
Article

Security-focused Prototyping: A Natural Precursor to
Secure Development

Sam Attwood* 1 , Nana Onumah 2, Katie Paxton-Fear 2 and Rupak Kharel 3

1 Department of Computing and Mathematics, Faculty of Science and Engineering, Manchester Metropolitan
University, Manchester, United Kingdom; S.Attwood@mmu.ac.uk; Nana-Kwesi.A.Onumah@stu.mmu.ac.uk;
K.Paxton-Fear@mmu.ac.uk; R.Kharel@mmu.ac.uk

* Correspondence: S.Attwood@mmu.ac.uk

Version March 15, 2021 submitted to J. Cybersecur. Priv.

Abstract: Secure development is a proactive approach to cyber security. Rather than building a1

technological solution and then securing it in retrospect, secure development strives to embed good2

security practices throughout the development process and thereby reduces risk. Unfortunately,3

evidence suggests secure development is complex, costly, and limited in practice. This article therefore4

introduces security-focused prototyping as a natural precursor to secure development that embeds5

security at the beginning of the development process, can be used to discover domain specific security6

requirements, and can help organisations navigate the complexity of secure development such that7

the resources and commitment it requires are better understood. Two case studies–one considering8

the creation of a bespoke web platform and the other considering the application layer of an Internet9

of Things system–verify the potential of the approach and its ability to discover domain specific10

security requirements in particular. Future work could build on this work by conducting case studies11

to further verify the potential of security-focused prototyping and even investigate its capacity to be12

used as a tool capable of reducing a broader, socio-technical, kind of risk.13

Keywords: cyber security; secure development; prototyping; web security; internet of things;14

software security; digitalization; socio-technical security15

1. Introduction16

Technological advances create both opportunities and challenges. New technologies have the17

potential to enable new solutions that change human lives for the better. However, the same new18

technologies also have the potential to create new challenges. Often, these challenges are related to19

security, as new technologies inevitably lead to new vulnerabilities for malicious actors to exploit. The20

emergence of the Internet of Things (IoT) in recent times serves as an example: industrial applications21

of IoT technologies are synonymous with the idea of a fourth industrial revolution (Industry 4.0) and22

optimistic predictions of the value created by industrial IoT range as high as $15 trillion of global GDP23

by 2030 [1], however, IoT devices can also be leveraged by malicious actors as part of Distributed24

Denial-of-Service attacks without the end user’s knowledge [2].25

Secure development models provide a means of minimizing risk when creating a technological26

solution and are therefore especially useful tools when working with emerging technologies.27

Unfortunately, secure development is complex, costly, and limited in practice [3]. There are numerous28

secure development models and no universally accepted answer as to which is the best. Furthermore,29

many of the prominent secure development models are not always applicable. Geer surveyed30

46 organisations and found that only the most technically sophisticated–approximately 10% of31

respondents–were adopting a secure development model [3]. Many of the respondents reported32

that they had not adopted a secure development model because it was either too expensive, required33

Submitted to J. Cybersecur. Priv., pages 1 – 15 www.mdpi.com/journal/jcp

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

http://www.mdpi.com
https://orcid.org/0000-0001-8140-6157
http://www.mdpi.com/journal/jcp
https://doi.org/10.20944/preprints202103.0406.v1
http://creativecommons.org/licenses/by/4.0/

Version March 15, 2021 submitted to J. Cybersecur. Priv. 2 of 15

Figure 1. A visualization of how security-focused prototyping promotes the adoption of secure
development practices.

too many resources, or was too time consuming [3], and numerous studies present a similar narrative34

[4–7]. This is despite the simple idea of prevention being better than cure arguably encapsulating the35

entire concept.36

The COVID-19 pandemic has highlighted the need for secure development models that are37

flexible and viable when time is in short supply. It has seen governments around the globe race to38

launch contact-tracing smartphone applications whilst citizens, partially motivated by the apparently39

hurried development, simultaneously raise security and privacy concerns [8]. In short, the pandemic40

created a situation in which rapid, yet secure development was required; a situation that required a41

development model with the facets of rapid development approaches–such as Boehm’s spiral model42

[9] and subsequent agile models [10]–but was nonetheless capable of producing a secure solution that43

addressed privacy concerns.44

The challenges faced by small and medium sized organisations (SMEs) further highlight the45

need to make secure development more easily accessible. In general, SMEs are perceived as being46

less equipped when it comes to cyber security than larger organisations [11] and this is true of47

secure development as well; Assal and Chiasson surveyed 123 developers and found that SMEs were48

more likely to have ‘competing priorities and no plan’ and be ‘unequipped for security’ than larger49

enterprises [7]. The COVID-19 pandemic has only exaggerated these challenges and placed a greater50

pressure on SMEs to digitalize and to do it quickly [12]. Unfortunately, the various barriers–including51

the requirement for security–to SMEs looking to digitalize are well documented [13–15]. Furthermore,52

when it comes to security these barriers must be overcome repeatedly; the threat landscape is forever53

changing and organisations with a digital presence (of all sizes) must change with it.54

The Greater Manchester Cyber Foundry project further evidences the need for a more accessible55

model of secure development that is viable when time is in short supply. Broadly speaking, the project56

consists of 2 phases, the second of which requires the creation of proof-of-concept demonstrators57

over relatively short timescales. These proof-of-concept demonstrators serve a dual purpose and are58

intended to increase innovation (and thereby economic growth), but also the adoption of security59

practices, across SMEs in the Greater Manchester (UK) region. The challenge faced by the project is60

that the short timescales over which the proof-of-concept demonstrators need to be developed make61

it difficult to adopt a well-established secure development model. So how can the proof-of-concept62

demonstrators that are created as a part of the project help increase the adoption of security practices?63

To address all these problems we present a novel technique–security-focused prototyping–that64

acts as a precursor to secure development (see figure 1) by embedding security at the beginning of the65

development process, discovering domain specific security requirements, and providing a means of66

understanding the level of resources and commitment that are required for secure development to67

continue. We also present 5 aspects of secure development that are intended to act as a streamlined yet68

informative definition of secure development (and are the foundations upon which security-focused69

prototyping is built). We start by describing the largely disparate worlds of rapid and secure70

development in section 2, then synthesize the two by introducing security-focused prototyping in71

section 3, before validating the approach by describing its application to two case studies in section 4,72

and ultimately concluding by discussing the potential of the technique in section 5.73

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 3 of 15

2. Background74

2.1. Rapid Development & Prototyping75

The drive towards rapid development and lightweight software development models arguably76

began when Boehm introduced the spiral model in 1988 [9]. The model was motivated by perceived77

shortcomings in the waterfall model of software development, as well as its prevalence [9]. It was78

differentiated from prior approaches by the fact that it was risk-driven; the prior approaches were79

more document-driven or code-driven [9].80

In a later work, Boehm states that spiral development is a family of software development81

processes that are characterized by repeatedly iterating a set of elemental development processes and82

managing risk such that it is actively being reduced [16]. Importantly, the risk that is being managed83

here is the risk that the delivery of the project will be delayed or fail [16]; the spiral model does not84

manage security risks to the extent of the models discussed in section 2.2. Boehm also goes on to85

describe 6 characteristics, or invariants, that those following a spiral model should observe [16]:86

• Concurrent determination of key artifacts. Sequential determination often leads to mistakes. For87

example, a premature commitment to an inappropriate platform or service provider.88

• Consideration in each spiral of the main spiral elements. A failure to revisit the key objectives89

and risks before undertaking activities could cause time to be wasted on activities that are90

unacceptable to key stakeholders.91

• Level of effort driven by risk considerations. Any development activity is only beneficial up to92

a point. For example, prototyping can minimise risk exposure, but excessive prototyping can93

delay a project.94

• Degree of detail driven by risk considerations. Artifacts are only beneficial up to a point. For95

example, a detailed specification of a graphical user interface risks an awkward design being96

embedded into the development process.97

• Use of anchor point milestones. The original spiral model lacked intermediary milestones that98

could serve as progress checks. This led to to issues such as requirements creep and unrealistic99

expectations.100

• Emphasis on system and lifecycle activities and artifacts. Software construction activities should101

not overshadow other activities as this can lead to the concerns and objectives of stakeholders102

being lost.103

Shortly after Boehm had described the invariants that those following a spiral model104

should observe, seventeen software developers gathered to discuss similarly lightweight software105

development models [10]. The result of this gathering was the agile manifesto [10]. Today, many106

software development models can be considered agile and agile models are prevalent across the107

software engineering discipline [17]. The twelve principles that underpin these models are as follows108

(and outlined fully in the agile manifesto [10]):109

• Satisfy the customer. Deliver valuable software early on and on a regular basis to achieve this.110

• Welcoming changing requirements. Even late on in the development process.111

• Deliver working software frequently. The greater the frequency the better.112

• Stakeholders and developers should work together. Ideally, this will be on a daily basis.113

• Build projects around motivated individuals. Give these individuals the support they need and114

trust them to get the job done.115

• Promote efficient and effective communication. Put value in face-to-face communication to116

achieve this.117

• Working software is the primary measure of progress.118

• Promote sustainable development. Stakeholders and developers should be able to maintain a119

constant pace.120

• Continuous attention to technical excellence and good design enhance agility.121

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 4 of 15

• Simplicity is essential. Try and maximise the amount of work not done.122

• Self organizing teams typically produce the best results. The best architectures, designs, and123

requirements normally emerge from these teams.124

• Reflect at regular intervals and identify ways to improve. Then tune and adjust behaviours125

accordingly.126

Most of the agile development models (and Boehm’s spiral model in particular) place considerable127

importance on prototyping as an activity and use it as a kind of insurance. Prototyping allows128

for something tangible–the prototype itself–to be created early on in the development process and129

therefore provides a crucial basis for discussion and ideation. Moreover, if any problems stemming130

for the underlying assumptions and requirements of a project exist, prototyping allows for them to131

identified early on before they become too costly. The question What is prototyping? is answered more132

comprehensively by Budde et al. who start by putting forward the following four points to serve as a133

preliminary characterisation of the term [18]:134

• Prototyping is an approach based on evolutionary view of software development. It strives to135

have an impact on the development process as a whole.136

• Prototyping involves producing early working versions of a system. So that these early versions137

can be experimented with.138

• Prototyping provides a basis for discussion among all the groups involved in the development139

process. Users and developers in particular.140

• Prototyping informs further development. Experience gained via prototyping and141

experimentation is fed into further development.142

Budde et al. discuss several different aspects of prototyping in greater detail [18]. One of these143

aspects–the distinction between horizontal and vertical prototyping–is of particular significance with144

regards to this work. According to Budde et al., in horizontal prototyping specific individual layers145

of a system are built, and in vertical prototyping a selected part of the target system is implemented146

completely (down through all layers) [18]. If we consider a web application as an example, the act147

of prototyping the user interface layer could be described as horizontal (see left of figure 2), whereas148

the act of prototyping a new feature–across the user interface layer but other layers as well–could be149

described as vertical (see right of figure 2).150

Figure 2. A visualization of horizontal prototyping (left) and vertical prototyping (right). The focus of
the prototyping is highlighted by underlined text and red background.

2.2. Secure Development151

In 2002, the Trustworthy computing memo was sent to all Microsoft employees [19]. The memo152

sought to lessen customer concerns and bad press caused by security concerns [19,20]. It defined153

trustworthy computing as computing that is available, reliable and secure as electricity, water services and154

telephony [19]. It triggered a rethink within Microsoft and ultimately led to the Microsoft Security155

Development Lifecycle (MSDL) [20]. Today, 12 practices make up the MSDL [21]. Table 1 presents156

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 5 of 15

Table 1. The Microsoft Security Development Lifecycle (), software security touchpoints (), and
SAFE Code practices () mapped to the six phases of development put forward by De Win et al:
education and awareness (4.1); project inception (4.2); analysis and requirements (4.3); architectural
and detailed design (4.4); implementation and testing (4.5); release, deployment, and testing (4.6) [22].
Based on a similar table in the Secure Software Lifecycle Knowledge Area [20].

Practice 4.1 4.2 4.3 4.4 4.5 4.6

Provide training
Plan the implementation of secure development
Manage security findings
Define metrics and compliance reporting
Define and use cryptography standards
Use approved tools
Abuse cases
Define security requirements
Perform threat modelling
Design
Establish design requirements
Architectural risk analysis
Code reviews
Perform static analysis security testing
Perform dynamic analysis security testing
Testing and validation
Manage risk of third-party components
Follow secure coding practices
Risk-based security testing
Perform penetration testing
Establish a standard incident response
Vulnerability response and disclosure
Security operations

these practices in a summarized form (for brevity) and maps them to six common development phases157

forward by De Win et al. [22]. Considered as a whole the MSDL is a comprehensive process. Table 1158

shows that it specifies at-least one practice for each of the development phases. However, the MSDL159

does have a significant shortcoming–the practices it contains explain what should be done, but not how160

it should be done.161

In 2004, McGraw proposed seven software security touchpoints (a set of best practices) [23]. These162

touchpoints are presented and mapped across the six development phases first put forward by De Win163

et al [22] in table 1. From table 1 a shortcoming of the touchpoints can be identified, none of them cover164

the ‘education and awareness’ and the ‘project inception’ phases. This lack of coverage at the earliest165

development phases is problematic and could result in teams being under-prepared. Furthermore,166

much like the practices in the MSDL, many of the touchpoints specify what should be done but fail to167

go into significant detail as to how it should be done. However, in both cases this lack of detail is most168

likely deliberate and in a sense is what makes the models valuable. By failing to specify exactly how169

practices should be implemented both models remain technology and process agnostic, which means170

both can be considered generally applicable.171

Several years after the touchpoints were introduced, in 2007, the Software Assurance Forum172

for Excellence in Code (SAFE Code) was founded [24]. SAFE Code is an industry-led non-profit173

organization with the goal of promoting and facilitating the adoption of effective secure development174

practices [24]. In pursuit of this goal, the organisation publishes guidance that is centred around 8175

fundamental practices [25]. Table 1 shows that these practices are comprehensive and together span176

the six phases of development. However, the point about practices specifying what to do and not177

how to do it applies here as well. Like the MSDL and the touchpoints, the SAFE Code practices are178

largely technology and process agnostic, which is often perceived as a strength but is also a weakness.179

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 6 of 15

Even though the practices are sound, the lack a systematic method for realizing them is a barrier180

organizations looking to achieve secure development must overcome.181

Table 1 demonstrates that there is some overlap between the MSDL, the touchpoints, and the182

SAFE Code guidance. It shows that all three recommend defining security requirements and that the183

MSDL and touchpoints both recommend penetration testing be performed. Furthermore, there are184

similarities between the three approaches that are not immediately apparent from table 1. For example,185

all three recommend code reviews but do so in subtly different ways. The MSDL draws a distinction186

between static and dynamic analysis security testing [21], the touchpoints simply recommend code187

reviews and note that these can be manual or automated [23], and SAFE Code advises code reviews188

be performed along with other activities like penetration testing by recommending that testing and189

validation be performed [25].190

However, table 1 also demonstrates that there are significant differences between the three secure191

development models. For example, the touchpoints differ from the other two models in offering no192

guidance related to the planning and implementation of secure development. Furthermore, there are193

differences in the detail of similar recommendations that are not demonstrated by table 1. Both the194

MSDL and SAFE Code provide guidance with regards to the management of third-party components,195

but the detail of this guidance is subtly different in a number of ways. SAFE Code maps mitigate,196

monitor, and assess activities onto a third-party component management lifecycle [25], whereas the197

MSDL simply lists 4 practices that can be adopted [21].198

Table 1 therefore evidences and demonstrates the complexity of secure development (as a whole,199

not any model in particular). Complexity which has led to research and the formulation of further200

models that provide a means of assessing and evaluating other secure development models [22,26,27].201

The Software Assurance Maturity Model (SAMM) [26], and an early fork of it known as the Building202

Security In Maturity Model (BSIMM) [27], being particularly notable examples. The SAMM and203

BSIMM models are both comprehensive and provide a means for organisations to improve via the204

incremental adoption of security practices. Nonetheless, both of the models fail to provide domain205

specific recommendations and the narrative of secure development being too costly, requiring too206

many resources, and being too time consuming has continued since their formulation [3–7], which207

suggests further work is still needed to make secure development more accessible.208

The complexity of secure development is further exaggerated by the variety of technologies that209

can be developed today. In general, secure development refers to the secure development of software210

(and this is true of all the models described so far) but software itself is always changing. Software211

can be developed for mobiles, it can be delivered via cloud computing, and it can form a part of an212

Internet of Things (IoT) system. Each of these scenarios has unique challenges and corresponding213

guidance associated with it [28–30]. Together, they therefore not only exaggerate the complexity of214

secure development, they also demonstrate that it is highly domain-dependent. Different practices,215

tools, and threat actors need to be considered when building solutions with different technologies and216

for different purposes. The prominent models discussed in this section, and most secure development217

models in general, are technology agnostic and therefore fail to offer to domain specific guidance.218

3. Security-focused Prototyping: Streamlining Secure Development219

In this section, we attempt to synthesize the worlds of prototyping and secure development,220

and propose a new technique termed security-focused prototyping before explaining its potential.221

However, before doing this we briefly review a body of related works, such that this work is clearly222

distinguished from them. Broadly speaking, this body of related works considers the synthesis of agile223

development with secure development [31–37]. For example, SAFE Code provides security guidance224

for agile practitioners [32], Microsoft lists 8 practices as a part of a Secure DevOps model [33], and a225

recent study proposes and examines a new model that is centered around 23 principles with the aim of226

ensuring both agility and security [34]. Put briefly, our work is differentiated from this body of related227

works due to our in-depth focus on prototyping.228

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 7 of 15

Prior models that synthesize agile and secure development have failed to tap into the potential229

of prototyping. Security-focused prototyping taps into this potential and thereby provides a means230

of: embedding security at the beginning of the development process, discovering domain specific231

requirements, and navigating the complexity of secure development such that the resources and232

commitment it requires are better understood. The prior models do a good job when it comes to the233

first point–embedding security at the beginning of (and throughout) the development process–but234

they evidently fail to address the latter two. Even when secure development is agile organisations can235

struggle with regards to resources and commitment [38,39]. Furthermore, because the guidance and236

recommendations in agile secure development models are typically technology agnostic [32–34], these237

models (like non-agile secure development models) can fall short of delivering the domain specific238

guidance that secure development requires.239

Synthesizing the worlds of prototyping and secure development can address these issues and240

as a first step towards this goal we propose 5 aspects of secure development. Each of these aspects241

was arrived at by examining well-established secure development models–the Microsoft Secure242

Development Lifecycle, the seven software security touchpoints, and the various practices that are243

recommended by SAFE Code–and considering what their practices hope to achieve. The aspects are as244

follows (listed in order of eminence):245

1. Dualistic. Secure development consists of both constructive (building) and destructive (breaking)246

activities such that risk is minimised but delivery is not hampered.247

2. Pessimistic. Secure development assumes that the solution being developed will come under248

attack. As such, even constructive activities are done with malicious actors in mind.249

3. Holistic. Secure development promotes security throughout the entire development process,250

the entire development team, and even throughout the entirety of the organisation that is251

undertaking the project.252

4. Auditable. Secure development puts value in transparent reporting and honest communication.253

The security requirements that must be gathered in many models are perhaps the best254

demonstration of this but any approach that recommends clean and clear comments has an255

auditable aspect.256

5. Cyclical. Secure development encourages repeated reviews in an attempt to counter a threat257

landscape that is always evolving. Many models encourage continuous, or at least regular,258

training and testing.259

The primary purpose of these aspects of secure development is to act as a guide for260

security-focused prototyping; if a prototyping activity captures these aspects then it is on its way to261

being security-focused. That said, these aspects may be of use beyond security-focused prototyping as262

well. The aspects are an attempt to streamline secure development and distill it down to its essence.263

Any organisation that is looking to achieve secure development may therefore benefit from these264

aspects and use them as a lightweight form of guidance. Furthermore, because the aspects strive to be265

very general (more so than the technology agnostic guidance of the models discussed in section 2.2)266

they may be of use beyond software development and could act as a vessel through which the lessons267

of secure software development are transferred across to other technological developments.268

The second (and final) step towards synthesising the worlds of prototyping and secure269

development is to build upon the preexisting idea of vertical prototyping. As is described in section270

2.1, vertical prototyping involves implementing a selected part of a target system down through271

all of its constituent layers. This vertical kind of prototyping, combined with the aspects of secure272

development, can act as a powerful preparatory process that paves the way for secure development.273

By implementing features across all the layers we get an idea of what needs to be done to secure each274

layer individually, but also how the layers interact with one another, and therefore what needs to be275

done to secure the system as a whole. Different tools and activities will be needed for different layers276

and it is only by implementing features across them all, while simultaneously attempting to capture277

the 5 aspects of secure development, that we can achieve a complete understanding.278

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 8 of 15

4. Case Studies279

To demonstrate the potential of security-focused prototyping this section considers two case280

studies. Both of the case studies consider the application of security-focused prototyping within the281

context of technical assistance delivered as a part of The Greater Manchester Cyber Foundry project.282

As is noted in section 1, The Greater Manchester Cyber Foundry project requires the creation of283

proof-of-concept demonstrators over relatively short timescales. These proof-of-concept demonstrators284

serve a dual purpose and are intended to drive further innovation while simultaneously promoting285

the adoption of good security practices. The project is therefore an ideal test-bed to verify the potential286

of security-focused prototyping.287

4.1. Case Study: The Security-focused Prototyping of a Bespoke Web Platform288

Digital Oracles Ltd are building a web platform that connects technology start-ups, industry289

experts and early stage investors. The Greater Manchester Cyber Foundry provided technical assistance290

towards this goal in the form of security-focused prototyping. This security-focused prototyping291

involved the implementation of a subset of desirable features and helped establish an architecture292

that could be built on in further work. It also sought to mitigate a number of vulnerabilities that are293

intrinsic to products and services that are delivered using the Web. If exploited, these vulnerabilities294

could inflict reputational or financial harm on Digital Oracles Ltd. For example, if a malicious actor295

was able to exploit a SQL injection vulnerability this could result in data being corrupted or exposed to296

unauthorised parties, which would of course damage the reputation of Digital Oracles Ltd.297

The prototyping that was done to assist Digital Oracles Ltd was security-focused and therefore298

captured the 5 aspects of secure development described in section 3:299

• The dualistic aspect was captured via a practice of periodically switching between constructive300

and destructive activities. So, after being constructive and implementing an authorisation guard301

we switched to being destructive and tried to bypass said guard.302

• The pessimistic aspect was captured via the usage of a code scanning tool–named Security Code303

Scan–and automated checks for vulnerabilities in third-party dependencies.304

• The holistic aspect was captured via regular meetings with stakeholders that helped us consider305

financial/organisational constraints and think about how these constraints impacted the technical306

implementation.307

• The auditable aspect was captured via the use of the Git version control system [40], architecture308

decision records [41], and minutes of meetings/interactions with stakeholders.309

• The cyclical aspect was captured via the implementation of sprints (a common practice in agile310

approaches to software development). Work was divided into sprints and at the end of each311

sprint a meeting/interaction with stakeholders was held. This allowed for everyone to reflect on312

the previous sprint and think about what needed to be done, and could be done better, in the313

next sprint.314

The feature-set, or vertical, that was the focus of the security-focused prototyping was centered315

around the start-ups that would be using the platform. Functionality that allowed a start-up to316

register/login, take a self-impact assessment, and track their progress over time were all implemented317

as a part of the security-focused prototyping process. All of this functionality was implemented318

through all of the layers of the system. Notably, our understanding of the layers improved as the319

process of security-focused prototyping was performed. At the start of the process, we thought of320

these layers much as they are seen in figure 2 (so user interface, business logic, and data access layers).321

However, as the security-focused prototyping process was performed and our understanding of the322

platform (and how it could be secured) improved, a clearer picture began to emerge. Figure 3 illustrates323

how layers were thought of towards the end of the process and is based on both the SPA + API and324

Clean architectures [42–44].325

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 9 of 15

Figure 3. A visualization of how layers were thought of towards the end of the security-focused
prototyping process.

As a result of the security-focused prototyping a proof-of-concept demonstrator was produced.326

This proof-of-concept demonstrator was comprised of a handover document and a repository that327

contained the source code for the prototype web platform. The handover document communicated the328

findings of the prototyping and made highly relevant recommendations with regards to further secure329

development, thereby providing the kind of domain specific guidance many secure development330

models lack. Table 2 presents a summarized list of the security findings that resulted from the331

security-focused prototyping process. Importantly, because security-focused prototyping is a form of332

vertical prototyping, the findings help contribute towards the security of the entire system–throughout333

all the layers shown in figure 3.334

Table 2. Security findings that resulted from the security-focused prototyping done to assist Digital
Oracles Ltd.

Security finding

1 An object relational mapper, such as Entity Framework Core, should be used to reduce the risk
posed by SQL injection. This applies to the Domain and Entities layers seen in figure 3.

2 Even if an object relational mapper is used checks (code reviews) should be made to confirm
that no concatenated strings are executed against the database. This applies to the Domain layer
seen in figure 3.

3 A security code scanner should be used to highlight any potential injection vulnerabilities and
cross-site scripting vulnerabilities. Security Code Scan being a good example of a code scanner
for the C# programming language. This applies to the Controller, Domain, and Entities layers
seen in figure 3.

4 Third party services, such as Auth0, should be used to reduce the burden and risk that come
with implementing complex authentication and authorisation functionality. Precise details as to
how to configure and integrate Auth0 with specific technologies (and across all the layers seen
in figure 3) were included in the handover document.

5 Even if a third party service is used to implement authentication and authorisation functionality
care should still be taken to ensure that functions, or endpoints, and individual objects are
guarded to an appropriate level (and code reviews can help with this). This mainly applied to
the Controller and UI layers seen in figure 3.

6 Error messages returned to end users should be generic and not contain any sensitive
information. Samuela Rescsa [45] provides a good explanation of how this can be achieved
when using the .NET Core framework.

7 All responses sent from the API component should include security headers. The
X-Content-Type-Options: nosniff and the X-Frame-Options: DENY headers should be
sent to mitigate MIME sniffing and click jacking.

8 Audit logs should be written after input validation failures, output validation failures, and
application errors.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 10 of 15

4.2. Case Study: The Security-focused Prototyping of the Application Layer of an IoT System335

Pure O2 Ltd received technical assistance, in the form of security-focused prototyping, towards336

their ultimate goal of a cyber-physical system that monitors the well-being of patients, alerts medical337

practitioners or carers when a dangerous situation arises, and (potentially) collects data from which338

insights can be drawn. The security-focused prototyping focused on the application layer of this339

planned system. The cyber security challenge the assist faced was therefore similar to the one340

mentioned in the previous case study (section 4.1); products and services delivered via the Web have341

intrinsic security vulnerabilities that need to be mitigated. However, the requirement for real-time342

functionality (to alert medical practitioners or carers) meant that additional technologies and therefore343

vulnerabilities had to be considered, and that the challenge the prototyping helped overcome was344

ultimately quite different.345

The prototyping that was done to support Pure O2 Ltd was security-focused and therefore346

captured the 5 aspects of secure development described in section 3. Each of the aspects was captured347

in much the same way as it was during the prototyping that was done to support Digital Oracles Ltd348

(see section 4.1). Importantly, this similarity in how the prototyping efforts sought to be dualistic,349

pessimistic, holistic, auditable, and cyclical, did not stop the security-focused prototyping from350

uncovering security findings specific to the domain and technologies Pure O2 Ltd was interested in.351

Two feature-sets were the focus of the security-focused prototyping. The first of these feature-sets352

led to a prototype REST API that sends and receives mock data being developed. The second feature-set353

led to an early version of an alert system, a Hub, built using SignalR [46] and Web Sockets [47] being354

developed. Together, these two prototypes form an early working version of an application layer,355

which is illustrated in figure 4. The two feature-sets were chosen as the focus of the prototyping as it356

was identified early on that these different sets would need to be built across different layers (the REST357

API and the Hub); by prototyping the chosen sets we were able to hit all of the layers and got a better358

understanding of how to secure the application layer as a whole.359

Figure 4. A visualization of the application layer created via security-focused prototyping.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 11 of 15

As a result of the security-focused prototyping a proof-of-concept demonstrator was produced.360

This proof-of-concept demonstrator was comprised of a handover document and several repositories361

that contained the source code for the application layer of an Internet of Things system. The handover362

document communicated the findings of the prototyping and made highly relevant recommendations363

with regards to further secure development, thereby providing the kind of domain specific guidance364

many secure development models lack (just as it did in the previous case study). Table 3 presents a365

summarized list of findings that resulted from the security-focused prototyping process.366

Table 3. Security findings from the security-focused prototyping done to assist Pure O2 Ltd.

Security finding

1 An object relational mapper, such as Entity Framework Core, should be used to reduce the risk
posed by SQL injection. This applies to the REST API layer seen in figure 4.

2 Even if an object relational mapper is used checks (code reviews) should be made to confirm
that no concatenated strings are executed against the database. This applies to the REST API
layer seen in figure 4.

3 A security code scanner should be used to highlight any potential injection vulnerabilities and
cross-site scripting vulnerabilities. Security Code Scan being a good example of a code scanner
for the C# programming language. This applies to the REST API layer seen in figure 4.

4 Error messages returned to end users should be generic and not contain any sensitive
information. Samuela Rescsa [45] provides a good explanation of how this can be achieved
when using the .NET Core framework. This applies to the REST API layer seen in figure 4.
SignalR does not expose sensitive error messages by default and the Hub layer is therefore
secure by default in this regard.

5 All responses sent from the REST API component should include security headers. The
X-Content-Type-Options: nosniff and the X-Frame-Options: DENY headers should be
sent to mitigate MIME sniffing and click jacking.

6 Audit logs should be written after input validation failures, output validation failures, and
application errors. Furthermore, because Signal R sends the access token in a query string
when using WebSockets and Server-Sent Events as a transport method, care should be taken to
configure the logger such that it only logs messages annotated Warning or higher. Alternatively,
logging middle ware that filters out the access token could be written.

7 Cross-origin resource sharing (CORS) can be configured to allow cross-origin SignalR
connections in the browser. Care should be taken when defining this configuration and
the principle of least privilege should be applied.

8 The protections provided by CORS do not apply to WebSockets. Browsers do not send pre-flight
requests when issuing WebSocket requests, but they do send an Origin header. Care should be
taken to make sure that these headers are validated.

9 SiginalR uses per-connection buffers to manage messages and limits the size of messages by
default. However, this default configuration can be overriden if required. Care should be taken
when overriding the default configuration as doing so could allow a malicious actor to send
large messages that significantly reduce the number of concurrent connections and impact the
availability of the service Pure O2 Ltd plans to provide, which could be fatal and in the worst
case result in lives being lost.

10 Third party services, such as Auth0, should be used to reduce the burden and risk that come
with implementing complex authentication and authorisation functionality. Auth0 allows for
communications between the IoT device and the control system to be secured using the Client
Credentials Grant Flow and for communications between the browser-based application and
the control system to be secured using the Authorisation Code Flow with PKCE. Further details
as to how to configure and integrate Auth0 with the relevant technologies were included in the
handover document.

11 Even if a third party service is used to implement authentication and authorisation functionality
care should still be taken to ensure that functions, or endpoints, and individual objects are
guarded to an appropriate level (and code reviews can help with this).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 12 of 15

5. Conclusions367

This article introduces security-focused prototyping, a process that can act as a valuable precursor368

to secure development. Motivated by the complexity of secure development as a topic and the inability369

of prominent secure development models to provide domain specific guidance, security-focused370

prototyping streamlines secure development and harnesses the power of prototyping as an activity371

that reduces risk. Two case studies have been described–one considering the creation of a bespoke372

web platform and the other considering the application layer of an Internet of Things system. Together373

these case studies demonstrate the ability of security-focused prototyping to: embed security at the374

very beginning of the development process, discover domain specific security requirements, and allow375

for the resources and commitment secure development will need to be better understood.376

The potential of security-focused prototyping to industry is therefore clear; it is a process that can377

be used to better reduce risk. Future work could build on this working hypothesis and further evidence378

the potential of security-focused prototyping by applying it in different domains. Furthermore, the379

5 aspects security-focused prototyping is built around (identified in section 3) have their own value,380

independent of security-focused prototyping. Future work could use these aspects as a framework for381

creating new models of secure software development, or even as a vessel through which the principles382

of secure software development could be transferred across to other technological developments.383

Ultimately, security-focused prototyping even has potential as a process capable of mitigating a384

broader, socio-technical, kind of risk–something many prominent secure development models fail to385

provide.386

In summary, prototyping and secure development are analogous processes. By combining the387

two, security-focused prototyping makes secure development more accessible and thereby contributes388

towards a future where the benefits new technologies bring can be realised with less risk.389

Author Contributions: Conceptualization, S.A and N.O; methodology and investigation, S.A; writing–original390

draft preparation, S.A; writing–review and editing, S.A, N.O, K.P.F, and R.K; supervision, R.K and K.P.F; funding391

acquisition, R.K. All authors have read and agreed to the published version of the manuscript.392

Funding: This is a direct result of working on the ERDF Greater Manchester Cyber Foundry which is part funded393

by the European Regional Development Fund.394

Acknowledgments: We gratefully acknowledge the support of Digital Oracles Limited and Pure O2 Limited.395

Conflicts of Interest: The authors declare no conflict of interest.396

Abbreviations397

The following abbreviations are used in this manuscript:398

399

IoT Internet of Things
SME Small to medium sized organisation
MSDL Microsoft Security Development Lifecycle
SAFE Code Software Assurance Forum for Excellence in Code
SAMM Software Assurance Maturity Model
BSIMM Building Security in Maturity Model
SPA Single-page application
REST Representational State Transfer
API Application programming interface
CORS Cross-origin Resource Sharing

400

References401

1. Daugherty, P.; Banerjee, P.; Negm, W.; Alter, A.E. Driving Unconventional Growth through the Industrial402

Internet of Things. Technical report, Accenture, 2015.403

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 13 of 15

2. Zhou, W.; Jia, Y.; Peng, A.; Zhang, Y.; Liu, P. The Effect of IoT New Features on Security and Privacy:404

New Threats, Existing Solutions, and Challenges Yet to Be Solved. IEEE Internet of Things Journal 2019,405

6, 1606–1616. doi:10.1109/JIOT.2018.2847733.406

3. Geer, D. Are Companies Actually Using Secure Development Life Cycles? Computer 2010, 43, 12–16.407

doi:10.1109/MC.2010.159.408

4. Assal, H.; Chiasson, S. Security in the software development lifecycle. Symposium on Usable Privacy and409

Security. USENIX Association, pp. 281–296.410

5. Tondel, I.A.; Jaatun, M.G.; Meland, P.H. Security Requirements for the Rest of Us: A Survey. IEEE Software411

2008, 25, 20–27. doi:10.1109/MS.2008.19.412

6. Mohammad, A.; Alqatawna, J.; Abushariah, M. Secure software engineering: Evaluation of413

emerging trends. 8th International Conference on Information Technology (ICIT), 2017, pp. 814–818.414

doi:10.1109/ICITECH.2017.8079952.415

7. Assal, H.; Chiasson, S. ’Think Secure from the Beginning’: A Survey with Software Developers. Proceedings416

of the 2019 CHI Conference on Human Factors in Computing Systems; Association for Computing417

Machinery: New York, NY, USA, 2019; CHI ’19, p. 1–13. doi:10.1145/3290605.3300519.418

8. Criddle, C.; Kelion, L. Coronavirus contact-tracing: World split between two types of app,419

2020. Available online: https://web.archive.org/web/20210310122748/https://www.bbc.com/news/420

technology-52355028 (accessed on 10-03-21).421

9. Boehm, B.W. A spiral model of software development and enhancement. Computer 1988, 21, 61–72.422

doi:10.1109/2.59.423

10. Beck, K.; Beedle, M.; Van Bennekum, A.; others. Manifesto for agile software development. Technical424

report, 2001.425

11. Osborn, E. Business versus technology: Sources of the perceived lack of cyber security in SMEs [Working426

Paper]. Technical report, 2014.427

12. Finn, B. Hundreds of businesses move online as Covid-19 shutters ’bricks and mortar’ stores, 2020.428

Available online: https://web.archive.org/web/20210310134008/https://www.rte.ie/news/business/429

2020/0407/1129150-covid-19-prompts-hundreds-of-businesses-to-move-online/ (accessed on 10-03-21).430

13. Abolhassan, F. Security: The real challenge for digitalization. In Cyber Security. Simply. Make it Happen.;431

Springer, 2017; pp. 1–11.432

14. Peillon, S.; Dubruc, N. Barriers to digital servitization in French manufacturing SMEs. Conference on433

Industrial Product-Service Systems 2019, 83, 146–150.434

15. Kabanda, S.; Tanner, M.; Kent, C. Exploring SME cybersecurity practices in developing countries. Journal435

of Organizational Computing and Electronic Commerce 2018, 28, 269–282.436

16. Boehm, B.; Hansen, W.J. Spiral development: Experience, principles, and refinements. Technical report,437

Carnegie Mellon University, 2000.438

17. Hoda, R.; Salleh, N.; Grundy, J. The rise and evolution of agile software development. IEEE software 2018,439

35, 58–63.440

18. Budde, R.; Kautz, K.; Kuhlenkamp, K.; Züllighoven, H. What is prototyping? Information Technology &441

People 1992.442

19. Bill Gates: Trustworthy Computing, 2002. Available online: https://web.archive.org/web/443

20210310122257/https://www.wired.com/2002/01/bill-gates-trustworthy-computing/ (accessed on444

10-03-21).445

20. Williams, L., Secure Software Lifecycle Knowledge Area. In Cyber Security Body of Knowledge; University of446

Bristol, 2019. Version 1.0.447

21. What are the Micrsoft SDL practices?, 2021. Available online: https://web.archive.org/web/448

20210310121322/https://www.microsoft.com/en-us/securityengineering/sdl/practices (accessed on449

10-03-21).450

22. De Win, B.; Scandariato, R.; Buyens, K.; Grégoire, J.; Joosen, W. On the secure software development451

process: CLASP, SDL and Touchpoints compared. Information and software technology 2009, 51, 1152–1171.452

23. McGraw, G. Software security. IEEE Security Privacy 2004, 2, 80–83. doi:10.1109/MSECP.2004.1281254.453

24. Our History. Available online: https://web.archive.org/web/20210310140744/https://safecode.org/our-454

history/ (accessed 10-03-21).455

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://doi.org/10.1109/JIOT.2018.2847733
https://doi.org/10.1109/MC.2010.159
https://doi.org/10.1109/MS.2008.19
https://doi.org/10.1109/ICITECH.2017.8079952
https://doi.org/10.1145/3290605.3300519
https://web.archive.org/web/20210310122748/https://www.bbc.com/news/technology-52355028
https://web.archive.org/web/20210310122748/https://www.bbc.com/news/technology-52355028
https://web.archive.org/web/20210310122748/https://www.bbc.com/news/technology-52355028
https://doi.org/10.1109/2.59
https://web.archive.org/web/20210310134008/https://www.rte.ie/news/business/2020/0407/1129150-covid-19-prompts-hundreds-of-businesses-to-move-online/
https://web.archive.org/web/20210310134008/https://www.rte.ie/news/business/2020/0407/1129150-covid-19-prompts-hundreds-of-businesses-to-move-online/
https://web.archive.org/web/20210310134008/https://www.rte.ie/news/business/2020/0407/1129150-covid-19-prompts-hundreds-of-businesses-to-move-online/
https://web.archive.org/web/20210310122257/https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://web.archive.org/web/20210310122257/https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://web.archive.org/web/20210310122257/https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://web.archive.org/web/20210310121322/https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://web.archive.org/web/20210310121322/https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://web.archive.org/web/20210310121322/https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://doi.org/10.1109/MSECP.2004.1281254
https://web.archive.org/web/20210310140744/https://safecode.org/our-history/
https://web.archive.org/web/20210310140744/https://safecode.org/our-history/
https://web.archive.org/web/20210310140744/https://safecode.org/our-history/
https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 14 of 15

25. Fundamental practices for secure software development: Essential elements of a secure development456

lifecycle program. Technical report, Software Assurance Forum for Excellence in Code, 2018.457

26. SAMM Model Overview, 2020. Available online: https://web.archive.org/web/20210226052500/https:458

//owaspsamm.org/model/ (accessed on 12-03-21).459

27. Williams, L.; McGraw, G.; Migues, S. Engineering security vulnerability prevention, detection, and460

response. IEEE Software 2018, 35, 76–80.461

28. OWASP Mobile Security, 2020. Available online: https://web.archive.org/web/20210312161251/https:462

//owasp.org/www-project-mobile-security/ (accessed on 12-03-21).463

29. Takabi, H.; Joshi, J.B.; Ahn, G.J. Security and privacy challenges in cloud computing environments. IEEE464

Security & Privacy 2010, 8, 24–31.465

30. Hassan, W.H.; others. Current research on Internet of Things (IoT) security: A survey. Computer networks466

2019, 148, 283–294.467

31. Azham, Z.; Ghani, I.; Ithnin, N. Security backlog in Scrum security practices. Malaysian Conference in468

Software Engineering 2011, pp. 414–417.469

32. Asthana, V.; Tarandach, I.; O’Donoghue, N.; Sullivan, B.; Saario, M. Practical security stories and security470

tasks for agile development environments. Technical report, Software Assurance Forum for Excellence in471

Code, 2012.472

33. Secure DevOps, 2021. Available online: https://web.archive.org/web/20210312163014/https://www.473

microsoft.com/en-us/securityengineering/devsecops (accessed 12-03-21).474

34. de Vicente Mohino, J.; Bermejo Higuera, J.; Bermejo Higuera, J.R.; Sicilia Montalvo, J.A. The Application of475

a New Secure Software Development Life Cycle (S-SDLC) with Agile Methodologies. Electronics 2019, 8.476

doi:10.3390/electronics8111218.477

35. Pohl, C.; Hof, H. Secure Scrum: Development of Secure Software with Scrum. ArXiv 2015, abs/1507.02992.478

36. Oueslati, H.; Rahman, M.M.; Othmane, L.B. Literature Review of the Challenges of Developing Secure479

Software Using the Agile Approach. 10th International Conference on Availability, Reliability and Security480

2015, pp. 540–547.481

37. Bishop, D.; Rowland, P. Agile and Secure Software Development: An Unfinished Story. Issues in Information482

Systems.483

38. Oyetoyan, T.D.; Cruzes, D.S.; Jaatun, M.G. An empirical study on the relationship between software484

security skills, usage and training needs in agile settings. 2016 11th International Conference on Availability,485

Reliability and Security (ARES). IEEE, 2016, pp. 548–555.486

39. Morrison, P.; Smith, B.H.; Williams, L. Surveying security practice adherence in software development.487

Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp, 2017, pp. 85–94.488

40. Chacon, S.; Straub, B. Pro Git; Apress, 2014.489

41. Architectural decision record (ADR), 2021. Available online: https://web.archive.org/web/490

20210311025433/https://github.com/joelparkerhenderson/architecture_decision_record (accessed on491

12-03-21).492

42. Martin, R. The Clean Architecture, 2012. Available online: https://web.archive.org/web/20210312162015/493

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html (accessed on 12-03-21).494

43. Fielding, R.T.; Taylor, R.N. Principled design of the modern web architecture. ACM Transactions on Internet495

Technology (TOIT) 2002, 2, 115–150.496

44. What’s the difference between single-page application and multi-page application?, 2017. Available497

online: https://web.archive.org/web/20210312162539/https://www.adcisolutions.com/knowledge/498

whats-difference-between-single-page-application-and-multi-page-application (accessed on 12-03-21).499

45. Resca, S. Hands-On RESTful Web Services with ASP.NET Core 3; Packt, 2019.500

46. Introduction to ASP.NET Core SignalR, 2019. Available online: https://web.archive.org/web/501

20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=502

aspnetcore-5.0 (accessed on 13-03-21).503

47. The WebSocket Protocol, 2011. Available online: https://web.archive.org/web/20210308025822/https:504

//tools.ietf.org/html/rfc6455/ (accessed on 12-03-21).505

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

https://web.archive.org/web/20210226052500/https://owaspsamm.org/model/
https://web.archive.org/web/20210226052500/https://owaspsamm.org/model/
https://web.archive.org/web/20210226052500/https://owaspsamm.org/model/
https://web.archive.org/web/20210312161251/https://owasp.org/www-project-mobile-security/
https://web.archive.org/web/20210312161251/https://owasp.org/www-project-mobile-security/
https://web.archive.org/web/20210312161251/https://owasp.org/www-project-mobile-security/
https://web.archive.org/web/20210312163014/https://www.microsoft.com/en-us/securityengineering/devsecops
https://web.archive.org/web/20210312163014/https://www.microsoft.com/en-us/securityengineering/devsecops
https://web.archive.org/web/20210312163014/https://www.microsoft.com/en-us/securityengineering/devsecops
https://doi.org/10.3390/electronics8111218
https://web.archive.org/web/20210311025433/https://github.com/joelparkerhenderson/architecture_decision_record
https://web.archive.org/web/20210311025433/https://github.com/joelparkerhenderson/architecture_decision_record
https://web.archive.org/web/20210311025433/https://github.com/joelparkerhenderson/architecture_decision_record
https://web.archive.org/web/20210312162015/https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://web.archive.org/web/20210312162015/https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://web.archive.org/web/20210312162015/https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://web.archive.org/web/20210312162539/https://www.adcisolutions.com/knowledge/whats-difference-between-single-page-application-and-multi-page-application
https://web.archive.org/web/20210312162539/https://www.adcisolutions.com/knowledge/whats-difference-between-single-page-application-and-multi-page-application
https://web.archive.org/web/20210312162539/https://www.adcisolutions.com/knowledge/whats-difference-between-single-page-application-and-multi-page-application
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210308025822/https://tools.ietf.org/html/rfc6455/
https://web.archive.org/web/20210308025822/https://tools.ietf.org/html/rfc6455/
https://web.archive.org/web/20210308025822/https://tools.ietf.org/html/rfc6455/
https://doi.org/10.20944/preprints202103.0406.v1

Version March 15, 2021 submitted to J. Cybersecur. Priv. 15 of 15

© 2021 by the authors. Submitted to J. Cybersecur. Priv. for possible open access506

publication under the terms and conditions of the Creative Commons Attribution (CC BY) license507

(http://creativecommons.org/licenses/by/4.0/).508

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 doi:10.20944/preprints202103.0406.v1

http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints202103.0406.v1

	Introduction
	Background
	Rapid Development & Prototyping
	Secure Development

	Security-focused Prototyping: Streamlining Secure Development
	Case Studies
	Case Study: The Security-focused Prototyping of a Bespoke Web Platform
	Case Study: The Security-focused Prototyping of the Application Layer of an IoT System

	Conclusions
	References

