As a system becomes more complex, at first, its description and analysis becomes more1

complicated. However, a further increase in the system’s complexity often makes this analysis2

simpler. A classical example is Central Limit Theorem: when we have a few independent sources3

of uncertainty, the resulting uncertainty is very difficult to describe, but as the number of such4

sources increases, the resulting distribution get close to an easy-to-analyze normal one – and5

indeed, normal distributions are ubiquitous. We show that such limit theorems make analysis of6

complex systems easier – i.e., lead to blessing of dimensionality phenomenon – for all the aspects7

of these systems: the corresponding transformation, the system’s uncertainty, and the desired8

result of the system’s analysis.9

Keywords: limit theorems; curse and blessing of dimensionality; neural networks10

1. Introduction: From Curse of Dimensionality to Blessing of Dimensionality11

First, a curse. As a system becomes more complex, at first, its description and analysis12

becomes more complicated.13

Then, a blessing. However, a further increase in the system’s complexity often makes14

this analysis simpler.15

Example. A classical example of this first-curse-then-blessing phenomenon is the joint16

effect of many random phenomena. When we know the probability distribution of each17

phenomenon, in principle, we can compute their joint effect – but, as the number of18

these phenomena becomes larger and larger, the corresponding computations become19

more and more complicated. At first glance, this is a classical example of the curse of20

dimensionality.21

However, as the number of these phenomena increases further, we start seeing22

the effect of the Central Limit Theorem (see, e.g., [26]), according to which, under23

reasonable conditions, the joint effect of many small independent random phenomena is24

close to Gaussian. The resulting distribution becomes very close to the easy-to-analyze25

Gaussian distribution – and this is one of the main reasons why normal distributions are26

ubiquitous.27

Is this a lucky example or a general trend? At first glance, it may appear that the28

Central Limit Theorem is a lucky break in the dark world of curse-of-dimensionality29

phenomena.30

It is a general trend: what we show in this paper. In this paper, we show that the above31

pessimistic viewpoint is – well – unnecessarily pessimistic. Actually, as we will show,32

similar limit theorems are ubiquitous – and their use can (and do) help in data processing33

in general and, in particular, in neural data processing. These limit theorems are not34

only helpful – they explain a surprising empirical success of many techniques, from35

traditional neural networks to convex techniques and clustering.36
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2. Two Main Sources of Dimensionality: Spatial and Temporal37

To provide an adequate analysis of the situation, let us first observe that in general,38

there are two main sources of dimensionality:39

• First, at each moment of time, there is usually a large number of phenomena –40

located, in general, at different points in space – that need to be taken into account.41

Even if we use a few parameters to describe each of these phenomena, overall, we42

will need a very large number of parameters to describe all these phenomena – and43

thus, the dimensionality of the problems grows. We will call this dimensionality44

of spatial origin, or simply spatial dimensionality, for short. The above-mentioned45

Central Limit Theorem is a good example of spatial dimensionality.46

• Also, there may be parameters describing the history of this phenomenon – which47

also affect its current state. For example, in a sensor, the original signal may be trans-48

formed many times, and what we see is the result of all these past transformations.49

We will call this dimensionality of temporal origin, or simply temporal dimensionality.50

In this paper, we will study the limit theorems related to both sources of dimensionality.51

Comment. Limit theorems are often somewhat complicated to understand and prove.52

In our experience, a better understanding of a complex multi-dimensional phenomena53

is usually achieved if we consider easier-to-analyze few-dimensional particular cases54

or analogues. For limit theorems, a natural few-dimensional analogues are iterative55

methods in numerical mathematics, such as:56

• the Newton’s iterative method

x(k+1) = x(k) −
f
(

x(k)
)

f ′
(
x(k)

)
for finding the solution to the equation f (x) = 0 or57

• since we are interested in neural network applications – the gradient method

x(k+1)
i = x(k)i − α · ∂ f

∂xi |x=x(k)

for finding the minimum of a function f (x).58

In both examples, convergence is not guaranteed, and the results explaining when there59

is convergence are often difficult to prove. However, what is much easier to prove is that60

if there is a convergence, then the limit satisfies the desired property – or at least some61

part of this desired property. Indeed:62

• For the Newton’s method, if x(k) → x, then, in the limit, we get x = x − f (x)
f ′(x)

,63

which implies that f (x) = 0.64

• For the gradient descent, if x(k) → x, then, in the limit, we get xi = xi − α · ∂ f
∂xi

,65

which implies that
∂ f
∂xi

= 0. Thus, the limit point is always a stationary point,66

which is a necessary (but, as is well known, not sufficient) condition for it being the67

location of the minimum.68

Similarly to these cases, in this paper, we will concentrate not so much on the conditions69

under which the processes converge, but rather on the description of the limit cases when70

there is convergence.71

3. Dimensionality of Spatial Origin72

As we have mentioned, the standard Central Limit Theorem is an example of what73

we called dimensionality of spatial origin. While many consequences of this theorem are74

well known, as we will show, there are many aspects of this theorem which still need75
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exploring. So, the first thing we will consider – in the first subsection of this section – is76

what are the less known consequences of the Central Limit Theorem.77

Of course, the limit distribution does not have to be normal: as we have mentioned,78

the convergence to the normal distribution happens only under certain conditions. For79

situations when these conditions are not satisfied, there are more general limit theorems.80

Applications of these more general theorems – mostly to uncertainty quantification – is81

what we will overview in the second subsection of this section.82

All this assumes that we know the probability distributions that we are trying83

to combine. But what if we do not know the probabilities, what if we only know the84

corresponding range of possible values – and we do not know the probabilities of85

different points from this range? This situation is discussed in the third subsection of86

this section.87

This section ends with related open questions.88

3.1. Not-Well-Known Consequences of the Central Limit Theorem89

Why are many things in the words discrete? Outside quantum physics, most physical90

processes are continuous, most probability distributions are continuous – so what we91

should observe should be continuous as well. However, in reality, many things in the92

real world are discrete. We do not have weather continuously changing from sunny to93

rain: most of the time, we either have a sunny day or a rainy day. Yes, it is possible to94

have hybrid animals like mules, but most of the time, animals we see fall into one of the95

precise categories.96

In general, when we use a neural network (or any similar tool) for classification,97

what this network actually produces are continuous numbers – that can be converted,98

e.g., to degrees to which the object belongs to different categories. However, usually,99

we do not return these degrees to the user. What usually do at the end is selecting one100

of these categories (e.g., the most probable one) – and in most cases, this is exactly the101

desired classification, cat or dog, car or not-a-car, disease or healthy.102

This discreteness definitely helps when making decisions – instead of a continuum103

of possible values, we need to deal with only a few discrete ones. So, this discreteness104

can be viewed as an example of a blessing of dimensionality.105

But why are we mentioning this discreteness? At first glance, it may seem to be106

unrelated to the Central Limit Theorem – which is all about the normal distribution,107

which is, of course, absolutely continuous. Interestingly, there is a relation. Let us108

describe it.109

This puzzling discreteness has been observed before. Of course, we are not the first110

ones who noticed that, in spite of the the fact that many processes are continuous, what111

we observe is often discrete. For example, B. S. Tsirelson noticed in [28] that in many112

cases, when we reconstruct the signal from the noisy data, and we assume that the113

resulting signal belongs to a certain class, the reconstructed signal is often an extreme114

point from this class – i.e., is one of the discrete extreme points. For example:115

• when we assume that the reconstructed signal is monotonic, the reconstructed116

function is often (piece-wise) constant;117

• if we additional assume that the signal is one time differentiable, the result is usually118

one time differentiable but rarely twice differentiable, etc.119

Tsirelson’s explanation. Out of many papers that mention the puzzling discreteness,120

we cited the paper [28] – because this paper not only mentions the fact of discreteness, it121

also provides an explanation for this discreteness, and this explanation is closely related122

to the Central Limit Theorem (see also [20]).123

Indeed, when we reconstruct a signal from a mixture of the signal and a Gaussian124

noise, then the maximum likelihood estimation (a traditional statistical technique; see, e.g.,125

[26]) means that our of all possible signals from the given class of signals, we look for126
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the signal which is the closest (in the least squares — i.e., in effect, Euclidean – metric) to127

the observed “signal + noise” combination.128

In particular, if the signal is determined by finitely many (say, d) parameters, we
must look for a signal~s = (s1, . . . , sd) from the a priori set A ⊆ Rd that is the closest (in
the usual Euclidean sense) to the observed values

~o = (o1, . . . , od) = (s1 + n1, . . . , sd + nd),

where ni denotes the (unknown) values of the noise.129

Since the noise is Gaussian, we can conclude that the average value of (ni)
2 is close

to σ2, where σ is the standard deviation of the noise. In other words, we can conclude
that

(n1)
2 + . . . + (nd)

2 ≈ d · σ2.

In geometric terms, this means that the distance√√√√ d

∑
i=1

(oi − si)2 =

√√√√ d

∑
i=1

n2
i

between~s and~o is ≈ σ ·
√

d. Let us denote this distance σ ·
√

d by ε.130

For simplicity of explanation, let us consider the case when d = 2, and when A is a131

convex polygon. Then, we can divide all points p from the exterior of A that are ε-close132

to A into several zones depending on what part of A is the closest to p: one of the sides,133

or one of the edges.134

Geometrically, the set of all points for which the closest point a ∈ A belongs to the135

side e is bounded by the straight lines orthogonal (perpendicular) to e. The total length136

of this set is is therefore equal to the length of this particular side; hence, the total length137

of all the points that are the closest to all the sides is equal to the perimeter of the polygon.138

This total length thus does not depend on ε at all.139

On the other hand, the set of all the points at the distance ε from A grows with the140

increase in ε; its length grows approximately as the length of a circle, i.e., as const·ε.141

When ε increases, the (constant) perimeter is a vanishing part of the total length.142

Hence, for large ε:143

• the fraction of the points that are the closest to one of the sides tends to 0, while144

• the fraction of the points p for which the closest is one of the edges tends to 1.145

Thus, with high probability, the reconstructed signal corresponds to one of the edges146

(extreme points) of the set A.147

Similar arguments can be repeated for any dimension. For the same noise level σ,148

when d increases, the distance ε = σ ·
√

d also increases, and therefore, for large d, for149

“almost all” observed points~o, the reconstructed signal is one of the extreme points of150

the a priori set A.151

Much less probable is that the reconstructed signal belongs to the 1-dimensional152

face of the set A, even much less probable that s belongs to a 2-D face, etc.153

Methodological consequence. So, when the dimension increases, we have a clear154

example of blessing of dimensionality: instead of having to consider a continuum of155

possible states, we only have to deal with a much smaller discrete set of extreme points –156

edges of the corresponding polyhedron.157

So, all observed phenomena falls into a few clusters – exactly as we observe in many158

cases.159

Comment. This idea helps even in the quantum case. Namely, in quantum physics,160

there is a known paradox formulated by Schroedinger himself (the author of the main161

equation of quantum physics): while in quantum physics, we can have a superposition162

of any two states, how come we never see a superposition of two macro-states, e.g., of163
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the state in which a cat is live and the state in which the same cat is dead? This is indeed164

a serious problem, it was one of the reasons why Einstein did not believe that quantum165

physics is an adequate description of reality.166

The above idea explains this paradox – with very high probability, we will observe167

one of the two original states and not their convex combination (i.e., in this case, not168

their superposition).169

3.2. Uncertainty Quantification and Probabilistic Limit Theorems – Including Theorems Beyond170

Normal Distributions171

Need for uncertainty quantification. Whether we use neural networks of whether we172

use other algorithms for data processing, the inputs to all these algorithms are real173

numbers. These real numbers mostly come from measurements, and measurements174

are never absolutely accurate; see, e.g., [23]. There is always noise. As a result, the175

measurement results x̃i are, in general, somewhat different from the actual (unknown)176

values xi of the corresponding quantities, and the difference ∆xi
def
= x̃i − xi – known as177

measurement error – is, in general, different from 0. So, when we apply the data processing178

algorithm f to the measurement result, the algorithm’s output ỹ = f (x̃1, . . . , x̃n) is, in179

general, different from the value y = f (x1, . . . , xn) that we would have obtained if we180

knew the actual values xi.181

In practice, it is important to know how close is our estimate ỹ to the desired value182

y, i.e., in other words, how big can the difference ∆y def
= ỹ− y be. For example, suppose183

that we are prospecting for oil, and our estimate ỹ for the amount of oil y in the given184

region is 150 million ton. Then, if the accuracy is 10 million tons, this estimate is good185

news, and we can start exploiting this region. On the other hand, if it is 150± 200, then186

maybe there is no oil at all, so before we invest a lot of money into digging deep wells,187

we better perform more measurements to make sure that this money will not be wasted.188

Estimating ∆y is one the most important aspects of uncertainty quantification.189

Possibility of linearlization. We are interested in estimating the quantity

∆y = f (x̃1, . . . , x̃n)− f (x1, . . . , xn) = f (x̃1, . . . , x̃n)− f (x̃1 − ∆x1, . . . , x̃n − ∆xn).

Measurements are usually reasonable accurate, so the measurement errors ∆xi are
relatively small. For small values, their squares are much smaller than the values
themselves – and can therefore be usually safely ignored. For example, if ∆xi ≈ 10%,
then (∆xi)

2 ≈ 1%� ∆xi. Thus, a reasonable idea is to expand the above expression for
∆y in Taylor series and ignore terms which are quadratic (or of higher order) in terms of
the measurement errors ∆xi. As a result, we get a linear dependence:

∆y =
n

∑
i=1

ci · ∆xi, where ci
def
=

∂ f
∂xi

.

190

Comment. This linearization – replacing the generic dependence with a linear one – is a191

usual idea in applications. Actually, it one of the main ideas in many applications; see,192

e.g., [6].193

Here, the Central Limit Theorem can help. Let us first consider an important case194

when we know the probability distribution of each measurement error ∆xi. Usually,195

each measuring instrument is calibrated – if it has a bias, i.e., if the mean value E[∆xi]196

of the measurement error is not 0, we simply subtract this mean value from all the197

measurement results and thus, reduce it to 0.198

In many practical applications, the number n of inputs is large, and the role of199

each of these inputs is relatively small. For example, one of the important data when200

prospecting for oil is seismograms – several-times-a-second recordings of the seismic201

signal. There are thousands of the corresponding values, and the effect of each indi-202
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vidual value of the result of data processing is indeed small. The measurement errors203

corresponding to different measurements are usually reasonably independent. Thus,204

we are under the condition of the Central Limit Theorem – so we can conclude that the205

desired estimation error ∆y is normally distributed.206

A normal distribution is uniquely determined by its mean µ and its standard
deviation σ. When each measurement error ∆xi has mean value 0, the mean value of
their linear combination ∆y is also 0, and the variance σ of this linear combination can
be determined from the known fact that the variance of the sum of independent random
variables is equal to the sum of variances:

σ2 =
n

∑
i=1

c2
i · σ2

i .

207

How can actually estimate σ? In principle, we can directly use the above formula to es-
timate the standard deviation σ of the approximation error ∆y. The main computational
difficulty is that the data processing algorithm f is usually very complicated (especially
in case of neural networks), so it is not possible to compute the partial derivatives ana-
lytically. We can, however, use the fact that a partial derivative is defined as the limit of
the ratios

∂ f
∂xi

= lim
h→0

f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ
h

,

and thus, for a sufficiently small h, the value of the ratio is very close to the desired
partial derivative. Thus, we can estimate ci as

ci ≈
f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
.

The problem with this idea is that it takes too long. Indeed, if we have several208

thousand inputs, then, to compute all the corresponding values ci, we need to call the209

data processing algorithm f (which often takes hours to compute) n + 1 times: one time210

to compute ỹ and n time to compute the corresponding n ratios ci. For several thousand211

inputs, this is not realistic.212

Good news is that we can instead use Monte-Carlo techniques: instead of computing
n partial derivatives, we can simply emulate, certain number of times K, measurement
errors δx(k)i which are normally distributed with standard deviation σi, and compute the
differences

δy(k) = ỹ− f (x̃1 − δx(k)1 , . . . , x̃n − δx(k)n ).

By the same logic as before, the differences δy(k) are normally distributed with the213

desired standard deviation σ. Thus, from a sample of K values, we can estimate σ with214

accuracy ≈ 1/
√

K [26]. So, if we want to estimate σ with relative accuracy 1/
√

K ≈ 20%,215

it is sufficient to call the algorithm f K = 25 times – which is much much smaller than216

thousands needed for exact estimation.217

So what? Why are we spending so much time on the ideas that are well known to many218

readers? Because this will prepare readers to something that – unfortunately – not too219

many readers now: that we can use limit theorems beyond normal distributions to cover220

other realistic cases of uncertainty quantification.221

Interval uncertainty. In the previous text, we assumed that for each measurement, we222

know the probability distribution of the corresponding measurement error. Sometimes223

we do know this distribution, but often, this distribution is not known. Indeed, nowa-224

days, many sensors are cheap, but determining the probability distribution for each225

sensor would cost too much and is thus often not done. Instead, we have to rely on226

the information provided by the manufacturers of the corresponding measuring instru-227

ments, and this information often consists of simply providing an upper bound ∆i for228
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the absolute value of the corresponding measurement error; see, e.g., [23]. (At least such229

an upper bound needs to be provided – otherwise, it is not a measuring instrument, it is230

a wild guess.)231

Once we know the upper bound ∆i on the absolute value |∆xi| = |x̃i − xi| of the232

measurement error, then, based on the measurement result x̃i, the only information we233

gain about the actual (unknown) value xi of the corresponding quantity is that this value234

belongs to the interval [xi, xi]
def
= [x̃i − ∆i, x̃i + ∆i]. Because of this fact, such a situation235

is known as interval uncertainty.236

Under such interval uncertainty, the only thing we can conclude about the value
y = f (x1, . . . , xn) is that it belongs to the range [y, y] of possible values of the function f
when xi are in the corresponding intervals:

[y, y] = { f (x1, . . . , xn) : xi ∈ [xi, xi] for all i}.

The problem of computing this interval is known as the problem of interval computation;237

see, e.g., [17,18].238

In general, this problem is NP-hard [14] – which means that, unless P = NP (which239

most computer scientists do not believe to be possible), no feasible algorithm is possible240

for solving all particular cases of this problems. However, in the linearized case, a241

feasible algorithm is possible. Indeed, since the expression ∑
i

ci · ∆xi is linear (thus242

monotonic) in the variables ∆xi, its largest value is attained:243

• for ci > 0, when the value ∆xi is the largest, i.e., when ∆xi = ∆i, and244

• for ci < 0, when the value ∆xi is the smallest, i.e., when ∆xi = −∆i.245

Thus, the largest possible value ∆ of ∆y is equal to

∆ =
n

∑
i=1
|ci| · ∆i.

Similarly, one can easily show that the smallest possible value of ∆y is equal to −∆.246

How to estimate uncertainty in the interval case. How can we compute this sum ∆?247

We can directly use this formula – i.e., use numerical differentiation to compute all the248

partial derivatives ci and then compute the sum. However, as we have mentioned earlier,249

in many practical situations, this approach is not realistic. What can we do?250

Another limit distribution comes to the rescue. As we have mentioned, the conver-
gence to a normal distribution only happens under certain conditions. In other cases,
we may have convergence to other so-called infinitely divisible distributions [26]. One of
such distributions is the Cauchy distribution, in which the probability density ρ(x) has
the following form:

ρ(x) = const · 1

1 +
( x

∆

)2 ,

for some parameter ∆.251

An important feature of the Cauchy distribution is that if we have several inde-
pendent Cauchy distributed random variables ri with parameters ∆i, then their linear
combination ∑

i
ci · ri is also Cauchy distributed, with parameter ∆ = ∑

i
|ci| · ∆i – which

is exactly the value that we want to compute. This feature leads to the following Monte-
Carlo method for computing ∆: we emulate, certain number of times K, measurement
errors δx(k)i which are Cauchy distributed with paremeters ∆i, and compute the differ-
ences

δy(k) = ỹ− f (x̃1 − δx(k)1 , . . . , x̃n − δx(k)n ).

Then, due to the above feature, the differences δy(k) are Cauchy distributed with the252

desired parameter ∆. Thus, to a sample of K values, we can apply, e.g., the maximum253
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likelihood method [26], and thus estimate ∆ with accuracy ≈ 1/
√

K. Similarly to the254

case of normal distributions, this drastically speeds up computations: if we want to255

estimate ∆ with relative accuracy 20%, it is sufficient to call the algorithm f 25 times –256

which is much much smaller than thousands needed for exact estimation.257

This method has been successfully used in many applications; see, e.g., [13].258

Comment. Note that, in contrast to many simulation techniques, the use of Cauchy259

distribution in interval-related uncertainty quantification is not a realistic simulation:260

the actual measurement error is always located inside the interval [−∆, ∆], while the261

Cauchy-distributed random variable has a non-zero probability to be anywhere, in262

particular, outside the interval. In other words, this is one of the cases when the blessing263

of dimensionality comes not from the direct use of the corresponding limit theorem, but264

from its indirect use.265

3.3. What If We Have No Information about Probabilities266

Formulation of the problem. What if we know that the disturbance x = (x1, . . . , xn)267

is a joint effect of several very independent small ones: x = x(1) + . . . + x(N), where268

about each component x(i), we only know the set X(i) of its possible values – and we269

do not have any information about probabilities of different points within each set. The270

only constraint is that all the points from each set X(i) are small, i.e., that for some small271

values ε > 0, the length
∥∥∥x(i)

∥∥∥ of each vector x(i)) ∈ X(i) does not exceed ε. We will call272

such sets ε-small.273

In this case, the set X of all possible values of the sum x is the set of all possible274

sums x(1) + . . . + x(N), where x(i) ∈ X(i) for all i. In mathematics, the set of all such275

sums is known as the Minkowski sum of the sets X(i). The Minkowski sum is usually276

denoted by X(1) + . . . + X(N).277

What can we say about such set X?278

1-D case. The 1-D case n = 1 was studied in [11]. This paper showed that if a set X is the279

Minkowski sum of several ε-small closed sets, then it is ε-close to some interval I = [a, b],280

i.e.:281

• every point from the set X is ε-close to some point from the interval I, and282

• every point from the interval I is ε-close to some point from the set X.283

In the limit ε→ 0, we conclude that the Minkowski sum tends to the interval.284

Comment. This limit theorem is similar, in formulation, to the Central Limit Theorem285

and its generalizations: it shows that if a quantity can be represented as the sum of286

many small components, then the set of all possible values of this quantity is close to an287

interval – and the smaller the components, the closer is the resulting set to an interval.288

Similarly to the fact that the original Central Limit Theorem explains the real-life289

ubiquity of normal distributions, this limit theorem explains the ubiquity of interval290

uncertainty; see, e.g., [17,18,23].291

General case. It is well known that every convex set X containing 0 can be represented,292

for every ε > 0, as a Minkowski sum of ε-small sets: indeed, it is sufficient to take293

X(i) = N−1 · X for a sufficiently large N, then:294

• the inclusion X ⊆ X(1) + . . . + X(N) follows from the fact that each element x can295

be represented as the sum x = N−1 · x + . . . + N−1 · x; and296

• the opposite inclusion X(1) + . . . + X(N) ⊆ X follows from the fact that the set X is297

convex and thus, once the elements x(1), . . . , x(N) belong to this set, their convex298

combination N−1 · x(1) + . . . + N−1 · x(N) also belongs to X.299

Whether the opposite is true – i.e., whether only convex sets can be represented as sums300

of small sets – remained an open problem. This problem – first formulated in [11] – was301

resolved in [25], where it was shown that indeed, if a set X can be represented, for each302

ε, as the Minkowski sum of ε-small closed sets, then this set X is convex.303
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To be more precise, this paper showed that for every γ > 0, if a set X ⊂ IRd of304

diameter < 1 is δ-close to the Minkowski sum of sets of diameter ≤ ε, then X is γ-close305

to a convex set, for δ = γ/3 and ε = γ2/(20d).306

Comment. This limit theorem explains the ubiquity of convex set in real-life problems.307

This is very good news, since it is known that convexity makes many computational308

problems easier to solve; see, e.g., [21].309

3.4. Important Open Questions310

What is we only have partial information about probabilities? In the first two sub-311

sections of the current section, we considered the case when we know the probability312

distributions of the aggregated factors. In the third subsection, we considered the case313

when we only know the ranges, and we have no information about the probability of314

different values from these ranges.315

These are two extreme situations – either we know everything about the probabil-316

ities, or we have no information about these probabilities at all. In practice, we often317

have intermediate situations, when we have partial information about the probabilities.318

It is therefore desirable to extend the limit results from both extreme cases to the such319

intermediate situations as well.320

Possible approach and natural generalizations of the Central Limit Theorem. As321

we have mentioned earlier, when we know all the probabilities, then for uncertainty322

quantification, we can use Monte-Carlo approach with normal distributions. When323

we only know the upper bounds, we can use Cauchy distributions. What if for some324

components, we know the probabilities, and for others, we only know bounds? The325

resulting random variable is the sum of two partial sums, for which the first partial sum326

can be handled by the normal distribution, while the second partial sum can be handled327

by the Cauchy distribution. In this case, it seems reasonable to use the distributions328

corresponding to the sum of normally and Cauchy distributed random variables.329

The family of such distribution is also a natural limit – the limit of sums in which330

the first partial sum tends to normal distribution and the second partial sum tends to the331

Cauchy one. Such mixed distributions are not covered by the usual limit theorems, since332

these limit theorems consider 2-parametric limit families of probability distributions: e.g.,333

a normal distribution is determined by two parameters – mean and standard deviation.334

Sums would require more parameters: we need mean and standard deviation of the335

normal part and the parameter ∆ of the Cauchy part.336

Possible generalizations of the traditional limit theorems to such multi-parametric337

families have been analyzed in [29]. It turns out that, in general, in this case, the resulting338

distribution is equivalent to the distribution of the sum of several different infinitely339

divisible distributions: e.g., to the sum of normally and Cauchy distributed variables. So340

maybe other distributions of this time can be used for uncertainty quantification in other341

cases when we only have partial information about probabilities?342

What if we are interested in the extreme case? Very often, we are interested in the343

extreme case: e.g., when we design a bridge, we want it to withstand the strongest344

possible winds that can happen in this area. In such situations, we are interested not in345

the summary effect of several random variables, but rather in the largest value of several346

random variables – e.g., variables describing the wind on different days. When all these347

variables are identically distributed, then, similarly to the Central Limit Theorem, we348

have a finite-parametric family of distributions that represents the distribution of such349

extreme events; see, e.g.. [1,3–5,9,10,22,24].350

But what happens in a realistic setting when the distributions may be different? The351

Central Limit Theorem still works in such cases, but the Extreme Value Theorem stops352

working – and moreover, there are fundamental limitations to how far we can go in this353

direction: we cannot go as far as the Central Limit Theorem and consider all possible354

cases when distributions are different; see [15].355
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An important question is: how far can we go?356

4. Dimensionality of Temporal Origin357

Idea: reminder. In general, when a signal goes through a multi-layer sensor, it undergoes
a sequence of transformations, and these transformations are, in general, nonlinear. In
mathematical terms, this means that the resulting transformation f (x) of input to output
is a composition of several different nonlinear functions

f (x) = fn( fn−1(. . . f2( f1(x)) . . .)).

If n is large, what can we say about the resulting transformation?358

Let us formulate this idea in precise terms. As we have mentioned earlier, in this paper,359

we do not focus on conditions when there is a convergence, we only focus on the resulting360

limit. In line with this approach, let us assume that we have a finite-parametric family F361

of limit functions.362

If we have two sequences of transformations:363

• a sequence fi whose compositions tend to some function f ∈ F and364

• a sequence gi whose composition tends to some function g ∈ F,365

then in the case when we first apply all fi-transformations and then all gi-transformations,366

then the resulting limit function g( f (x)) should also belong to the family F. Thus, the367

desired family F of all possible limit functions should be closed under composition.368

Most transformations in sensors are reversible. So, if we limit ourselves to such369

transformations, and instead of first applying f1, then f2, etc., we change the direction370

of signal processing and first apply f−1
n , then f−1

n−1, etc., then, in the limit, instead of the371

original limit function f we will get the inverse function f−1(x). So, the class F of all372

possible limit function should contain, with each function f , its inverse function as well.373

So, the class F must be closed under composition and inverse. Such classes are known374

as transformation groups.375

Also, linear transformations are ubiquitous. Thus, it make sense to consider finite-376

parametric groups that contain all linear transformations. What are these groups?377

Enter Norbert Wiener. Interestingly, the answer to this question is related to Norbert378

Wiener, the father of cybernetics. As he describes in his pioneering monograph [30] on379

cybernetics, when he started working on engineering problems, at first, he trusted exact380

mathematical models much more than vague biological analogies. And then, when381

he came up with a draft design of a system for automatic vision, a neurophysiologist382

colleague – who saw the corresponding picture – asked him with surprise since when383

Wiener has become interested in human vision: because it turned out that what Wiener384

came up with after many thoughts and tries was exactly the scheme implemented in385

human vision. This experience lead to Wiener’s idea of cybernetics, a science studying386

both engineering and biological systems, in which one of the main ideas is that since we387

the humans are the product of billion years of improving evolution, our biology should388

be close to optimal – and thus simulating this biology can be very helpful in engineering.389

In some cases, this optimality was indeed confirmed. In some other cases, Wiener390

became so confident in the related optimality that he made several mathematical hy-391

potheses based on this confidence. For example, he learned, from the psychologists,392

that when we get closer and closer to an object, there are several clearly distinct phrases393

in our visual perception (which, by the way, again fits with the above explanation of394

discreteness):395

• When the object is very far, all we see is a formless blurb – in other words, ob-396

jects obtained from one another by arbitrary smooth transformations cannot be397

distinguished.398
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• When the object gets closer, we can detect whether it is smooth or has sharp angles.399

We may see a circle as an ellipse, a square as a rhombus (diamond). At this stage,400

images obtained by a projective transformation are indistinguishable.401

• When the object gets even closer, we can detect which lines are parallel but we may402

not yet detect the angles. For example, we are not sure whether what we see is a403

rectangle or a parallelogram. This stage corresponds to affine transformation.404

• Then, we have a stage of similarity transformations – when we detect the shape but405

cannot yet detect its size.406

• Finally, when the object is close enough, we can detect both its shape and its size.407

Each stage can be thus described by an appropriate transformation group. So, Wiener408

conjectured that if there was a group intermediate between, e.g., all projective and all409

continuous transformations, our vision mechanism – the result of millions of years of410

improving evolution – would have used it. Thus, he formulated a hypothesis that such411

intermediate transformation groups are not possible [30].412

Many mathematicians did not take this hypothesis too seriously – while they413

appreciated Wiener’s engineering ideas, they thought that he was going too far in his414

analogies. But other mathematicians took it seriously – and, two decades after the415

first edition of Wiener’s book, they came up with a formal proof that, indeed, under416

reasonable conditions, there is only one transformation group that contains all linear (=417

affine) transformations and some non-linear ones: namely, the group of all projective418

transformations [8,27].419

The general proof is very complicated – e.g., the paper [27] consists of more than
100 pages of dense mathematics. But good news is that at present, we are only interested
in the transformations of 1D signals. In this case, projective transformations are nothing
else but fractional-linear ones

f (x) =
a · x + b
c · x + d

,

and the corresponding proof can be shortened to a few pages; see, e.g., [19,31].420

So, we arrive at the following conclusion.421

So what are the limit transformations? We have shown that limit transformations form422

a finite-parametric transformation group that contains all linear transformations, and423

that all transformations from such a group are fractional linear – with linear ones being424

a particular case.425

Thus, we conclude that all limit transformations are fractional-linear.426

A similar conclusion can be made about all possible reasonable transformations. In-427

stead of looking for limit transformations, we can consider a different problem: to428

describe a class of all transformations which are, in some sense, reasonable. Linear trans-429

formations are reasonable: shift corresponds to the changing the starting point and a430

multiplication by a number corresponds to changing a measuring unit. A good example431

of both transformations are transformation between Celsius and Fahrenheit temperature432

scales.433

It is also natural to conclude that a composition of two reasonable transformations is434

reasonable, and that a transformation which is inverse to a reasonable transformation is435

also reasonable. If we want to use computers to deal with reasonable transformations, it436

also makes sense to require that the reasonable transformations form a finite-parametric437

family – since in a computer, we can only stored finitely many parameter values.438

Thus, the class of all reasonable transformations forms a finite-parametric trans-439

formation group containing all linear transformations. So, we conclude that every440

reasonable transformation is fractional linear.441

What are the implications for neural networks. Artificial neural networks – a perfect442

example of Wiener’s belief that emulating biological systems can be beneficial – are443

formed of neurons. In a neuron, first, we form a linear combination x of the inputs xi,444
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and then we apply some non-linear transformation y = s(x) to this linear combination.445

In neural networks, this linear transformation is known as an activation function.446

Which activation function should we use? The first nonlinear neurons use sigmoid
activation function

s(x) =
1

1 + exp(−x)
,

because, in the first approximation, this is how signals are processed in biological447

neurons; see, e.g., [2]. This activation function worked very well – much better than448

other activation functions that have been tried. This activation function is still often used449

in some layers of deep neural networks [7], where they are also very successful. How450

can we explain this success?451

A natural explanation comes from the fact that, as we have mentioned earlier, all
inputs come with noise. The simplest case is when, for each measurement, we just have a
constant noise ni = const, when instead of the actual values xi, the measurement results
are shifted by this value ni, to xi + ni. As a result, the linear combination x is also shifted
by some constant n (which is the similar linear combination of noises ni):

x → x + n.

We do not know the exact value of this noise – if we knew, we could simply subtract452

it from all the measured values. It is therefore reasonable to require that the result of453

applying the activation functions should be insensitive to this noise as much as possible.454

Of course, we cannot simply require that s(x + n) = s(x) for all x and n – this455

would imply that the function s(x) is a constant that does not depend on the input at456

all. This makes sense: for example, the formula d = v · t showing that the distance457

can be obtained by multiplying velocity and time does not change when we change458

the unit of time, e.g., from hours to seconds. However, this invariance does not mean459

that the formula remains exactly the same when we change the unit of time: to keep460

the formula the same, we also need to apply an appropriate transformation to velocity461

as well: namely, replace the values in km/h with a value in km/sec. Similarly here, a462

natural idea is to require that if we apply a shift x → x′ = x + n to the input, the formula463

remains the same if we applying an appropriate transformation to y as well, i.e., that464

y′ = s(x′), where y′ = T(y) for some reasonable transformation y.465

In other words, we conclude that for every value n, there exists some reasonable
transformation Tn for which s(x′) = Tn(y). Here, x′ = x+ n, and y = s(x), so s(x+ n) =
Tn(s(x)). We have already concluded that reasonable transformations are fractional
linear, thus we have

s(x + n) =
a(n) · x + b(n)
c(n) · x + d(n)

for some values a(n) through d(n). To describe all the functions s(x) that have this466

property, we can differentiate both side of this equation by n and take n = 0. The467

resulting differential equation can then be explicitly solved; see, e.g., [12,16,19]. The468

generic monotonic solution to this equation indeed differs from the sigmoid activation469

functions only by linear transformations of x and y.470

This explains why the sigmoid activation function indeed works well.471

Comment. Similar invariance ideas can explain the rectified linear activation functions472

used in deep learning – as well many other empirically successful features of deep473

learning algorithms; see, e.g., [12].474

5. Conclusions475

In this paper, we showed that limit theorems – similar to the Central Limit Theorem476

from statistics – make analysis of complex systems easier – i.e., lead to the blessing-of-477

dimensionality phenomenon. We showed that this simplification happens for all the478

aspects of these systems:479
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• for the corresponding transformations – as shown, e.g., by the description of all480

possible limit and/or reasonable transformations, and by the resulting theoretical481

explanation of the efficiency of sigmoid activation functions;482

• for the system’s uncertainty – as shown, e.g., by the use of limit distributions such483

as normal and Cauchy to make uncertainty quantification more efficient, and by the484

use of limit theorems to explain the ubiquity of interval uncertainty, and485

• the desired result of the system’s analysis – as shown, e.g., by a limit-theorem-based486

explanation of why it is usually possible to meaningfully classify objects into a small487

finite number of classes.488
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