Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

Article
Security-focused Prototyping: A Natural Precursor to
Secure Development

Sam Attwood* 12, Nana Onumah 2, Katie Paxton-Fear 2 and Rupak Kharel 3

1 Department of Computing and Mathematics, Faculty of Science and Engineering, Manchester Metropolitan

University, Manchester, United Kingdom; S.Attwood@mmu.ac.uk; Nana-Kwesi.A.Onumah@stu.mmu.ac.uk;
K.Paxton-Fear@mmu.ac.uk; R.Kharel@mmu.ac.uk
* Correspondence: S.Attwood@mmu.ac.uk

Version March 15, 2021 submitted to J. Cybersecur. Priv.

Abstract: Secure development is a proactive approach to cyber security. Rather than building a
technological solution and then securing it in retrospect, secure development strives to embed good
security practices throughout the development process and thereby reduces risk. Unfortunately,
evidence suggests secure development is complex, costly, and limited in practice. This article therefore
introduces security-focused prototyping as a natural precursor to secure development that embeds
security at the beginning of the development process, can be used to discover domain specific security
requirements, and can help organisations navigate the complexity of secure development such that
the resources and commitment it requires are better understood. Two case studies—one considering
the creation of a bespoke web platform and the other considering the application layer of an Internet
of Things system—verify the potential of the approach and its ability to discover domain specific
security requirements in particular. Future work could build on this work by conducting case studies
to further verify the potential of security-focused prototyping and even investigate its capacity to be
used as a tool capable of reducing a broader, socio-technical, kind of risk.

Keywords: cyber security; secure development; prototyping; web security; internet of things;
software security; digitalization; socio-technical security

1. Introduction

Technological advances create both opportunities and challenges. New technologies have the
potential to enable new solutions that change human lives for the better. However, the same new
technologies also have the potential to create new challenges. Often, these challenges are related to
security, as new technologies inevitably lead to new vulnerabilities for malicious actors to exploit. The
emergence of the Internet of Things (IoT) in recent times serves as an example: industrial applications
of IoT technologies are synonymous with the idea of a fourth industrial revolution (Industry 4.0) and
optimistic predictions of the value created by industrial IoT range as high as $15 trillion of global GDP
by 2030 [1], however, IoT devices can also be leveraged by malicious actors as part of Distributed
Denial-of-Service attacks without the end user’s knowledge [2].

Secure development models provide a means of minimizing risk when creating a technological
solution and are therefore especially useful tools when working with emerging technologies.
Unfortunately, secure development is complex, costly, and limited in practice [3]. There are numerous
secure development models and no universally accepted answer as to which is the best. Furthermore,
many of the prominent secure development models are not always applicable. Geer surveyed
46 organisations and found that only the most technically sophisticated—approximately 10% of
respondents—were adopting a secure development model [3]. Many of the respondents reported
that they had not adopted a secure development model because it was either too expensive, required

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

http://www.mdpi.com
https://orcid.org/0000-0001-8140-6157
http://www.mdpi.com/journal/jcp
https://doi.org/10.20944/preprints202103.0406.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

Security-focused Prototyping

|

Secure Development

Figure 1. A visualization of how security-focused prototyping promotes the adoption of secure
development practices.

too many resources, or was too time consuming [3], and numerous studies present a similar narrative
[4-7]. This is despite the simple idea of prevention being better than cure arguably encapsulating the
entire concept.

The COVID-19 pandemic has highlighted the need for secure development models that are
flexible and viable when time is in short supply. It has seen governments around the globe race to
launch contact-tracing smartphone applications whilst citizens, partially motivated by the apparently
hurried development, simultaneously raise security and privacy concerns [8]. In short, the pandemic
created a situation in which rapid, yet secure development was required; a situation that required a
development model with the facets of rapid development approaches—such as Boehm'’s spiral model
[9] and subsequent agile models [10]-but was nonetheless capable of producing a secure solution that
addressed privacy concerns.

The challenges faced by small and medium sized organisations (SMEs) further highlight the
need to make secure development more easily accessible. In general, SMEs are perceived as being
less equipped when it comes to cyber security than larger organisations [11] and this is true of
secure development as well; Assal and Chiasson surveyed 123 developers and found that SMEs were
more likely to have ‘competing priorities and no plan’ and be ‘unequipped for security’ than larger
enterprises [7]. The COVID-19 pandemic has only exaggerated these challenges and placed a greater
pressure on SMEs to digitalize and to do it quickly [12]. Unfortunately, the various barriers-including
the requirement for security—to SMEs looking to digitalize are well documented [13-15]. Furthermore,
when it comes to security these barriers must be overcome repeatedly; the threat landscape is forever
changing and organisations with a digital presence (of all sizes) must change with it.

The Greater Manchester Cyber Foundry project further evidences the need for a more accessible
model of secure development that is viable when time is in short supply. Broadly speaking, the project
consists of 2 phases, the second of which requires the creation of proof-of-concept demonstrators
over relatively short timescales. These proof-of-concept demonstrators serve a dual purpose and are
intended to increase innovation (and thereby economic growth), but also the adoption of security
practices, across SMEs in the Greater Manchester (UK) region. The challenge faced by the project is
that the short timescales over which the proof-of-concept demonstrators need to be developed make
it difficult to adopt a well-established secure development model. So how can the proof-of-concept
demonstrators that are created as a part of the project help increase the adoption of security practices?

To address all these problems we present a novel technique—security-focused prototyping-that
acts as a precursor to secure development (see figure 1) by embedding security at the beginning of the
development process, discovering domain specific security requirements, and providing a means of
understanding the level of resources and commitment that are required for secure development to
continue. We also present 5 aspects of secure development that are intended to act as a streamlined yet
informative definition of secure development (and are the foundations upon which security-focused
prototyping is built). We start by describing the largely disparate worlds of rapid and secure
development in section 2, then synthesize the two by introducing security-focused prototyping in
section 3, before validating the approach by describing its application to two case studies in section 4,
and ultimately concluding by discussing the potential of the technique in section 5.

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

2. Background

2.1. Rapid Development & Prototyping

The drive towards rapid development and lightweight software development models arguably
began when Boehm introduced the spiral model in 1988 [9]. The model was motivated by perceived
shortcomings in the waterfall model of software development, as well as its prevalence [9]. It was
differentiated from prior approaches by the fact that it was risk-driven; the prior approaches were
more document-driven or code-driven [9].

In a later work, Boehm states that spiral development is a family of software development
processes that are characterized by repeatedly iterating a set of elemental development processes and
managing risk such that it is actively being reduced [16]. Importantly, the risk that is being managed
here is the risk that the delivery of the project will be delayed or fail [16]; the spiral model does not
manage security risks to the extent of the models discussed in section 2.2. Boehm also goes on to
describe 6 characteristics, or invariants, that those following a spiral model should observe [16]:

¢ Concurrent determination of key artifacts. Sequential determination often leads to mistakes. For
example, a premature commitment to an inappropriate platform or service provider.

¢ Consideration in each spiral of the main spiral elements. A failure to revisit the key objectives
and risks before undertaking activities could cause time to be wasted on activities that are
unacceptable to key stakeholders.

* Level of effort driven by risk considerations. Any development activity is only beneficial up to
a point. For example, prototyping can minimise risk exposure, but excessive prototyping can
delay a project.

* Degree of detail driven by risk considerations. Artifacts are only beneficial up to a point. For
example, a detailed specification of a graphical user interface risks an awkward design being
embedded into the development process.

® Use of anchor point milestones. The original spiral model lacked intermediary milestones that
could serve as progress checks. This led to to issues such as requirements creep and unrealistic
expectations.

* Emphasis on system and lifecycle activities and artifacts. Software construction activities should
not overshadow other activities as this can lead to the concerns and objectives of stakeholders
being lost.

Shortly after Boehm had described the invariants that those following a spiral model
should observe, seventeen software developers gathered to discuss similarly lightweight software
development models [10]. The result of this gathering was the agile manifesto [10]. Today, many
software development models can be considered agile and agile models are prevalent across the
software engineering discipline [17]. The twelve principles that underpin these models are as follows
(and outlined fully in the agile manifesto [10]):

¢ Satisfy the customer. Deliver valuable software early on and on a regular basis to achieve this.

* Welcoming changing requirements. Even late on in the development process.

* Deliver working software frequently. The greater the frequency the better.

¢ Stakeholders and developers should work together. Ideally, this will be on a daily basis.

¢ Build projects around motivated individuals. Give these individuals the support they need and
trust them to get the job done.

¢ Promote efficient and effective communication. Put value in face-to-face communication to
achieve this.

¢ Working software is the primary measure of progress.

* Promote sustainable development. Stakeholders and developers should be able to maintain a
constant pace.

¢ Continuous attention to technical excellence and good design enhance agility.

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021

do0i:10.20944/preprints202103.0406.v1

e Simplicity is essential. Try and maximise the amount of work not done.
® Self organizing teams typically produce the best results. The best architectures, designs, and
requirements normally emerge from these teams.

* Reflect at regular intervals and identify ways to improve. Then tune and adjust behaviours
accordingly.

Most of the agile development models (and Boehm'’s spiral model in particular) place considerable
importance on prototyping as an activity and use it as a kind of insurance. Prototyping allows
for something tangible—the prototype itself-to be created early on in the development process and
therefore provides a crucial basis for discussion and ideation. Moreover, if any problems stemming
for the underlying assumptions and requirements of a project exist, prototyping allows for them to
identified early on before they become too costly. The question What is prototyping? is answered more

comprehensively by Budde et al. who start by putting forward the following four points to serve as a
preliminary characterisation of the term [18]:

¢ Prototyping is an approach based on evolutionary view of software development. It strives to
have an impact on the development process as a whole.

¢ Prototyping involves producing early working versions of a system. So that these early versions
can be experimented with.

¢ Prototyping provides a basis for discussion among all the groups involved in the development
process. Users and developers in particular.

* Prototyping informs further development. Experience gained via prototyping and
experimentation is fed into further development.

Budde et al. discuss several different aspects of prototyping in greater detail [18]. One of these
aspects—the distinction between horizontal and vertical prototyping—is of particular significance with
regards to this work. According to Budde et al., in horizontal prototyping specific individual layers
of a system are built, and in vertical prototyping a selected part of the target system is implemented
completely (down through all layers) [18]. If we consider a web application as an example, the act
of prototyping the user interface layer could be described as horizontal (see left of figure 2), whereas

the act of prototyping a new feature—across the user interface layer but other layers as well-could be
described as vertical (see right of figure 2).

Data Data
Access _ _ _ ~ Access _ _ _
<) S 5 <) S g
™ - P P L - el = P 4|
Business & A = = Business i & & g
. < < = = . = < 2 g
Logic |3 z 2 = Logic |3 = : z
[} [} (] (] o [} [(1]
7 (7] Q L) (7] (7] 7} Q)
('S ('S "8 '8 ('S (' '8 |
User User
Interface Interface

Figure 2. A visualization of horizontal prototyping (left) and vertical prototyping (right). The focus of
the prototyping is highlighted by underlined text and red background.

2.2. Secure Development

In 2002, the Trustworthy computing memo was sent to all Microsoft employees [19]. The memo
sought to lessen customer concerns and bad press caused by security concerns [19,20]. It defined
trustworthy computing as computing that is available, reliable and secure as electricity, water services and
telephony [19]. It triggered a rethink within Microsoft and ultimately led to the Microsoft Security
Development Lifecycle (MSDL) [20]. Today, 12 practices make up the MSDL [21]. Table 1 presents

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

Table 1. The Microsoft Security Development Lifecycle (@), software security touchpoints (A), and
SAFE Code practices (M) mapped to the six phases of development put forward by De Win et al:
education and awareness (4.1); project inception (4.2); analysis and requirements (4.3); architectural
and detailed design (4.4); implementation and testing (4.5); release, deployment, and testing (4.6) [22].
Based on a similar table in the Secure Software Lifecycle Knowledge Area [20].

L
—_

Practice 4.2 4.3 44 45 4.6

Provide training

Plan the implementation of secure development
Manage security findings

Define metrics and compliance reporting
Define and use cryptography standards

Use approved tools

Abuse cases A
Define security requirements oAl
Perform threat modelling Y
Design [|
Establish design requirements

Architectural risk analysis

Code reviews

Perform static analysis security testing

Perform dynamic analysis security testing

Testing and validation

Manage risk of third-party components

Follow secure coding practices

Risk-based security testing

Perform penetration testing

Establish a standard incident response

Vulnerability response and disclosure

Security operations

o000 NN
>eonm

;»-:-..»»

°
>lo>

these practices in a summarized form (for brevity) and maps them to six common development phases
forward by De Win et al. [22]. Considered as a whole the MSDL is a comprehensive process. Table 1
shows that it specifies at-least one practice for each of the development phases. However, the MSDL
does have a significant shortcoming-the practices it contains explain what should be done, but not how
it should be done.

In 2004, McGraw proposed seven software security touchpoints (a set of best practices) [23]. These
touchpoints are presented and mapped across the six development phases first put forward by De Win
et al [22] in table 1. From table 1 a shortcoming of the touchpoints can be identified, none of them cover
the ‘education and awareness’ and the “project inception” phases. This lack of coverage at the earliest
development phases is problematic and could result in teams being under-prepared. Furthermore,
much like the practices in the MSDL, many of the touchpoints specify what should be done but fail to
go into significant detail as to how it should be done. However, in both cases this lack of detail is most
likely deliberate and in a sense is what makes the models valuable. By failing to specify exactly how
practices should be implemented both models remain technology and process agnostic, which means
both can be considered generally applicable.

Several years after the touchpoints were introduced, in 2007, the Software Assurance Forum
for Excellence in Code (SAFE Code) was founded [24]. SAFE Code is an industry-led non-profit
organization with the goal of promoting and facilitating the adoption of effective secure development
practices [24]. In pursuit of this goal, the organisation publishes guidance that is centred around 8
fundamental practices [25]. Table 1 shows that these practices are comprehensive and together span
the six phases of development. However, the point about practices specifying what to do and not
how to do it applies here as well. Like the MSDL and the touchpoints, the SAFE Code practices are
largely technology and process agnostic, which is often perceived as a strength but is also a weakness.

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

Even though the practices are sound, the lack a systematic method for realizing them is a barrier
organizations looking to achieve secure development must overcome.

Table 1 demonstrates that there is some overlap between the MSDL, the touchpoints, and the
SAFE Code guidance. It shows that all three recommend defining security requirements and that the
MSDL and touchpoints both recommend penetration testing be performed. Furthermore, there are
similarities between the three approaches that are not immediately apparent from table 1. For example,
all three recommend code reviews but do so in subtly different ways. The MSDL draws a distinction
between static and dynamic analysis security testing [21], the touchpoints simply recommend code
reviews and note that these can be manual or automated [23], and SAFE Code advises code reviews
be performed along with other activities like penetration testing by recommending that testing and
validation be performed [25].

However, table 1 also demonstrates that there are significant differences between the three secure
development models. For example, the touchpoints differ from the other two models in offering no
guidance related to the planning and implementation of secure development. Furthermore, there are
differences in the detail of similar recommendations that are not demonstrated by table 1. Both the
MSDL and SAFE Code provide guidance with regards to the management of third-party components,
but the detail of this guidance is subtly different in a number of ways. SAFE Code maps mitigate,
monitor, and assess activities onto a third-party component management lifecycle [25], whereas the
MSDL simply lists 4 practices that can be adopted [21].

Table 1 therefore evidences and demonstrates the complexity of secure development (as a whole,
not any model in particular). Complexity which has led to research and the formulation of further
models that provide a means of assessing and evaluating other secure development models [22,26,27].
The Software Assurance Maturity Model (SAMM) [26], and an early fork of it known as the Building
Security In Maturity Model (BSIMM) [27], being particularly notable examples. The SAMM and
BSIMM models are both comprehensive and provide a means for organisations to improve via the
incremental adoption of security practices. Nonetheless, both of the models fail to provide domain
specific recommendations and the narrative of secure development being too costly, requiring too
many resources, and being too time consuming has continued since their formulation [3-7], which
suggests further work is still needed to make secure development more accessible.

The complexity of secure development is further exaggerated by the variety of technologies that
can be developed today. In general, secure development refers to the secure development of software
(and this is true of all the models described so far) but software itself is always changing. Software
can be developed for mobiles, it can be delivered via cloud computing, and it can form a part of an
Internet of Things (IoT) system. Each of these scenarios has unique challenges and corresponding
guidance associated with it [28-30]. Together, they therefore not only exaggerate the complexity of
secure development, they also demonstrate that it is highly domain-dependent. Different practices,
tools, and threat actors need to be considered when building solutions with different technologies and
for different purposes. The prominent models discussed in this section, and most secure development
models in general, are technology agnostic and therefore fail to offer to domain specific guidance.

3. Security-focused Prototyping: Streamlining Secure Development

In this section, we attempt to synthesize the worlds of prototyping and secure development,
and propose a new technique termed security-focused prototyping before explaining its potential.
However, before doing this we briefly review a body of related works, such that this work is clearly
distinguished from them. Broadly speaking, this body of related works considers the synthesis of agile
development with secure development [31-37]. For example, SAFE Code provides security guidance
for agile practitioners [32], Microsoft lists 8 practices as a part of a Secure DevOps model [33], and a
recent study proposes and examines a new model that is centered around 23 principles with the aim of
ensuring both agility and security [34]. Put briefly, our work is differentiated from this body of related
works due to our in-depth focus on prototyping.

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

Prior models that synthesize agile and secure development have failed to tap into the potential
of prototyping. Security-focused prototyping taps into this potential and thereby provides a means
of: embedding security at the beginning of the development process, discovering domain specific
requirements, and navigating the complexity of secure development such that the resources and
commitment it requires are better understood. The prior models do a good job when it comes to the
first point-embedding security at the beginning of (and throughout) the development process-but
they evidently fail to address the latter two. Even when secure development is agile organisations can
struggle with regards to resources and commitment [38,39]. Furthermore, because the guidance and
recommendations in agile secure development models are typically technology agnostic [32-34], these
models (like non-agile secure development models) can fall short of delivering the domain specific
guidance that secure development requires.

Synthesizing the worlds of prototyping and secure development can address these issues and
as a first step towards this goal we propose 5 aspects of secure development. Each of these aspects
was arrived at by examining well-established secure development models-the Microsoft Secure
Development Lifecycle, the seven software security touchpoints, and the various practices that are
recommended by SAFE Code-and considering what their practices hope to achieve. The aspects are as
follows (listed in order of eminence):

1. Dualistic. Secure development consists of both constructive (building) and destructive (breaking)
activities such that risk is minimised but delivery is not hampered.
2. Pessimistic. Secure development assumes that the solution being developed will come under

attack. As such, even constructive activities are done with malicious actors in mind.
3. Holistic. Secure development promotes security throughout the entire development process,

the entire development team, and even throughout the entirety of the organisation that is

undertaking the project.
4. Auditable. Secure development puts value in transparent reporting and honest communication.

The security requirements that must be gathered in many models are perhaps the best
demonstration of this but any approach that recommends clean and clear comments has an

auditable aspect.
5. Cyclical. Secure development encourages repeated reviews in an attempt to counter a threat

landscape that is always evolving. Many models encourage continuous, or at least regular,
training and testing.

The primary purpose of these aspects of secure development is to act as a guide for
security-focused prototyping; if a prototyping activity captures these aspects then it is on its way to
being security-focused. That said, these aspects may be of use beyond security-focused prototyping as
well. The aspects are an attempt to streamline secure development and distill it down to its essence.
Any organisation that is looking to achieve secure development may therefore benefit from these
aspects and use them as a lightweight form of guidance. Furthermore, because the aspects strive to be
very general (more so than the technology agnostic guidance of the models discussed in section 2.2)
they may be of use beyond software development and could act as a vessel through which the lessons
of secure software development are transferred across to other technological developments.

The second (and final) step towards synthesising the worlds of prototyping and secure
development is to build upon the preexisting idea of vertical prototyping. As is described in section
2.1, vertical prototyping involves implementing a selected part of a target system down through
all of its constituent layers. This vertical kind of prototyping, combined with the aspects of secure
development, can act as a powerful preparatory process that paves the way for secure development.
By implementing features across all the layers we get an idea of what needs to be done to secure each
layer individually, but also how the layers interact with one another, and therefore what needs to be
done to secure the system as a whole. Different tools and activities will be needed for different layers
and it is only by implementing features across them all, while simultaneously attempting to capture
the 5 aspects of secure development, that we can achieve a complete understanding.

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

4. Case Studies

To demonstrate the potential of security-focused prototyping this section considers two case
studies. Both of the case studies consider the application of security-focused prototyping within the
context of technical assistance delivered as a part of The Greater Manchester Cyber Foundry project.
As is noted in section 1, The Greater Manchester Cyber Foundry project requires the creation of
proof-of-concept demonstrators over relatively short timescales. These proof-of-concept demonstrators
serve a dual purpose and are intended to drive further innovation while simultaneously promoting
the adoption of good security practices. The project is therefore an ideal test-bed to verify the potential
of security-focused prototyping.

4.1. Case Study: The Security-focused Prototyping of a Bespoke Web Platform

Digital Oracles Ltd are building a web platform that connects technology start-ups, industry
experts and early stage investors. The Greater Manchester Cyber Foundry provided technical assistance
towards this goal in the form of security-focused prototyping. This security-focused prototyping
involved the implementation of a subset of desirable features and helped establish an architecture
that could be built on in further work. It also sought to mitigate a number of vulnerabilities that are
intrinsic to products and services that are delivered using the Web. If exploited, these vulnerabilities
could inflict reputational or financial harm on Digital Oracles Ltd. For example, if a malicious actor
was able to exploit a SQL injection vulnerability this could result in data being corrupted or exposed to
unauthorised parties, which would of course damage the reputation of Digital Oracles Ltd.

The prototyping that was done to assist Digital Oracles Ltd was security-focused and therefore
captured the 5 aspects of secure development described in section 3:

¢ The dualistic aspect was captured via a practice of periodically switching between constructive
and destructive activities. So, after being constructive and implementing an authorisation guard
we switched to being destructive and tried to bypass said guard.

* The pessimistic aspect was captured via the usage of a code scanning tool-named Security Code
Scan—-and automated checks for vulnerabilities in third-party dependencies.

¢ The holistic aspect was captured via regular meetings with stakeholders that helped us consider
financial / organisational constraints and think about how these constraints impacted the technical
implementation.

* The auditable aspect was captured via the use of the Git version control system [40], architecture
decision records [41], and minutes of meetings/interactions with stakeholders.

¢ The cyclical aspect was captured via the implementation of sprints (a common practice in agile
approaches to software development). Work was divided into sprints and at the end of each
sprint a meeting/interaction with stakeholders was held. This allowed for everyone to reflect on
the previous sprint and think about what needed to be done, and could be done better, in the
next sprint.

The feature-set, or vertical, that was the focus of the security-focused prototyping was centered
around the start-ups that would be using the platform. Functionality that allowed a start-up to
register/login, take a self-impact assessment, and track their progress over time were all implemented
as a part of the security-focused prototyping process. All of this functionality was implemented
through all of the layers of the system. Notably, our understanding of the layers improved as the
process of security-focused prototyping was performed. At the start of the process, we thought of
these layers much as they are seen in figure 2 (so user interface, business logic, and data access layers).
However, as the security-focused prototyping process was performed and our understanding of the
platform (and how it could be secured) improved, a clearer picture began to emerge. Figure 3 illustrates
how layers were thought of towards the end of the process and is based on both the SPA + API and
Clean architectures [42—44].

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

Ul, External Interfaces/Services

Domain/Application Logic

Entities/Models

Controllers/Endpoints
REST API Boundry

Figure 3. A visualization of how layers were thought of towards the end of the security-focused
prototyping process.

As a result of the security-focused prototyping a proof-of-concept demonstrator was produced.
This proof-of-concept demonstrator was comprised of a handover document and a repository that
contained the source code for the prototype web platform. The handover document communicated the
findings of the prototyping and made highly relevant recommendations with regards to further secure
development, thereby providing the kind of domain specific guidance many secure development
models lack. Table 2 presents a summarized list of the security findings that resulted from the
security-focused prototyping process. Importantly, because security-focused prototyping is a form of
vertical prototyping, the findings help contribute towards the security of the entire system—throughout
all the layers shown in figure 3.

Table 2. Security findings that resulted from the security-focused prototyping done to assist Digital
Oracles Ltd.

Security finding

An object relational mapper, such as Entity Framework Core, should be used to reduce the risk
posed by SQL injection. This applies to the Domain and Entities layers seen in figure 3.

2 Even if an object relational mapper is used checks (code reviews) should be made to confirm
that no concatenated strings are executed against the database. This applies to the Domain layer
seen in figure 3.

3 A security code scanner should be used to highlight any potential injection vulnerabilities and
cross-site scripting vulnerabilities. Security Code Scan being a good example of a code scanner
for the C# programming language. This applies to the Controller, Domain, and Entities layers
seen in figure 3.

4 Third party services, such as Auth0, should be used to reduce the burden and risk that come
with implementing complex authentication and authorisation functionality. Precise details as to
how to configure and integrate AuthQ with specific technologies (and across all the layers seen
in figure 3) were included in the handover document.

5 Evenif a third party service is used to implement authentication and authorisation functionality
care should still be taken to ensure that functions, or endpoints, and individual objects are
guarded to an appropriate level (and code reviews can help with this). This mainly applied to
the Controller and Ul layers seen in figure 3.

6 Error messages returned to end users should be generic and not contain any sensitive
information. Samuela Rescsa [45] provides a good explanation of how this can be achieved
when using the .NET Core framework.

7 All responses sent from the API component should include security headers. The
X-Content-Type-Options: nosniff and the X-Frame-Options: DENY headers should be
sent to mitigate MIME sniffing and click jacking.

8 Audit logs should be written after input validation failures, output validation failures, and
application errors.

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

4.2. Case Study: The Security-focused Prototyping of the Application Layer of an IoT System

Pure O2 Ltd received technical assistance, in the form of security-focused prototyping, towards
their ultimate goal of a cyber-physical system that monitors the well-being of patients, alerts medical
practitioners or carers when a dangerous situation arises, and (potentially) collects data from which
insights can be drawn. The security-focused prototyping focused on the application layer of this
planned system. The cyber security challenge the assist faced was therefore similar to the one
mentioned in the previous case study (section 4.1); products and services delivered via the Web have
intrinsic security vulnerabilities that need to be mitigated. However, the requirement for real-time
functionality (to alert medical practitioners or carers) meant that additional technologies and therefore
vulnerabilities had to be considered, and that the challenge the prototyping helped overcome was
ultimately quite different.

The prototyping that was done to support Pure O2 Ltd was security-focused and therefore
captured the 5 aspects of secure development described in section 3. Each of the aspects was captured
in much the same way as it was during the prototyping that was done to support Digital Oracles Ltd
(see section 4.1). Importantly, this similarity in how the prototyping efforts sought to be dualistic,
pessimistic, holistic, auditable, and cyclical, did not stop the security-focused prototyping from
uncovering security findings specific to the domain and technologies Pure O2 Ltd was interested in.

Two feature-sets were the focus of the security-focused prototyping. The first of these feature-sets
led to a prototype REST API that sends and receives mock data being developed. The second feature-set
led to an early version of an alert system, a Hub, built using SignalR [46] and Web Sockets [47] being
developed. Together, these two prototypes form an early working version of an application layer,
which is illustrated in figure 4. The two feature-sets were chosen as the focus of the prototyping as it
was identified early on that these different sets would need to be built across different layers (the REST
API and the Hub); by prototyping the chosen sets we were able to hit all of the layers and got a better
understanding of how to secure the application layer as a whole.

Application layer

-
(=

Sensor Dashboard application

Figure 4. A visualization of the application layer created via security-focused prototyping.

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

As a result of the security-focused prototyping a proof-of-concept demonstrator was produced.
This proof-of-concept demonstrator was comprised of a handover document and several repositories
that contained the source code for the application layer of an Internet of Things system. The handover
document communicated the findings of the prototyping and made highly relevant recommendations
with regards to further secure development, thereby providing the kind of domain specific guidance
many secure development models lack (just as it did in the previous case study). Table 3 presents a
summarized list of findings that resulted from the security-focused prototyping process.

Table 3. Security findings from the security-focused prototyping done to assist Pure O2 Ltd.

Security finding

An object relational mapper, such as Entity Framework Core, should be used to reduce the risk
posed by SQL injection. This applies to the REST API layer seen in figure 4.

2 Even if an object relational mapper is used checks (code reviews) should be made to confirm
that no concatenated strings are executed against the database. This applies to the REST API
layer seen in figure 4.

3 A security code scanner should be used to highlight any potential injection vulnerabilities and
cross-site scripting vulnerabilities. Security Code Scan being a good example of a code scanner
for the C# programming language. This applies to the REST API layer seen in figure 4.

4 Error messages returned to end users should be generic and not contain any sensitive
information. Samuela Rescsa [45] provides a good explanation of how this can be achieved
when using the .NET Core framework. This applies to the REST API layer seen in figure 4.
SignalR does not expose sensitive error messages by default and the Hub layer is therefore
secure by default in this regard.

5 All responses sent from the REST API component should include security headers. The
X-Content-Type-Options: mnosniff and the X-Frame-Options: DENY headers should be
sent to mitigate MIME sniffing and click jacking.

6 Audit logs should be written after input validation failures, output validation failures, and
application errors. Furthermore, because Signal R sends the access token in a query string
when using WebSockets and Server-Sent Events as a transport method, care should be taken to
configure the logger such that it only logs messages annotated Warning or higher. Alternatively,
logging middle ware that filters out the access token could be written.

7 Cross-origin resource sharing (CORS) can be configured to allow cross-origin SignalR
connections in the browser. Care should be taken when defining this configuration and
the principle of least privilege should be applied.

8 The protections provided by CORS do not apply to WebSockets. Browsers do not send pre-flight
requests when issuing WebSocket requests, but they do send an Origin header. Care should be
taken to make sure that these headers are validated.

9 SiginalR uses per-connection buffers to manage messages and limits the size of messages by
default. However, this default configuration can be overriden if required. Care should be taken
when overriding the default configuration as doing so could allow a malicious actor to send
large messages that significantly reduce the number of concurrent connections and impact the
availability of the service Pure O2 Ltd plans to provide, which could be fatal and in the worst
case result in lives being lost.

10 Third party services, such as Auth0, should be used to reduce the burden and risk that come
with implementing complex authentication and authorisation functionality. Auth0 allows for
communications between the IoT device and the control system to be secured using the Client
Credentials Grant Flow and for communications between the browser-based application and
the control system to be secured using the Authorisation Code Flow with PKCE. Further details
as to how to configure and integrate AuthO with the relevant technologies were included in the
handover document.

11 Evenifa third party service is used to implement authentication and authorisation functionality
care should still be taken to ensure that functions, or endpoints, and individual objects are
guarded to an appropriate level (and code reviews can help with this).

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

5. Conclusions

This article introduces security-focused prototyping, a process that can act as a valuable precursor
to secure development. Motivated by the complexity of secure development as a topic and the inability
of prominent secure development models to provide domain specific guidance, security-focused
prototyping streamlines secure development and harnesses the power of prototyping as an activity
that reduces risk. Two case studies have been described—one considering the creation of a bespoke
web platform and the other considering the application layer of an Internet of Things system. Together
these case studies demonstrate the ability of security-focused prototyping to: embed security at the
very beginning of the development process, discover domain specific security requirements, and allow
for the resources and commitment secure development will need to be better understood.

The potential of security-focused prototyping to industry is therefore clear; it is a process that can
be used to better reduce risk. Future work could build on this working hypothesis and further evidence
the potential of security-focused prototyping by applying it in different domains. Furthermore, the
5 aspects security-focused prototyping is built around (identified in section 3) have their own value,
independent of security-focused prototyping. Future work could use these aspects as a framework for
creating new models of secure software development, or even as a vessel through which the principles
of secure software development could be transferred across to other technological developments.
Ultimately, security-focused prototyping even has potential as a process capable of mitigating a
broader, socio-technical, kind of risk-something many prominent secure development models fail to
provide.

In summary, prototyping and secure development are analogous processes. By combining the
two, security-focused prototyping makes secure development more accessible and thereby contributes
towards a future where the benefits new technologies bring can be realised with less risk.

Author Contributions: Conceptualization, S.A and N.O; methodology and investigation, S.A; writing—original
draft preparation, S.A; writing-review and editing, S.A, N.O, K.P.F, and R.K; supervision, R K and K.P.F; funding
acquisition, R.K. All authors have read and agreed to the published version of the manuscript.

Funding: This is a direct result of working on the ERDF Greater Manchester Cyber Foundry which is part funded
by the European Regional Development Fund.

Acknowledgments: We gratefully acknowledge the support of Digital Oracles Limited and Pure O2 Limited.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things

SME Small to medium sized organisation
MSDL Microsoft Security Development Lifecycle
SAFE Code Software Assurance Forum for Excellence in Code
SAMM Software Assurance Maturity Model
BSIMM Building Security in Maturity Model

SPA Single-page application

REST Representational State Transfer

API Application programming interface
CORS Cross-origin Resource Sharing
References

1. Daugherty, P.; Banerjee, P.; Negm, W.; Alter, A.E. Driving Unconventional Growth through the Industrial
Internet of Things. Technical report, Accenture, 2015.

https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

2. Zhou, W.; Jia, Y;; Peng, A.; Zhang, Y,; Liu, P. The Effect of IoT New Features on Security and Privacy:
New Threats, Existing Solutions, and Challenges Yet to Be Solved. IEEE Internet of Things Journal 2019,
6,1606-1616. doi:10.1109/J10T.2018.2847733.

3. Geer, D. Are Companies Actually Using Secure Development Life Cycles? Computer 2010, 43, 12-16.
d0i:10.1109/MC.2010.159.

4. Assal, H.; Chiasson, S. Security in the software development lifecycle. Symposium on Usable Privacy and
Security. USENIX Association, pp. 281-296.

5. Tondel, L.A.; Jaatun, M.G.; Meland, P.H. Security Requirements for the Rest of Us: A Survey. IEEE Software
2008, 25, 20-27. doi:10.1109/MS.2008.19.

6. Mohammad, A.; Alqatawna,].; Abushariah, M. Secure software engineering: Evaluation of
emerging trends. 8th International Conference on Information Technology (ICIT), 2017, pp. 814-818.
do0i:10.1109/ICITECH.2017.8079952.

7. Assal, H.; Chiasson, S. "Think Secure from the Beginning’: A Survey with Software Developers. Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems; Association for Computing
Machinery: New York, NY, USA, 2019; CHI '19, p. 1-13. doi:10.1145/3290605.3300519.

8. Criddle, C.; Kelion, L. Coronavirus contact-tracing: World split between two types of app,
2020. Available online: https:/ /web.archive.org/web/20210310122748 /https:/ /www.bbc.com /news/
technology-52355028 (accessed on 10-03-21).

9. Boehm, B.W. A spiral model of software development and enhancement. Computer 1988, 21, 61-72.
doi:10.1109/2.59.

10. Beck, K; Beedle, M.; Van Bennekum, A.; others. Manifesto for agile software development. Technical
report, 2001.

11. Osborn, E. Business versus technology: Sources of the perceived lack of cyber security in SMEs [Working

Paper]. Technical report, 2014.

12. Finn, B. Hundreds of businesses move online as Covid-19 shutters ‘bricks and mortar’ stores, 2020.
Available online: https://web.archive.org/web/20210310134008 /https:/ /www.rte.ie/news/business /
2020/0407 /1129150-covid-19-prompts-hundreds-of-businesses-to-move-online/ (accessed on 10-03-21).

13. Abolhassan, F. Security: The real challenge for digitalization. In Cyber Security. Simply. Make it Happen.;
Springer, 2017; pp. 1-11.

14. Peillon, S.; Dubruc, N. Barriers to digital servitization in French manufacturing SMEs. Conference on
Industrial Product-Service Systems 2019, 83, 146-150.

15. Kabanda, S.; Tanner, M.; Kent, C. Exploring SME cybersecurity practices in developing countries. Journal
of Organizational Computing and Electronic Commerce 2018, 28, 269-282.

16. Boehm, B.; Hansen, W.]J. Spiral development: Experience, principles, and refinements. Technical report,
Carnegie Mellon University, 2000.

17. Hoda, R; Salleh, N.; Grundy, J. The rise and evolution of agile software development. IEEE software 2018,
35, 58-63.

18. Budde, R;; Kautz, K.; Kuhlenkamp, K.; Ziillighoven, H. What is prototyping? Information Technology &
People 1992.

19. Bill Gates: Trustworthy Computing, 2002. Available online: https://web.archive.org/web/
20210310122257 /https:/ / www.wired.com /2002 /01 /bill-gates-trustworthy-computing/ (accessed on
10-03-21).

20. Williams, L., Secure Software Lifecycle Knowledge Area. In Cyber Security Body of Knowledge; University of
Bristol, 2019. Version 1.0.

21. What are the Micrsoft SDL practices?, 2021. Available online: https://web.archive.org/web/
20210310121322 /https:/ /www.microsoft.com/en-us/securityengineering /sdl/practices (accessed on
10-03-21).

22. De Win, B.; Scandariato, R.; Buyens, K.; Grégoire, J.; Joosen, W. On the secure software development
process: CLASP, SDL and Touchpoints compared. Information and software technology 2009, 51, 1152-1171.

23. McGraw, G. Software security. IEEE Security Privacy 2004, 2, 80-83. doi:10.1109/MSECP.2004.1281254.

24. Our History. Available online: https://web.archive.org/web/20210310140744 /https:/ /safecode.org/our-
history/ (accessed 10-03-21).

https://doi.org/10.1109/JIOT.2018.2847733
https://doi.org/10.1109/MC.2010.159
https://doi.org/10.1109/MS.2008.19
https://doi.org/10.1109/ICITECH.2017.8079952
https://doi.org/10.1145/3290605.3300519
https://web.archive.org/web/20210310122748/https://www.bbc.com/news/technology-52355028
https://web.archive.org/web/20210310122748/https://www.bbc.com/news/technology-52355028
https://web.archive.org/web/20210310122748/https://www.bbc.com/news/technology-52355028
https://doi.org/10.1109/2.59
https://web.archive.org/web/20210310134008/https://www.rte.ie/news/business/2020/0407/1129150-covid-19-prompts-hundreds-of-businesses-to-move-online/
https://web.archive.org/web/20210310134008/https://www.rte.ie/news/business/2020/0407/1129150-covid-19-prompts-hundreds-of-businesses-to-move-online/
https://web.archive.org/web/20210310134008/https://www.rte.ie/news/business/2020/0407/1129150-covid-19-prompts-hundreds-of-businesses-to-move-online/
https://web.archive.org/web/20210310122257/https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://web.archive.org/web/20210310122257/https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://web.archive.org/web/20210310122257/https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://web.archive.org/web/20210310121322/https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://web.archive.org/web/20210310121322/https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://web.archive.org/web/20210310121322/https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://doi.org/10.1109/MSECP.2004.1281254
https://web.archive.org/web/20210310140744/https://safecode.org/our-history/
https://web.archive.org/web/20210310140744/https://safecode.org/our-history/
https://web.archive.org/web/20210310140744/https://safecode.org/our-history/
https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

25. Fundamental practices for secure software development: Essential elements of a secure development
lifecycle program. Technical report, Software Assurance Forum for Excellence in Code, 2018.

26. SAMM Model Overview, 2020. Available online: https://web.archive.org/web/20210226052500/https:
/ /owaspsamm.org/model/ (accessed on 12-03-21).

27. Williams, L.; McGraw, G.; Migues, S. Engineering security vulnerability prevention, detection, and
response. IEEE Software 2018, 35, 76-80.

28. OWASP Mobile Security, 2020. Available online: https://web.archive.org/web/20210312161251/https:
/ /owasp.org/www-project-mobile-security/ (accessed on 12-03-21).

29. Takabi, H.; Joshi,].B.; Ahn, G.J. Security and privacy challenges in cloud computing environments. IEEE
Security & Privacy 2010, 8, 24-31.

30. Hassan, W.H.; others. Current research on Internet of Things (IoT) security: A survey. Computer networks
2019, 148, 283-294.

31. Azham, Z; Ghani, L; Ithnin, N. Security backlog in Scrum security practices. Malaysian Conference in
Software Engineering 2011, pp. 414—417.

32. Asthana, V.; Tarandach, I.; O'Donoghue, N.; Sullivan, B.; Saario, M. Practical security stories and security
tasks for agile development environments. Technical report, Software Assurance Forum for Excellence in
Code, 2012.

33. Secure DevOps, 2021. Available online: https://web.archive.org/web/20210312163014 /https:/ /www.
microsoft.com/en-us/securityengineering /devsecops (accessed 12-03-21).

34. de Vicente Mohino, J.; Bermejo Higuera, J.; Bermejo Higuera,].R.; Sicilia Montalvo,].A. The Application of
a New Secure Software Development Life Cycle (S-SDLC) with Agile Methodologies. Electronics 2019, 8.
doi:10.3390/ electronics8111218.

35. Pohl, C.; Hof, H. Secure Scrum: Development of Secure Software with Scrum. ArXiv 2015, abs/1507.02992.

36. Oueslati, H.; Rahman, M.M.; Othmane, L.B. Literature Review of the Challenges of Developing Secure
Software Using the Agile Approach. 10th International Conference on Availability, Reliability and Security
2015, pp. 540-547.

37. Bishop, D.; Rowland, P. Agile and Secure Software Development: An Unfinished Story. Issues in Information
Systems.

38. Oyetoyan, T.D.; Cruzes, D.S.; Jaatun, M.G. An empirical study on the relationship between software
security skills, usage and training needs in agile settings. 2016 11th International Conference on Availability,
Reliability and Security (ARES). IEEE, 2016, pp. 548-555.

39. Morrison, P.; Smith, B.H.; Williams, L. Surveying security practice adherence in software development.
Proceedings of the Hot Topics in Science of Security: Symposium and Bootcamp, 2017, pp. 85-94.

40. Chacon, S.; Straub, B. Pro Git; Apress, 2014.

41. Architectural decision record (ADR), 2021. Available online: https://web.archive.org/web/
20210311025433 /https:/ / github.com/joelparkerhenderson/architecture_decision_record (accessed on
12-03-21).

42. Martin, R. The Clean Architecture, 2012. Available online: https://web.archive.org/web/20210312162015/
https:/ /blog.cleancoder.com /uncle-bob /2012 /08 /13 /the-clean-architecture.html (accessed on 12-03-21).

43. Fielding, R.T,; Taylor, R.N. Principled design of the modern web architecture. ACM Transactions on Internet
Technology (TOIT) 2002, 2, 115-150.

44. What's the difference between single-page application and multi-page application?, 2017. Available
online: https://web.archive.org/web/20210312162539/https:/ /www.adcisolutions.com /knowledge/
whats-difference-between-single-page-application-and-multi-page-application (accessed on 12-03-21).

45. Resca, S. Hands-On RESTful Web Services with ASPNET Core 3; Packt, 2019.

46. Introduction to ASPNET Core SignalR, 2019. Available online: https://web.archive.org/web/
20210313155700/https:/ /docs.microsoft.com/en-gb /aspnet/core/signalr/introduction?view=
aspnetcore-5.0 (accessed on 13-03-21).

47. The WebSocket Protocol, 2011. Available online: https://web.archive.org/web/20210308025822 / https:
/ /tools.ietf.org/html/rfc6455/ (accessed on 12-03-21).

https://web.archive.org/web/20210226052500/https://owaspsamm.org/model/
https://web.archive.org/web/20210226052500/https://owaspsamm.org/model/
https://web.archive.org/web/20210226052500/https://owaspsamm.org/model/
https://web.archive.org/web/20210312161251/https://owasp.org/www-project-mobile-security/
https://web.archive.org/web/20210312161251/https://owasp.org/www-project-mobile-security/
https://web.archive.org/web/20210312161251/https://owasp.org/www-project-mobile-security/
https://web.archive.org/web/20210312163014/https://www.microsoft.com/en-us/securityengineering/devsecops
https://web.archive.org/web/20210312163014/https://www.microsoft.com/en-us/securityengineering/devsecops
https://web.archive.org/web/20210312163014/https://www.microsoft.com/en-us/securityengineering/devsecops
https://doi.org/10.3390/electronics8111218
https://web.archive.org/web/20210311025433/https://github.com/joelparkerhenderson/architecture_decision_record
https://web.archive.org/web/20210311025433/https://github.com/joelparkerhenderson/architecture_decision_record
https://web.archive.org/web/20210311025433/https://github.com/joelparkerhenderson/architecture_decision_record
https://web.archive.org/web/20210312162015/https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://web.archive.org/web/20210312162015/https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://web.archive.org/web/20210312162015/https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://web.archive.org/web/20210312162539/https://www.adcisolutions.com/knowledge/whats-difference-between-single-page-application-and-multi-page-application
https://web.archive.org/web/20210312162539/https://www.adcisolutions.com/knowledge/whats-difference-between-single-page-application-and-multi-page-application
https://web.archive.org/web/20210312162539/https://www.adcisolutions.com/knowledge/whats-difference-between-single-page-application-and-multi-page-application
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210313155700/https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-5.0
https://web.archive.org/web/20210308025822/https://tools.ietf.org/html/rfc6455/
https://web.archive.org/web/20210308025822/https://tools.ietf.org/html/rfc6455/
https://web.archive.org/web/20210308025822/https://tools.ietf.org/html/rfc6455/
https://doi.org/10.20944/preprints202103.0406.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2021 d0i:10.20944/preprints202103.0406.v1

© 2021 by the authors. Submitted to J. Cybersecur. Priv. for possible open access
publication under the terms and conditions of the Creative Commons Attribution (CC BY) license
(http:/ /creativecommons.org/licenses /by /4.0/).

http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints202103.0406.v1

	Introduction
	Background
	Rapid Development & Prototyping
	Secure Development

	Security-focused Prototyping: Streamlining Secure Development
	Case Studies
	Case Study: The Security-focused Prototyping of a Bespoke Web Platform
	Case Study: The Security-focused Prototyping of the Application Layer of an IoT System

	Conclusions
	References

