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Abstract 

Significant earthquakes frequently occur in Indonesia. Indonesia is situated over three 

active tectonic plates, resulting in the formation of faults and trenches on the land and ocean 

floor. For the last 120 years since 1900, there have been more than 1,250 significant 

earthquake events in Indonesia. In this study, we analyse Indonesia's significant earthquake 

events using geostatistical and geovisualisation methods to produce an appropriate 

geospatial analysis platform using the RShiny package to build the WebGIS application. 

The results show that the earthquake events were spatially distributed from the Sumatera 

fault in the western part of Indonesia to the southern part of Indonesia, where the Java 

trench was located and the eastern part of Indonesia. The WebGIS application received a 

positive evaluation by respondents, with a mean value of 1.617 for pragmatic quality, 1.808 

for hedonic quality, and 1.713 for overall quality. This means that the WebGIS application 

is of good quality based on respondents' impressions. The users also more easily gained 

insight into information as a result of geostatistical methods. The information gained by the 
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users during the user interaction with the WebGIS platform overlapped with the 

information that the researcher started with, that is, the spatial cluster of significant 

earthquakes in Indonesia. 
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1. Introduction 

Indonesia is an archipelago country situated between three tectonic plates of the 

world, namely, the Eurasian plate located in the north, the Indo-Australian plate in the 

south, and the Pacific Ocean plate located in the east. The collision of these three tectonic 

plates led to creating a subduction zone of the Indo-Australian plate moving northward with 

the Eurasian plate, which tends to move southward (Hamilton, 1970). This subduction 

process causes the formation of faults on the land and ocean floor. These activities can 

trigger earthquakes, so it is not surprising that Indonesia is an area prone to earthquakes. 

According to the United States Geological Survey (USGS), Indonesia has more 

earthquakes than Japan because almost the whole country is situated between active seismic 

zones (USGS, 2021b). 

Based on USGS data, from 1900 to 2020, there were 1,250 earthquakes with 

magnitudes greater than 6.0. The earthquakes occurred on almost all islands in Indonesia, 

except Kalimantan Island, which recorded only four earthquakes during a period of more 

than 100 years, namely, in 1923 and 1957, with an average magnitude scale of 6.2. 

Earthquakes occur mostly in eastern and western parts of Indonesia, such as the Flores Sea, 

Banda Sea, Maluku, and Sulawesi, as well as along the coast and oceans of Sumatra Island. 

On February 1, 1938, a great earthquake in the Banda Sea with a magnitude of 8.5 caused 

a tsunami, but no casualties were recorded. In December 2004, an earthquake occurred in 

Aceh Province with the largest magnitude scale of 9.1, which caused a tsunami that caused 

considerable damage and casualties (USGS, 2021a). 

The phenomenon of earthquakes in Indonesia can be illustrated through geospatial 

analysis to determine the relationship between geographical features on the Earth's surface 

(Ramdani, 2017). An illustration of the relationship between these geographic features can 

be obtained from spatial data analysis, which is explored by specific methods to understand 
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better what is presented. The spatial autocorrelation technique can be used as a method of 

analysing data. This technique aims to measure how a distance can affect certain variables 

to determine the level of similarity of an object to its nearest object (Maroko et al., 2011). 

In the geospatial analysis, visualisation is an important aspect that cannot be avoided. 

Visualisation is needed to represent spatial data in the form of creations and a series of 

maps that can be combined with pictures, graphs, diagrams, tables, and so on (Smith et al., 

2018). Correctly interpreting spatial data into a map is important because geovisualisation 

can provide a complex picture of a phenomenon and the relationships within that 

complexity (Maceachren & Kraak, 2001). 

Geovisualisation refers to digital representations of real-world places that are 

geographically accurate and built with high degrees of realism (Newell & Canessa, 2017) 

or generally refers to visual depictions of geospatial data (Hutchison & Mitchell, 2007). 

According to reference (MacEachren & Kraak, 2001), geovisualisation is an integrated 

approach from six different domains of science, including computing, cartography, image 

analysis, information visualisation, exploratory data analysis and geographic information 

systems, to visually explore, analyse, synthesise, and present geospatial data. 

The traditional and conventional focus of earthquake research has been within the 

hard sciences in fields such as geology, engineering, and disaster science. This has provided 

opportunities for the geovisualisation domain in providing techniques and technologies to 

unearth through visual approach the hidden spatial and temporal dimensions of earthquake 

datasets. 

This paper is divided into six sections. First, the paper provides the introduction and 

background of the study. The second section presents the related works that have been done 

on the topics and methods of geovisualisation. The third and fourth sections detail the study 
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area, data, and methods used in the study, respectively. The fifth section presents the results, 

and the final section provides the conclusion of the study. 

 

2. Related works 

Various visualisation methods and tools have been rapidly developed and are widely 

used in various studies. For instance, research on the geovisualisation of spatial databases 

on settlements in Hungary produced interactive web-based maps using the open-source 

WebGIS tool and Google application programming interfaces (APIs) (Balla et al., 2020). 

The geovisualisation module in QGIS and KML used in that research can be applied to 

present geospatial information via the internet. The result is web-based maps that provide 

a detailed picture of the level of contamination, the spatial distribution of the groundwater 

supply of the investigated settlements, and the changes that have occurred following the 

sewage system's establishment. Other studies have also shown that the use of tools such as 

ArcGIS, Tableau, RShiny, and Leaflet can support the presentation of attractive spatial data 

visualisation (Dharmawan et al., 2017; Jahangiri et al., 2020; Sang et al., 2021; Tate et al., 

2011; Zichar, 2020). 

Some studies use three-dimensional visualisation for user learning preferences for 

disaster education purposes and cadaster visualisation (Wahyudi et al., 2020; Wang et al., 

2017). Their results show that the visualisation helps the user easily understand the disaster-

prone areas of landslides and cadaster maps of property units. 

Another study used a geovisualisation approach with retail location decision support 

(Hernandez, 2007). The study examined four different scales of analysis: national, regional, 

market, and micro-level and outlined the benefits of geovisualisation, such as the ability to 

dynamically explore spatial–temporal data, the multi-dimensional display of complex 

datasets, and the sequencing and animation of spatial–temporal data to visually uncover 
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trends and identify anomalies. Reference (Newell & Canessa, 2017) used the 

geovisualisation approach in coastal environments, and some recommendations for 

geovisualisation emerged, such as full navigability, dynamic elements, and flexibility. 

Furthermore, reference (Hamad & Quiroga, 2016) presented a geovisualisation 

approach that was applied to transportation system archived data and included the incident 

detection rate, false alarm rate, quality control flags, and data completeness rate. The 

analysis was performed at a detailed segment-by-segment level of road networks. They 

found that geovisualisation helps the transportation management centre (TMC) official 

identify spots with any abnormal behaviour, whether at the corridor level or at the segment 

level. Reference (Cominelli et al., 2019)   used a geovisualisation approach to inform the 

management of vessel noise in support of species conservation. Using hotspot mapping, 

they suggested that small changes in shipping routes can reduce noise exposure levels for 

Cetacean species. 

Studies using geocomputation and geovisualisation have also been performed in the 

domains of human activity pattern analysis (Mei-Po Kwan, 2004), sediment contamination 

assessment (Forsythe et al., 2016), and social media analysis (Croitoru et al., 2017). 

However, a very limited number of studies assess earthquake events using the combination 

of geostatistical and geovisualisation approaches using open-source software and measure 

the user experience of the system. 

This study aims to perform an integrated geospatial analysis by presenting a web-

based interactive map created using the open-source WebGIS tool. In this study, we analyse 

spatiotemporal data on earthquakes in Indonesia that occurred during a period of 120 years 

with a scale of more than 6 magnitudes. Geostatistical and geovisualisation methods are 

used to produce geospatial analysis and RShiny as a support in building WebGIS, which is 
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the open-source of the R package. Finally, the user experience was measured using the User 

Experience Questionnaire (UEQ). 

 

3. Study Area 

Indonesia is situated between three active tectonic plates: the Eurasian plate in the 

northern part, the Indo-Australian plate in the southern part, and the Pacific Ocean plate 

in the eastern part. The confluence of these tectonic plates creates a subduction zone. 

This subduction zone then causes the formation of faults and trenches on the land and 

ocean floor. The activities of these faults and trenches lead to earthquake events. 

The active Sumatera fault and Java trench have created many large and destructive 

earthquakes in the western part of Indonesia. The active trenches in Flores, Wetar, 

Sulawesi, and Seram were responsible for the earthquake event in the eastern part of 

Indonesia (Figure 1). 

According to the Global Significant Earthquake Database by National Centers for 

Environmental Information (NOAA), for the last 120 years since 1900, there have been 

more than 290 significant earthquake events in Indonesia (NOAA, 2021). A significant 

earthquake means that the earthquake led to damage of approximately $1 million or 

more, casualties of more than 10, and magnitudes of 7.5 or greater. 

The three largest earthquake events in Indonesia occurred after 2000. The largest 

earthquake occurred on the west coast of Aceh Province on December 26, 2004, with a 

magnitude of 9.1. The second-largest earthquake occurred southwest of Sumatera on 

March 28, 2005, with a magnitude of 8.6. The same magnitude earthquake occurred on 

the west coast of North Sumatera on April 4, 2012. All of these earthquake events 

created tsunami. 
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Recently, the last significant earthquake events hit Mamuju-Majene of Sulawesi 

(January 14, 2021), Morotai of North Maluku (June 4, 2020), and Bogor-Sukabumi of 

West Java (March 10, 2020), with magnitudes of 6.2, 6.4, and 5, respectively. 

 

Figure 1. Study area and its geological setting. 

 

4. Data and Methods 

a. Data source 

In this study, the earthquake event dataset was retrieved from two different 

earthquake databases, i.e., USGS Search Earthquake Catalogue (USGS, 2021a) 

and NOAA Global Significant Earthquake Database (NOAA, 2021). The 

earthquakes used in this study are only significant earthquakes with magnitudes 

of 6 or more that occurred from 1900 to 2020. 
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The earthquake datasets were then divided into three different periods: (1) from 

1930 to 1960, (2) from 1961 to 1990, and (3) from 1991 to 2020. 

Furthermore, the national administrative boundary of Indonesia was retrieved 

from the Office for the Coordination of Humanitarian Affairs (OCHA) of the 

United Nations (UN) (OCHA, 2021). 

b. Geostatistical method 

There are three different geostatistical methods used, i.e., spatial distribution 

analysis, kernel density estimation, and spatial autocorrelation using local 

Moran statistics (Moran, 1950), local indicators of spatial association (LISA) 

(Anselin, 1995), and Getis-Ord (Gi Statistic) (Getis & Ord, 1992). All of these 

methods were processed within the RStudio environment. 

Using spatial distribution analysis, we plot the earthquake events for the last 

120 years in Indonesia based on magnitude and depth. Spatial autocorrelation 

measures the degree to which earthquake events are similar to nearby 

earthquake events. Positive spatial autocorrelation is determined when similar 

values tend to be closer together than dissimilar values. In the case of earthquake 

data, earthquakes with similar characteristics tend to reside in similar 

neighbourhoods due to various reasons, including depth, magnitude, or tsunami 

events generated from the earthquake. In this study, we evaluate the spatial 

autocorrelation of variable depth and magnitude to tsunami events. 

Several packages need to be installed and activated when using geostatistical 

methods within RStudio. For instance, we need to install and activate the 

"raster" and "adehabitatHR" for kernel density estimation. Furthermore, we 

need to install and activate the "deldir" and "spdep" packages for spatial 

autocorrelation analysis. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   doi:10.20944/preprints202103.0407.v1

https://doi.org/10.20944/preprints202103.0407.v1


10 

 

c. Geovisualisation using RStudio 

For geovisualisation purposes, we divided the earthquake events of each period 

into three different classes, i.e., 25% earthquake concentration, 50% earthquake 

concentration, and 75% earthquake concentration. Furthermore, we use dots of 

different sizes and colours to represent earthquake events. 

When using RStudio, we have two options for geovisualisation: "Plot" and 

"Viewer". The "Plot" option is used for statis map visualisation, while the 

"Viewer" option is used for dynamic map visualisation. Some packages need to 

be installed and activated when working using spatial datasets within RStudio, 

such as "rgdal", "sp" and "rgeos" to import and "tmap" to visualise the spatial 

data. Furthermore, for the base map, we use an open topography map available 

from https://leaflet-extras.github.io/leaflet-providers/preview/ 

d. RShiny 

RShiny is a package within RStudio that makes it easy to build interactive web 

apps straight from the RStudio environment. It provides an elegant and powerful 

web framework for building web applications using R. 

RShiny is one of many tools with a stronger focus on facilitating reproducible 

workflows or standardised working environments (Palomino et al., 2017). In 

this study, RShiny is used to transform the code into interactive web 

applications of WebGIS. 

e. User Experience Questionnaire (UEQ) 

The User Experience Questionnaire (UEQ) is used to measure the subjective 

impression of users efficiently and reliably (Schrepp et al., 2014) regarding the 

user experience of produced interactive WebGIS. In this study, we used the 

short version of UEQ (Schrepp et al., 2017b). For high precision and lower error 
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probability results, the number of respondents should be more than 20 (Schrepp 

et al., 2017a). 

There are eight items of questions used in the short version of the UEQ, as 

shown in Table 1, where item numbers 1 to 4 are for pragmatic quality 

assessment and item numbers 5 to 8 are for hedonic quality assessment of the 

system. Pragmatic qualities refer to efficiency, perspicuity, and dependability 

(goal-directed), while hedonic qualities take into account the stimulation and 

novelty (not goal-directed) (Schrepp, 2019) generated by the use of a WebGIS. 

The respondent needs to decide whether the WebGIS is good or not based on 

the item list. There are seven quality levels for each item. For instance, if the 

respondent impression of WebGIS is "very easy" to use, then he/she fills in level 

7. In contrast, if the respondent impression of the WebGIS is "very boring", 

he/she fills in level 1. The negative term of an item is always left, and the 

positive term is always right. 

Table 1. Items of questions used in the short version of UEQ 

 1-2-3-4-5-6-7  

obstructive  o o o o o o o supportive 

complicated  o o o o o o o easy 

inefficient  o o o o o o o efficient 

confusing  o o o o o o o clear 

boring  o o o o o o o exciting 

not interesting  o o o o o o o interesting 

conventional  o o o o o o o inventive 

usual  o o o o o o o leading edge 
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The respondent data were then rescaled to the range of -3 to 3, and the scale 

values for pragmatic and hedonic quality per respondent were calculated. The 

result of means, variance, and standard deviation per item are also calculated. 

Values greater than 0.8 represent a positive evaluation, values less than -0.8 

represent a negative evaluation, and the range of the scales is between -3 

(horribly bad) and +3 (extremely good). 

The 5% confidence interval was then measured for the precision of the 

estimation; the smaller the confidence interval was, the higher the precision of 

the estimation. Furthermore, the Cronbach-Alpha coefficient per scale was 

calculated to check the correlations of the items per scale. An alpha value 

greater than 0.7 was considered sufficiently consistent. To detect random or not 

serious answers by the respondent, inconsistencies were then measured. 

 

The flowchart of the methodology is summarised in Figure 2. There are three 

main stages. The first is the geostatistical analysis. The second is the 

geovisualisation process, and the last stage is WebGIS development and testing. 
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Figure 2. Flowchart of methodology 

 

5. Results and Discussion 

a. Geostatistical analysis 

The Moran I statistic result is shown in Table 2. The Moran I statistic of depth 

to tsunami is 0.00156, while the Moran I statistic of magnitude to tsunami is 

0.12372, with p-values of 0.37 and 0.05, respectively. 
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LISA

Gi Statistic
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Spatial distribution 
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Table 2. Result of Moran's test 

 Moran I statistic Standard deviation p-value 

Depth to tsunami 0.00156 0.32629 0.3721 

Magnitude to tsunami 0.12372 1.5917 0.05573 

 

We can therefore determine that our earthquake variable is positively 

autocorrelated in Indonesia but with very low values. In other words, the 

earthquake data with depth and magnitude variables that triggered tsunamis in 

Indonesia do spatially cluster. 

 

Table 3. Result of Local Moran Statistic 

 Ii 

(local moran 

statistic) 

E.Ii 

(expectation 

of local moran 

statistic) 

Var.Ii 

(variance of 

local moran 

statistic) 

Z.Ii 

(standard 

deviate of local 

moran statistic) 

Pr(z>0) 

(p-value of local 

moran statistic) 

Depth to 

tsunami 

0.001563 -0.02703 

 

0.15546 0.05837 0.4761 

Magnitude 

to tsunami 

0.12372 -0.02703 0.17669 0.3353 0.4178 

 

The local Moran statistic result is shown in Table 3. Consistent with Moran's 

test result, the local Moran statistics of dept to tsunami and magnitude to 

tsunami also show low values, which are 0.001563 and 0.12372, respectively. 

The p-value of depth to tsunami is 0.47, and magnitude to tsunami is 0.42. We 

then suggest that the earthquake data with depth and magnitude variables that 

triggered tsunamis in Indonesia are clustered locally. 
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Furthermore, we also employed the Getis-Ord Gi Statistic to identify where 

either high or low values cluster spatially. Statistically significant hot spots are 

recognised as high values areas where other areas within a neighbourhood range 

also share high values. The Gi Statistic is represented as a Z-score. A higher Z-

score means a higher intensity of clustering, while positive or negative direction 

indicates high or low clusters. Figure 3 shows the map of Gi Statistic result. 

Gi Statistics of earthquakes with depth and magnitude that triggered tsunamis 

show the same Z-score. A higher intensity cluster was found in the northwestern 

part of Sumatera Island, with a positive Z-score ranging between 5 and 10 

(represented with a red dot on the map). The lower intensity cluster was found 

in the western part of Sumatera Island and the southern part of Java Island, with 

a negative Z-score ranging between -15 and -10. 

 

 

Figure 3. Map of Gi Statistic results, represented Z-score and direction of positive or negative 

values (indicates high or low clusters) 

b. Static maps 
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The result of the spatial distribution plot is shown in Figure 4. The map shows 

the consistency pattern of earthquakes with the location of faults or trenches in 

Indonesia. The earthquake events were spatially distributed from the Sumatera 

fault in the western part of Indonesia, to the southern part of Indonesia, where 

the Java trench is located and to the eastern part of Indonesia, where the Flores, 

Wetar, Sulawesi, and Seram trenches are located. 

 

Figure 4. Static map of the spatial distribution of 120-year significant earthquakes in Indonesia. 

 

The results of the kernel density analysis are shown in Figure 5. From three 

different periods, we found that 25% of earthquakes were concentrated within 

the eastern part of Indonesia, situated between the Flores, Wetar, Sulawesi, and 

Seram trenches (Figure 5A). Fifty per cent of earthquakes were concentrated in 

two different areas, along the Sumatera trench and between the Flores, Wetar, 

Sulawesi, and Seram trenches (Figure 5B). Finally, 75% of earthquakes were 

evenly concentrated from the Sumatera trench and Java trench to the Flores, 

Wetar, Sulawesi, and Seram trenches (Figure 5C). 
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Figure 5. The result of kernel density estimation of 120 years earthquake event in Indonesia. 

(A) 25% earthquake concentration; (B) 50% earthquake concentration; and (C) 75% 

earthquake concentration. 
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From Figure 6, we can interpret that there seems to be a geographic pattern of 

autocorrelation. Figure 6A visualises the earthquake event with the magnitude 

variable that triggered the tsunami, while Figure 6B visualises the earthquake 

event with the depth variable that triggered the tsunami. When Moran's value 

becomes higher or positive, there is autocorrelation between nearby points of 

earthquake events. In contrast, when Moran's value becomes lower or negative, 

there is no autocorrelation between nearby points of earthquake events. 

Figure 6A shows that there is spatial autocorrelation between earthquake events 

and the magnitude variable that triggered tsunamis along the Sumatera and Java 

trenches. In contrast, Figure 6B shows that there is spatial autocorrelation 

between earthquake events and the depth variable that triggered tsunamis 

around the Flores, Wetar, Sulawesi, and Seram trenches. 

However, it is not possible to understand whether these are clusters of high or 

low values. Therefore, we then produce a map of the p-value to observe 

variances in the significance of earthquakes across Indonesia, which labels the 

features based on the types of relationships they share with their neighbours (i.e., 

high and high, high and low, low and high, low and low, and insignificant). 
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Figure 6. (A) Map of the local Moran statistic of magnitude that triggered tsunamis and (B) 

map of the local Moran statistic of depth that triggered tsunamis. 

 

From Figure 7, we found a statistically significant geographic pattern in the 

clustering of earthquake variables in Indonesia. The earthquakes with 

magnitude variables that triggered tsunamis highly clustered in the western and 

northwestern parts of Sumatera Island, as shown in Figure 7A. Figure 7B shows 

that the earthquakes with magnitude variables that did not trigger tsunamis were 

highly clustered in the eastern part of Indonesia. 

However, even though the earthquake with a magnitude variable does not 

cluster spatially and significantly in the southern part of Java Island, we cannot 

underestimate it. As suggested by reference (Widiyantoro et al., 2020), tsunami 

heights can reach ~ 20 m and ~ 12 m on the south coast of West and East Java, 
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respectively, with an average maximum height of 4.5 m along the entire south 

coast of Java. 

 

Figure 7. (A) Map of the p-value of magnitude that triggered tsunami events and (B) map of 

the p-value of magnitude that did not trigger tsunami events. 

 

c. Interactive map of WebGIS 

The result of the interactive map of WebGIS produced using the RShiny 

package is shown in Figure 8, where there are interactive panels and buttons for 

users to interact with the system. 
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In the top right of the main window, there are three panels, namely, "Date", 

“Magnitude”, and “Depth”. The user can easily make queries based on the date, 

magnitude, or depth of the earthquake event (slider type). The system then 

automatically visualises the earthquake information with user queried attributes. 

There are zoom-in and zoom-out buttons in the top left, represented with “plus” 

and “minus” symbols. 

There is a layer management panel on the left side of the main window, where 

the user can activate or deactivate the layers. Users can interactively choose the 

spatial distribution of the earthquake layer, the kernel density estimation result 

layer, the local Moran statistic result layer, and the Gi statistic result layer. There 

are legends in the bottom left panel to inform the user about the meaning of the 

map's colours. 

 

Figure 8. The interactive WebGIS application of a 120-year significant earthquake in Indonesia. 

d. EUQ result 

We developed the UEQ form using Google’s online form and successfully 

gathered 30 respondents. The age of the respondents ranged from 22 to 48 years 

old. All respondents came from whole over the country, with 30% women and 

70% men. 
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From eight items of the UE question, the hedonic quality received a higher scale 

than pragmatic quality. Item nos. 6 and 8 received the highest mean values of 

2.1 and 2.0, respectively. Item no. 5 received the lowest mean value of 1.3. This 

means that the respondents feel that the WebGIS application is interesting and 

leading-edge information technology but not too exciting. Table 4 summarises 

the results of the respondents’ responses. 

 

Table 4. Summary of UEQ result 

 

Item Mean Variance Std. Dev. Confidence 

(p=0.05) 

Negative Positive Scale 

1 1.9 1.5 1.2 0.434 Obstructive Supportive Pragmatic 

quality 

2 1.5 1.5 1.2 0.438 Complicated Easy Pragmatic 

quality 

3 1.5 1.0 1.0 0.361 Inefficient Efficient Pragmatic 

quality 

4 1.6 1.4 1.2 0.427 Confusing Clear Pragmatic 

quality 

5 1.3 1.5 1.2 0.442 Boring Exciting Hedonic 

quality 

6 2.1 0.7 0.8 0.296 Not interesting Interesting Hedonic 

quality 

7 1.9 1.2 1.1 0.384 Conventional Inventive Hedonic 

quality 

8 2.0 1.0 1.0 0.352 Usual Leading edge Hedonic 

quality 
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As shown in Table 4, all of the items received values greater than 0.8, which 

means that the WebGIS has a positive evaluation by respondents. While the 

mean value of the scales for pragmatic quality is 1.617, for hedonic quality is 

1.808, and overall quality is 1.713, which means the WebGIS application is in 

good quality based on respondent’s impression (Figure 9). 

 

 

Figure 9. Benchmark graph of the mean value of the scales for pragmatic, hedonic, and overall 

quality of interactive WebGIS. 

 

The values of 5% confidence (p=0.05) also show small values, which means 

that the precision of the estimation is high. Furthermore, the Cronbach-Alpha 

Coefficient also shows a high value for hedonic quality but a low value for 

pragmatic quality that is 0.79 and 0.51, respectively. This means that the scale 

of hedonic quality is considered sufficiently consistent but not with pragmatic 

quality. This is due to the random or not serious answers by respondent no. 4, 

no. 22, and no. 28, as we measured the inconsistencies of responses. Respondent 

no. 4 provided inconsistent answers in pragmatic and hedonic quality, while 
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respondent no. 22 and no. 28 provided inconsistent answers in pragmatic quality 

only. 

 

6. Conclusions 

This study successfully developed a geovisualisation platform using the open-source 

package of RShiny within RStudio to identify significant earthquakes that have occurred 

in Indonesia over the last 120 years. The WebGIS platform provides information using 

geostatistical methods. The combination of spatial distribution analysis, kernel density 

estimation, and spatial autocorrelation using local Moran statistics, local indicators of 

spatial association, and Getis-Ord (Gi Statistic) help users better understand the spatial 

information of significant earthquakes in Indonesia. 

We found that the earthquake variable is positively autocorrelated in Indonesia but with a 

very low value. In other words, the earthquake data with depth and magnitude variables 

that triggered tsunamis in Indonesia clustered locally. A higher intensity cluster was found 

in the northwestern part of Sumatera Island, with a positive Z-score ranging between 5 and 

10. The lower intensity cluster was found in the western part of Sumatera Island and the 

southern part of Java Island, with a negative Z-score ranging between -15 and -10. 

The earthquake events were spatially distributed from the Sumatera fault in the western 

part of Indonesia, to the southern part of Indonesia, where the Java trench is located and to 

the eastern part of Indonesia, where the Flores, Wetar, Sulawesi, and Seram trenches are 

located. Twenty-five per cent of earthquakes were concentrated within the eastern part of 

Indonesia, situated between the Flores, Wetar, Sulawesi, and Seram trenches. Fifty per cent 

of earthquakes were concentrated in two different areas, along the Sumatera trench and 

between the Flores, Wetar, Sulawesi, and Seram trenches, and 75% of earthquakes were 
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evenly concentrated from the Sumatera trench and Java trench to the Flores, Wetar, 

Sulawesi, and Seram trenches. 

Furthermore, we found spatial autocorrelation between earthquake events and magnitude 

variables that triggered tsunamis along the Sumatera and Java trenches, while there was 

spatial autocorrelation between earthquake events and depth variables that triggered 

tsunamis around the Flores, Wetar, Sulawesi, and Seram trenches. The earthquakes with 

magnitude variables that triggered tsunamis were highly clustered in the western and 

northwestern parts of Sumatera Island, while the earthquakes with magnitude variables that 

did not trigger tsunamis were highly clustered in the eastern part of Indonesia. 

The WebGIS application received a positive evaluation by respondents, with a mean value 

of 1.663 for pragmatic quality, 1.837 for hedonic quality, and 1.75 for overall quality. This 

means that the WebGIS application is of good quality based on respondents’ impressions. 

The dynamic web maps produced with the support of information technologies applied over 

traditional static maps is a new approach, which allows the user to view the temporal and 

spatial information of earthquakes through interactive user interfaces and/or contents 

directly in the most convenient way. The users also more easily could gain insight into 

information as a result of geostatistical methods. The information gained by the users 

during the user interaction with the WebGIS platform overlapped with the information that 

the researcher started with, that is, the spatial cluster of significant earthquakes in Indonesia. 

 

References  

Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 

27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   doi:10.20944/preprints202103.0407.v1

https://doi.org/10.20944/preprints202103.0407.v1


26 

 

Balla, D., Zichar, M., Tóth, R., Kiss, E., Karancsi, G., & Mester, T. (2020). Geovisualization 

techniques of spatial environmental data using different visualization tools. Applied 

Sciences (Switzerland), 10(19), 1–15. https://doi.org/10.3390/APP10196701 

Cominelli, S., Leahy, M., Devillers, R., & Hall, B. G. (2019). Geovisualization tools to 

inform the management of vessel noise in support of species’ conservation. Ocean and 

Coastal Management, 169(April 2018), 113–128. 

https://doi.org/10.1016/j.ocecoaman.2018.11.009 

Croitoru, A., Crooks, A., Radzikowski, J., & Stefanidis, A. (2017). Geovisualization of Social 

Media. International Encyclopedia of Geography: People, the Earth, Environment and 

Technology, 1–17. https://doi.org/10.1002/9781118786352.wbieg0605 

Dharmawan, R. D., Suharyadi, & Farda, N. M. (2017). Geovisualization using hexagonal 

tessellation for spatiotemporal earthquake data analysis in Indonesia. Communications in 

Computer and Information Science, 788, 177–187. https://doi.org/10.1007/978-981-10-

7242-0_15 

Forsythe, K. W., Marvin, C. H., Valancius, C. J., Watt, J. P., Swales, S. J., Aversa, J. M., & 

Jakubek, D. J. (2016). Using geovisualization to assess lead sediment contamination in 

Lake St. Clair. Canadian Geographer, 60(1), 149–158. 

https://doi.org/10.1111/cag.12253 

Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance 

Statistics. Geographical Analysis, 24(3), 189–206. https://doi.org/10.1111/j.1538-

4632.1992.tb00261.x 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   doi:10.20944/preprints202103.0407.v1

https://doi.org/10.20944/preprints202103.0407.v1


27 

 

Hamad, K., & Quiroga, C. (2016). Geovisualization of archived ITS data-case studies. IEEE 

Transactions on Intelligent Transportation Systems, 17(1), 104–112. 

https://doi.org/10.1109/TITS.2015.2460995 

Hamilton, W. (1970). Tectonic map of Indonesia - A progress report. In US Geological 

Survey. https://pubs.er.usgs.gov/publication/ofr70150 

Hernandez, T. (2007). Enhancing retail location decision support: The development and 

application of geovisualization. Journal of Retailing and Consumer Services, 14(4), 

249–258. https://doi.org/10.1016/j.jretconser.2006.07.006 

Hutchison, D., & Mitchell, J. C. (2007). Human-Centered Visualization Environments. In 

Human-Centered Visualization Environments. https://doi.org/10.1007/978-3-540-71949-

6 

Jahangiri, A., Marks, C., Machiani, S. G., Nara, A., Hasani, M., Cordova, E., Tsou, M.-H., & 

Starner, J. (2020). Big data visualization and spatioemporal modeling of risky driving. 

MacEachren, A. M., & Kraak, M.-J. (2001). Research Challenges in Geovisualization. 

Cartography and Geographic Information Science, 28(1), 3–12. 

https://doi.org/10.1559/152304001782173970 

Maceachren, A. M., & Kraak, M. (2001). Research challenges in Geovisualization. 

Cartography and Geographic Information Science. 

Maroko, A., Maantay, J. A., & Grady, K. (2011). Geospatial Analysis of Environmental 

Health. Geospatial Analysis of Environmental Health. https://doi.org/10.1007/978-94-

007-0329-2 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   doi:10.20944/preprints202103.0407.v1

https://doi.org/10.20944/preprints202103.0407.v1


28 

 

Mei-Po Kwan. (2004). GIS Methods in Time-Geographic Research: Geocomputation and 

Geovisualization of Human Activity Patterns. Geografiska Annaler: Series B, Human 

Geography, 86(4), 267–280. http://dx.doi.org/10.1111/j.0435-3684.2004.00167.x 

Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–

23. https://doi.org/10.1093/biomet/37.1-2.17 

Newell, R., & Canessa, R. (2017). Picturing a place by the sea: Geovisualizations as place-

based tools for collaborative coastal management. Ocean and Coastal Management, 

141, 29–42. https://doi.org/10.1016/j.ocecoaman.2017.03.002 

NOAA. (2021). National Geophysical Data Center / World Data Service (NGDC/WDS): 

NCEI/WDS Global Significant Earthquake Database. NOAA National Centers for 

Environmental Information. Global Significant Earthquake Database. 

https://doi.org/10.7289/V5TD9V7K 

OCHA. (2021). Indonesia - Subnational Administrative Boundaries. Dataset. 

https://data.humdata.org/dataset/indonesia-administrative-boundary-polygons-lines-and-

places-levels-0-4b 

Palomino, J., Muellerklein, O. C., & Kelly, M. (2017). A review of the emergent ecosystem 

of collaborative geospatial tools for addressing environmental challenges. Computers, 

Environment and Urban Systems, 65, 79–92. 

https://doi.org/10.1016/j.compenvurbsys.2017.05.003 

Ramdani, F. (2017). Pengantar Ilmu Geoinformatika (1st ed.). UB Press. 

Sang, K., Piovan, S., & Fontana, G. L. (2021). A WebGIS for Visualizing Historical 

Activities Based on Photos: The Project of Yunnan–Vietnam Railway Web Map. 

Sustainability, 13(1), 419. https://doi.org/10.3390/su13010419 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   doi:10.20944/preprints202103.0407.v1

https://doi.org/10.20944/preprints202103.0407.v1


29 

 

Schrepp, M. (2019). User Experience Questionnaire Handbook Version 8. URL: 

Https://Www. Researchgate. 

Net/Publication/303880829_User_Experience_Questionnaire_Handbook_Version_2.(A

ccessed: 02.02. 2017), September 2015, 1–15. www.ueq-online.org 

Schrepp, M., Hinderks, A., & Thomaschewski, J. (2014). Applying the user experience 

questionnaire (UEQ) in different evaluation scenarios. Lecture Notes in Computer 

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes 

in Bioinformatics), 8517 LNCS(PART 1), 383–392. https://doi.org/10.1007/978-3-319-

07668-3_37 

Schrepp, M., Hinderks, A., & Thomaschewski, J. (2017a). Construction of a Benchmark for 

the User Experience Questionnaire (UEQ). International Journal of Interactive 

Multimedia and Artificial Intelligence, 4(4), 40. https://doi.org/10.9781/ijimai.2017.445 

Schrepp, M., Hinderks, A., & Thomaschewski, J. (2017b). Design and Evaluation of a Short 

Version of the User Experience Questionnaire (UEQ-S). International Journal of 

Interactive Multimedia and Artificial Intelligence, 4(6), 103. 

https://doi.org/10.9781/ijimai.2017.09.001 

Smith, M. J. de, Goodchild, M. F., & Longley, P. A. (2018). Geospatial analysis. In 

Geospatial Analysis: A Comprehensive Guide to Principles Techniques and Software 

Tools (6th ed.). https://doi.org/10.4324/9781351044677-22 

Tate, E., Burton, C. G., Berry, M., Emrich, C. T., & Cutter, S. L. (2011). Integrated Hazards 

Mapping Tool. Transactions in GIS, 15(5), 689–706. https://doi.org/10.1111/j.1467-

9671.2011.01284.x 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   doi:10.20944/preprints202103.0407.v1

https://doi.org/10.20944/preprints202103.0407.v1


30 

 

USGS. (2021a). Earthquake Hazards. Earthquakes. https://www.usgs.gov/natural-

hazards/earthquake-hazards/earthquakes 

USGS. (2021b). Which country has the most earthquakes? Natural Hazards. 

https://www.usgs.gov/faqs/which-country-has-most-earthquakes?qt-

news_science_products=0#qt-news_science_products 

Wahyudi, H. B., Ramdani, F., & Bachtiar, F. A. (2020). 2D and 3D Geovisualization: 

learning user preferences in landslide vulnerability. Journal of Information Technology 

and Computer Science, 5(1), 75. https://doi.org/10.25126/jitecs.202051167 

Wang, C., Pouliot, J., & Hubert, F. (2017). How users perceive transparency in the 3D 

visualization of cadastre: testing its usability in an online questionnaire. GeoInformatica, 

21(3), 599–618. https://doi.org/10.1007/s10707-016-0281-y 

Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., 

Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. (2020). Implications for 

megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. 

Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-72142-z 

Zichar, M. (2020). Opportunity for geovisualization in different software environments. 11th 

IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2020 - 

Proceedings, 365–370. https://doi.org/10.1109/CogInfoCom50765.2020.9237836 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 March 2021                   doi:10.20944/preprints202103.0407.v1

https://doi.org/10.20944/preprints202103.0407.v1

